JP4156498B2 - Manufacturing method of FRP for drop optical cable - Google Patents

Manufacturing method of FRP for drop optical cable Download PDF

Info

Publication number
JP4156498B2
JP4156498B2 JP2003398483A JP2003398483A JP4156498B2 JP 4156498 B2 JP4156498 B2 JP 4156498B2 JP 2003398483 A JP2003398483 A JP 2003398483A JP 2003398483 A JP2003398483 A JP 2003398483A JP 4156498 B2 JP4156498 B2 JP 4156498B2
Authority
JP
Japan
Prior art keywords
frp
resin
optical cable
drop optical
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003398483A
Other languages
Japanese (ja)
Other versions
JP2005157159A (en
Inventor
和憲 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube-Nitto Kasei Co Ltd
Original Assignee
Ube-Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube-Nitto Kasei Co Ltd filed Critical Ube-Nitto Kasei Co Ltd
Priority to JP2003398483A priority Critical patent/JP4156498B2/en
Publication of JP2005157159A publication Critical patent/JP2005157159A/en
Application granted granted Critical
Publication of JP4156498B2 publication Critical patent/JP4156498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、FRPの製造方法及び同FRPを用いたドロップ光ファイバケーブルに関し、特に、FTTHなどに用いられるドロップ光ケーブル用として好適なFRPの製造方法に関するものである。   The present invention relates to an FRP manufacturing method and a drop optical fiber cable using the FRP, and more particularly to an FRP manufacturing method suitable for a drop optical cable used for FTTH and the like.

情報化社会が到来し、インターネット等の伝送情報容量の増大化に伴ない、ビル、住宅等加入者へも光ファイバケーブルを敷設するFTTH化が急激に進展している。   With the arrival of an information society, the transmission information capacity of the Internet and the like has increased, and the FTTH system in which optical fiber cables are laid to subscribers such as buildings and houses is rapidly progressing.

FTTH用ドロップ光ケーブルとして、抗張力体に金属線、例えば、直径0.4mm程度の単鋼線を使用したものが提案されている。(特許文献1参照)   As a drop optical cable for FTTH, a cable using a metal wire, for example, a single steel wire having a diameter of about 0.4 mm, has been proposed as a tensile body. (See Patent Document 1)

しかし、抗張力体に金属線を使用すると、雷サージの問題から、成端キャビネットにてアース工事が必要になる。アース工事は、手間や経費がかかり、各家庭への普及の障害となる。   However, if a metal wire is used for the strength member, grounding work is required in the termination cabinet due to the problem of lightning surge. Grounding work is time-consuming and expensive, and is an obstacle to the spread to each home.

そこで、このような理由から、抗張力体にGFRPなどの無誘導体を用いた、いわゆるIF(Induction Free)ドロップ光ケーブルが主流になりつつある。   For this reason, so-called IF (Induction Free) drop optical cables using non-derivatives such as GFRP as the strength members are becoming mainstream.

しかしながら、従来のIF型ドロップ光ケーブルには、以下に説明する技術的な課題が指摘されていた。
特開2001−337255号公報
However, the technical problems described below have been pointed out in the conventional IF type drop optical cable.
JP 2001-337255 A

すなわち、IF型のドロップ光ケーブルでは、アース工事が不要となり工事時間や工事コストの削減に寄与するというプラス面がある一方で、抗張力体が主にFRPであるため、金属線と比較して大きな曲げ直径で容易に折損するというマイナス面もある。   In other words, the IF type drop optical cable has the plus side that grounding work is unnecessary and contributes to the reduction of construction time and construction cost. On the other hand, since the tensile strength body is mainly FRP, the bending strength is larger than that of metal wires. There is also the downside of easily breaking at the diameter.

実際に使用される、最終ユーザーである一般家庭内の配線においては、通常、壁に沿わせて敷設するため、コーナー部分に配線する場合、壁にぴったりと沿った状態での敷設が外観上好まれるため、ドロップ光ケーブルの曲げ半径を小さくする要求が高まっている。   In actual home use, the end user's general household wiring is usually laid along the wall, so when laying in the corner, it is preferred to lay along the wall exactly. Therefore, there is an increasing demand for reducing the bending radius of the drop optical cable.

