JP2005148373A - Frp made tension member and drop optical fiber cable - Google Patents

Frp made tension member and drop optical fiber cable Download PDF

Info

Publication number
JP2005148373A
JP2005148373A JP2003385202A JP2003385202A JP2005148373A JP 2005148373 A JP2005148373 A JP 2005148373A JP 2003385202 A JP2003385202 A JP 2003385202A JP 2003385202 A JP2003385202 A JP 2003385202A JP 2005148373 A JP2005148373 A JP 2005148373A
Authority
JP
Japan
Prior art keywords
optical fiber
coated
frp
tensile
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003385202A
Other languages
Japanese (ja)
Inventor
Kazunori Watanabe
和憲 渡辺
Kenichi Fujino
賢一 藤野
Masaru Mizuno
大 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP2003385202A priority Critical patent/JP2005148373A/en
Priority to KR1020067009099A priority patent/KR20060120097A/en
Priority to CNB2004800336290A priority patent/CN100520468C/en
Priority to PCT/JP2004/006188 priority patent/WO2005047950A1/en
Priority to TW093112038A priority patent/TW200516284A/en
Publication of JP2005148373A publication Critical patent/JP2005148373A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • G02B6/4433Double reinforcement laying in straight line with optical transmission element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4489Manufacturing methods of optical cables of central supporting members of lobe structure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Communication Cables (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Ropes Or Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FRP made tension member which is hardly broken when it is bent by a large radius. <P>SOLUTION: A cable 1 is provided with a coated optical fiber 2, coated tension members 3 and a messenger wire 4. Each of the coated tension members 3 is formed into a flat rectangular cross section in which a fiber-reinforced thermosetting resin made tension member 5 is coated by a thermoplastic resin coating layer 6. A pair of the coated tension members 3 is arranged coaxially above and below the coated optical fiber 2 at prescribed intervals to interpose the coated optical fiber 2 therebetween. As a reinforcing fiber of the tension member 5, an appropriate one is selected from the followings, for example, aramid fiber, polyarylate fiber and polyparaphenylene benzobisoxazole (PBO) fiber or the like provided that the elastic modulus in tension is equal to or greater than 360 cN/dtex and the degree of stretching at the breaking point is equal to or greater than 3.5%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバ心線と抗張力体とを熱可塑性樹脂によって一括被覆した光ファイバケーブル、とりわけ軽量で細径化が可能で曲げ半径の小さい、すなわち敷設性に優れた、ノンメタリック型のドロップ光ファイバケーブルに好適なFRP製抗張力体およびこれを用いたドロップ光ファイバケーブルに関する。   The present invention relates to an optical fiber cable in which an optical fiber core wire and a tensile body are collectively covered with a thermoplastic resin, in particular, a non-metallic drop that is lightweight, can be reduced in diameter, has a small bending radius, that is, has excellent layability. The present invention relates to an FRP tensile member suitable for an optical fiber cable and a drop optical fiber cable using the same.

情報化社会が到来し、インターネット等の伝送情報容量の増大化に伴ない、ビル、住宅等加入者へも光ファイバケーブルを敷設するFTTH化が急激に進展している。   With the arrival of an information society, the transmission information capacity of the Internet and the like has increased, and the FTTH system in which optical fiber cables are laid to subscribers such as buildings and houses is rapidly progressing.

FTTH用ドロップ光ファイバケーブルとして、抗張力体に金属線を使用したものが提案されている。(特許文献1参照)しかし、抗張力体に金属線を使用すると、雷サージに対応するために、アースが必要となる。   As a drop optical fiber cable for FTTH, one using a metal wire as a strength member has been proposed. However, if a metal wire is used as the strength member, grounding is required to cope with a lightning surge.

アースを取るには、工事に手間を要し、それに伴なう工事費の負担を要することとなって、各家庭への普及の障害となる。そこで、アース工事が不要となるノンメタリックの抗張力体を採用したノンメタリック型のドロップ光ファイバケーブルが求められていた。   In order to take the ground, it takes time for the construction, and the burden of the construction cost accompanying it, which becomes an obstacle to the spread to each home. Therefore, there has been a demand for a non-metallic drop optical fiber cable that employs a non-metallic tensile body that eliminates the need for grounding work.

この種の光ファイバケーブルに用いるノンメタリック型の抗張力体としては、繊維強化合成樹脂(FRP)製線状物が上げられるが、金属線抗張力体に替えて、単に、FRP線を使用したのでは、本体被覆の熱可塑性樹脂との接着が難しく、接着が不十分な場合、熱履歴による光伝送損失の増大や、断線などの異常を招来し、ドロップ光ファイバケーブルとして充分に機能することができない。   As a non-metallic type tensile body used for this type of optical fiber cable, a fiber reinforced synthetic resin (FRP) made of linear material can be raised, but instead of using a metal wire tensile body, simply using an FRP wire. , It is difficult to bond the main body coating with the thermoplastic resin, and if the bonding is insufficient, it will cause an increase in optical transmission loss due to thermal history and abnormalities such as disconnection, and it will not function sufficiently as a drop optical fiber cable. .

この場合、硬化したFRP線の外周に接着剤を塗布するか、あるいは、接着性樹脂を被覆することで、接着力を強化することも可能であるが、工数、材料費の増加に伴なうコスト増を招き、得策でないし、FRPとの接着が強固過ぎると、接続工事の際、成端キャビネットへ引止めるための被覆部の剥離に難渋する。   In this case, it is possible to reinforce the adhesive force by applying an adhesive to the outer periphery of the cured FRP wire or by covering with an adhesive resin, but this increases the man-hours and material costs. Incurs an increase in cost, is not a good idea, and if the adhesion to the FRP is too strong, it is difficult to peel off the covering portion for securing to the termination cabinet at the time of connection work.

ところで、本出願人は、先に、FRP界面と熱可塑性樹脂被覆とがアンカー接着した熱可塑性樹脂被覆繊維強化合成樹脂製棒状物の製造方法を開示している。(特許文献2参照)   By the way, the present applicant has previously disclosed a method for producing a rod-shaped article made of a thermoplastic resin-coated fiber-reinforced synthetic resin in which an FRP interface and a thermoplastic resin coating are anchored. (See Patent Document 2)

この製造方法は、補強繊維束に未硬化の熱硬化性樹脂を含浸させてなる未硬化状補強芯部を、溶融した熱可塑性樹脂で被覆し、その後、直ちに該熱可塑性樹脂の被覆層を冷却固化した後、これを加圧高温蒸気の硬化槽に導いて、補強芯部と該被覆層の界面部分を軟化、流動状態で接触させつつ該熱硬化性樹脂を加熱硬化させ、引続いて、被覆熱可塑性樹脂を冷却して繊維強化熱硬化性樹脂(FRP)からなる芯部界面と被覆熱可塑性樹脂とをアンカー接着するものである。   In this manufacturing method, an uncured reinforcing core portion obtained by impregnating a reinforcing fiber bundle with an uncured thermosetting resin is coated with a molten thermoplastic resin, and then the coating layer of the thermoplastic resin is immediately cooled. After solidifying, lead this to a curing tank of pressurized high-temperature steam, soften the interface part of the reinforcing core and the coating layer, heat and cure the thermosetting resin while in contact in a fluid state, The coated thermoplastic resin is cooled to anchor-bond the core interface made of fiber reinforced thermosetting resin (FRP) and the coated thermoplastic resin.

しかしながら、このような製造方法によって得られる棒状物を、ドロップ光ファイバケーブルの抗張力体に用いる場合には、以下に説明する技術的な課題があった。   However, when the rod-like material obtained by such a manufacturing method is used as a strength member of a drop optical fiber cable, there is a technical problem described below.

上述した公報に開示されている製造方法によれば、例えば、ガラス繊維を補強繊維とし、熱硬化性樹脂に不飽和ポリエステルを用い、ポリエチレンで被覆した場合には、棒状物は、106kg/cm(10MPa)程度の接着強度が得られるが、被覆表面が必ずしも平滑でなく、均一で細い径のものが得難いという問題があった。 According to the manufacturing method disclosed in the above-mentioned publication, for example, when glass fiber is used as a reinforcing fiber, unsaturated polyester is used as a thermosetting resin, and it is covered with polyethylene, the rod-like product is 106 kg / cm 2. Although an adhesive strength of about (10 MPa) is obtained, there is a problem that the coated surface is not necessarily smooth and it is difficult to obtain a uniform and thin diameter.

そこで、本出願人は、光ファイバ心線と繊維強化熱硬化性樹脂製(以下FRPという場合がある。)抗張力体とを熱可塑性樹脂によって一括被覆したドロップ光ファイバケーブルにおいて、とりわけ軽量で細径化が可能で、ドロップワイヤーとして好適な特性を備えたノンメタリック型のドロップ光ファイバケーブルを開発し、特願2002−326513号でこれを提案している。   Accordingly, the present applicant is particularly interested in a drop optical fiber cable in which an optical fiber core wire and a fiber reinforced thermosetting resin (hereinafter sometimes referred to as FRP) tensile body are collectively covered with a thermoplastic resin. A non-metallic drop optical fiber cable having characteristics suitable for a drop wire has been developed, and this is proposed in Japanese Patent Application No. 2002-326513.

ところが、その後の検討によると、この出願にかかる発明にも以下に説明する技術的な課題があった。
特開2001−337255号公報 特公昭63−2772号公報
However, according to subsequent studies, the invention according to this application also has the technical problems described below.
JP 2001-337255 A Japanese Examined Patent Publication No. 63-2772

すなわち、FRP製の抗張力体は、金属製のものと比較して大きな曲げ直径で容易に折損しやすいという技術的な課題があった。折損に至る曲げ直径を小さくするには、FRP直径を小さくすればよいが、補強繊維が同一の場合、抗張力が減少することが問題となる。   That is, the strength body made of FRP has a technical problem that it easily breaks with a larger bending diameter than that of a metal body. In order to reduce the bending diameter leading to breakage, the FRP diameter may be reduced. However, when the reinforcing fibers are the same, there is a problem that the tensile strength decreases.

この場合、抗張力についてのみの改善は、補強繊維を高強度・高弾性率タイプに置換することで解決できるが、環境温度の変化による本体を構成する樹脂の収縮を抑制する機能(抗収縮)も要求されるため、本体樹脂との接触面積を下げる(抗収縮性が機能しにくくなる)手段として、細径化は好ましくなく、従来とほぼ同径で、かつ曲げ半径の小さいFRP製抗張力体の必要性が要請されていた。   In this case, improvement in tensile strength alone can be solved by replacing the reinforcing fiber with a high-strength and high-modulus type, but it also has a function (anti-shrinkage) that suppresses the shrinkage of the resin that constitutes the main body due to changes in environmental temperature. Therefore, as a means for reducing the contact area with the main body resin (anti-shrinkage property is difficult to function), it is not preferable to reduce the diameter, and the FRP tensile strength body having the same diameter and a small bending radius as before. Necessity was requested.

本発明はこのような問題点に鑑みてなされたものであって、その目的とするところは、大きな曲げ直径で容易に折損することがないFRP製抗張力体およびドロップ光ファイバケーブルを提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide an FRP strength member and a drop optical fiber cable that are not easily broken at a large bending diameter. is there.

上記目的を達成するために、本発明は、補強繊維を熱硬化性樹脂で結着したFRP製抗張力体において、前記補強繊維の引張弾性率が360cN/dtex以上であり、かつ、破断時における伸度が3.5%以上となるようにした。   In order to achieve the above object, according to the present invention, in a tensile strength body made of FRP in which reinforcing fibers are bound with a thermosetting resin, the tensile elastic modulus of the reinforcing fibers is 360 cN / dtex or more and elongation at break is obtained. The degree was set to 3.5% or more.

前記熱硬化性樹脂は、ビニルエステル樹脂で構成することができる。
前記FRP製抗張力体に、熱可塑性樹脂製の被覆層を施した被覆抗張力体と、光ファイバ心線と前記被覆抗張力体とを一括して熱可塑性樹脂で被覆する本体被覆部とを有するドロップ光ファイバケーブルであって、前記被覆層の外周と前記本体被覆部とが相互に融合接着し、前記被覆層の内周と前記抗張力体の外周とをアンカー接着させるようにした。
前記熱可塑性樹脂被覆層は、LLDPEで構成することができる。
The thermosetting resin can be composed of a vinyl ester resin.
Drop light having a coated tensile body in which a coating layer made of a thermoplastic resin is applied to the FRP tensile body, and a main body covering portion that collectively coats the optical fiber core and the coated tensile body with a thermoplastic resin. In the fiber cable, the outer periphery of the covering layer and the body covering portion are fused and bonded to each other, and the inner periphery of the covering layer and the outer periphery of the strength member are anchored.
The thermoplastic resin coating layer can be composed of LLDPE.

本発明にかかるFRP製抗張力体によれば、要求される抗張力、抗圧縮性を低下させることなく曲げ半径の小さいFRP製抗張力体を得ることができ、このFRP製抗張力体を用いることにより、敷設性に優れたドロップ光ファイバケーブルを得ることができる。   According to the FRP tensile body according to the present invention, an FRP tensile body having a small bending radius can be obtained without lowering the required tensile strength and compressibility. By using this FRP tensile body, laying can be performed. A drop optical fiber cable excellent in performance can be obtained.

以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.

図1および図2は、本発明にかかるFRP製抗張力体および同抗張力体を用いたドロップ光ファイバケーブルの一実施例を示している。これらの図に示したドロップ光ファイバケーブル1は、光ファイバ心線2と、被覆抗張力体3と、メッセンジャーワイヤー4とを備えている。   1 and 2 show an embodiment of an FRP strength member according to the present invention and a drop optical fiber cable using the strength member. The drop optical fiber cable 1 shown in these drawings includes an optical fiber core wire 2, a coated tensile body 3, and a messenger wire 4.

被覆抗張力体3は、繊維強化熱硬化性樹脂製の抗張力体5を、熱可塑性樹脂製の被覆層6で被覆した偏平な角形断面に形成されていて、一対の被覆抗張力体3が、光ファイバ心線2の上下方向に所定の間隔を置いて、これを挟むようにして、同軸上に配置されている。   The coated tensile body 3 is formed in a flat rectangular cross section in which a tensile body 5 made of fiber reinforced thermosetting resin is coated with a coating layer 6 made of a thermoplastic resin, and the pair of coated tensile bodies 3 are optical fibers. The core wire 2 is arranged coaxially with a predetermined interval in the vertical direction so as to sandwich it.

メッセンジャーワイヤー4は、一方の被覆抗張力体3の上下に配置されていて、光ファイバ心線2、被覆抗張力体3およびメッセンジャーワイヤー4は、熱可塑性樹脂製の本体被覆部7により一括被覆した構成を備えている。本体被覆部7には、光ファイバ心線2の両側に位置対応して、一対のノッチ8が対向するように形成されている。また、メッセンジャーワイヤー4は、それ以外の部分と分離できるように、細幅部9で連結されている。   The messenger wire 4 is disposed above and below one of the coated tensile bodies 3, and the optical fiber core wire 2, the coated tensile body 3, and the messenger wire 4 are configured to be collectively covered with a main body coating portion 7 made of a thermoplastic resin. I have. A pair of notches 8 are formed on the body covering portion 7 so as to face each other on both sides of the optical fiber core wire 2. Further, the messenger wire 4 is connected by a narrow width portion 9 so as to be separable from other portions.

以上このように構成されたドロップ光ファイバケーブル1は、メッセンジャーワイヤー4を用いて電柱間に架設され、加入者宅に引き込む際には、まず、図2に示すように、細幅部9を切断して、メッセンジャーワイヤー4を分離し、次に、ノッチ8の部分から分断して、光ファイバ心線2を取り出して、加入者側と心線2を接続することになる。   The drop optical fiber cable 1 constructed as described above is installed between utility poles using the messenger wire 4, and when pulling into the subscriber's house, first, the narrow portion 9 is cut as shown in FIG. Then, the messenger wire 4 is separated, then cut off from the notch 8 portion, the optical fiber core wire 2 is taken out, and the subscriber side and the core wire 2 are connected.

本実施例の場合、被覆抗張力体3は、繊維強化熱硬化性樹脂製(以下FRPと称す。)の抗張力体5に熱可塑性樹脂製の被覆層6を施したものである。   In the case of this example, the coated tensile body 3 is obtained by applying a thermoplastic resin coating layer 6 to a tensile body 5 made of a fiber reinforced thermosetting resin (hereinafter referred to as FRP).

この場合、抗張力体5の補強繊維としては、例えばアラミド繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維等の中から、引張弾性率が360cN/dtex以上であり、かつ破断時における伸度が3.5%以上であるものを適宜選択する。   In this case, the reinforcing fiber of the tensile body 5 is, for example, an aramid fiber, a polyarylate fiber, a polyparaphenylene benzobisoxazole (PBO) fiber, etc., and has a tensile elastic modulus of 360 cN / dtex or more and at the time of breaking. Those having an elongation of 3.5% or more are appropriately selected.

また、この場合、引張弾性率が360cN/dtex以下では、光ファイバ心線2を保護するための抗張力が十分に得られず、その役割を果たすことができない。   Further, in this case, when the tensile elastic modulus is 360 cN / dtex or less, the tensile strength for protecting the optical fiber core wire 2 cannot be sufficiently obtained and the role cannot be achieved.

また、破断時における伸度が3.5%以下では、FRPが曲がり難くなり、ドロップ光ファイバケーブル化した際の曲げ半径を小さくすることが困難になる。   In addition, when the elongation at break is 3.5% or less, the FRP is difficult to bend, and it is difficult to reduce the bending radius when the drop optical fiber cable is formed.

すなわち、連続使用許容曲げ半径が大きくなってしまい、敷設時に大きな曲げ半径で敷設せざるを得なくなる。(間接的に言うと、最小曲げ直径が小さい方が敷設時の曲げ半径{直径}を小さくできる)より好ましい引張弾性率は、480cN/dtex以上である。   That is, the allowable bending radius for continuous use becomes large, and it is unavoidable to lay with a large bending radius when laying. (Indirectly, the smaller the minimum bending diameter, the smaller the bending radius {diameter} when laying can be made). The more preferable tensile elastic modulus is 480 cN / dtex or more.

使用する補強繊維としては、構成する単繊維径が10〜15μmで、複数のヤーンを合撚していない所謂マルチフィラメント状のものが望ましく500〜3500dtexが使用される。   As the reinforcing fiber to be used, a so-called multifilament-shaped fiber having a single fiber diameter of 10 to 15 μm and not twisted with a plurality of yarns is desirable, and 500 to 3500 dtex is used.

この場合、番手の大きいもの、つまり3500dtexを超える補強繊維を用いた場合、FRPとした際の真円度に悪影響を及ぼし、後の熱可塑性樹脂による薄肉被覆成形工程において、均一な被覆を行うことが難しくなる。   In this case, when a reinforcing fiber having a large count, that is, a reinforcing fiber exceeding 3500 dtex is used, the roundness of the FRP is adversely affected, and a uniform coating is performed in the subsequent thin-wall coating molding process using a thermoplastic resin. Becomes difficult.

また、単糸の引きそろえが悪くなり、FRP化した際に引張性能が不十分となるおそれがある。一方、500dtex以下のヤーンも市販されているが、工程が煩雑となる上、コスト上昇につながり経済的でない。   Further, the alignment of the single yarn becomes worse, and there is a possibility that the tensile performance becomes insufficient when it is made into FRP. On the other hand, yarns of 500 dtex or less are also commercially available, but the process becomes complicated and the cost increases, which is not economical.

また、本発明の補強繊維の結着に使用できる熱硬化性樹脂は、テレフタル酸系又はイソフタル酸系の不飽和ポリエステル樹脂、ビニルエステル樹脂(エポキシアクリレート樹脂など)またはエポキシ樹脂等が一般的であり、これらに硬化用触媒等を添加して使用されるが、とりわけビニルエステル樹脂(エポキシアクリレート樹脂など)が耐熱性等の物性の点から好ましい。   The thermosetting resin that can be used for binding the reinforcing fiber of the present invention is generally a terephthalic acid-based or isophthalic acid-based unsaturated polyester resin, a vinyl ester resin (such as an epoxy acrylate resin), or an epoxy resin. These are used by adding a curing catalyst or the like, and vinyl ester resins (such as epoxy acrylate resins) are particularly preferred from the viewpoint of physical properties such as heat resistance.

未硬化状補強芯部の被覆層6に用いる熱可塑性樹脂は、本体被覆部7の熱可塑性樹脂と相溶性のある樹脂から選択され、本体被覆部7に難燃性樹脂を使用する場合は、該樹脂との相溶性向上のため、接着性樹脂を使用するか、あるいは、接着性樹脂のマスターバッチを添加することが望ましく、さらに本体被覆部の色にあわせて着色用マスターバッチを添加して着色しておいても良い。   When the thermoplastic resin used for the coating layer 6 of the uncured reinforcing core portion is selected from resins compatible with the thermoplastic resin of the main body covering portion 7, and when using a flame retardant resin for the main body covering portion 7, In order to improve compatibility with the resin, it is desirable to use an adhesive resin, or add an adhesive resin masterbatch, and add a coloring masterbatch according to the color of the body cover. It may be colored.

また、被覆層6に用いる熱可塑性樹脂は、本体被覆部7の難燃化に合せて難燃性付与のための各種変性を施したものであっても良い。さらに、被覆層6に用いる熱可塑性樹脂は、FRP部とのアンカー接着構造を得るため、熱硬化性樹脂の加熱硬化時に少なくとも内周が、溶融状ないし軟化状態を呈することが望ましく、硬化温度110〜150℃の範囲に融点または軟化点を有する、ポリオレフィン系樹脂がより好適である。   Moreover, the thermoplastic resin used for the coating layer 6 may have been subjected to various modifications for imparting flame retardancy in accordance with the flame resistance of the main body coating portion 7. Further, the thermoplastic resin used for the coating layer 6 is desirably an at least inner periphery in a molten or soft state when the thermosetting resin is heat-cured in order to obtain an anchor adhesion structure with the FRP portion, and a curing temperature of 110 A polyolefin-based resin having a melting point or a softening point in a range of ˜150 ° C. is more preferable.

また、FRP部は、ガラスヤーンを補強繊維とする場合、耐曲げ性や細径化の点から外径が0.9mm以下の繊維強化熱硬化性樹脂硬化物とすることが望ましく(より好ましくは0.6mm以下)、同じく細径化の点、及び被覆層6に難燃性を付与しない場合であって、難燃性が本体樹脂に求められる場合は、必要以上の被覆厚みは、難燃性の阻害要因となるため、被覆層6は、0.3mm以下にすることが望ましい。   In addition, when the glass fiber is used as the reinforcing fiber, the FRP part is desirably a fiber-reinforced thermosetting resin cured product having an outer diameter of 0.9 mm or less from the viewpoint of bending resistance and diameter reduction (more preferably 0.6 mm or less), the point of reducing the diameter, and the case where flame resistance is not imparted to the coating layer 6, and when flame resistance is required for the main body resin, the coating thickness more than necessary is flame retardant. Therefore, the coating layer 6 is desirably 0.3 mm or less.

さらに、被覆層6の厚みは、整径前の被覆厚みは、0.08mm以上が望ましく、細径化の目的で表面層を整径することによって、0.07から0.2mm程度の厚みとすることがより望ましい。   Furthermore, the thickness of the coating layer 6 is preferably 0.08 mm or more before the diameter adjustment, and by adjusting the diameter of the surface layer for the purpose of reducing the diameter, the thickness is about 0.07 to 0.2 mm. It is more desirable to do.

整径前の被覆厚みの薄膜化のためには、薄膜成形性の良い樹脂が望ましく、例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)等が好適である。   For thinning of the coating thickness before diameter adjustment, a resin with good thin film moldability is desirable, and for example, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and the like are suitable.

本発明のFRP製被覆抗張力体3の形状は、特に限定されないが、楕円や矩形等の偏平断面に形成し、特に、ドロップ光ファイバケーブル1を敷設するにあたり、曲げる方向(図1においては、上下方向)に対して、FRP製抗張力体3の厚みを小さく配置(図1,2参照)することにより、曲げ半径をより小さくでき、敷設性をより高めることができる。   The shape of the FRP coated tensile strength body 3 of the present invention is not particularly limited, but it is formed in a flat cross section such as an ellipse or a rectangle, and in particular, the direction in which the drop optical fiber cable 1 is bent (in FIG. The bending radius can be made smaller and the laying performance can be further improved by arranging the thickness of the FRP strength member 3 small (see FIGS. 1 and 2).

図4は、本発明にかかるFRP製抗張力体および同抗張力体を用いたドロップ光ファイバケーブルの他の実施例を示しており、上記実施例と同一もしくは相当する部分には、同一数字を付してその説明和省略するとともに、以下にその特徴点についてのみ詳述する。   FIG. 4 shows another embodiment of the FRP strength member according to the present invention and a drop optical fiber cable using the strength member. The same or corresponding parts as those in the above embodiment are given the same numerals. In the following, only the feature points will be described in detail.

同図に示したドロップ光ファイバケーブル1aは、光ファイバ心線2aと、被覆抗張力体3a(3b)と、メッセンジャーワイヤー4aとを備えている。   The drop optical fiber cable 1a shown in the figure includes an optical fiber core wire 2a, a coated tensile body 3a (3b), and a messenger wire 4a.

被覆抗張力体3a(3b)は、繊維強化熱硬化性樹脂製の抗張力体5aを、熱可塑性樹脂製の被覆層6aで被覆した円形断面に形成されていて、一対の被覆抗張力体3a(3b)が、光ファイバ心線2aの上下に所定の間隔を置いて、これを挟むようにして、同軸上に配置されている。   The coated tensile body 3a (3b) is formed in a circular cross section in which a tensile body 5a made of fiber reinforced thermosetting resin is covered with a coating layer 6a made of a thermoplastic resin, and a pair of coated tensile bodies 3a (3b). However, they are arranged on the same axis with a predetermined interval above and below the optical fiber core wire 2a so as to sandwich this.

メッセンジャーワイヤー4aは、一方の被覆抗張力体3a(3b)の上下に配置されていて、光ファイバ心線2a、被覆抗張力体3a(3b)およびメッセンジャーワイヤー4aは、熱可塑性樹脂製の本体被覆部7aにより一括被覆した構成を備えている。本体被覆部7aには、光ファイバ心線2aの両側に位置対応して、一対のノッチ8aが対向するように形成されている。   The messenger wire 4a is arranged above and below one of the coated tensile members 3a (3b), and the optical fiber core wire 2a, the coated tensile member 3a (3b), and the messenger wire 4a are made of a thermoplastic resin body covering portion 7a. It is equipped with the structure which covered by lump. A pair of notches 8a are formed on the body covering portion 7a so as to face each other on both sides of the optical fiber core wire 2a.

また、メッセンジャーワイヤー4aは、それ以外の部分と分離できるように、細幅部9aで連結されており、このような構成は、上記実施例と実質的に同一になっている。   Further, the messenger wire 4a is connected by a narrow width portion 9a so as to be separable from other portions, and such a configuration is substantially the same as the above embodiment.

抗張力体5aの補強繊維としては、例えば、アラミド繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維等の中から、引張弾性率が360cN/dtex以上であり、かつ破断時における伸度が3.5%以上であるものを適宜選択する。このように構成した実施例でも上記実施例と同等の作用効果が得られる。   As the reinforcing fiber of the tensile body 5a, for example, an aramid fiber, a polyarylate fiber, a polyparaphenylene benzobisoxazole (PBO) fiber, etc., the tensile elastic modulus is 360 cN / dtex or more, and the elongation at break Is selected as appropriate. Even in the embodiment configured as described above, the same effects as the above-described embodiment can be obtained.

以下に、本発明の具体例について説明するが、本発明は上記実施例ないしは下記具体例に限定されるものではない。   Specific examples of the present invention will be described below, but the present invention is not limited to the above-described examples or the following specific examples.

具体例1Example 1

ビニルエステル樹脂(ジャパンコンポジット社製:エスターH8100)に熱硬化性触媒(化薬アクゾ社製、カドックスB−CH50:4部、カヤブチルB:1部)を添加した樹脂含浸槽中に、破断伸度4.6%、引張弾性率520cN/dtexのパラ系アラミド繊維(帝人製:テクノーラ T240、単糸径12μm、1670dtex)のマルチフィラメント1本を、ガイドを介して導き、引き続いて、内径を段階的に小さくした絞りノズルに導いて、未硬化状樹脂を絞り成形し、外径が0.5mmの細径棒状物を得、これを溶融押出機のクロスヘッドダイ(200℃)に通して、黒色マスターバッチを添加したMI=2.4、密度0.921g/cm、30μmのキャストフィルムによる1%モジュラスが170MPaであるLLDPE樹脂(日本ユニカー社製:TUF2060)により、被覆厚み0.25mmで環状に被覆し、直ちに冷却水槽に導いて、表面の被覆部を冷却固化した。 Elongation at break in a resin impregnation tank in which a thermosetting catalyst (manufactured by Kayaku Akzo, Cadox B-CH50: 4 parts, Kayabutyl B: 1 part) is added to vinyl ester resin (manufactured by Japan Composite: Esther H8100) One multifilament of 4.6%, para-aramid fiber with a tensile modulus of 520 cN / dtex (Teijin: Technora T240, single yarn diameter 12 μm, 1670 dtex) is guided through a guide, and then the inner diameter is stepped. Then, the uncured resin is drawn by drawing it to a squeezed nozzle, and a thin rod-shaped product having an outer diameter of 0.5 mm is obtained. LLD with MI = 2.4 with master batch added, density 0.921 g / cm 3 , 1% modulus by 30 μm cast film is 170 MPa A PE resin (manufactured by Nihon Unicar Co., Ltd .: TUF2060) was coated in a ring shape with a coating thickness of 0.25 mm, and immediately led to a cooling water bath to cool and solidify the surface coating.

引き続いて、この被覆未硬化線状物を入口及び出口に加圧シール部を設けた長さ18mの加圧蒸気硬化槽に15m/minの速度で導いて蒸気圧32.5Pa(145℃)で硬化し、引き続いて、210℃〜250℃に段階的に加熱された内径1.0mmおよび0.8mmの整径ダイスを備えた整径器に導いて被覆外周面を整径し、被覆外径が0.8mmの円形断面の被覆抗張力体3aを得、ボビンに連続状に巻き取った。引続いて、ボビンを40℃の恒温室中で40時間乾燥熱処理(二次熱処理)を行った。   Subsequently, the coated uncured linear material is guided at a speed of 15 m / min to a pressurized steam curing tank having a length of 18 m provided with pressure seal portions at the inlet and outlet, and at a steam pressure of 32.5 Pa (145 ° C.). Cured and subsequently led to a diameter adjuster equipped with diameter adjusting dies having an inner diameter of 1.0 mm and a diameter of 0.8 mm heated stepwise to 210 ° C. to 250 ° C. A coated tensile strength body 3a having a circular cross section of 0.8 mm was obtained and continuously wound around a bobbin. Subsequently, the bobbin was subjected to a drying heat treatment (secondary heat treatment) for 40 hours in a constant temperature room at 40 ° C.

この被覆抗張力体3aは、FRP部の補強繊維含有率が、61.5VOL%であり、最小曲げ直径(被覆抗張力体をループ状にして、ループが小さくなるように曲げてゆき、曲げ破壊が起こる直前のループ直径)は、6mmであった。   The coated tensile strength body 3a has a reinforcing fiber content of the FRP portion of 61.5 VOL%, and has a minimum bending diameter (the coated tensile strength body is looped and bent so that the loop becomes smaller, and bending fracture occurs. The immediately preceding loop diameter was 6 mm.

具体例2Example 2

補強繊維に破断伸度3.6%、引張弾性率490cN/dtexのパラ系アラミド繊維(東レ・デュポン製:ケブラー29、単糸径12μm、1670dtex)のマルチフィラメントを1本使用した以外は、具体例1と同様な方法で円形断面の被覆抗張力体3bを得た。   Except for the use of one multifilament of para-aramid fiber (manufactured by Toray DuPont: Kevlar 29, single yarn diameter 12 μm, 1670 dtex) having a breaking elongation of 3.6% and a tensile elastic modulus of 490 cN / dtex as the reinforcing fiber. A coated tensile body 3b having a circular cross section was obtained in the same manner as in Example 1.

この被覆抗張力体3bは、FRP部の補強繊維含有率が、58.9VOL%であり、最小曲げ直径(被覆抗張力体をループ状にして、ループが小さくなるように曲げてゆき、曲げ破壊が起こる直前のループ直径)は5mmであった。   In this coated tensile body 3b, the reinforcing fiber content of the FRP portion is 58.9 VOL%, and the minimum bending diameter (the coated tensile body is made into a loop shape and bent so that the loop becomes smaller, bending breakage occurs. The immediately preceding loop diameter was 5 mm.

具体例1および2で得られた被覆抗張力体3a,3bについて、それぞれ80℃の熱間での24時間耐熱曲げ直径テストを行ったところ、30mmをクリアし、サンプル長1000mmで−30℃−80℃のヒートサイクルテストを3回繰り返し、被覆抗張力体3a,3bの被覆層6a,6bとFRP製抗張力体5a,5bとの接着状況を見たが、双方とも被覆層の収縮は、殆ど発生せず良好な結果を示した。   The coated tensile strength members 3a and 3b obtained in Examples 1 and 2 were each subjected to a heat-resistant bending diameter test for 24 hours at 80 ° C., and 30 mm was cleared, and a sample length of 1000 mm was −30 ° C.-80. The heat cycle test at 0 ° C. was repeated three times, and the adhesion state between the coating layers 6a and 6b of the coated tensile members 3a and 3b and the FRP tensile members 5a and 5b was observed. Good results were obtained.

次に、メッセンジャーワイヤー4aとして、φ1.2mmのブルーイング単鋼線1本、具体例1で得られた被覆抗張力体3a2本、光ファイバ心線2aとしてφ0.25mmシングルモードファイバ1本をクロスヘッドダイに導き、本体被覆部7aの形成樹脂として難燃PE(日本ユニカー製:NUC9739)を用い、図3に示すような形状の口金で押し出し被覆し、直ちに60℃に温調された温水冷却槽にて1次冷却を行い、ついで水冷槽にて2次冷却し、図4に示すような断面構造のドロップケーブル1aを得た。   Next, as a messenger wire 4a, a Φ1.2mm bluing single steel wire, two coated tensile members 3a obtained in Example 1, and a 0.25mm single-mode fiber as an optical fiber core wire 2a are crossheaded. A hot water cooling tank which is led to a die, is made of flame-retardant PE (manufactured by Nihon Unicar: NUC9739) as a forming resin of the main body covering portion 7a, and is extruded and covered with a base having a shape as shown in FIG. Then, the secondary cooling was performed in a water-cooled tank to obtain a drop cable 1a having a cross-sectional structure as shown in FIG.

得られたドロップケーブル1aの敷設性を確認するため、図5に示すように、壁コーナー部にr=15mm(直径30mm)で敷設したところ、FRPが折損する等の問題は発生せず、良好な結果を示した。   In order to confirm the layability of the obtained drop cable 1a, as shown in FIG. 5, when it was laid at the corner of the wall at r = 15 mm (diameter 30 mm), the problem such as breakage of FRP did not occur and it was good. Showed a good result.

比較例1Comparative Example 1

補強繊維に破断伸度3.3%、引張弾性率670cN/dtexのパラ系アラミド繊維(東レ・デュポン製:ケブラー129、単糸径12μm、1670dtex)のマルチフィラメントを1本使用した以外は、具体例1と同様な方法で、被覆抗張力体を得た。   Except for using one multifilament of para-aramid fiber (Toray DuPont: Kevlar 129, single yarn diameter 12 μm, 1670 dtex) having a breaking elongation of 3.3% and a tensile elastic modulus of 670 cN / dtex as the reinforcing fiber. A coated tensile member was obtained in the same manner as in Example 1.

この被覆抗張力体は、FRP部の補強繊維含有率が、58.9VOL%であり、最小曲げ直径(被覆抗張力体をループ状にして、ループが小さくなるように曲げてゆき、曲げ破壊が起こる直前のループ直径)は8mmであった。   This coated tensile body has a reinforcing fiber content of 58.9 VOL% in the FRP part, and has a minimum bending diameter (just before the bending fracture occurs by bending the coated tensile body into a loop shape and making the loop smaller). The loop diameter was 8 mm.

比較例2Comparative Example 2

補強繊維に破断伸度2.4%、引張弾性率780cN/dtexのパラ系アラミド繊維(東レ・デュポン製:ケブラー49、単糸径12μm、1580dtex)のマルチフィラメントを1本使用した以外は、具体例1と同様な方法で被覆抗張力体を得た。   Except for using one multifilament of a para-aramid fiber (Toray DuPont: Kevlar 49, single yarn diameter 12 μm, 1580 dtex) having a breaking elongation of 2.4% and a tensile modulus of 780 cN / dtex as the reinforcing fiber A coated tensile body was obtained in the same manner as in Example 1.

この被覆抗張力体は、FRP部の補強繊維含有率が、55.8VOL%であり、最小曲げ直径(被覆抗張力体をループ状にして、ループが小さくなるように曲げてゆき、曲げ破壊が起こる直前のループ直径)は10.5mmであった。   This coated tensile body has a reinforcing fiber content of 55.8 VOL% in the FRP part, and has a minimum bend diameter (just before the bending fracture occurs when the coated tensile body is looped and bent so that the loop becomes smaller). The loop diameter was 10.5 mm.

比較例3Comparative Example 3

補強繊維に破断伸度4.0%、引張弾性率250cN/dtexのガラスヤーン(日東グラスファイバー製:ECE225−1/0 1.0Z R41 T、22.5tex/本)を14本使用した以外は、具体例1と同様な方法で被覆抗張力体を得た。   Except for the use of 14 glass yarns (manufactured by Nitto Glass Fiber: ECE2251 / 0 1.0Z R41 T, 22.5 tex / piece) having a breaking elongation of 4.0% and a tensile elastic modulus of 250 cN / dtex as the reinforcing fibers. A coated tensile body was obtained in the same manner as in Example 1.

この被覆抗張力体は、FRP部の補強繊維含有率が、63.2VOL%であり、最小曲げ直径(被覆抗張力体をループ状にして、ループが小さくなるように曲げてゆき、曲げ破壊が起こる直前のループ直径)は11mmであった。   This coated tensile body has a reinforcing fiber content of the FRP portion of 63.2 VOL%, and has a minimum bending diameter (just before the bending fracture occurs by bending the coated tensile body into a loop shape and making the loop smaller). The loop diameter was 11 mm.

本発明にかかるFRP製抗張力体によれば、要求される抗張力、抗圧縮性を低下させることなく曲げ半径の小さいFRP製抗張力体を得ることができ、このFRP製抗張力体を用いることにより、敷設性に優れたドロップ光ファイバが得られるので、加入者住宅に敷設する際に有効に活用することができる。   According to the FRP tensile body according to the present invention, an FRP tensile body having a small bending radius can be obtained without lowering the required tensile strength and compressibility. By using this FRP tensile body, laying can be performed. Since a drop optical fiber excellent in performance can be obtained, it can be effectively used when laying in a subscriber house.

本発明にかかるFRP製抗張力体および同抗張力体を用いたドロップ光ファイバケーブルの一例を示す断面図である。It is sectional drawing which shows an example of the drop optical fiber cable using the strength member made from FRP concerning the present invention, and the strength member. 図1に示したドロップ光ファイバケーブルを敷設する際の説明図である。It is explanatory drawing at the time of laying the drop optical fiber cable shown in FIG. 図1に示したドロップ光ファイバケーブルの本体被覆部を形成する際に用いる口金の説明図である。It is explanatory drawing of a nozzle | cap | die used when forming the main body coating | coated part of the drop optical fiber cable shown in FIG. 本発明にかかるFRP製抗張力体および同抗張力体を用いたドロップ光ファイバケーブルの他の例を示す断面図である。It is sectional drawing which shows the other example of the drop optical fiber cable using the strength member made from FRP concerning the present invention, and the strength member. 本発明にかかるドロップ光ファイバケーブルの曲げ敷設性を確認する際の説明図である。It is explanatory drawing at the time of confirming the bending layability of the drop optical fiber cable concerning this invention.

符号の説明Explanation of symbols

1,1a ドロップ光ファイバケーブル
2,2a 光ファイバ心線
3,3a 被覆抗張力体
4,4a メッセンジャーワイヤー
5,5a 抗張力体
6,6a 被覆層
7,7a 本体被覆部
1, 1a drop optical fiber cable 2, 2a optical fiber core wire 3, 3a coated tensile body 4, 4a messenger wire 5, 5a tensile body 6, 6a coating layer 7, 7a main body coating portion

Claims (4)

補強繊維を熱硬化性樹脂で結着したFRP製抗張力体において、
前記補強繊維の引張弾性率が360cN/dtex以上であり、かつ、破断時における伸度が3.5%以上であることを特徴とするFRP製抗張力体。
In the FRP tensile body in which the reinforcing fiber is bound with a thermosetting resin,
A tensile strength member made of FRP, wherein the reinforcing fiber has a tensile modulus of elasticity of 360 cN / dtex or more and an elongation at break of 3.5% or more.
前記熱硬化性樹脂は、ビニルエステル樹脂であることを特徴とする請求項1記載のFRP製抗張力体。   The FRP tensile strength body according to claim 1, wherein the thermosetting resin is a vinyl ester resin. 請求項1ないしは請求項2に記載のFRP製抗張力体に、熱可塑性樹脂製の被覆層を施した被覆抗張力体と、光ファイバ心線と前記被覆抗張力体とを一括して熱可塑性樹脂で被覆する本体被覆部とを有するドロップ光ファイバケーブルであって、
前記被覆層の外周と前記本体被覆部とが相互に融合接着し、前記被覆層の内周と前記抗張力体の外周とがアンカー接着していることを特徴とするドロップ光ファイバケーブル。
A coated tensile body obtained by coating the FRP tensile body according to claim 1 or 2 with a coating layer made of a thermoplastic resin, and an optical fiber core and the coated tensile body are collectively coated with the thermoplastic resin. A drop optical fiber cable having a main body covering portion,
A drop optical fiber cable, wherein an outer periphery of the covering layer and the body covering portion are fused and bonded to each other, and an inner periphery of the covering layer and an outer periphery of the strength member are anchored.
前記熱可塑性樹脂被覆層は、LLDPEであることを特徴とする請求項3記載のドロップ光ファイバケーブル。   The drop optical fiber cable according to claim 3, wherein the thermoplastic resin coating layer is LLDPE.
JP2003385202A 2002-11-11 2003-11-14 Frp made tension member and drop optical fiber cable Pending JP2005148373A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003385202A JP2005148373A (en) 2003-11-14 2003-11-14 Frp made tension member and drop optical fiber cable
KR1020067009099A KR20060120097A (en) 2003-11-14 2004-04-28 Drop optical fiber cable and frp tension member used for the cable
CNB2004800336290A CN100520468C (en) 2003-11-14 2004-04-28 Drop optical fiber cable and FRP tension member used for the cable
PCT/JP2004/006188 WO2005047950A1 (en) 2003-11-14 2004-04-28 Drop optical fiber cable and frp tension member used for the cable
TW093112038A TW200516284A (en) 2002-11-11 2004-04-29 Drop optical fiber cable and FRP tensile body used in the same cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385202A JP2005148373A (en) 2003-11-14 2003-11-14 Frp made tension member and drop optical fiber cable

Publications (1)

Publication Number Publication Date
JP2005148373A true JP2005148373A (en) 2005-06-09

Family

ID=34587352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385202A Pending JP2005148373A (en) 2002-11-11 2003-11-14 Frp made tension member and drop optical fiber cable

Country Status (5)

Country Link
JP (1) JP2005148373A (en)
KR (1) KR20060120097A (en)
CN (1) CN100520468C (en)
TW (1) TW200516284A (en)
WO (1) WO2005047950A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042488A (en) * 2007-08-09 2009-02-26 Furukawa Electric Co Ltd:The Optical fiber cable
JP2009172995A (en) * 2007-12-27 2009-08-06 Ube Nitto Kasei Co Ltd Thermoplastic resin-coated frp cable and method of manufacturing the same
WO2010039530A1 (en) * 2008-09-23 2010-04-08 Corning Cable Systems Llc Fiber optic cables and assemblies for fiber toward the subscriber applications
US20100310217A1 (en) * 2009-06-09 2010-12-09 Abernathy George C Fiber optic drop cable assembly for deployment on building walls
CN101923199A (en) * 2010-08-20 2010-12-22 烽火通信科技股份有限公司 Method for preparing integrated optical cable of fibre reinforced plastic reinforcement and optical cable
JP2011037133A (en) * 2009-08-11 2011-02-24 Ube Nitto Kasei Co Ltd Method for manufacturing approximately rectangular frp string-like object coated with thermoplastic resin, and drop optical fiber cable using the frp string-like object
US7983520B2 (en) 2007-06-26 2011-07-19 Corning Cable Systems Llc Methods of making optical fiber assemblies having relatively low-levels of water-swellable powder
US8180190B2 (en) 2008-07-31 2012-05-15 Corning Cable Systems Llc Optical fiber assemblies having a powder or powder blend at least partially mechanically attached
US8582939B2 (en) 2010-11-23 2013-11-12 Corning Cable Systems Llc Fiber optic cables with access features
US8582940B2 (en) 2010-10-28 2013-11-12 Corning Cable Systems Llc Fiber optic cables with extruded access features and methods of making fiber optic cables
US8682124B2 (en) 2011-10-13 2014-03-25 Corning Cable Systems Llc Access features of armored flat fiber optic cable
US8909014B2 (en) 2012-04-27 2014-12-09 Corning Cable Systems Llc Fiber optic cable with access features and jacket-to-core coupling, and methods of making the same
US9073243B2 (en) 2010-04-30 2015-07-07 Corning Cable Systems Llc Fiber optic cables with access features and methods of making fiber optic cables
US9176293B2 (en) 2011-10-28 2015-11-03 Corning Cable Systems Llc Buffered fibers with access features
US9201208B2 (en) 2011-10-27 2015-12-01 Corning Cable Systems Llc Cable having core, jacket and polymeric jacket access features located in the jacket
US9274302B2 (en) 2011-10-13 2016-03-01 Corning Cable Systems Llc Fiber optic cables with extruded access features for access to a cable cavity
US9323022B2 (en) 2012-10-08 2016-04-26 Corning Cable Systems Llc Methods of making and accessing cables having access features
US9417421B2 (en) 2008-08-15 2016-08-16 Corning Cable Systems Llc Optical fiber assemblies, and methods and apparatus for the manufacture thereof
US9482839B2 (en) 2013-08-09 2016-11-01 Corning Cable Systems Llc Optical fiber cable with anti-split feature

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449347C (en) * 2007-06-19 2009-01-07 上海晓宝增强塑料有限公司 Aramid fiber reinforced plastic reinforcement, and its preparing process and use
TWI476469B (en) * 2009-12-02 2015-03-11 Fujikura Ltd Fiber optic cable
JP2013257396A (en) * 2012-06-12 2013-12-26 Fujikura Ltd Optical fiber cable
CN103984071B (en) * 2014-05-06 2017-02-15 江苏南方通信科技有限公司 Novel all-dielectric communication optical cable
JP7035214B2 (en) * 2018-10-11 2022-03-14 株式会社フジクラ Fiber optic cable

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271207A (en) * 1988-06-20 1990-03-09 Ube Nitto Kasei Co Ltd Protective pipe for optical fiber and flat type optical fiber code formed by using this pipe
JPH06316624A (en) * 1991-09-25 1994-11-15 Kumagai Gumi Co Ltd Epoxy resin composition for high tensile material made of frp
JPH09159884A (en) * 1995-12-06 1997-06-20 Furukawa Electric Co Ltd:The Optical cord
JPH09159887A (en) * 1995-12-06 1997-06-20 Furukawa Electric Co Ltd:The Optical ribbon cord and optical fiber cable
JPH10104477A (en) * 1996-09-26 1998-04-24 Fujikura Ltd Aerial assembled outdoor service optical cable
JPH10148737A (en) * 1996-11-20 1998-06-02 Fujikura Ltd Aerial outdoor optical cable
JPH10148739A (en) * 1996-11-18 1998-06-02 Fujikura Ltd Aerial assembled outdoor optical cable
JPH10148738A (en) * 1996-11-20 1998-06-02 Fujikura Ltd Aerial assembled outdoor optical cable and its manufacture
JP2003227984A (en) * 2002-01-31 2003-08-15 Fujikura Ltd Optical fiber drop cable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511574B2 (en) * 1997-06-18 2004-03-29 日本電信電話株式会社 Single core optical fiber cord and optical tape cord
JPH1172669A (en) * 1997-07-03 1999-03-16 Furukawa Electric Co Ltd:The Optical fiber cord
JP2000238143A (en) * 1999-02-23 2000-09-05 Ube Nitto Kasei Co Ltd Fiber-reinforced synthetic resin linear material
US6434306B1 (en) * 2000-04-17 2002-08-13 Sumitomo Electric Industries, Ltd. Optical cable and manufacturing method thereof
JP3783946B2 (en) * 2002-08-02 2006-06-07 昭和電線電纜株式会社 Fiber optic cable
JP4077300B2 (en) * 2002-11-11 2008-04-16 宇部日東化成株式会社 Drop optical fiber cable

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271207A (en) * 1988-06-20 1990-03-09 Ube Nitto Kasei Co Ltd Protective pipe for optical fiber and flat type optical fiber code formed by using this pipe
JPH06316624A (en) * 1991-09-25 1994-11-15 Kumagai Gumi Co Ltd Epoxy resin composition for high tensile material made of frp
JPH09159884A (en) * 1995-12-06 1997-06-20 Furukawa Electric Co Ltd:The Optical cord
JPH09159887A (en) * 1995-12-06 1997-06-20 Furukawa Electric Co Ltd:The Optical ribbon cord and optical fiber cable
JPH10104477A (en) * 1996-09-26 1998-04-24 Fujikura Ltd Aerial assembled outdoor service optical cable
JPH10148739A (en) * 1996-11-18 1998-06-02 Fujikura Ltd Aerial assembled outdoor optical cable
JPH10148737A (en) * 1996-11-20 1998-06-02 Fujikura Ltd Aerial outdoor optical cable
JPH10148738A (en) * 1996-11-20 1998-06-02 Fujikura Ltd Aerial assembled outdoor optical cable and its manufacture
JP2003227984A (en) * 2002-01-31 2003-08-15 Fujikura Ltd Optical fiber drop cable

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7983520B2 (en) 2007-06-26 2011-07-19 Corning Cable Systems Llc Methods of making optical fiber assemblies having relatively low-levels of water-swellable powder
JP2009042488A (en) * 2007-08-09 2009-02-26 Furukawa Electric Co Ltd:The Optical fiber cable
JP2009172995A (en) * 2007-12-27 2009-08-06 Ube Nitto Kasei Co Ltd Thermoplastic resin-coated frp cable and method of manufacturing the same
US8542966B2 (en) 2008-07-31 2013-09-24 Corning Cable Systems Llc Optical fiber assemblies having a powder or powder blend at least partially mechanically attached
US8989542B2 (en) 2008-07-31 2015-03-24 Corning Optical Communications LLC Optical fiber assemblies having a powder or powder blend at least partially mechanically attached
US8180190B2 (en) 2008-07-31 2012-05-15 Corning Cable Systems Llc Optical fiber assemblies having a powder or powder blend at least partially mechanically attached
US8750661B2 (en) 2008-07-31 2014-06-10 Corning Cable Systems Llc Optical fiber assemblies having a powder or powder blend at least partially mechanically attached
US9417421B2 (en) 2008-08-15 2016-08-16 Corning Cable Systems Llc Optical fiber assemblies, and methods and apparatus for the manufacture thereof
US10514521B2 (en) 2008-08-15 2019-12-24 Corning Optical Communications LLC Optical fiber assemblies, and methods and apparatus for the manufacture thereof
US10684432B2 (en) 2008-09-23 2020-06-16 Corning Optical Communications LLC Fiber optic cables and assemblies for fiber toward the subscriber applications
US9989722B2 (en) 2008-09-23 2018-06-05 Corning Optical Communications LLC Fiber optic cables and assemblies for fiber toward the subscriber applications
WO2010039530A1 (en) * 2008-09-23 2010-04-08 Corning Cable Systems Llc Fiber optic cables and assemblies for fiber toward the subscriber applications
US9477056B2 (en) 2008-09-23 2016-10-25 Corning Optical Communications LLC Fiber optic cables and assemblies for fiber toward the subscriber applications
US8538216B2 (en) 2008-09-23 2013-09-17 Corning Cable Systems Llc Fiber optic cables and assemblies for fiber toward the subscriber applications
US8712200B1 (en) 2008-09-23 2014-04-29 Corning Cable Systems Llc Fiber optic cables and assemblies for fiber toward the subscriber applications
US20100310217A1 (en) * 2009-06-09 2010-12-09 Abernathy George C Fiber optic drop cable assembly for deployment on building walls
US8515236B2 (en) * 2009-06-09 2013-08-20 Corning Cable Systems Llc Fiber optic drop cable assembly for deployment on building walls
JP2011037133A (en) * 2009-08-11 2011-02-24 Ube Nitto Kasei Co Ltd Method for manufacturing approximately rectangular frp string-like object coated with thermoplastic resin, and drop optical fiber cable using the frp string-like object
US9658422B2 (en) 2010-04-30 2017-05-23 Corning Optical Communications LLC Fiber optic cables with access features and methods of making fiber optic cables
US9073243B2 (en) 2010-04-30 2015-07-07 Corning Cable Systems Llc Fiber optic cables with access features and methods of making fiber optic cables
CN101923199A (en) * 2010-08-20 2010-12-22 烽火通信科技股份有限公司 Method for preparing integrated optical cable of fibre reinforced plastic reinforcement and optical cable
US10302891B2 (en) 2010-10-28 2019-05-28 Corning Optical Communications LLC Fiber optic cables with extruded access features and methods of making fiber optic cables
US8909011B2 (en) 2010-10-28 2014-12-09 Corning Cable Systems Llc Fiber optic cables with extruded access features and methods of making fiber optic cables
US9720201B2 (en) 2010-10-28 2017-08-01 Corning Optical Communications LLC Fiber optic cables with extruded access features and methods of making fiber optic cables
US10613288B2 (en) 2010-10-28 2020-04-07 Corning Optical Communications LLC Fiber optic cables with extruded access features and methods of making fiber optic cables
US9250411B2 (en) 2010-10-28 2016-02-02 Ccs Technology, Inc. Fiber optic cables with extruded access features and methods of making fiber optic cables
US10078195B2 (en) 2010-10-28 2018-09-18 Corning Optical Communications LLC Fiber optic cables with extruded access features and methods of making fiber optic cables
US8582940B2 (en) 2010-10-28 2013-11-12 Corning Cable Systems Llc Fiber optic cables with extruded access features and methods of making fiber optic cables
US8737787B2 (en) 2010-11-23 2014-05-27 Corning Cable Systems Llc Fiber optic cables with access features
US8582939B2 (en) 2010-11-23 2013-11-12 Corning Cable Systems Llc Fiber optic cables with access features
US8995809B2 (en) 2010-11-23 2015-03-31 Corning Optical Communications LLC Fiber optic cables with access features
US8682124B2 (en) 2011-10-13 2014-03-25 Corning Cable Systems Llc Access features of armored flat fiber optic cable
US9274302B2 (en) 2011-10-13 2016-03-01 Corning Cable Systems Llc Fiber optic cables with extruded access features for access to a cable cavity
US9244244B2 (en) 2011-10-13 2016-01-26 Corning Optical Communications LLC Method of manufacturing a fiber optic cable
US9664872B2 (en) 2011-10-13 2017-05-30 Corning Optical Communications LLC Fiber optic cables with extruded access features for access to a cable cavity
US9720202B2 (en) 2011-10-13 2017-08-01 Corning Optical Communications LLC Methods of making and accessing cables having access features
US9703065B2 (en) 2011-10-27 2017-07-11 Corning Optical Communications LLC Cable having core, jacket and polymeric jacket access features located in the jacket
US10228529B2 (en) 2011-10-27 2019-03-12 Corning Optical Communications LLC Cable having core, jacket and polymeric jacket access features located in the jacket
US9201208B2 (en) 2011-10-27 2015-12-01 Corning Cable Systems Llc Cable having core, jacket and polymeric jacket access features located in the jacket
US9778434B2 (en) 2011-10-28 2017-10-03 Corning Optical Communications LLC Buffered fibers with access features
US9176293B2 (en) 2011-10-28 2015-11-03 Corning Cable Systems Llc Buffered fibers with access features
US8909014B2 (en) 2012-04-27 2014-12-09 Corning Cable Systems Llc Fiber optic cable with access features and jacket-to-core coupling, and methods of making the same
US9323022B2 (en) 2012-10-08 2016-04-26 Corning Cable Systems Llc Methods of making and accessing cables having access features
US9791652B2 (en) 2013-08-09 2017-10-17 Corning Optical Communications LLC Armored optical fiber cable
US9482839B2 (en) 2013-08-09 2016-11-01 Corning Cable Systems Llc Optical fiber cable with anti-split feature
US10254494B2 (en) 2013-08-09 2019-04-09 Corning Optical Communications LLC Armored optical fiber cable
US10578820B2 (en) 2013-08-09 2020-03-03 Corning Optical Communications LLC Armored optical fiber cable

Also Published As

Publication number Publication date
CN100520468C (en) 2009-07-29
WO2005047950A1 (en) 2005-05-26
CN1882863A (en) 2006-12-20
TW200516284A (en) 2005-05-16
TWI297788B (en) 2008-06-11
KR20060120097A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP2005148373A (en) Frp made tension member and drop optical fiber cable
JP3176390B2 (en) Method of manufacturing reinforced plastic armored cable
CA2464933C (en) Compact, hybrid fiber reinforced rods for optical cable reinforcements and method for making same
US5016973A (en) Cable reinforcement for an optical fiber cable
CN100458485C (en) Fiber optic assemblies, cable, and manufacturing methods therefor
JP2009172995A (en) Thermoplastic resin-coated frp cable and method of manufacturing the same
US6775445B2 (en) Optical fiber drop cable
JP4077300B2 (en) Drop optical fiber cable
JP2000206382A (en) Multicore tight buffer optical fiber and multicore optical cable using it
JPH09113773A (en) Coated optical fiber ribbon
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
JP4156498B2 (en) Manufacturing method of FRP for drop optical cable
JP3940500B2 (en) Reinforced optical fiber cord and manufacturing method thereof
JPH0271207A (en) Protective pipe for optical fiber and flat type optical fiber code formed by using this pipe
JP3596983B2 (en) Fiber reinforced optical fiber cord and method of manufacturing the same
CN203287582U (en) Tensile stress wire made of FRP and inlead optical fiber cable employing same
JP2002214492A (en) Flame resistant coated optical fiber ribbon and manufacturing method therefor
JP2005037641A (en) Optical fiber cable
CN115877529B (en) Fiber reinforced optical cable and manufacturing method
JPH0749450Y2 (en) Fiber Optic Tension Member
JP2005283624A (en) Optical fiber cable and method of manufacturing the same
JP3472149B2 (en) Spacer for optical fiber cable and method of manufacturing the same
JP2849418B2 (en) Tension member for reinforcing optical fiber ribbon and method of manufacturing the same
CN115891226A (en) High-speed pultrusion optical cable reinforced core and production process
JPH11237537A (en) Reinforced optical fiber cord

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406