JP3218628B2 - Cryogenic fiber reinforced plastic composite - Google Patents

Cryogenic fiber reinforced plastic composite

Info

Publication number
JP3218628B2
JP3218628B2 JP16944191A JP16944191A JP3218628B2 JP 3218628 B2 JP3218628 B2 JP 3218628B2 JP 16944191 A JP16944191 A JP 16944191A JP 16944191 A JP16944191 A JP 16944191A JP 3218628 B2 JP3218628 B2 JP 3218628B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
cryogenic
reinforced plastic
plastic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16944191A
Other languages
Japanese (ja)
Other versions
JPH04366139A (en
Inventor
俊弘 鹿島
秀朋 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16944191A priority Critical patent/JP3218628B2/en
Publication of JPH04366139A publication Critical patent/JPH04366139A/en
Application granted granted Critical
Publication of JP3218628B2 publication Critical patent/JP3218628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Measuring Magnetic Variables (AREA)
  • Buffer Packaging (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は極低温の環境下で各種部
材として使用される繊維強化プラスチック複合材に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced plastic composite used as various members in an extremely low temperature environment.

【0002】[0002]

【従来の技術】近年、超電導分野等で液体ヘリウムを用
いた極低温環境下での研究開発が盛んに行なわれるよう
になり、極低温用材料の開発も、ステンレス鋼,チタン
合金,アルミニウム合金等の金属材料と、繊維強化プラ
スチック等の非金属材料について進められている。この
様な極低温下での材料の応用分野は多岐にわたるため、
要求性能も多くの項目があり、しかも各分野ごとに異な
っている。例えば、スキッド磁束計、あるいはMRI等
に応用するような医療分野の場合、クライオスタットと
しては帯磁率、導電性、制振性、液体ヘリウム(以下H
eと略す)リーク性等の点が、また支持材としては寸法
安定性、低熱伝導度等の点が重要となる。一方、リニア
モーターカー、宇宙航空等の輸送分野では、軽量性が重
要な要求特性となるであろうし、さらにどのような分野
であっても、機械特性、加工性等は必要性能である。
2. Description of the Related Art In recent years, research and development using liquid helium in a cryogenic environment have been actively conducted in the field of superconductivity and the like, and materials for cryogenic use have been developed in stainless steel, titanium alloys, aluminum alloys and the like. Metal materials and non-metallic materials such as fiber reinforced plastics. Since the application fields of materials at such cryogenic temperatures are diverse,
There are many requirements for the required performance, and they differ for each field. For example, in the medical field applied to a skid magnetometer, MRI, or the like, a cryostat may have magnetic susceptibility, conductivity, vibration damping, liquid helium (hereinafter referred to as H).
e) Leakage and the like are important, and as the support material, dimensional stability and low thermal conductivity are important. On the other hand, in the transportation fields such as linear motor cars and aerospace, lightness will be an important required property, and in any field, mechanical properties, workability, etc. are required performance.

【0003】従来より極低温用材料として多く用いられ
ている金属材料は、機械特性、加工性、Heリーク性に
おいて優れた性能を有しているが、熱伝導度が大きいた
め、断熱支持材料はもとより、クライオスタットあるい
はデュアー等の伝熱部には使用することができず、しか
も熱膨張率が大きく、寸法安定性に劣るといった欠点の
ため支持材料への適用をさらに困難にしている。また、
金属材料は導電性および帯磁率が大きいため、スキッド
磁束計に応用した場合は高いS/N比が得られず、MR
I、SMES等の交流機器用クライオスタットに使用す
ると渦電流に伴う発熱のためにHe蒸発量が増大し、熱
効率上および経済上問題となっていた。さらに、リニア
モーターカーを始めとする最先端輸送分野においては、
高速化、省エネルギーを目的とした軽量化の要求が強
く、もはやアルミニウム等の軽合金ですら重過ぎるのが
現状である。
[0003] Conventionally, metal materials which have been widely used as cryogenic materials have excellent performance in mechanical properties, workability, and He leakage property, but because of their high thermal conductivity, the heat-insulating support materials are not suitable. Naturally, it cannot be used for a heat transfer section such as a cryostat or a dewar, and has a large coefficient of thermal expansion and poor dimensional stability, which makes it more difficult to apply to a support material. Also,
Since a metal material has high conductivity and magnetic susceptibility, when applied to a skid magnetometer, a high S / N ratio cannot be obtained, and MR
When used in a cryostat for AC equipment such as I, SMES, etc., the amount of He evaporation increases due to heat generated by eddy current, which has been a problem in terms of thermal efficiency and economy. Furthermore, in the state-of-the-art transportation fields such as linear motor cars,
There is a strong demand for weight reduction for the purpose of speeding up and energy saving, and even at present, even light alloys such as aluminum are too heavy.

【0004】上述のような金属材料が使用できない極低
温分野では、ガラス繊維等の繊維とマトリックス樹脂か
らなる複合材料(FRPと略すことがある)が用いられ
ている。これらの複合材料は、導電性、帯磁率、断熱性
の点では金属材料に比べて優れてはいるが、他の特性を
含めた総合的なレベルではまだ充分とは言えない。
In the field of cryogenic temperatures where metallic materials cannot be used as described above, a composite material (sometimes abbreviated as FRP) comprising a fiber such as glass fiber and a matrix resin is used. Although these composite materials are superior to metal materials in terms of conductivity, magnetic susceptibility, and heat insulating properties, they cannot be said to be still satisfactory at an overall level including other properties.

【0005】例えば、ガラス繊維複合材料(GFRPと
略すことがある)は、一般的なマトリックス樹脂および
ガラス繊維の両者がいずれも正の膨張率を持つ材料であ
り、雰囲気温度が室温から極低温へ低下する際の体積収
縮が避けられないが、この時に生じるマイクロクラック
がHeリークの原因となるため、クライオスタットやデ
ュアへの応用の障害となり、さらにこの収縮に基づく寸
法安定性の悪さから、種々の極低温用部材として用いる
には困難なことが多い。また、上記複合材料の帯磁率は
金属に比べるとかなり小さな値を持つが、スキッド磁束
計等高感度化を目指す分野においてはまだ充分とは言え
ず、さらなる軽量化とともに改善の余地を残すものであ
る。
[0005] For example, a glass fiber composite material (sometimes abbreviated as GFRP) is a material in which both a general matrix resin and glass fiber have a positive expansion coefficient. Although volume shrinkage at the time of lowering is unavoidable, microcracks generated at this time cause He leak, which hinders application to cryostats and duals, and furthermore, due to poor dimensional stability based on this shrinkage, various It is often difficult to use as a cryogenic member. In addition, the magnetic susceptibility of the above composite material has a considerably smaller value than that of metal, but it is still not enough in fields aiming for high sensitivity such as a skid magnetometer, leaving room for improvement with further weight reduction. is there.

【0006】[0006]

【発明が解決しようとする課題】本発明は上述のような
極低温用材料としてのFRPの欠点を考慮してなされた
もので、その目的は、まず軽量であり、温度低下による
体積収縮がほとんどなく、寸法安定性が良好で極低温下
でのマイクロクラック耐性に優れ、かつ帯磁率が実質上
0であるといった高性能な極低温用FRPを提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks of FRP as a material for cryogenic use. Another object of the present invention is to provide a high-performance FRP for cryogenic use, which has good dimensional stability, excellent microcrack resistance at cryogenic temperatures, and substantially zero magnetic susceptibility.

【0007】[0007]

【課題を解決するための手段】本発明の極低温用繊維強
化プラスチック複合材は、高強度ポリエチレン繊維を補
強繊維とし、フィラメントワインディング法により成形
されたものであるところに要旨を有するものである。
SUMMARY OF THE INVENTION The fiber-reinforced plastic composite material for cryogenic use of the present invention has a gist in that it is formed by a filament winding method using high-strength polyethylene fibers as reinforcing fibers.

【0008】[0008]

【作用】本発明に用いられる補強繊維は、高強度ポリエ
チレン繊維である。この繊維はガラス繊維に比べて、は
るかに低比重であるため、高強度、高弾性率でかつ軽い
補強繊維を得ることができ、さらに帯磁率の面でも、無
機繊維や金属材料に比べ優れている。また、この繊維は
負の膨張率を持つ特異な物質であり、室温から温度を下
げていくと体積増加を示す。一般的にマトリックス樹脂
は正の膨張率を持っているため、上記繊維を複合するこ
とにより温度による体積変化の少ないFRPを得ること
が可能になるのである。このようなポリエチレン繊維
は、例えば特開昭55−107506号公報、特開昭5
6−15408号公報に開示されたような製法を用いて
得ることができる。
The reinforcing fibers used in the present invention are high strength polyethylene fibers. Since this fiber has a much lower specific gravity than glass fiber, it is possible to obtain a high-strength, high-modulus and light reinforcing fiber, and it is also superior in magnetic susceptibility to inorganic fibers and metal materials. I have. Further, this fiber is a unique substance having a negative coefficient of expansion, and shows an increase in volume as the temperature is lowered from room temperature. Generally, since the matrix resin has a positive expansion coefficient, it becomes possible to obtain FRP with a small volume change due to temperature by compounding the above fibers. Such polyethylene fibers are disclosed in, for example, JP-A-55-107506 and JP-A-5-107506.
It can be obtained using a production method as disclosed in JP-A-6-15408.