この種のケーブルで折損に至る曲げ直径を小さくするためには、FRP直径を小さくすればよいが、補強繊維が同一の場合、抗張力が減少するといった問題が発生する。   In order to reduce the bending diameter leading to breakage in this type of cable, the FRP diameter may be reduced. However, when the reinforcing fibers are the same, there arises a problem that the tensile strength is reduced.

この問題を回避するために補強繊維には、例えば、ポリパラフェニレンベンゾビスオキサゾール繊維等の高い弾性率を有する有機繊維を用いる方法が考えられる。   In order to avoid this problem, a method using an organic fiber having a high elastic modulus such as a polyparaphenylene benzobisoxazole fiber can be considered as the reinforcing fiber.

しかしながら、この方法では、FRP直径を小さくしても必要な抗張力を確保し、曲げ半径を小さくすることもできるが、一般に、補強繊維に高弾性有機繊維を用いたFRPの場合、圧縮弾性率が、汎用のGFRPの1/2〜1/4と低く、細径化することで本体樹脂との接触面積が減少することから、今度は抗収縮力が不足するという別の問題が発生する。   However, in this method, even if the FRP diameter is reduced, the necessary tensile strength can be ensured and the bending radius can be reduced. However, in general, in the case of FRP using a highly elastic organic fiber as the reinforcing fiber, the compression modulus is low. Since it is as low as 1/2 to 1/4 of general-purpose GFRP and the contact area with the main body resin is reduced by reducing the diameter, another problem that the anti-shrinkage force is insufficient occurs.

抗収縮力は、ドロップ光ケーブルにおいては、突っ張り棒的な役割を示し、抗張力体が、本体樹脂の収縮を抑制することで、光ファイバを保護する機能も兼ねる。   In the drop optical cable, the anti-shrinkage force acts as a tension rod, and the strength member also serves to protect the optical fiber by suppressing the shrinkage of the main body resin.

従って、不当に抗張力体の径を小さくして、本体樹脂に対する接触面積あるいは断面積比が小さくなると、抗張力は、保てても抗収縮力は不十分となる恐れが高い。   Therefore, if the diameter of the strength member is unduly reduced to reduce the contact area or the cross-sectional area ratio with respect to the main body resin, there is a high possibility that the anti-shrink force is insufficient even if the tensile strength can be maintained.

本発明はこのような問題点に鑑みてなされたものであって、その目的とするところは、細径化することなく、曲げ半径を小さくすることができるドロップ光ケーブル用FRPの製造方法を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide a method for manufacturing an FRP for a drop optical cable that can reduce the bending radius without reducing the diameter. There is.

上記目的を達成するために、本発明は、補強繊維に熱硬化性樹脂を含浸し、絞りノズルで所定の樹脂含有率にした後に、前記熱硬化性樹脂が未硬化の状態で、その外周に熱可塑性樹脂にて、2層の内,外層部を被覆形成し、その後に、FRP部の前記熱硬化性樹脂を加熱硬化し、しかる後に、2層に被覆した前記外層部のみを剥離除去する熱可塑性樹脂被覆付きFRPの製造方法であって、前記内層部の熱可塑性樹脂にポリエチレン樹脂を用い、前記外層部の熱可塑性樹脂に、前記ポリエチレン樹脂と相溶性を有せず、且つ、前記ポリエチレン樹脂よりも20℃以上融点或いは軟化点が高い熱可塑性樹脂を用い、前記FRP部の断面形状を矩形にするようにした。   In order to achieve the above object, the present invention impregnates a reinforcing fiber with a thermosetting resin, and after making a predetermined resin content with a squeezing nozzle, the thermosetting resin is in an uncured state on the outer periphery thereof. The outer layer portion of the two layers is formed by coating with a thermoplastic resin, and then the thermosetting resin in the FRP portion is heat-cured, and then only the outer layer portion covered by the two layers is peeled and removed. A method for producing FRP with a thermoplastic resin coating, wherein a polyethylene resin is used as the thermoplastic resin of the inner layer portion, the thermoplastic resin of the outer layer portion is not compatible with the polyethylene resin, and the polyethylene A thermoplastic resin having a melting point or a softening point higher than that of the resin by 20 ° C. or higher was used, and the cross-sectional shape of the FRP portion was rectangular.

このように構成したドロップ光ケーブル用FRPの製造方法によれば、ドロップケーブル用の被覆付きFRPを矩形にし、熱可塑性樹脂にて、2層の内,外層部を被覆形成し、熱硬化後に外層部を剥離除去するので、例えば、蒸気硬化を行っても、表面荒れが発生しないで、表面の平滑性が高く保たれる。   According to the manufacturing method of the drop optical cable FRP configured as described above, the coated FRP for the drop cable is formed into a rectangular shape, and the outer layer portion of the two layers is coated with a thermoplastic resin, and the outer layer portion is formed after thermosetting. For example, even if steam curing is performed, surface roughness does not occur and surface smoothness is kept high.

このため、表面の整径工程を必要としないし、硬化方法に蒸気硬化以外の方法、例えば、加熱ローラーに接触させることで硬化させることを適用できる可能性がある。   For this reason, there is a possibility that a sizing step on the surface is not required, and it is possible to apply a curing method other than vapor curing, for example, curing by contacting a heating roller.

FRP部の断面積の大きさが同一の場合、矩形の方が円形と比較して周長が長くなりFRPと被覆の接着面積が多くなる。従って、抗収縮性は、円形断面の場合よりも向上する。   When the cross-sectional area of the FRP portion is the same, the rectangular shape has a longer circumference than the circular shape, and the bonding area between the FRP and the coating increases. Accordingly, the anti-shrink property is improved as compared with the case of the circular cross section.

また、FRP部の断面形状を矩形とすると、矩形は、厚み方向には曲げやすく最小曲げ直径を小さくできる。加えて幅方向には曲げにくく折れにくいため、工事の際に容易に折損を起こすようなことが無くなる。   Further, if the cross-sectional shape of the FRP portion is a rectangle, the rectangle can be easily bent in the thickness direction, and the minimum bending diameter can be reduced. In addition, since it is difficult to bend and break in the width direction, it is not easily broken during construction.

本発明では、前記加熱硬化には、高圧蒸気を用いることができる。
また、前記加熱硬化は、加熱ローラーに接触させることにより行うこともできる。
In the present invention, high-pressure steam can be used for the heat curing.
Moreover, the said heat curing can also be performed by making it contact with a heating roller.

本発明の製造方法で得られた熱可塑性樹脂被覆付きFRPは、ドロップ光ケーブルの抗張力体に用いることができる。   The FRP with a thermoplastic resin coating obtained by the production method of the present invention can be used as a tensile body of a drop optical cable.

本発明にかかるドロップ光ケーブル用FRPの製造方法によれば、整形工程を行うことなく、表面平滑性に優れた熱可塑樹脂製被覆付きのFRPが得られる。 According to the method for producing an FRP for a drop optical cable according to the present invention, an FRP with a thermoplastic resin coating excellent in surface smoothness can be obtained without performing a shaping step .

以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.

図1は、本発明にかかるFRPを用いたドロップ光ケーブルの製造方法により得られたドロップ光ケーブルの一例を示している。同図に示したドロップ光ケーブル1は、光ファイバ心線2と、抗張力体3と、メッセンジャーワイヤー4とを備えている。 FIG. 1 shows an example of a drop optical cable obtained by a method for manufacturing a drop optical cable using FRP according to the present invention. The drop optical cable 1 shown in the figure includes an optical fiber core wire 2, a strength member 3, and a messenger wire 4.

抗張力体3は、繊維強化熱硬化性樹脂製のFRP部5を、熱可塑性樹脂製の内被覆部6で被覆した偏平な矩形断面に形成されていて、一対の抗張力体3が、光ファイバ心線2の上下に所定の間隔を置いて、これを挟むようにして、同軸上に配置されている。   The tensile body 3 is formed in a flat rectangular cross section in which the FRP portion 5 made of fiber reinforced thermosetting resin is covered with an inner coating portion 6 made of a thermoplastic resin, and the pair of tensile strength bodies 3 are optical fiber cores. The lines 2 are arranged on the same axis with a predetermined interval above and below the line 2 so as to sandwich them.

メッセンジャーワイヤー4は、一方の被覆抗張力体3の上方に配置されていて、光ファイバ心線2、被覆抗張力体3およびメッセンジャーワイヤー4は、熱可塑性樹脂製の本体被覆部7により一括被覆した構成を備えている。本体被覆部7には、光ファイバ心線2の両側に位置対応して、一対のノッチ8が対向するように形成されている。   The messenger wire 4 is disposed above one of the coated tensile bodies 3, and the optical fiber core wire 2, the coated tensile body 3, and the messenger wire 4 are configured to be collectively covered with a main body coating portion 7 made of a thermoplastic resin. I have. A pair of notches 8 are formed on the body covering portion 7 so as to face each other on both sides of the optical fiber core wire 2.

また、メッセンジャーワイヤー4の外周には、円形状の本体被覆部7が設けられていて、メッセンジャーワイヤー4は、それ以外の部分と分離できるように、細幅部9で連結されている。   Further, a circular main body covering portion 7 is provided on the outer periphery of the messenger wire 4, and the messenger wire 4 is connected by a narrow width portion 9 so as to be separable from other portions.

以上このように構成されたドロップ光ケーブル1は、メッセンジャーワイヤー4を用いて電柱間に架設され、加入者宅に引き込む際には、まず、細幅部9を切断して、メッセンジャーワイヤー4を分離し、次に、ノッチ8の部分から分断して、光ファイバ心線2を取り出して、加入者側と心線2を接続することになる。   The drop optical cable 1 configured as described above is installed between utility poles using the messenger wire 4, and when pulling into the subscriber's house, first, the narrow portion 9 is cut to separate the messenger wire 4. Next, the optical fiber core wire 2 is separated from the notch 8 and the subscriber side is connected to the core wire 2.

本実施例の場合、抗張力体3は、繊維強化熱硬化性樹脂製のFRP部5に熱可塑性樹脂製の内被覆部6を施したものであり、ドロップ光ケーブル1の断面中心軸Oに対して、光ファイバ心線2の中心軸,メッセンジャーワイヤー4の中心軸、および、矩形断面に形成された一対の抗張力体3の幅方向の中心軸がそれぞれ同軸上になるように配置されている。   In the case of the present embodiment, the strength member 3 is obtained by applying an inner coating portion 6 made of a thermoplastic resin to the FRP portion 5 made of fiber reinforced thermosetting resin, and with respect to the central axis O of the cross section of the drop optical cable 1. The central axis of the optical fiber core 2, the central axis of the messenger wire 4, and the central axis in the width direction of the pair of strength members 3 formed in a rectangular cross section are arranged coaxially.

このような抗張力体3は、補強繊維に熱硬化性樹脂を含浸し、絞りノズルで所定の樹脂含有率にした後に、前記熱硬化性樹脂が未硬化の状態で、その外周に熱可塑性樹脂にて、2層の内層部6および外層部を被覆形成し、その後に、FRP部5の熱硬化性樹脂を加熱硬化し、しかる後に、2層に被覆した外層部のみを剥離除去することで熱可塑性樹脂被覆付きFRPとして製造される。   Such a tensile body 3 is obtained by impregnating a reinforcing fiber with a thermosetting resin and adjusting the resin content with a squeezing nozzle, and then setting the thermoplastic resin on the outer periphery of the thermosetting resin in an uncured state. Then, the inner layer portion 6 and the outer layer portion of the two layers are formed by coating, and then the thermosetting resin of the FRP portion 5 is heated and cured, and then only the outer layer portion covered by the two layers is peeled and removed. Manufactured as FRP with plastic resin coating.

この場合、内層部6の熱可塑性樹脂にはポリエチレン樹脂を用い、外層部の熱可塑性樹脂に、ポリエチレン樹脂と相溶性を有せず、且つ、ポリエチレン樹脂よりも20℃以上融点或いは軟化点が高い熱可塑性樹脂を用いる。   In this case, a polyethylene resin is used for the thermoplastic resin of the inner layer portion 6, the thermoplastic resin of the outer layer portion is not compatible with the polyethylene resin, and has a melting point or softening point higher than that of the polyethylene resin by 20 ° C. A thermoplastic resin is used.

また、この場合、FRP部5の補強繊維としては、例えば、ガラス繊維,アラミド繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維等の中から適宜選択する。   In this case, the reinforcing fiber of the FRP unit 5 is appropriately selected from, for example, glass fiber, aramid fiber, polyarylate fiber, polyparaphenylene benzobisoxazole (PBO) fiber, and the like.

また、本発明の補強繊維の結着に使用できる熱硬化性樹脂は、テレフタル酸系又はイソフタル酸系の不飽和ポリエステル樹脂、ビニルエステル樹脂(エポキシアクリレート樹脂など)またはエポキシ樹脂等が一般的であり、これらに硬化用触媒等を添加して使用されるが、とりわけビニルエステル樹脂(エポキシアクリレート樹脂など)が耐熱性等の物性の点から好ましい。   The thermosetting resin that can be used for binding the reinforcing fiber of the present invention is generally a terephthalic acid-based or isophthalic acid-based unsaturated polyester resin, a vinyl ester resin (such as an epoxy acrylate resin), or an epoxy resin. These are used by adding a curing catalyst or the like, and vinyl ester resins (such as epoxy acrylate resins) are particularly preferred from the viewpoint of physical properties such as heat resistance.

また、FRP部5は、ガラスヤーンを補強繊維とする場合、耐曲げ性や細径化の点から外径が0.9mm以下の繊維強化熱硬化性樹脂硬化物とすることが望ましい(より好ましくは0.6mm以下)。   In addition, when the glass yarn is used as the reinforcing fiber, the FRP portion 5 is desirably a fiber reinforced thermosetting resin cured product having an outer diameter of 0.9 mm or less from the viewpoint of bending resistance and diameter reduction (more preferably). Is 0.6 mm or less).

FRP部5の加熱硬化には、高圧蒸気を用いることができる。また、これ以外に、加熱ローラーに接触させることにより加熱硬化を行うことができる。   High-pressure steam can be used for the heat curing of the FRP unit 5. In addition to this, heat curing can be carried out by contacting with a heating roller.

矩形断面の抗張力体3は、ドロップ光ケーブル1を敷設するにあたり、曲げる方向(図1においては、左右方向)に対して、抗張力体3の厚みが小さくなるように配置することにより、曲げ半径をより小さくでき、敷設性をより高めることができる。   The tensile body 3 having a rectangular cross section is arranged so that the thickness of the tensile body 3 becomes smaller with respect to the bending direction (left and right direction in FIG. 1) when the drop optical cable 1 is laid, thereby further increasing the bending radius. It can be made smaller and the laying property can be further improved.

以下に、本発明のより具体的な具体例について説明するが、本発明は上記実施例ないしは下記具体例に限定されるものではない。   Specific examples of the present invention will be described below, but the present invention is not limited to the above examples or the following specific examples.

具体例1Example 1

22.5tex(ECE225−1/0 1.0Z R41 T:日東グラスファイバー製)のガラスヤーン19本に、熱硬化性ビニルエステル樹脂(エスターH−8100:ジャパンコンポジット製)を含浸した後に、絞りノズルを通過させ0.9mm×0.3mmの矩形断面に絞り成形した。   After impregnating 19 glass yarns of 22.5tex (ECE225-1 / 0 1.0Z R41 T: made by Nitto Glass Fiber) with thermosetting vinyl ester resin (Ester H-8100: made by Japan Composite), a squeezing nozzle Was drawn to a rectangular cross section of 0.9 mm × 0.3 mm.

続いてクロスヘッドダイに導き、LLDPE(NUCG5223:日本ユニカー製)で押し出し被覆し直ちに水冷し、1.2mm×0.6mmの略矩形被覆未硬化FRPを得た。   Subsequently, it was led to a crosshead die, extruded and coated with LLDPE (NUCG 5223: manufactured by Nihon Unicar), and immediately cooled with water to obtain a 1.2 mm × 0.6 mm substantially rectangular coated uncured FRP.

更に続いてクロスヘッドダイに導き、FEP(NP−100:ダイキン工業製)で押し出し被覆し直ちに水冷し、1.5mm×0.9mmの略矩形2層被覆未硬化FRPを得た。   Subsequently, it was led to a crosshead die, extruded and coated with FEP (NP-100: manufactured by Daikin Industries), and immediately cooled with water to obtain an uncured FRP of 1.5 mm × 0.9 mm coated substantially rectangular two layers.

得られた2層被覆未硬化FRPを蒸気硬化槽に導き、145℃の高圧蒸気を用い硬化を行い、更に外層被覆であるFEP層を剥がすことで、1.2mm×0.6mmの略矩形被覆FRPを得た。   The resulting two-layer coating uncured FRP is guided to a steam curing tank, cured using high-pressure steam at 145 ° C., and then the outer layer coating, the FEP layer, is peeled off to provide a substantially rectangular coating of 1.2 mm × 0.6 mm FRP was obtained.

得られた略矩形被覆FRPの被覆表面状態は平滑であり、ドロップケーブルを製造する際に発泡を起こしたり、ニップル等に詰まるようなことはなかった。   The coated surface state of the obtained substantially rectangular coated FRP was smooth and did not cause foaming or clogging in the nipple or the like when the drop cable was produced.

具体例2Example 2

22.5tex(ECE225−1/0 1.0Z R41 T:日東グラスファイバー製)のガラスヤーン14本に熱硬化性ビニルエステル樹脂(エスターH−8100:ジャパンコンポジット製)を含浸した後に、絞りノズルを通過させφ0.5mmの円形断面に絞り成形した。   After impregnating 14 glass yarns of 22.5tex (ECE225-1 / 0 1.0Z R41 T: made by Nitto Glass Fiber) with thermosetting vinyl ester resin (Ester H-8100: made by Japan Composite), the squeezing nozzle was used. It was drawn and formed into a circular cross section of φ0.5 mm.

続いてクロスヘッドダイに導き、LLDPE(NUCG5223:日本ユニカー製)で押し出し被覆し、更にFEP(NP−100:ダイキン工業製)で押し出し被覆し、直ちに間隔が0.7mmに調整された2個のローラー間を通過させ扁平させた後に水冷し、1.3mm×0.7mmの略矩形2層被覆未硬化FRPを得た。   Subsequently, it was led to a crosshead die, covered with extrusion by LLDPE (NUCG 5223: manufactured by Nihon Unicar), and further covered by extrusion with FEP (NP-100: manufactured by Daikin Industries). After passing between the rollers and flattening, it was cooled with water to obtain a 1.3 mm × 0.7 mm substantially rectangular two-layer coated uncured FRP.

得られた2層被覆未硬化FRPを蒸気硬化槽に導き、145℃の高圧蒸気を用い硬化を行い、更に外層被覆であるFEP層を剥がすことで、1.1mm×0.5mmの略矩形被覆FRPを得た。   The obtained two-layer coating uncured FRP is guided to a steam curing tank, cured using high-pressure steam at 145 ° C., and then the outer layer coating FEP layer is peeled off to obtain a substantially rectangular coating of 1.1 mm × 0.5 mm. FRP was obtained.

得られた略矩形被覆FRPの被覆表面状態は平滑であり、ドロップケーブルを製造する際に発泡を起こしたり、ニップル等に詰まるようなことはなかった。   The coated surface state of the obtained substantially rectangular coated FRP was smooth and did not cause foaming or clogging in the nipple or the like when the drop cable was produced.

具体例3Example 3

加熱硬化を150℃に温調された加熱ローラーに接触させて行った以外は実施例1と同様な方法で略矩形断面の被覆FRPを得た。得られた略矩形被覆FRPの被覆表面状態は平滑であり、ドロップケーブルを製造する際に発泡を起こしたり、ニップル等に詰まるようなことはなかった。   A coated FRP having a substantially rectangular cross section was obtained in the same manner as in Example 1 except that the heat curing was performed by contacting the heated roller adjusted to 150 ° C. The coated surface state of the obtained substantially rectangular coated FRP was smooth and did not cause foaming or clogging in the nipple or the like when the drop cable was produced.

比較例1Comparative Example 1

熱可塑性樹脂被覆をLLDPE(NUCG5223:日本ユニカー製)のみで被覆した以外は、実質的に具体例1と同様な方法で略矩形被覆FRPを得た。   A substantially rectangular coated FRP was obtained in substantially the same manner as in Example 1 except that the thermoplastic resin coating was coated only with LLDPE (NUCG 5223: Nippon Unicar).

得られた略矩形被覆FRPの被覆表面は蒸気が水滴化した際に発生したクレーター状の凹凸が数多く見受けられ、ドロップケーブル製造の際にニップルで詰まり断線してしまい、連続的に製造することは不可能であった。   The coated surface of the obtained substantially rectangular coated FRP has many crater-like irregularities that occurred when the steam was formed into water droplets. It was impossible.

比較例2Comparative Example 2

熱可塑性樹脂被覆をLLDPE(NUCG5223:日本ユニカー製)のみで被覆した以外は、実質的に具体例2と同様な方法で製造を試みたが、被覆樹脂が加熱ローラーに付着してしまい、連続的に製造することは不可能であった。   Except for coating the thermoplastic resin coating only with LLDPE (NUCG 5223: manufactured by Nihon Unicar), production was attempted in substantially the same manner as in Example 2, but the coating resin adhered to the heating roller and was continuously It was impossible to manufacture.

本発明にかかる本発明にかかるドロップ光ケーブル用FRPの製造方法によれば、整形工程を行うことなく、表面平滑性に優れた熱可塑樹脂製被覆付きのFRPが得られ、また、本発明に係るFRPを用いたドロップ光ファイバケーブルによれば、FRP部の断面形状を矩形とすることにより、最小曲げ直径が小さく、抗収縮力に優れたドロップ光ケーブルとなるので、加入者住宅に敷設する際に有効に活用することができる。   According to the method for manufacturing an FRP for a drop optical cable according to the present invention, an FRP with a thermoplastic resin coating excellent in surface smoothness can be obtained without performing a shaping step, and according to the present invention. According to the drop optical fiber cable using FRP, since the cross-sectional shape of the FRP portion is rectangular, the drop optical cable has a small minimum bending diameter and excellent anti-shrinkage force. It can be used effectively.

本発明にかかるドロップ光ケーブルの一例を示す断面図である。It is sectional drawing which shows an example of the drop optical cable concerning this invention.

符号の説明Explanation of symbols

1 ドロップ光ケーブル
2 光ファイバ心線
3 抗張力体
4 メッセンジャーワイヤー
5 FRP部
6 内層部
7 本体被覆部
8 ノッチ
9 細幅部
DESCRIPTION OF SYMBOLS 1 Drop optical cable 2 Optical fiber core wire 3 Strength member 4 Messenger wire 5 FRP part 6 Inner layer part 7 Main body coating part 8 Notch 9 Narrow part

Claims (3)

補強繊維に熱硬化性樹脂を含浸し、絞りノズルで所定の樹脂含有率にした後に、
前記熱硬化性樹脂が未硬化の状態で、その外周に熱可塑性樹脂にて、2層の内,外層部を被覆形成し、その後に、FRP部の前記熱硬化性樹脂を加熱硬化し、しかる後に、2層に被覆した前記外層部のみを剥離除去する熱可塑性樹脂被覆付きFRPの製造方法であって、
前記内層部の熱可塑性樹脂にポリエチレン樹脂を用い、前記外層部の熱可塑性樹脂に、前記ポリエチレン樹脂と相溶性を有せず、且つ、前記ポリエチレン樹脂よりも20℃以上融点或いは軟化点が高い熱可塑性樹脂を用い、前記FRP部の断面形状を矩形にすることを特徴とするドロップ光ケーブル用FRPの製造方法。
After impregnating the reinforcing fiber with a thermosetting resin and adjusting the resin content with a squeezing nozzle,
With the thermosetting resin in an uncured state, the outer periphery of the two layers is formed by coating the outer periphery with a thermoplastic resin, and then the thermosetting resin in the FRP portion is heated and cured. Later, a method for producing FRP with a thermoplastic resin coating, which peels and removes only the outer layer part coated on two layers,
A polyethylene resin is used as the thermoplastic resin of the inner layer portion, the thermoplastic resin of the outer layer portion is not compatible with the polyethylene resin, and has a melting point or a softening point higher than that of the polyethylene resin by 20 ° C. A method for producing an FRP for a drop optical cable, wherein a plastic resin is used and the cross-sectional shape of the FRP portion is rectangular.
前記加熱硬化には、高圧蒸気を用いることを特徴とする請求項1記載のドロップ光ケーブル用FRPの製造方法。 The method for producing an FRP for a drop optical cable according to claim 1, wherein high-pressure steam is used for the heat curing. 前記加熱硬化は、加熱ローラーに接触させることにより行うことを特徴とする請求項1記載のドロップ光ケーブル用FRPの製造方法。 The method for producing an FRP for a drop optical cable according to claim 1, wherein the heat curing is performed by contacting with a heating roller.
JP2003398483A 2003-11-28 2003-11-28 Manufacturing method of FRP for drop optical cable Expired - Fee Related JP4156498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398483A JP4156498B2 (en) 2003-11-28 2003-11-28 Manufacturing method of FRP for drop optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398483A JP4156498B2 (en) 2003-11-28 2003-11-28 Manufacturing method of FRP for drop optical cable

Publications (2)

Publication Number Publication Date
JP2005157159A JP2005157159A (en) 2005-06-16
JP4156498B2 true JP4156498B2 (en) 2008-09-24

Family

ID=34723318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398483A Expired - Fee Related JP4156498B2 (en) 2003-11-28 2003-11-28 Manufacturing method of FRP for drop optical cable

Country Status (1)

Country Link
JP (1) JP4156498B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306614B2 (en) * 2007-08-09 2013-10-02 古河電気工業株式会社 Fiber optic cable
JP5431827B2 (en) * 2009-08-11 2014-03-05 宇部エクシモ株式会社 Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament
JP5802047B2 (en) * 2010-04-28 2015-10-28 株式会社フジクラ Fiber optic cable
CN107320838B (en) * 2017-07-17 2023-10-13 佛山市迪华科技有限公司 Forming method and equipment of interventional therapy guide wire

Also Published As

Publication number Publication date
JP2005157159A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP2005148373A (en) Frp made tension member and drop optical fiber cable
JP4589629B2 (en) Aluminum conductor composite core reinforced cable and manufacturing method
CA1301421C (en) Continuous molding method for rod-like product
JP4156498B2 (en) Manufacturing method of FRP for drop optical cable
CN101622564B (en) Optical cable
KR101916231B1 (en) Central strength member for gap conductor and the method for manufacturing thereof
CN110767359A (en) Aluminum-coated composite core wire cable and production process thereof
CN112102981B (en) Metal-clad composite molded line stranded reinforced core overhead conductor and manufacturing method thereof
CN105717598A (en) Leading-in optical cable
JP4077300B2 (en) Drop optical fiber cable
JP2000206382A (en) Multicore tight buffer optical fiber and multicore optical cable using it
JPH09113773A (en) Coated optical fiber ribbon
CN114690354A (en) Special spring flexible optical cable and manufacturing method thereof
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
WO2019168037A1 (en) Anisotropic thermal conductive resin fiber, anisotropic thermal conductive resin member, and manufacturing method of these
JP3596983B2 (en) Fiber reinforced optical fiber cord and method of manufacturing the same
JP3940500B2 (en) Reinforced optical fiber cord and manufacturing method thereof
JPH0749450Y2 (en) Fiber Optic Tension Member
CN112037974B (en) Composite material reinforced insulated wire and manufacturing method thereof
JP2005037641A (en) Optical fiber cable
CN203287582U (en) Tensile stress wire made of FRP and inlead optical fiber cable employing same
CN108022690A (en) A kind of pipe band laying optoelectronic composite cable and manufacture method
CN209747175U (en) Deformation-resistant armored insulating aluminum alloy cable
JP2849418B2 (en) Tension member for reinforcing optical fiber ribbon and method of manufacturing the same
JP2849421B2 (en) Optical fiber supporting spacer and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4156498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees