JP2000199840A - Aramid fiber reinforced curable resin wire-shaped material, its production and spacer for optical fiber cable consisting of this wire-shaped body as tension member - Google Patents

Aramid fiber reinforced curable resin wire-shaped material, its production and spacer for optical fiber cable consisting of this wire-shaped body as tension member

Info

Publication number
JP2000199840A
JP2000199840A JP11000125A JP12599A JP2000199840A JP 2000199840 A JP2000199840 A JP 2000199840A JP 11000125 A JP11000125 A JP 11000125A JP 12599 A JP12599 A JP 12599A JP 2000199840 A JP2000199840 A JP 2000199840A
Authority
JP
Japan
Prior art keywords
aramid fiber
diameter
curable resin
linear material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11000125A
Other languages
Japanese (ja)
Other versions
JP4282128B2 (en
Inventor
Takakiyo Kato
孝清 加藤
Akira Hidaka
章 日高
Toku Ishii
徳 石井
Shiro Sakamoto
史郎 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Ube Exsymo Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd, Ube Nitto Kasei Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP00012599A priority Critical patent/JP4282128B2/en
Publication of JP2000199840A publication Critical patent/JP2000199840A/en
Application granted granted Critical
Publication of JP4282128B2 publication Critical patent/JP4282128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an A-FRP wire-shaped material which is improved in bending resistance and bending performance, such as reduction of a curl, a process for producing the same and a spacer for an optical fiber cable consisting of such material as a tension member. SOLUTION: The bending performance of the A-FRP wire-shaped material is required to be the minimum bending diameter below 35 times the diameter D of the A-FRP wire-shaped material and to be below 20 times the diameter D in the height of the arc at the chord of the length corresponding to 216 times the diameter D right after opening of the bend after resting for 24 hours in the state of bending the A-FRP wire-shaped material to the diameter of 175 times the diameter D thereof. Aramid fibers as reinforcing fibers of <=15 wt.% and >=60 Å in crystal size which are heat treated just before impregnation of an uncured matrix resin with the aramid fibers are used. A prescribed number of the aramid fibers 11a for reinforcement are drawn out of a creel 20, are converged via a guide plate 21 and are then heat treated to >=300 deg.C in a heat treatment vessel 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アラミド繊維強化
硬化性樹脂線状物、とりわけ光ケーブル等に用いられる
アラミド繊維強化硬化性樹脂線状物の曲げ性能を向上さ
せる技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving the bending performance of an aramid fiber reinforced curable resin linear material, particularly, an aramid fiber reinforced curable resin linear material used for an optical cable or the like.

【0002】[0002]

【従来技術と問題点】光ファイバは、許容伸びが小さい
ため、これを集合化させた光ケーブルには、通常、光フ
ァイバに規定以上の伸びを生じさせないようにするため
の抗張力体が用いられている。
2. Description of the Related Art Since an optical fiber has a small allowable elongation, a tensile strength member for preventing the optical fiber from elongating more than a specified amount is generally used in an optical cable in which the optical fiber is assembled. I have.

【0003】そしてこの抗張力体にアラミド繊維強化樹
脂(以下A−FRPということがある。 )線状物を使
用したものは、軽量であることからケーブルの布設工事
が楽になること、かつ無誘導であるため電力ケーブルの
近辺でも光ファイバの伝送特性に悪影響を与えることな
く使用できることなどから、光ケーブルの総布設コスト
を低減できる可能性を有している。
[0003] A wire made of an aramid fiber reinforced resin (hereinafter sometimes referred to as A-FRP) is used as the tensile strength member, so that the cable laying work becomes easy due to its light weight, and no induction is required. For this reason, the optical fiber can be used near the power cable without adversely affecting the transmission characteristics of the optical fiber. Therefore, there is a possibility that the total installation cost of the optical cable can be reduced.

【0004】[0004]

【発明が解決しようとする課題】しかし、A−FRP線
状物の場合、ガラス繊維を補強繊維とするG−FRP線
状物に比較して、最小曲げ直径が大きいという欠点や、
A−FRP線状物をボビンに巻き付けた後、使用のため
巻ほぐした状態で、ボビンの巻径に対応した湾曲状を呈
し、いわゆる巻癖が大きいという欠点がある。
However, in the case of the A-FRP linear material, the disadvantage that the minimum bending diameter is larger than that of the G-FRP linear material using glass fiber as a reinforcing fiber,
After the A-FRP linear material is wound around the bobbin, when it is unwound for use, it has a curved shape corresponding to the diameter of the bobbin, and has a drawback that the so-called winding habit is large.

【0005】特に、巻癖が大きいと、このA−FRP線
状物を抗張力線とするスペーサに光ファイバを収納して
光ファイバケーブルを製造する際、集合速度が上げられ
ず、またケーブル製造後においては、ケーブル布設時の
作業性を悪化させるという問題が生じていた。
[0005] In particular, if the winding habit is large, the assembly speed cannot be increased when an optical fiber is manufactured by storing an optical fiber in a spacer using the A-FRP linear material as a tensile strength wire, and the cable after manufacturing the cable. , There has been a problem that the workability at the time of laying the cable is deteriorated.

【0006】A−FRP線状物の曲げ性能低下の原因と
して、アラミド繊維には、工程油剤、高次加工用油剤と
して、一般的に炭素数Cが18以下の低分子量脂肪酸エ
ステル、ポリエーテル、鉱物油などの油剤が付着されて
おり、この油剤の影響により、補強繊維としてのアラミ
ド繊維とマトリックス樹脂としての硬化性樹脂との界面
接着性が低下すること及びアラミド繊維のクリープによ
る伸び等が考えられるが、真の原因は定かではなかっ
た。
[0006] As a cause of the deterioration of the bending performance of the A-FRP linear material, aramid fibers are generally used as process oils and oils for higher-order processing as low molecular weight fatty acid esters having a carbon number of 18 or less, polyethers, and the like. An oil agent such as mineral oil is attached, and the effect of this oil agent may reduce the interfacial adhesion between the aramid fiber as the reinforcing fiber and the curable resin as the matrix resin, and elongation due to creep of the aramid fiber. However, the true cause was uncertain.