【0009】上記繊維の形態としては、縒糸、紡績糸等
の各種が利用できる。また、多くの特性をすべて満足さ
せるために、他の有機繊維あるいは無機繊維を混合して
使用することもできる。有機繊維としては、アラミド,
ポリアリレート,ポリベンズビスオキサゾール,ポリベ
ンズビスチアゾール等のPBZポリマー,ポリエチレン
テレフタレート,ポリフェニレンサルファイド,ポリエ
チレンナフタレート,ポリアミドイミド,ポリエーテル
エーテルケトン,ポリエーテルケトンケトン等の繊維が
挙げられる。また、無機繊維としては、ガラス,アルミ
ナ,シリカ,ジルコニア,チタニア,シリコンナイトラ
イド,シリコンカーバイド等のセラミック繊維およびア
ルミニウム,スチール等の金属またはその合金繊維が挙
げられる。
As the form of the fiber, various types such as a twisted yarn and a spun yarn can be used. Further, in order to satisfy all of the many characteristics, other organic fibers or inorganic fibers can be mixed and used. As the organic fiber, aramid,
Examples include fibers such as PBZ polymers such as polyarylate, polybenzbisoxazole and polybenzbisthiazole, polyethylene terephthalate, polyphenylene sulfide, polyethylene naphthalate, polyamide imide, polyetheretherketone, polyetherketoneketone, and the like. Examples of the inorganic fibers include ceramic fibers such as glass, alumina, silica, zirconia, titania, silicon nitride, and silicon carbide, and metals or alloy fibers thereof such as aluminum and steel.

【0010】この場合の混合方法としては、高強度ポリ
エチレン繊維と他の有機繊維あるいは無機繊維のフィラ
メント同士を合糸する方法、一方の繊維のフィラメント
を芯にしてその周囲を他方のフィラメントで被覆して芯
鞘構造の糸を製造する方法、両方の繊維のそれぞれのフ
ィラメント束を開繊した状態で重ね合わせて集束し、生
成したフィラメントを用いて混繊糸を製造する方法等が
挙げられるが、無機繊維は、帯磁率や重量および膨張係
数の点で有機繊維に大きく劣っているため、その配合量
は考慮する必要がある。
As a mixing method in this case, a method of tying high-strength polyethylene fibers and filaments of other organic fibers or inorganic fibers to each other, or covering one fiber core as a core with the other filament around the core. A method of manufacturing a yarn having a core-sheath structure, a method of superimposing and bundling respective filament bundles of both fibers in an opened state, and a method of manufacturing a mixed fiber using the generated filament, and the like. Inorganic fibers are significantly inferior to organic fibers in terms of magnetic susceptibility, weight, and expansion coefficient, and therefore the amount of the inorganic fibers must be considered.

【0011】本発明で用いられるマトリックス樹脂とし
ては、エポキシ系,不飽和ポリエステル系,ビニルエス
テル系,ウレタン系,ウレタンアクリレート系等の樹脂
を用いることができる。これらの中で、脂環式酸無水物
を硬化剤として使用した場合のエポキシ樹脂は、マイク
ロクラック耐性に非常に優れていることが本発明者等に
よって明らかとなった。脂環式酸無水物硬化剤として
は、メチルヘキサヒドロ無水フタル酸およびメチルテト
ラヒドロ無水フタル酸が好ましく選択され、これらは単
独でまたは混合して使用することができる。エポキシ樹
脂としては特に限定されないが汎用のビスフェノールA
型等が用いられる。
As the matrix resin used in the present invention, epoxy-based, unsaturated polyester-based, vinyl ester-based, urethane-based, urethane acrylate-based resins and the like can be used. Among these, the present inventors have clarified that an epoxy resin obtained by using an alicyclic acid anhydride as a curing agent is extremely excellent in micro crack resistance. As the alicyclic acid anhydride curing agent, methylhexahydrophthalic anhydride and methyltetrahydrophthalic anhydride are preferably selected, and these can be used alone or in combination. The epoxy resin is not particularly limited, but is a general-purpose bisphenol A
A mold or the like is used.

【0012】本発明における極低温用繊維強化プラスチ
ック複合材に成形する方法としては、上記繊維の糸状の
ものにマトリックス樹脂を含浸させながらマンドレルに
巻き付けるフィラメントワインディング法が採用され
る。また、上記繊維のテープ状のものにマトリックス樹
脂を含浸させながらマンドレルに巻き付けるテープワイ
ンディング法によって成形してもかまわない。
As a method of molding into a fiber-reinforced plastic composite material for cryogenic use in the present invention, a filament winding method of winding a mandrel while impregnating a thread-like fiber with a matrix resin is employed. Further, the fiber tape may be formed by a tape winding method in which the fiber is impregnated with a matrix resin and wound around a mandrel.

【0013】上記複合材中の繊維とマトリックス樹脂の
混合比率は、繊維の体積分率(Vfと略すことがある)
として35〜85%が好ましく、より好ましいのは40
〜70%である。繊維のVfが35%より少ないと繊維
の補強効果が発現せず、85%を超えるとマトリックス
樹脂の含浸が不充分となり、複合材料としての機械的特
性が悪化するため好ましくない。
The mixing ratio of the fibers and the matrix resin in the composite material is expressed by the volume fraction of the fibers (may be abbreviated as Vf).
Is preferably 35 to 85%, more preferably 40 to 85%.
~ 70%. If the Vf of the fiber is less than 35%, the effect of reinforcing the fiber is not exhibited, and if it exceeds 85%, the impregnation of the matrix resin becomes insufficient, and the mechanical properties of the composite material deteriorate, which is not preferable.

【0014】[0014]

【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

【0015】実施例1 表1に示した組成のマトリックス樹脂を混合後、フィラ
メントワインディング法で高強度ポリエチレン繊維に含
浸させながらマンドレル上に巻き付け(配向角55°)円
筒状とした。次にこれをマンドレル上に保持したまま、
130℃で3時間硬化成形し、繊維のVf65%、外形 150m
mφ×200mm ,肉厚 5mmの成形体を得た。
Example 1 A matrix resin having the composition shown in Table 1 was mixed and wound on a mandrel (orientation angle 55 °) while impregnating high-strength polyethylene fibers by a filament winding method to form a cylindrical shape. Next, while holding this on the mandrel,
Cured at 130 ° C for 3 hours, Vf65% of fiber, 150m
A compact having a diameter of 200 mm and a thickness of 5 mm was obtained.

【0016】比較例1〜6 比較例1ではガラス繊維に表1のビニルエステル樹脂を
含浸させながらマンドレルに巻き付け、これを120℃で1
時間硬化成形し、実施例と同寸法のパイプを形成した。
比較例2はガラス繊維に表1のエポキシ樹脂を含浸させ
ながら実施例と同様の条件で成形した。比較例3は表1
のエポキシ樹脂のみを130℃で3時間硬化させてチュ
ーブ状に一体成形した。比較例4はステンレス鋼(SU
S304L)で同寸法のパイプを作成した。比較例5は
アラミド繊維に、比較例6はポリアリレート繊維に、そ
れぞれ表1に示した組成のマトリックス樹脂を含浸させ
ながらマンドレルに巻き付け、実施例1と同様の条件で
成形した。
Comparative Examples 1 to 6 In Comparative Example 1, a glass fiber was impregnated with the vinyl ester resin shown in Table 1 and wound around a mandrel.
Time-curing molding was performed to form a pipe having the same dimensions as those of the example.
Comparative Example 2 was molded under the same conditions as in the example while impregnating the glass fiber with the epoxy resin shown in Table 1. Comparative Example 3 is shown in Table 1.
Was cured at 130 ° C. for 3 hours to form a single tube. Comparative Example 4 was made of stainless steel (SU
In S304L), pipes of the same dimensions were prepared. Comparative Example 5 was wound around a mandrel while impregnating an aramid fiber and Comparative Example 6 a polyarylate fiber with a matrix resin having the composition shown in Table 1, respectively, and molded under the same conditions as in Example 1.

【0017】[0017]

【表1】 [Table 1]

【0018】各パイプを次のような方法で評価し、結果
を表2に示した。 (1)耐クラック性 試料パイプを室温状態から液体He中に入れ、30分放
置した後に引き上げてクラックができているかどうかの
目視観察を行なった。 ○;クラックはまったく認められない。 △;クラックが少し認められる。 ×;全面に大きなクラックがある。
Each pipe was evaluated in the following manner, and the results are shown in Table 2. (1) Crack resistance A sample pipe was placed in liquid He from a room temperature state, left standing for 30 minutes, and then pulled up to visually observe whether a crack was formed. ;: No crack is observed at all. Δ: Cracks are slightly observed. X: There are large cracks on the entire surface.

【0019】(2)Heリーク性 まず各パイプの両端をシールして真空に吸引してからH
eガスを系内に入れ、標準リーク量が 5.0×10-8torr・l
/secであることを確認した。次にパイプ外筒幅にHeガ
スを吹きかけHeリーク量を測定し、標準リーク量に対
する割合(%)で示した。次にパイプを液体He中に3
0分放置した後に取り出して上記と同様にHeリーク量
を測定した。
(2) He leak property First, both ends of each pipe are sealed, and a vacuum is drawn.
e Gas is introduced into the system and the standard leak rate is 5.0 × 10 -8 torr · l
/ sec. Next, He gas was blown onto the pipe outer cylinder width, and the He leak amount was measured. The result was shown as a ratio (%) to the standard leak amount. Then place the pipe in liquid He 3
After leaving it to stand for 0 minutes, it was taken out and the He leak amount was measured in the same manner as above.

【0020】(3)スピン数(Ns) 各試料を液体Heで冷却しながらESR(電子スピン共
鳴)を測定しスピン数を求めた(スピン数は帯磁率と比
例する)。
(3) Number of Spins (Ns) ESR (Electron Spin Resonance) was measured while cooling each sample with liquid He to determine the number of spins (the number of spins is proportional to the magnetic susceptibility).

【0021】(4)収縮率 各試料の室温から液体He温度までの寸法変化率をTM
A法により測定し収縮率を算出した(昇温速度:5 ℃/
min )。
(4) Shrinkage rate The dimensional change rate of each sample from room temperature to liquid He temperature is expressed by TM
The shrinkage was calculated by measuring according to Method A (heating rate: 5 ° C /
min).

【0022】(5)比重 比重計で測定した(25℃)。(5) Specific gravity The specific gravity was measured (25 ° C.).

【0023】(6)曲げ強度 各試料から厚さ5mm、幅5mmの試料を切り出し、支点間
距離25mm、クロスヘッド速度1mm/分で、室温および
液体He温度での曲げ強度を測定した。
(6) Flexural Strength A specimen having a thickness of 5 mm and a width of 5 mm was cut out from each specimen, and the flexural strength at room temperature and liquid He temperature was measured at a distance between fulcrums of 25 mm and a crosshead speed of 1 mm / min.

【0024】(7)比曲げ強度 曲げ強度と比重より比曲げ強度を算出した。(7) Specific bending strength The specific bending strength was calculated from the bending strength and the specific gravity.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明によって得られる極低温用繊維強
化プラスチック複合材は、膨張率が負である高強度ポリ
エチレン繊維と膨張率が正であるマトリックス樹脂を複
合させたFRPであるため、温度低下による収縮率はほ
とんど0となり、極低温時でも耐マイクロクラック性お
よび寸法安定性に優れた非常に軽量な部材を得ることが
できる。また、高強度な有機繊維と、特定の硬化剤を配
合したエポキシ樹脂を用いることによって、帯磁率、機
械特性にも優れた極低温用繊維強化プラスチック複合材
を提供することができた。
The fiber-reinforced plastic composite material for cryogenic use obtained by the present invention is an FRP in which high-strength polyethylene fibers having a negative expansion coefficient and a matrix resin having a positive expansion coefficient are composited, so that the temperature is lowered. The shrinkage ratio becomes almost 0, and a very lightweight member excellent in micro crack resistance and dimensional stability can be obtained even at an extremely low temperature. Further, by using an epoxy resin containing a high-strength organic fiber and a specific curing agent, a cryogenic fiber-reinforced plastic composite material having excellent magnetic susceptibility and mechanical properties could be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F16L 59/12 F16L 59/12 F17C 1/02 F17C 1/02 13/08 13/08 F25D 3/10 F25D 3/10 G01R 33/035 G01R 33/035 H01F 6/00 H01L 39/04 ZAA H01L 39/04 ZAA C08L 63:00 C08L 63:00 H01F 7/22 (56)参考文献 特開 昭63−115999(JP,A) 特開 昭56−116555(JP,A) 特開 昭57−195998(JP,A) 特開 昭61−64107(JP,A) 特開 平4−196181(JP,A) 特開 平4−266077(JP,A) 特開 平4−67843(JP,A) 特開 平4−69492(JP,A) 特開 平4−69493(JP,A) 特開 平3−192129(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08J 5/24 CFC ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI F16L 59/12 F16L 59/12 F17C 1/02 F17C 1/02 13/08 13/08 F25D 3/10 F25D 3/10 G01R 33 / 035 G01R 33/035 H01F 6/00 H01L 39/04 ZAA H01L 39/04 ZAA C08L 63:00 C08L 63:00 H01F 7/22 (56) References JP-A-63-115999 (JP, A) JP-A-56-116555 (JP, A) JP-A-57-195998 (JP, A) JP-A-61-64107 (JP, A) JP-A-4-196181 (JP, A) JP-A-4-266077 (JP) JP-A-4-67843 (JP, A) JP-A-4-69492 (JP, A) JP-A-4-69493 (JP, A) JP-A-3-192129 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) C08J 5/24 CFC

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高強度ポリエチレン繊維を補強繊維と
し、フィラメントワインディング法により成形されたも
のであることを特徴とする極低温用繊維強化プラスチッ
ク複合材
1. A method in which a high-strength polyethylene fiber is used as a reinforcing fiber and is formed by a filament winding method.
Cryogenic fiber-reinforced plastic, characterized in that the at is
Composites .
JP16944191A 1991-06-13 1991-06-13 Cryogenic fiber reinforced plastic composite Expired - Fee Related JP3218628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16944191A JP3218628B2 (en) 1991-06-13 1991-06-13 Cryogenic fiber reinforced plastic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16944191A JP3218628B2 (en) 1991-06-13 1991-06-13 Cryogenic fiber reinforced plastic composite

Publications (2)

Publication Number Publication Date
JPH04366139A JPH04366139A (en) 1992-12-18
JP3218628B2 true JP3218628B2 (en) 2001-10-15

Family

ID=15886667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16944191A Expired - Fee Related JP3218628B2 (en) 1991-06-13 1991-06-13 Cryogenic fiber reinforced plastic composite

Country Status (1)

Country Link
JP (1) JP3218628B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894276B2 (en) * 2005-03-14 2012-03-14 住友化学株式会社 Polyolefin resin composition
JP2007035835A (en) * 2005-07-26 2007-02-08 Taiyo Nippon Sanso Corp Manufacturing method of inner tub of cryostat
CN105563945B (en) * 2014-10-10 2018-04-03 山东大学 Application of the Zirconium oxide fibre as low temperature, ultra-low temperature heat preservation material

Also Published As

Publication number Publication date
JPH04366139A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
Reed et al. Cryogenic composite supports: a review of strap and strut properties
JP3218628B2 (en) Cryogenic fiber reinforced plastic composite
US6325108B1 (en) Prestressed composite cryogenic piping
Horiuchi et al. Cryogenic properties of composite materials
JP4283359B2 (en) Metal matrix composite material with high rigidity and stability in the longitudinal direction
JPH05320369A (en) Material for cryogenic use
Shindo et al. Compression behavior of glass-cloth/epoxy laminates at cryogenic temperatures
JPH05320321A (en) Cryogenic material
JP3601608B2 (en) Cryogenic fiber reinforced plastic material
Hanson Tensile and cyclic fatigue properties of graphite filament-wound pressure vessels at ambient and cryogenic temperatures
Schwartz et al. Characteristics of boron fibers and boron-fiber-reinforced plastic composites.
JP3036170B2 (en) Mount for skid system
JPH06218828A (en) Fiber reinforced plastic material for very low temperature
JPH06226867A (en) Very low temperature fiber reinforced plastic material
JPH06211993A (en) Fiber-reinforced plastic material for cryogenic temperature
JP3582602B2 (en) Cryogenic container
JP2008306092A (en) Superconducting coil
JPH0469493A (en) Heat insulating support member for cryogenic temperature vessel
Wang et al. Tensile and torsional fatigue of fiber-reinforced composites at cryogenic temperatures
JPH06126846A (en) Fiber reinforced plastic material for extremely low temperature use
Kadotani Mechanical properties of plastic composites under low temperature conditions
JPH0653036A (en) Thermal insulant for low temperature
JP3362874B2 (en) Permanent current switch
Goodrich et al. Thermal Contraction of Fiberglass-Epoxy Sample Holders Used for Nb 3 Sn Critical-Current Measurements
JP2001060508A (en) Superconducting dipole magnet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees