JPH06318514A - Superconducting coil device - Google Patents

Superconducting coil device

Info

Publication number
JPH06318514A
JPH06318514A JP3907094A JP3907094A JPH06318514A JP H06318514 A JPH06318514 A JP H06318514A JP 3907094 A JP3907094 A JP 3907094A JP 3907094 A JP3907094 A JP 3907094A JP H06318514 A JPH06318514 A JP H06318514A
Authority
JP
Japan
Prior art keywords
superconducting coil
fiber
fibers
winding
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3907094A
Other languages
Japanese (ja)
Inventor
Toshihiro Kashima
俊弘 鹿島
Hidetomo Inui
秀朋 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP3907094A priority Critical patent/JPH06318514A/en
Publication of JPH06318514A publication Critical patent/JPH06318514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To provide a high-performance and stable superconducting coil by using a fiber material for a winding frame and fiber reinforced plastics which are molded in one body with a wound resin so that the roving of a negative expansion fiber, the melting point of which is a specific temperature or higher, makes the angle of a specific range with respect to the axis. CONSTITUTION:The winding frame for a superconductive wire is a fiber reinforced plastics molded in one body with a wound resin so that the roving of a fiber molding which has a high strength and a high elastic rate of aramid, polyarylate, carbon and the like and a negative expansion rate, the melting point of which is 160 deg. or higher, has an angle of from + or -40 deg. to + or -80 deg. with respect to the axis thereof. Thereby, the stable and high-performance superconducting coil which is easy in the operation of training and high in the maximum current value can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は極低温に冷却して用いら
れる超電導コイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil which is cooled to an extremely low temperature and used.

【0002】[0002]

【従来の技術】超電導コイル装置は超電導導体を巻枠に
巻回し、層間にスペーサを介して形成されるか外周面に
彫られたラセン溝に沿って超電導導体を巻回した層コイ
ル要素を順次同心的に複数層重ねて構成される。従来こ
の巻枠としてはアルミニウム等の金属又はガラス繊維強
化プラスチックが用いられる。
2. Description of the Related Art In a superconducting coil device, a superconducting conductor is wound around a winding frame, and layer coil elements in which the superconducting conductor is wound along a spiral groove formed between layers with a spacer or engraved on the outer peripheral surface are sequentially formed. Concentric layers are formed. Conventionally, a metal such as aluminum or glass fiber reinforced plastic is used as the reel.

【0003】[0003]

【発明が解決しようとする課題】超電導コイルの用途は
多岐に亙るが、いずれも超電導線の電流密度を高くする
ことが、コイル自体の性能を上げるためには極めて重要
である。そして、これは巻枠に巻回した超電導線の安定
性に大きく依存する。超電導線を巻枠に巻回した状態で
の物理的安定性は超電導コイル自体の電気的な安定性と
深く関わっている。通常巻枠としてはアルミニウム等の
金属又はガラス繊維強化プラスチック(GFRP)が用
いられるが、これらは室温で巻回して液体窒素(LN
T)又は液体ヘリウム温度(LHeT)迄冷却した時、
いずれも巻枠の周方向に大きく収縮し、軸方向に小さく
収縮する。一方超電導線は、極低温で励磁した時、周方
向には、ローレンツ力に由来する反発力により膨張し、
巻線は、巻枠から離れる方向に動くことになる。また軸
方向には極低温になると超電導線の垂直方向の正膨張に
由来する大きな収縮のため巻枠軸方向の小さな収縮以上
に寸法変化することになる。この両者の動きが相まって
超電導線間にミクロな相互の動きが生じ、表面の摩擦発
熱に伴う擾乱が生じ超電導コイルはクエンチに至る。ま
たアルミ枠の場合は導電性であるため、特に交流では渦
電流に伴うジュール発熱が生ずるため不安定となる。こ
の発明は以上の問題点を解消するためになされたもので
あり、高性能且つ安定な超電導コイルを得ることを目的
とする。
Although there are various uses of the superconducting coil, increasing the current density of the superconducting wire is extremely important for improving the performance of the coil itself. And, this largely depends on the stability of the superconducting wire wound around the bobbin. The physical stability of the superconducting wire wound around the bobbin is closely related to the electrical stability of the superconducting coil itself. Usually, a metal such as aluminum or glass fiber reinforced plastic (GFRP) is used as the reel, but these are wound at room temperature and liquid nitrogen (LN
T) or when cooled to liquid helium temperature (LHeT),
Both shrink greatly in the circumferential direction of the bobbin and shrink slightly in the axial direction. On the other hand, the superconducting wire expands in the circumferential direction due to the repulsive force derived from the Lorentz force when excited at a very low temperature,
The winding will move away from the bobbin. Further, when the temperature becomes extremely low in the axial direction, the size of the superconducting wire changes more than the small amount in the axial direction of the winding frame due to the large contraction caused by the positive expansion in the vertical direction. These two movements combine to cause microscopic mutual movements between the superconducting wires, causing a disturbance due to frictional heat generation on the surface and causing the superconducting coil to be quenched. Further, in the case of an aluminum frame, since it is conductive, Joule heat is generated due to an eddy current, especially in an alternating current, so that it becomes unstable. The present invention has been made to solve the above problems, and an object thereof is to obtain a high-performance and stable superconducting coil.

【0004】[0004]

【課題を解決するための手段】本発明は、筒又は柱状の
巻枠に超電導線を巻回して極低温で使用する超電導コイ
ル装置において、前記巻枠が繊維材料として融点が16
0℃以上の負膨張繊維のロービングを軸に対して±40
度から±80度の角度となる様に巻き樹脂と一体成形し
てなる繊維強化プラスチックよりなることを特徴とする
超電導コイル装置。
SUMMARY OF THE INVENTION The present invention is a superconducting coil device in which a superconducting wire is wound around a cylindrical or columnar winding frame and used at extremely low temperatures, and the winding frame has a melting point of 16 as a fibrous material.
Roving of negative expansion fiber above 0 ℃ is ± 40 with respect to the axis
A superconducting coil device, which is made of a fiber-reinforced plastic integrally molded with a winding resin so that an angle of ± 80 degrees is formed.

【0005】本発明において用いられる、融点が160
℃以上の負膨張(低温になるにつれて膨張する)繊維と
しては高強力、高弾性率繊維であり、アラミド、ポリア
リレート(全芳香族ポリエステル)、PBZポリマー
(ポリベンツビスオキサゾール、ポリベンツビスチアゾ
ールなど)及びカーボン等の繊錐が挙げられる。これら
の繊維はいずれも低温になるにつれて、膨張するという
特異な性質を持つとともにガラス繊維に比べてはるかに
低比重であるため、比高強度、比高弾性率であり且つ軽
い補強繊維を得ることができる。ここで融点が160℃
以下の例えばポリエチレン繊維などはマトリクスである
樹脂の成形条件に制約があるばかりでなく超導電導体を
巻回した後の樹脂含浸工程の硬化条件にも制約があり、
優れた性能の超導電コイルを得ることができない。また
巻枠としての多くの物性をすべて満足させるためには、
2種以上の負膨張繊維を混合することも出来るし、一
部、正膨張繊維を混合使用することも可能である。ここ
に正膨張繊維としてはガラス、アルミナ、シリカ、ジコ
ニア、チタニア、シリコンカーバイド、シリコンナイト
ライドなどのセアミクス繊維及びアルミ、銅、ステンレ
ス等の金属繊維を挙げることができる。
The melting point used in the present invention is 160.
Negative expansion above ℃ (expands as the temperature decreases) is a high-strength, high-modulus fiber such as aramid, polyarylate (wholly aromatic polyester), PBZ polymer (polybenzbisoxazole, polybenzbisthiazole, etc. ) And dendritic cones such as carbon. Since all of these fibers have the unique property of expanding as the temperature becomes lower and have a much lower specific gravity than glass fibers, it is necessary to obtain a reinforcing fiber that has a high specific strength and a high specific elastic modulus and is light. You can Where the melting point is 160 ° C
For example, the following polyethylene fibers have not only restrictions on the molding conditions of the resin that is the matrix, but also restrictions on the curing conditions of the resin impregnation step after winding the superconducting conductor,
A superconducting coil with excellent performance cannot be obtained. Also, in order to satisfy all of the many physical properties as a reel,
Two or more kinds of negative expansion fibers can be mixed, or a part of the positive expansion fibers can be mixed and used. Examples of the positive expansion fibers include seamix fibers such as glass, alumina, silica, zirconia, titania, silicon carbide and silicon nitride, and metal fibers such as aluminum, copper and stainless steel.

【0006】次に寸法変化については、これらの負膨張
繊維はいずれも負膨張率(室温から温度を下げると伸長
する)を有するという特異な性質を持つ。一方マトリク
ス樹脂は正膨張を示すが、これら繊維のフイラメントを
巻回して、成形した円筒又は円柱は、周方向に大きな負
膨張率を又軸方向には正膨張率を持たせることができ
る。ここで使用されるマトリックスとしてはエポキシ樹
脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ウ
レタン樹脂、ウレタンアクリレート樹脂などが使用でき
るが特に好ましいのはエポキシ樹脂である。これらのマ
トリクス樹脂はいずれも正膨張を示すが、負膨張を示す
これらの繊維を用いて、巻き角度を変えてフィラメント
を巻回して、成形した円筒又は円柱の寸法変化は図1に
示す様に巻き角度に依存し、それを適当に選ぶことによ
り周方向に対して大きな負膨張率、又軸方向は正膨張と
することができる。そして、周方向の負膨張は繊維自身
の持つ負膨張率よりはるかに高い値となる。配向角は軸
方向に対して±40〜±80度が適当であるが、望まし
くは±47〜±75度である。角度が±40度未満では
周方向の正膨張(低温になるに従い収縮する)が大きく
なり、±80度を越す角度では成形品内部に発生する熱
応力が大きくなり、クラックが入り易くなるなど不安定
となる。一方、GFRPの場合はガラス繊維及びマトリ
クス樹脂とも正膨張であるので巻き角度に無関係に、周
方向には正膨張という通常の材料に見られる特性しか得
られない。従ってこれよりなる巻枠を用いた超電導コイ
ルは、安定で、耐クエンチ牲が高く電流密度の大きな高
性能コイルとすることができる。GFRPを超電導コイ
ルの巻枠として使用する場合、最大の問題点は周方向の
大きな収縮に伴う超電導線のゆるみによりコイルが容易
にクエンチすることである。本発明では、アラミド、ポ
リアリレート、カーボンなどの高強力、高弾性率で且つ
負膨張率を有する繊維成形体の軸に対して±40度から
±80度の角度となる様に巻き樹脂と一体成形してなる
繊維強化ブラスチックを巻枠とすることによりトレーニ
ング作業が容易で且つ最大電流値の高い、安定にして高
性能な超電導コイルを提供するものである。
Next, regarding the dimensional change, all of these negative expansion fibers have a peculiar property that they have a negative expansion coefficient (elongate when the temperature is lowered from room temperature). On the other hand, the matrix resin exhibits positive expansion, but a cylinder or column formed by winding a filament of these fibers can have a large negative expansion coefficient in the circumferential direction and a positive expansion coefficient in the axial direction. As the matrix used here, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a urethane resin, a urethane acrylate resin or the like can be used, but an epoxy resin is particularly preferable. All of these matrix resins exhibit positive expansion, but by using these fibers exhibiting negative expansion, the filament is wound by changing the winding angle, and the dimensional change of the molded cylinder or cylinder is as shown in FIG. Depending on the winding angle, a large negative expansion coefficient in the circumferential direction and a positive expansion in the axial direction can be obtained by appropriately selecting it. The negative expansion in the circumferential direction is much higher than the negative expansion coefficient of the fiber itself. The orientation angle is preferably ± 40 to ± 80 degrees with respect to the axial direction, but is preferably ± 47 to ± 75 degrees. If the angle is less than ± 40 degrees, the positive expansion in the circumferential direction (contracting as the temperature becomes lower) increases, and if the angle exceeds ± 80 degrees, the thermal stress generated inside the molded product increases and cracks easily occur. Be stable. On the other hand, in the case of GFRP, since both glass fiber and matrix resin have positive expansion, only the characteristic of normal expansion, which is a characteristic of ordinary materials, can be obtained regardless of the winding angle. Therefore, the superconducting coil using the winding frame made of this can be a high-performance coil that is stable, has high quench resistance, and has a large current density. When GFRP is used as a bobbin of a superconducting coil, the biggest problem is that the coil is easily quenched due to loosening of the superconducting wire accompanying a large contraction in the circumferential direction. In the present invention, the aramid, polyarylate, carbon, etc. are integrated with the winding resin so as to form an angle of ± 40 ° to ± 80 ° with respect to the axis of the fiber molding having high strength, high elastic modulus and negative expansion coefficient. (EN) A superconducting coil which is stable and has a high maximum current value, which can be easily trained by using a molded fiber-reinforced plastic as a winding frame.

【0007】成形法としては、本繊維を糸状またはテー
プ状のものにマトリック樹脂を含浸させながら、マンド
レルに巻き付けるフイラメントワインディング法又はテ
ープワインディング法などが挙げられる。上記複合材中
の繊維とマトリックス樹脂の混合比率は、繊維の体積分
率(Vf)として35〜85%が好ましく、より好まし
いのは40〜70%である。繊維のVfが35%より少
ないと繊維の補強効果が発現せず、85%を超えるとマ
トリックス樹脂が含浸しにくくなり複合材料としての機
械的特性が悪化するため好ましくない。
Examples of the molding method include a filament winding method or a tape winding method in which the present fiber is impregnated with a matrix resin in a thread or tape shape and wound around a mandrel. The mixing ratio of the fibers and the matrix resin in the composite material is preferably 35 to 85%, more preferably 40 to 70% as the volume fraction (Vf) of the fibers. When the Vf of the fiber is less than 35%, the reinforcing effect of the fiber is not exhibited, and when it exceeds 85%, it is difficult to impregnate the matrix resin and the mechanical properties of the composite material are deteriorated, which is not preferable.

【0008】[0008]

【実施例】本発明の負膨張繊維よりなる円筒状繊維強化
プラスチツク(FRP)は、以下の様に行った。負膨張
繊維としては、アラミド繊維(日本アラミド繊維、トワ
ロンHM)、ポリアリレート繊維(クラレ、ベクトラ
ン)、カーボン繊維(東レ、HT)、及び比較としてガ
ラス繊維を用いて、実施例1〜3、比較例4〜7の合計
7種類の円筒状FRPをフィラメントワインディング法
により作成した。マトリックスとしてはエポキシ樹脂を
使用し以下の配合により、均一混合樹脂ドープを作成し
た。 エピコート−827(油化シエル) 100 エピキュアーYH−300(油化シエル) 80 EMI−24(油化シエル) 1 次に各種繊維にエポキシ樹脂を含浸させながらマンドレ
ルに巻き付け、円筒状とした。次にこれをマンドレル上
に保持したまま100℃×2hr、その後130℃×3
hrにて硬化成形し繊錐体積含有率65%、外径100
mm×長さ500mm、肉厚5mmの成形体を得た。こ
の様にして得られた各円筒に、GFRPよりなるフラン
ジを接着し、コイル用巻枠を得た。これに1.2mmφ
の超電導導体をテンション10kgにて、5層巻回した
後、前述シートワインデング用エポキシ樹脂を含浸し、
100℃×4hr、更に130℃×3hr加熱硬化し超
電導コイルを完成させた。これらの評価結果を表1に示
す。
EXAMPLES Cylindrical fiber reinforced plastics (FRP) made of negative expansion fibers of the present invention were prepared as follows. As negative expansion fibers, aramid fibers (Japanese aramid fibers, Twaron HM), polyarylate fibers (Kuraray, Vectran), carbon fibers (Toray, HT), and glass fibers for comparison were used. A total of 7 types of cylindrical FRPs of Examples 4 to 7 were prepared by the filament winding method. Epoxy resin was used as the matrix, and a uniform mixed resin dope was prepared by the following formulation. Epicoat-827 (Oilized shell) 100 Epicure YH-300 (Oilized shell) 80 EMI-24 (Oilized shell) 1 Next, various fibers were impregnated with an epoxy resin and wound around a mandrel to form a cylindrical shape. Next, while keeping it on the mandrel, 100 ° C x 2 hr, then 130 ° C x 3
Hardened and molded by hr, the volume of the conical cone is 65%, the outer diameter is 100.
A molded body having a size of mm × 500 mm and a wall thickness of 5 mm was obtained. A flange made of GFRP was adhered to each of the cylinders thus obtained to obtain a coil winding frame. 1.2mmφ to this
After winding 5 layers of the superconducting conductor of 10 kg with a tension of 10 kg, impregnating the above-mentioned epoxy resin for sheet winding,
The superconducting coil was completed by heat curing at 100 ° C. for 4 hours and further at 130 ° C. for 3 hours. The results of these evaluations are shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】(熱膨張率)巻き枠の外周面にストレイン
ゲージをはり付け後、液体N2中に浸積し円周方向及び
軸方向の寸法変化を測定した。 (耐クラック性)各パイプを室温状態から液体He中に
入れ30分保持した後引き上げて目視で観察する。耐ク
ラック性の高い順に○>△>×とした。 (クエンチ電流)超電導コイル装置を液体He中に浸漬
し、クエンチ電流を測定した。結果は繰返しのトレーニ
ングにより到達した最大電流密度とその時のトレーニン
グ回数により示す。
(Coefficient of thermal expansion) A strain gauge was attached to the outer peripheral surface of the winding frame, and then immersed in liquid N2 to measure dimensional changes in the circumferential direction and the axial direction. (Crack resistance) Each pipe is placed in liquid He from room temperature, held for 30 minutes, then pulled up and visually observed. The order of higher crack resistance was ◯>△> ×. (Quench current) The superconducting coil device was immersed in liquid He and the quench current was measured. The results are shown by the maximum current density reached by repeated training and the number of trainings at that time.

【0011】[0011]

【発明の効果】本発明によるとトレーニング回数が少
く、最大電流値が高い、安定且つ高性能な超電導コイル
を提供することを可能にした。
According to the present invention, it is possible to provide a stable and high-performance superconducting coil which requires a small number of trainings and a high maximum current value.

【図面の簡単な説明】[Brief description of drawings]

【図1】各種繊維における巻角度と熱膨張率との関係を
示す図。
FIG. 1 is a diagram showing a relationship between a winding angle and a coefficient of thermal expansion in various fibers.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 筒又は柱状の巻枠に超電導線を巻回して
極低温で使用する超電導コイル装置において、前記巻枠
が繊維材料として融点が160℃以上の負膨張繊維のロ
ービングを軸に対して±40度から±80度の角度とな
る様に巻き樹脂と一体成形してなる繊維強化プラスチッ
クよりなることを特徴とする超電導コイル装置。
1. A superconducting coil device in which a superconducting wire is wound around a cylindrical or columnar winding frame and used at a cryogenic temperature, wherein the winding frame has a roving of negative expansion fiber having a melting point of 160.degree. A superconducting coil device comprising a fiber reinforced plastic integrally molded with a winding resin so that an angle of ± 40 degrees to ± 80 degrees is obtained.
JP3907094A 1993-01-28 1994-01-28 Superconducting coil device Pending JPH06318514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3907094A JPH06318514A (en) 1993-01-28 1994-01-28 Superconducting coil device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-12774 1993-01-28
JP1277493 1993-01-28
JP3907094A JPH06318514A (en) 1993-01-28 1994-01-28 Superconducting coil device

Publications (1)

Publication Number Publication Date
JPH06318514A true JPH06318514A (en) 1994-11-15

Family

ID=26348438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3907094A Pending JPH06318514A (en) 1993-01-28 1994-01-28 Superconducting coil device

Country Status (1)

Country Link
JP (1) JPH06318514A (en)

Similar Documents

Publication Publication Date Title
JPH06182882A (en) Structural member made of fiber-reinforced thermoplastic material and its production
JP2888664B2 (en) Optical tube made of CFRP
US4155791A (en) Method for manufacturing unidirectionally fiber reinforced resin products
US5683059A (en) Bobbin for superconducting coils
US6325108B1 (en) Prestressed composite cryogenic piping
JP4533518B2 (en) Fiber reinforced composite material using high strength and high elongation carbon fiber
JPH06318514A (en) Superconducting coil device
JPH08195311A (en) Superconducting coil
JPH07335427A (en) Superconductive coil
JPH08115813A (en) Superconducting coil
JP3601608B2 (en) Cryogenic fiber reinforced plastic material
EP0370147A1 (en) Tubular composite construction
JP3218628B2 (en) Cryogenic fiber reinforced plastic composite
JPH06218828A (en) Fiber reinforced plastic material for very low temperature
JP3582602B2 (en) Cryogenic container
JPH06224026A (en) Superconducting coil device
JP2014090089A (en) Superconducting coil bobbin and superconducting coil
JPH06126846A (en) Fiber reinforced plastic material for extremely low temperature use
JPH06211993A (en) Fiber-reinforced plastic material for cryogenic temperature
JP3362874B2 (en) Permanent current switch
JPH10177913A (en) Supeconductive coil
JP3036170B2 (en) Mount for skid system
JP2000199840A (en) Aramid fiber reinforced curable resin wire-shaped material, its production and spacer for optical fiber cable consisting of this wire-shaped body as tension member
JP2002031277A (en) Composite transport pipe with continuous length
JPH06226867A (en) Very low temperature fiber reinforced plastic material