【0007】そこで、A−FRP線状物における、曲げ
耐性の向上、巻癖の低減等曲げ性能を向上させた優れた
A−FRP線状物、及びこれを抗張力体とした光ファイ
バケーブル用スペーサを提供することを目的として鋭意
研究し本発明を完成した。
In view of the above, an A-FRP linear material having improved bending resistance such as improved bending resistance and reduced curl in an A-FRP linear material, and a spacer for an optical fiber cable using the same as a tensile strength member. The present inventors have made intensive studies with the aim of providing the following and completed the present invention.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、アラミド繊維に硬化性樹脂を含浸して硬
化してなるアラミド繊維強化硬化性樹脂(A−FRP)
線状物において、該線状物の最小曲げ直径が、該線状物
の直径の35倍未満であり、且つ該線状物を直径の17
5倍相当の直径に曲げて24時間放置し、これを開放し
た直後の、該線状物直径の216倍相当の長さの弦に対
する弧の高さが該線状物の直径の20倍未満のA−FR
P線状物とした。また、前記アラミド繊維の油剤付着量
が0.15%以下のものを使用したA−FRP線状物と
した。さらに、前記アラミド繊維の比表面積が0.2m
2/g以上のものを使用したA−FRP線状物とした。
また、前記線アラミド繊維の、結晶格子(1,1,0)面の結
晶サイズが60Å以上のものを使用したA−FRP線状
物とした。本発明の製造方法は、補強用アラミド繊維を
所定本数準備し、これを300℃以上に加熱処理した
後、未硬化状の硬化性樹脂を含浸し、次いで絞りノズル
で所定形状に成形した後、もしくは絞り成形しつつ含浸
した樹脂を硬化するA−FRP線状物の製造方法とし
た。また、前記硬化性樹脂を熱硬化性樹脂とし、未硬化
状の熱硬化性樹脂を含浸し、次いで所定形状に絞り成形
した後、その外周を溶融状の熱可塑性樹脂で継目なく被
覆し、直ちに、外周の熱可塑性樹脂を冷却した後、加熱
硬化槽に導いて内部の含浸樹脂を硬化するA−FRP線
状物の製造方法とした。本発明の光ファイバケーブル用
スペーサは、上記の本発明のA−FRP線状物を抗張力
体として使用し、外周に光ファイバ収納用の溝を配置し
た構成とした。
In order to achieve the above object, the present invention relates to an aramid fiber reinforced curable resin (A-FRP) obtained by impregnating and curing an aramid fiber with a curable resin.
In the linear object, the minimum bending diameter of the linear object is less than 35 times the diameter of the linear object, and the linear object has a minimum bending diameter of 17 times.
Immediately after being bent to a diameter equivalent to 5 times and left for 24 hours, and opened, the arc height for a chord having a length equivalent to 216 times the diameter of the linear object is less than 20 times the diameter of the linear object. A-FR of
It was a P linear object. Further, an A-FRP linear material using the aramid fiber having an amount of oil agent adhesion of 0.15% or less was used. Further, the specific surface area of the aramid fiber is 0.2 m
An A-FRP linear product using 2 / g or more was used.
In addition, an A-FRP linear material using a crystalline aramid fiber having a crystal size of a crystal lattice (1,1,0) plane of 60 ° or more was used. The manufacturing method of the present invention prepares a predetermined number of aramid fibers for reinforcement, heat-treats them at 300 ° C. or higher, impregnates with an uncured curable resin, and then shapes them into a predetermined shape with a drawing nozzle, Alternatively, a method for producing an A-FRP linear material in which the impregnated resin is cured while being drawn and formed. Further, the curable resin is a thermosetting resin, impregnated with an uncured thermosetting resin, and then drawn and formed into a predetermined shape, and the outer periphery thereof is seamlessly covered with a molten thermoplastic resin, and immediately. Then, after cooling the thermoplastic resin on the outer periphery, it was led to a heat-curing tank to cure the impregnated resin therein, thereby providing a method for producing an A-FRP linear product. The optical fiber cable spacer of the present invention has a configuration in which the above-described A-FRP linear material of the present invention is used as a tensile strength member and a groove for housing an optical fiber is arranged on the outer periphery.

【0009】[0009]

【発明の実施の形態】以下に本発明の好適な実施の形態
について添付図面を参照にして説明するが、これらは、
本発明を限定するものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
It does not limit the invention.

【0010】図1は、本発明にかかるA−FRP線状物
を模式的に示している。
FIG. 1 schematically shows an A-FRP linear material according to the present invention.

【0011】同図に示すA−FRP線状物10は、補強
繊維としてのアラミド繊維11、マトリックス樹脂12
としての硬化性樹脂から構成され、熱可塑性樹脂被覆1
3を有していても良い。
An A-FRP linear material 10 shown in FIG. 1 comprises an aramid fiber 11 as a reinforcing fiber, a matrix resin 12
Composed of a curable resin as a thermoplastic resin coating 1
3 may be provided.

【0012】アラミド繊維11は、芳香族ポリアミド繊
維であり、メタ系、パラ系等に大別されその種類を問わ
ないが、出願人東レ・デュポン (株)から販売されてい
るポリパラフェニレンテレフタルアミド繊維(商品名
「ケブラー」)が、本発明に好適に使用できる。
The aramid fiber 11 is an aromatic polyamide fiber which is roughly classified into a meta-type, a para-type, and the like, regardless of the kind. The poly-araphenylene terephthalamide sold by the applicant Toray DuPont Co., Ltd. Fiber (trade name “Kevlar”) can be suitably used in the present invention.

【0013】マトリックス樹脂12としての硬化性樹脂
は、補強繊維のアラミド繊維に含浸して濡れ性が良く、
硬化後にアラミド繊維を結着できる樹脂を選択すれば良
いが、好適なものとして、ビニルエステル樹脂、不飽和
ポリエステル樹脂等熱硬化性の樹脂が挙げられる。
The curable resin as the matrix resin 12 is impregnated into aramid fibers as reinforcing fibers and has good wettability.
A resin capable of binding aramid fibers after curing may be selected, but preferred examples include thermosetting resins such as vinyl ester resins and unsaturated polyester resins.

【0014】A−FRP線状物の曲げ性能は、最小曲げ
直径のおよそ6倍以上の長さを有する線状物の両端を把
持して徐々に曲げていったときとき、A−FRP線状物
の直径Dの35倍以下の最小曲げ直径であることを要
し、かつ、A−FRP線状物の直径Dの175倍の径に
曲げた状態で24時間放置した後、曲げを開放した直後
の、直径Dの216倍相当長の弦における弧の高さが、
直径Dの20倍未満であることを要する。
The bending performance of the A-FRP linear object is such that when the linear object having a length of about 6 times or more the minimum bending diameter is gripped at both ends and gradually bent, the A-FRP linear object is bent. It was required that the minimum bending diameter be 35 times or less the diameter D of the object, and after being left for 24 hours in a state of being bent to a diameter of 175 times the diameter D of the A-FRP linear object, the bending was released. Immediately after, the height of the arc in a chord having a length equivalent to 216 times the diameter D is
It must be less than 20 times the diameter D.

【0015】最小曲げ直径がA−FRP線状物の直径D
の35倍を超えるものは、結果として、A−FRP線状
物もしくはこれを抗張力体とした光ファイバケーブルの
使用時における曲げに関しての取扱いが制限され、弧の
高さがA−FRP線状物の直径D20倍以上のものは、
弾性回復性が不充分で、巻癖が大きくなる。
The minimum bending diameter is the diameter D of the A-FRP linear object.
As a result, when the A-FRP linear material or the optical fiber cable using the tensile strength material as the tensile strength member is used, the handling of bending is restricted, and the arc height is A-FRP linear material. With a diameter D20 times or more of
Insufficient elastic recovery and large winding habit.

【0016】A−FRP線状物のアラミド繊維の油剤の
付着量は、補強繊維としてのアラミド繊維を未硬化状の
マトリックス樹脂に含浸する直前において、繊維に対し
て0.15重量(wt)%以下とする。
The amount of the oil agent attached to the aramid fiber of the A-FRP linear product is 0.15% by weight (wt) based on the fiber immediately before the aramid fiber as the reinforcing fiber is impregnated into the uncured matrix resin. The following is assumed.

【0017】付着量が0.15wt%を超えると、アラ
ミド繊維の界面に存在する油膜層等の存在により、硬化
後において、アラミド繊維とマトリックス樹脂との接着
が不充分となって、最小曲げ直径を大ならしめ、巻癖を
増大させて、曲げ性能の低下を来す。
If the adhesion amount exceeds 0.15 wt%, the adhesion between the aramid fiber and the matrix resin after curing becomes insufficient due to the presence of an oil film layer or the like existing at the interface of the aramid fiber, and the minimum bending diameter To increase the winding habit, resulting in a decrease in bending performance.

【0018】また、A−FRP線状物のアラミド繊維
は、比表面積が0.2m2/g以上のものを使用するこ
とが、補強効果即ち、使用したアラミド繊維の強度性能
等を効率良く発現させる点で好ましい。
The use of Aramid fibers having a specific surface area of 0.2 m 2 / g or more as the A-FRP linear material efficiently exhibits the reinforcing effect, that is, the strength performance of the used aramid fibers. It is preferred in that it allows

【0019】さらに、A−FRP線状物には、アラミド
繊維の結晶サイズが60Å以上のものを使用すること
が、A−FRP線状物のアラミド繊維の強度向上及び、
繊維性能の発現の点から好ましい。
Further, the A-FRP linear material having an aramid fiber having a crystal size of 60 ° or more is used to improve the strength of the A-FRP linear material and improve the strength of the aramid fiber.
It is preferable from the viewpoint of expression of fiber performance.

【0020】結晶サイズが60Å未満では、応力下での
クリープが大きくなって、曲げた後の弾性回復性に劣る
ものとなり、巻癖が大きくなる。
If the crystal size is less than 60 °, the creep under stress becomes large, the elastic recovery after bending becomes poor, and the winding habit becomes large.

【0021】本発明の製造方法について図2を参照して
説明する。
The manufacturing method of the present invention will be described with reference to FIG.

【0022】クリール20から補強用アラミド繊維11
aを所定本数引出し、案内板21を介して収斂させ、次
いで加熱処理槽22中で300℃以上に加熱処理され
る。
From the creel 20 to the reinforcing aramid fiber 11
a is drawn out by a predetermined number, converged via a guide plate 21, and then heat-treated at 300 ° C. or more in a heat treatment tank 22.

【0023】加熱処理は、加熱処理槽22の温度、長
さ、処理速度を適宜設定してアラミド繊維自体が300
℃以上の温度に加熱されるようにすれば良い。
In the heat treatment, the temperature, length, and treatment speed of the heat treatment tank 22 are appropriately set, and the aramid fiber itself is heated for 300 minutes.
What is necessary is just to heat it to the temperature more than ° C.

【0024】加熱処理槽22の加熱方法は、熱風、電気
ヒーター、遠赤外ヒーター等乾熱のヒーターが適してい
る。
As a heating method of the heat treatment tank 22, a dry heat heater such as a hot air, an electric heater, or a far infrared heater is suitable.

【0025】加熱処理されたアラミド繊維11bを含浸
槽23に浸漬して未硬化状の硬化性樹脂を含浸後、絞り
ノズル24により所定形状に絞り成形した後、樹脂を硬
化するには、樹脂が熱硬化性樹脂である場合には、所定
内径の加熱された金型に挿通して硬化させる方法(図示
省略)、あるいは未硬化状の線状物9の外周を溶融押出
機のクロスヘッド25に挿通して熱可塑性樹脂で被覆
し、しかる後加熱硬化槽27に導いて硬化する方法が挙
げられる。
After the heat-treated aramid fiber 11b is immersed in the impregnating tank 23 and impregnated with the uncured curable resin, the drawn resin is drawn into a predetermined shape by the drawing nozzle 24, and then the resin is cured. In the case of a thermosetting resin, it is inserted into a heated mold having a predetermined inner diameter to be cured (not shown), or the outer periphery of the uncured linear material 9 is placed on a crosshead 25 of a melt extruder. There is a method in which the resin is inserted and covered with a thermoplastic resin, and then guided to the heat curing tank 27 to be cured.

【0026】また、未硬化状の熱硬化性樹脂を絞り成形
し、その外周に溶融状の熱可塑性樹脂を押出して継ぎ目
なく被覆する方法は、特公昭56−20188号公報に
開示されている方法が用いられる。
Also, a method of drawing an uncured thermosetting resin by drawing, and extruding a molten thermoplastic resin on the outer periphery thereof to cover it seamlessly is disclosed in Japanese Patent Publication No. 56-20188. Is used.

【0027】本発明の光ファイバケーブル用スペーサ3
0について、図3を参照に説明する。
The optical fiber cable spacer 3 of the present invention
0 will be described with reference to FIG.

【0028】スペーサ30は、中央に本発明のA−FR
P線状物10を抗張力体として配置し、その外周に要す
れば予備被覆層31を施して、その外周に光ファイバ収
納用の螺旋溝32を有するスペーサ本体被覆層33を有
している。
The spacer 30 has an A-FR of the present invention at the center.
The P linear object 10 is arranged as a tensile strength member, and if necessary, a preliminary coating layer 31 is provided on the outer periphery thereof, and a spacer body coating layer 33 having a spiral groove 32 for accommodating an optical fiber is provided on the outer periphery thereof.

【0029】予備被覆層31は、溝形状精度を高めるた
めに設けるもので、予備被覆層の外径D1と溝底のみな
し外径D2との比0.5<D1/D2<1の関係を満足
するように設定される。
The pre-coating layer 31 is provided to enhance the groove shape accuracy. The pre-coating layer 31 has a relationship of 0.5 <D1 / D2 <1 between the outer diameter D1 of the pre-coating layer and the outer diameter D2 of the groove bottom. Set to satisfy.

【0030】螺旋溝32は所定ピッチで主としてZ撚り
の一方向あるいは螺旋溝が交互に反転するSZ方向の何
れであっても良い。本発明のスペーサに使用されるA−
FRP線状物10の直径は、光ファイバケーブルとして
要求される抗張力性能等により決定されるが、概ね2〜
7mm程度である。
The spiral groove 32 may be either in one direction of Z twist at a predetermined pitch or in the SZ direction in which the spiral grooves are alternately reversed. A- used in the spacer of the present invention
The diameter of the FRP linear object 10 is determined by the tensile strength and the like required as an optical fiber cable.
It is about 7 mm.

【0031】なお、本発明において測定は次の方法を用
いた。 a)最小曲げ直径:ほぼ水平の机上に物差しを載置し、
その上で最小曲げ直径のおよそ6倍以上の長のサンプル
の両端を手で握持し、サンプルの中央側のループが小さ
くなるよう曲げていって、ループ上端の外周もしくは内
周側から破断が始まった時のループ間隔を物差しの目盛
りから読み取って最小曲げ直径とした。サンプル数nを
10としその平均値を用いた。
In the present invention, the following method was used for measurement. a) Minimum bending diameter: Place a ruler on a nearly horizontal desk,
Then, hold the both ends of the sample, which is about 6 times or more the minimum bending diameter, by hand, bend the sample so that the loop on the center side of the sample becomes smaller, and break it from the outer or inner circumference of the upper end of the loop. The loop interval at the start was read from the scale of the ruler, and was taken as the minimum bending diameter. The sample number n was set to 10, and the average value was used.

【0032】b)巻癖:線状物の直径Dの175倍に曲
げた状態で、24時間放置した後、開放直後の、直径D
の216倍相当長さの弦における弧の高さHmmを巻癖
の目安とした。サンプル数nを5とし、その平均値を用
いた。
B) Winding habit: After being left to stand for 24 hours in a state where it is bent to 175 times the diameter D of the linear object, the diameter D immediately after opening is obtained.
The height Hmm of the arc in a chord having a length equivalent to 216 times of the above was used as a measure of the curl. The number n of samples was set to 5, and the average value was used.

【0033】c)油剤付着量:パルスNMR“OXFORD
QP20”を用い核磁気共鳴法により測定し、サンプル
3個の平均をもって油剤付着量とした。
C) Amount of oil applied: pulsed NMR "OXFORD"
It was measured by a nuclear magnetic resonance method using QP20 ″, and the average of three samples was defined as the oil agent adhesion amount.

【0034】d)結晶サイズ:X線装置(理学電機社
(株)製)を用い、ブラッグ角をθとして、透過法によ
り赤道線方向に2θ=5〜90°の範囲をスキャンして
得られたPPTA(ポリパラフェニレンテレフタルアミド)
の(1,1,0)面、すなわち2θ=20.45°における回
折強度曲線の見掛けの半値幅βEから、Scherrerの式L=
Kλ/β0cosθによって算出したL値の平均をもって、
本発明にいう結晶サイズとした。
D) Crystal size: Obtained by using an X-ray apparatus (manufactured by Rigaku Denki Co., Ltd.) and scanning the range of 2θ = 5 to 90 ° in the equator direction by the transmission method with the Bragg angle θ. PPTA (polyparaphenylene terephthalamide)
From the (1,1,0) plane, that is, the apparent half width β E of the diffraction intensity curve at 2θ = 20.45 °, the Scherrer equation L =
With the average of L values calculated by Kλ / β 0 cosθ,
The crystal size according to the present invention was used.

【0035】ただし、定数K=1.0、波長λ=1.54
18Å、β0=(βE1)1/2、装置定数β1=1.046×10-2
ラジアンである。
Where the constant K = 1.0 and the wavelength λ = 1.54.
18Å, β 0 = (β E1 ) 1/2 , equipment constant β 1 = 1.046 × 10 -2
Radians.

【0036】[実施例]以下、本発明について、好適な
実施例により詳細に説明するが、本発明の範囲は、以下
の実施例に限定されるものでない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to preferred examples, but the scope of the present invention is not limited to the following examples.

【0037】実施例1.予め80℃で24時間予備乾燥
した、比表面積が0.239m2/gのアラミド繊維
(東レ・デュポン製「ケブラー」49:1420デニー
ル/1000フィラメント/タイプ968)11aを案内板
21に介した後、加熱したニクロム線コイルにエアーを
吹き込む方式の電気バーナーを熱源とし、槽内温度を3
00℃に調整した加熱処理槽22内で20秒間熱処理し
た後、過酸化物系触媒を含むビニルエステル樹脂(三井
化学(株)製 エスターH8100)を含浸し、これを
絞り成形してアラミド繊維の含有率が56.7VOL%の
外径3.7mmの未硬化状線物として、溶融押出機のヘ
ッド部25に導いて、その外周にLLDPE樹脂(三井
化学(株)製 ネオゼックス2015M)をダイより押
し出して環状に被覆し、これを直ちに冷却して一次被覆
層13を有する未硬化状線状物15を得、これを長さ6
m、140℃の高圧蒸気を満たした加熱硬化槽27に導
き硬化して被覆外径5.0mm、FRP外径3.7mm
の一次被覆層13を有するA−FRP線状物10を得
た。
Embodiment 1 An aramid fiber having a specific surface area of 0.239 m 2 / g (“Kevlar” manufactured by Toray Dupont 49: 1414 denier / 1000 filament / type 968) 11a preliminarily dried at 80 ° C. for 24 hours is passed through the guide plate 21. Using an electric burner that blows air into the heated nichrome wire coil as a heat source,
After heat treatment for 20 seconds in the heat treatment tank 22 adjusted to 00 ° C., a vinyl ester resin containing a peroxide-based catalyst (Ester H8100 manufactured by Mitsui Chemicals, Inc.) was impregnated, and this was drawn and formed to form an aramid fiber. As an uncured wire having a content of 56.7 VOL% and an outside diameter of 3.7 mm, the wire was guided to the head 25 of the melt extruder, and LLDPE resin (Neozex 2015M, manufactured by Mitsui Chemicals, Inc.) was applied to the periphery of the wire by a die. It was extruded to form an annular coating, which was immediately cooled to obtain an uncured linear material 15 having a primary coating layer 13, which had a length of 6 mm.
m, guided to a heat-curing tank 27 filled with high-pressure steam at 140 ° C., and cured to form a coating outer diameter of 5.0 mm and an FRP outer diameter of 3.7 mm.
A-FRP linear material 10 having the primary coating layer 13 was obtained.

【0038】なお、樹脂含浸前で加熱処理した後に得ら
れたアラミド繊維11bの油剤付着量を、前述の核磁気
共鳴法により測定したところ0.05(wt%)であ
り、結晶サイズは63(Å)であった。
The oil adhering amount of the aramid fiber 11b obtained after the heat treatment before the resin impregnation was measured by the above-described nuclear magnetic resonance method, and was 0.05 (wt%), and the crystal size was 63 (wt.). Å).

【0039】得られた一次被覆層付きA−FRP線状物
について一次被覆層を剥離し、まずその両端を持って徐
々に曲げていって折損し始めた時の円弧の直径(最小曲
げ直径)を測定したところ、105mmでA−FRP直
径の28.4倍であった。
With respect to the obtained A-FRP linear material with a primary coating layer, the primary coating layer was peeled off, and the diameter of the circular arc (minimum bending diameter) at the time when the wire was gradually bent with both ends first and started to be broken. Was measured and found to be 28.4 times the A-FRP diameter at 105 mm.

【0040】次に巻癖の評価として、同様に一次被覆層
を剥離したA−FRP線状物10を製品直径の175倍
である曲げ直径φ647.5mmになるように曲げ、2
4時間室温状態で放置した後、開放直後の、A−FRP
直径の216倍の長さの800mmの弦における弧の高さ
を測定したところ、66mmでA−FRP直径の17.
8倍であった。
Next, as the evaluation of the curl, the A-FRP linear material 10 from which the primary coating layer was similarly peeled was bent so as to have a bending diameter φ647.5 mm, which is 175 times the product diameter.
A-FRP immediately after opening after leaving at room temperature for 4 hours
The height of the arc in an 800 mm chord 216 times the diameter was measured to be 66 mm and the A-FRP diameter was 17.
It was eight times.

【0041】得られた一次被覆層を有するA−FRP線
状物を抗張力体15とし、その外周に2回に分けて予備
被覆31を施して外径11.0mmとし、これを回転ダ
イを取着した溶融押出機のクロスヘッドダイに挿通し
て、その外周に溝幅1.4mm、溝深さ2.2mmの角
溝を15個有する外径15.7mmでZ方向撚りピッチ
が500mmの300心光ファイバーケーブル用スペー
サを、常法に従ってHDPE樹脂によって成形し、巻胴
直径が600mmのドラムに巻取った。
The obtained A-FRP linear material having the primary coating layer was used as a tensile strength member 15, and the outer periphery thereof was preliminarily coated twice in two times to obtain an outer diameter of 11.0 mm. Into the cross extruder of the melt extruder, and the outer periphery thereof has 15 square grooves having a groove width of 1.4 mm and a groove depth of 2.2 mm, an outer diameter of 15.7 mm, and a Z direction twist pitch of 300 mm. The optical fiber cable spacer was formed of HDPE resin according to a conventional method, and wound around a drum having a drum diameter of 600 mm.

【0042】2週間後に得られたスペーサを使用して、
光ファイバを集合しケーブルを製造したが、巻癖による
光ファイバ集合工程での異常トラブルはなく、従前のA
−FRP線状物を用いた場合と比較して円滑に製造でき
た。なお、A−FRP線状物の製造とスペーサの製造
は、勿論直結して行うことができる。
Using the spacer obtained two weeks later,
The optical fiber was assembled to produce a cable, but there was no abnormal trouble in the optical fiber assembling process due to the curl.
-It could be produced more smoothly than in the case of using FRP linear material. Note that the production of the A-FRP linear material and the production of the spacer can be directly performed.

【0043】実施例2.比表面積が0.195m2/g
のアラミド繊維(東レ・デュポン製「ケブラー」49、
2840デニール/1333フィラメント/タイプ98
9)を使用した以外は実施例1と同様にしてA−FRP
線状物を得た。
Embodiment 2 FIG . Specific surface area is 0.195m 2 / g
Aramid fiber ("Kevlar" 49 manufactured by Dupont Toray,
2840 denier / 1333 filament / type 98
A-FRP in the same manner as in Example 1 except that 9) was used.
A linear product was obtained.

【0044】加熱処理した後に得られたアラミド繊維の
油剤付着量は0.05wt%、結晶サイズは63Åであ
り、得られたA−FRP線状物の最小曲げ直径、巻癖を
表1にまとめて示す。
The aramid fiber obtained after the heat treatment had an oil coating amount of 0.05 wt% and a crystal size of 63 °, and the minimum bending diameter and curl of the obtained A-FRP linear product are summarized in Table 1. Shown.

【0045】実施例3.槽内温度を380℃とし熱処理
時間を10秒間とした以外は実施例1と同様にしてA−
FRP線状物を得た。
Embodiment 3 FIG . A-A was performed in the same manner as in Example 1 except that the temperature in the bath was 380 ° C. and the heat treatment time was 10 seconds.
An FRP linear product was obtained.

【0046】加熱処理した後に得られたアラミド繊維の
油剤付着量は0wt%、結晶サイズは66Åであり、得
られたA−FRP線状物の最小曲げ直径、巻癖を表1に
まとめて示す。
The aramid fiber obtained after the heat treatment had an oil coating amount of 0 wt% and a crystal size of 66 °. The minimum bending diameter and curl of the obtained A-FRP linear product are shown in Table 1. .

【0047】実施例4.実施例1に使用したもの同一の
アラミド繊維(東レ・デュポン(株)製 「ケブラー」
49)を案内板に介した後、ヒータ板への接触式加熱に
より430℃で5秒間熱処理したこと以外は実施例1と
同様にしてA−FRP線状物を得た。
Embodiment 4 FIG . The same aramid fiber used in Example 1 ("Kevlar" manufactured by Toray DuPont)
After passing through (49) through the guide plate, an A-FRP linear product was obtained in the same manner as in Example 1 except that a heat treatment was performed at 430 ° C. for 5 seconds by contact heating to the heater plate.

【0048】加熱処理した後に得られたアラミド繊維の
油剤付着量は0wt%、結晶サイズは69Åであり、得
られたA−FRP線状物の最小曲げ直径、巻癖を表1に
まとめて示す。
The aramid fiber obtained after the heat treatment had an oil adhering amount of 0 wt% and a crystal size of 69 °, and the minimum bending diameter and curl of the obtained A-FRP linear product are shown in Table 1. .

【0049】比較例1.槽内温度250℃で20秒間熱
処理したこと以外は実施例1と同様にしてA−FRP線
状物を得た。
Comparative Example 1 An A-FRP linear product was obtained in the same manner as in Example 1 except that the heat treatment was performed at a temperature of 250 ° C in the bath for 20 seconds.

【0050】加熱処理した後に得られたアラミド繊維の
油剤付着量は0.2wt%、結晶サイズは58Åであ
り、得られたA−FRP線状物の最小曲げ直径、巻癖を
表1にまとめて示す。
The aramid fiber obtained after the heat treatment had an oil adhering amount of 0.2 wt% and a crystal size of 58 °, and the minimum bending diameter and curl of the obtained A-FRP linear product are summarized in Table 1. Shown.

【0051】比較例2.ビニルエステル樹脂を含浸する
前のアラミド繊維の加熱処理を行わなかった以外は実施
例1と同様にしてA−FRP線状物を得た。
Comparative Example 2 An A-FRP linear product was obtained in the same manner as in Example 1, except that the heat treatment of the aramid fiber before impregnation with the vinyl ester resin was not performed.

【0052】樹脂含浸前のアラミド繊維の油剤付着量は
0.3wt%、結晶サイズは56Åであり、得られたA
−FRP線状物について、最小曲げ直径、巻癖を表1に
まとめて示す。
Before the resin impregnation, the aramid fiber had an oil adhering amount of 0.3 wt% and a crystal size of 56 °.
Table 1 shows the minimum bending diameter and curl of the FRP linear material.

【0053】比較例3.油剤無添加のアラミド繊維(東
レ・デュポン(株)製 ケブラー49:1420デニー
ル品)を使用してA−FRP線状物の製造を試みたが、
繊維ガイド等、工程上で単糸切れが多発しA−FRP線
状物を得ることができなかった。
Comparative Example 3 An attempt was made to produce an A-FRP linear material using an aramid fiber (Kevlar 49: 1412 denier manufactured by Du Pont-Toray Co., Ltd.) without an oil agent.
Single yarn breakage occurred frequently in the process, such as a fiber guide, and an A-FRP linear product could not be obtained.

【0054】以上の実施例および比較例の加熱条件など
の内容を以下の表にまとめて示している。
The contents of the above Examples and Comparative Examples, such as heating conditions, are summarized in the following table.

【0055】[0055]

【表】【table】

【0056】[0056]

【発明の効果】以上、実施例および比較例で詳細に説明
したように、本発明では、加熱処理槽を設け300℃以
上の温度で加熱処理することにより、アラミド繊維に付
着している油剤を除去し、その付着量を0.15wt%
以下に減少させる。
As described above in detail in the examples and comparative examples, in the present invention, a heat treatment tank is provided and heat treatment is performed at a temperature of 300 ° C. or more, so that the oil agent adhering to the aramid fiber can be reduced. Removed, the amount of adhesion is 0.15 wt%
Reduce to below.

【0057】これによりアラミド繊維とマトリックス樹
脂の界面における濡れ性が良くなり、最小曲げ直径及び
巻癖の曲げ性能が向上したA−FRP線状物を得ること
ができる。
As a result, the wettability at the interface between the aramid fiber and the matrix resin is improved, and an A-FRP linear material having improved minimum bending diameter and curl bending performance can be obtained.

【0058】なお、始めから油剤添加なしのアラミド繊
維での製造を試みたが、クリールや案内板等のガイド類
で擦過等により繊維の単糸切れが頻発するので、長尺の
A−FRPを安定して得ることができない。
Although the production of aramid fibers without the addition of an oil agent was attempted from the beginning, single fibers of fibers frequently break due to rubbing or the like with guides such as creels or guide plates. I cannot get stable.

【0059】前述の曲げ性能の向上したA−FRP線状
物を光ファイバケーブル用スペーサの抗張力体とすれ
ば、スペーサとしてドラムに巻取後、使用迄の巻癖が小
さいスペーサを得ることができ、光ファイバの集合工程
でスペーサの巻癖変形等によるトラブルの発生を抑えら
れる。
If the above-described A-FRP linear material having improved bending performance is used as a tensile strength member of an optical fiber cable spacer, a spacer having a small winding habit until used after winding on a drum as a spacer can be obtained. In addition, it is possible to suppress the occurrence of trouble due to deformation of the curl of the spacer or the like in the optical fiber assembly process.

【0060】さらに、光ファイバケーブルとしても、A
−FRP線状物を抗張力体とすることによるケーブルの
巻癖を小さくでき、ケーブルの布設工事における問題を
解消できる。
Further, as an optical fiber cable, A
-The winding habit of the cable due to the use of the FRP linear material as the tensile strength member can be reduced, and the problem in the cable laying work can be solved.

【0061】また、より好適な実施の態様として、比表
面積が0.2m2/g以上のアラミド繊維を使用する
と、繊維とマトリックス樹脂との接着面積が多くなっ
て、補強効果が向上するためか、曲げ特性がより向上し
たA−FRP線状物が得られ、前記同様の効果が認めら
れる。
In a more preferred embodiment, the use of aramid fibers having a specific surface area of 0.2 m 2 / g or more increases the bonding area between the fibers and the matrix resin, thereby improving the reinforcing effect. In addition, an A-FRP linear material having further improved bending characteristics can be obtained, and the same effect as described above can be obtained.

【0062】さらに、当該加熱処理によリアラミド繊維
の(1,1,0)面の結晶サイズを60Å以上に成長さ
せることによりアラミド繊維のクリープ性能を向上させ
ることができ、A−FRP線状物を曲げた場合に生じる
線状物の外側即ち引張側のアラミド繊維のクリープ伸び
を少なくできるため、最小曲げ直径及び巻癖で評価され
る曲げ性能を向上したA−FRPを得ることができ、こ
れを抗張力体とした光ファイバケーブル用スペーサを得
ることができる。
Furthermore, the creep performance of the aramid fiber can be improved by growing the crystal size of the (1,1,0) plane of the realramid fiber to 60 ° or more by the heat treatment. Since the creep elongation of the aramid fiber on the outer side of the linear object, that is, the tensile side generated when bending is reduced, it is possible to obtain an A-FRP with improved bending performance evaluated with a minimum bending diameter and curl, Can be obtained as a tensile strength member.

【0063】またさらに、本発明に関わるA−FRP線
状物は、最小曲げ直径が小さく、ボビン巻き付けによる
巻癖も小さくなっているので、光ファイバケーブルの抗
張力体に好適である。
Further, since the A-FRP linear material according to the present invention has a small minimum bending diameter and a small winding habit due to bobbin winding, it is suitable for a tensile strength member of an optical fiber cable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアラミド繊維強化硬化性樹脂線状物の
説明図である。
FIG. 1 is an explanatory view of an aramid fiber reinforced curable resin linear material of the present invention.

【図2】本発明のアラミド繊維強化硬化性樹脂線状物の
製造工程の説明図である。
FIG. 2 is an explanatory diagram of a production process of a linear aramid fiber reinforced curable resin product of the present invention.

【図3】本発明のアラミド繊維強化硬化性樹脂線状物を
抗張力体とする光ファイバケーブル用スペーサの一例を
示す説明図である。
FIG. 3 is an explanatory view showing an example of a spacer for an optical fiber cable which uses the aramid fiber reinforced curable resin linear material of the present invention as a strength member.

【符号の説明】[Explanation of symbols]

10 A−FRP線状物 11 アラミド繊維 12 マトリックス樹脂 13 一次被覆層 15 抗張力体 20 クリール 21 案内板 22 加熱処理槽 23 含浸槽 24 絞りノズル 25 クロスヘッド 27 加熱硬化槽 28 引取機 29 ドラム 30 光ケーブル用スペーサ 31 予備被覆層 32 螺旋溝 33 スペーサ本体被覆 DESCRIPTION OF SYMBOLS 10 A-FRP linear material 11 Aramid fiber 12 Matrix resin 13 Primary coating layer 15 Tensile body 20 Creel 21 Guide plate 22 Heat treatment tank 23 Impregnation tank 24 Restrictor nozzle 25 Cross head 27 Heat curing tank 28 Pull-off machine 29 Drum 30 For optical cable Spacer 31 Pre-coating layer 32 Spiral groove 33 Spacer body coating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日高 章 岐阜県岐阜市藪田西2丁目1番1号 宇部 日東化成株式会社岐阜研究所内 (72)発明者 石井 徳 岐阜県岐阜市藪田西2丁目1番1号 宇部 日東化成株式会社岐阜研究所内 (72)発明者 坂本 史郎 東京都中央区日本橋本町1丁目5番6号 東レ・デュポン株式会社本社内 Fターム(参考) 2H001 BB07 DD04 DD10 DD11 KK08 3B153 AA22 AA30 AA45 AA47 AA50 BB01 CC12 CC13 CC23 CC24 CC31 DD23 DD30 DD34 FF40 GG01 GG05 GG13 GG40  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Hidaka 2-1-1, Yabuta Nishi, Gifu City, Gifu Prefecture Ube Nitto Kasei Co., Ltd. Gifu Research Institute (72) Inventor Nori Ishii 2-chome, Yabuta Nishi, Gifu City, Gifu Prefecture No. 1-1 Ube Nitto Kasei Co., Ltd. Gifu Research Laboratories (72) Inventor Shiro Sakamoto 1-5-6 Nihonbashi Honmachi, Chuo-ku, Tokyo Toray DuPont Co., Ltd. F-term (reference) 2H001 BB07 DD04 DD10 DD11 KK08 3B153 AA22 AA30 AA45 AA47 AA50 BB01 CC12 CC13 CC23 CC24 CC31 DD23 DD30 DD34 FF40 GG01 GG05 GG13 GG40

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アラミド繊維に硬化性樹脂を含浸して硬
化してなるアラミド繊維強化硬化性樹脂線状物におい
て、 該線状物の最小曲げ直径が、該線状物の直径の35倍未
満であり、 且つ該線状物を直径の175倍相当の直径に曲げて24
時間放置し、これを開放した直後の、該線状物直径の2
16倍相当の長さの弦に対する弧の高さが、該線状物の
直径の20倍未満であることを特徴とするアラミド繊維
強化硬化性樹脂線状物。
An aramid fiber reinforced curable resin linear product obtained by impregnating and curing an aramid fiber with a curable resin, wherein the minimum bending diameter of the linear material is less than 35 times the diameter of the linear material. And bending the linear object to a diameter equivalent to 175 times the diameter,
For 2 hours, and immediately after opening
An aramid fiber reinforced curable resin linear material, wherein an arc height for a chord having a length equivalent to 16 times is less than 20 times the diameter of the linear material.
【請求項2】 前記アラミド繊維の油剤付着量が0.1
5%以下であることを特徴とする請求項1記載のアラミ
ド繊維強化硬化性樹脂線状物。
2. The oily agent adhering amount of the aramid fiber is 0.1.
The aramid fiber reinforced curable resin linear material according to claim 1, wherein the content is 5% or less.
【請求項3】 前記アラミド繊維の比表面積が0.2m
2/g以上であることを特徴とする請求項1又は2記載
のアラミド繊維強化硬化性樹脂線状物。
3. The specific surface area of the aramid fiber is 0.2 m.
The aramid fiber reinforced curable resin linear material according to claim 1 or 2, wherein the linear amount is 2 / g or more.
【請求項4】 前記アラミド繊維の、結晶格子(1,1,0)
面の結晶サイズが60Å以上であることを特徴とする請
求項1ないしは3記載のアラミド繊維強化硬化性樹脂線
状物。
4. The crystal lattice (1,1,0) of the aramid fiber
4. The linear aramid fiber reinforced resin according to claim 1, wherein the crystal size of the plane is 60 [deg.] Or more.
【請求項5】 補強用アラミド繊維を所定本数準備し、
これを300℃以上に加熱処理した後、未硬化状の硬化
性樹脂を含浸し、次いで絞りノズルで所定形状に成形し
た後、もしくは絞り成形しつつ含浸した樹脂を硬化する
ことを特徴とするアラミド繊維強化硬化性樹脂線状物の
製造方法。
5. A predetermined number of aramid fibers for reinforcement are prepared,
An aramid characterized by impregnating with an uncured curable resin after heat-treating it to 300 ° C. or higher, and then molding the resin impregnated into a predetermined shape with a drawing nozzle or by drawing. A method for producing a fiber-reinforced curable resin linear material.
【請求項6】 前記硬化性樹脂が熱硬化性樹脂であり、
未硬化状の熱硬化性樹脂を含浸し、次いで所定形状に絞
り成形した後、その外周を溶融状の熱可塑性樹脂で継目
なく被覆し、直ちに、外周の熱可塑性樹脂を冷却した
後、加熱硬化槽に導いて内部の含浸樹脂を硬化すること
を特徴とする請求項5記載のアラミド繊維強化硬化性樹
脂線状物の製造方法。
6. The thermosetting resin is a thermosetting resin,
After impregnating with an uncured thermosetting resin, and then drawing into a predetermined shape, the outer periphery is seamlessly covered with a molten thermoplastic resin, immediately cooling the outer thermoplastic resin, and then heat curing. The method for producing an aramid fiber reinforced curable resin linear material according to claim 5, wherein the impregnated resin is hardened by being guided to a tank.
【請求項7】 請求項1〜4記載のアラミド繊維強化硬
化性樹脂線状物を抗張力体として使用してなることを特
徴とする光ファイバケーブル用スペーサ。
7. A spacer for an optical fiber cable, comprising using the aramid fiber reinforced curable resin linear material according to claim 1 as a tensile strength member.
JP00012599A 1999-01-04 1999-01-04 Method for producing aramid fiber reinforced curable resin wire Expired - Fee Related JP4282128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00012599A JP4282128B2 (en) 1999-01-04 1999-01-04 Method for producing aramid fiber reinforced curable resin wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00012599A JP4282128B2 (en) 1999-01-04 1999-01-04 Method for producing aramid fiber reinforced curable resin wire

Publications (2)

Publication Number Publication Date
JP2000199840A true JP2000199840A (en) 2000-07-18
JP4282128B2 JP4282128B2 (en) 2009-06-17

Family

ID=11465325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00012599A Expired - Fee Related JP4282128B2 (en) 1999-01-04 1999-01-04 Method for producing aramid fiber reinforced curable resin wire

Country Status (1)

Country Link
JP (1) JP4282128B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7171087B2 (en) 2004-03-29 2007-01-30 Hitachi Cable, Ltd. Optical fiber cable
CN102162888A (en) * 2011-05-06 2011-08-24 郑祥瑞 Reinforced core of aramid fiber-reinforced optical cable and manufacture method thereof
KR20140087513A (en) * 2012-12-31 2014-07-09 코오롱인더스트리 주식회사 Method of manufacturing aramid pulp coated with oil
CN111560781A (en) * 2020-06-12 2020-08-21 宁波凯特机械有限公司 Offline injection-coated steel wire rope production line equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417279A (en) * 2015-12-25 2016-03-23 天津奥林奥克通信科技有限公司 Automatic pay-off device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7171087B2 (en) 2004-03-29 2007-01-30 Hitachi Cable, Ltd. Optical fiber cable
CN102162888A (en) * 2011-05-06 2011-08-24 郑祥瑞 Reinforced core of aramid fiber-reinforced optical cable and manufacture method thereof
KR20140087513A (en) * 2012-12-31 2014-07-09 코오롱인더스트리 주식회사 Method of manufacturing aramid pulp coated with oil
CN111560781A (en) * 2020-06-12 2020-08-21 宁波凯特机械有限公司 Offline injection-coated steel wire rope production line equipment

Also Published As

Publication number Publication date
JP4282128B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
CA1301421C (en) Continuous molding method for rod-like product
KR970005549B1 (en) Twisted frp structure process for manufacturing the same
US4677818A (en) Composite rope and manufacture thereof
US4795234A (en) Reinforced optical fiber
EA007945B1 (en) Aluminum conductor composite core reinforced cable and method of manufacture
JPH0718206B2 (en) Method of manufacturing structural rod
JP2005148373A (en) Frp made tension member and drop optical fiber cable
JPH0622885B2 (en) Manufacturing method of fiber-reinforced resin filament
JP2000199840A (en) Aramid fiber reinforced curable resin wire-shaped material, its production and spacer for optical fiber cable consisting of this wire-shaped body as tension member
JPH06143478A (en) Bar material made of fiber reinforced plastic and production thereof
JP4077300B2 (en) Drop optical fiber cable
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
JPS61153608A (en) Optical fiber cord
JP3596983B2 (en) Fiber reinforced optical fiber cord and method of manufacturing the same
JP2984021B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JPH09226012A (en) Manufacture of frp yarn stock for frp coil spring
JP7474293B2 (en) Composite reinforcement rod with heat shrink tube and its manufacturing method
JP2001328189A (en) Linear material made of fiber reinforced synthetic resin
JP2849418B2 (en) Tension member for reinforcing optical fiber ribbon and method of manufacturing the same
JP2000238143A (en) Fiber-reinforced synthetic resin linear material
JP6706872B2 (en) Multifilament reinforced curable resin linear material
JP2849421B2 (en) Optical fiber supporting spacer and method of manufacturing the same
JPH11352369A (en) Reinforced optical fiber cord and its production
JPH0428082Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071212

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees