JP4156498B2 - Manufacturing method of FRP for drop optical cable - Google Patents
Manufacturing method of FRP for drop optical cable Download PDFInfo
- Publication number
- JP4156498B2 JP4156498B2 JP2003398483A JP2003398483A JP4156498B2 JP 4156498 B2 JP4156498 B2 JP 4156498B2 JP 2003398483 A JP2003398483 A JP 2003398483A JP 2003398483 A JP2003398483 A JP 2003398483A JP 4156498 B2 JP4156498 B2 JP 4156498B2
- Authority
- JP
- Japan
- Prior art keywords
- frp
- resin
- optical cable
- drop optical
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 229920005989 resin Polymers 0.000 claims description 26
- 239000011347 resin Substances 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 24
- 238000000576 coating method Methods 0.000 claims description 24
- 229920005992 thermoplastic resin Polymers 0.000 claims description 22
- 229920001187 thermosetting polymer Polymers 0.000 claims description 16
- 239000012783 reinforcing fiber Substances 0.000 claims description 9
- 229920013716 polyethylene resin Polymers 0.000 claims description 8
- 238000013007 heat curing Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000000088 plastic resin Substances 0.000 claims description 2
- 239000013307 optical fiber Substances 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 239000000835 fiber Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 229920000092 linear low density polyethylene Polymers 0.000 description 4
- 239000004707 linear low-density polyethylene Substances 0.000 description 4
- 229920001567 vinyl ester resin Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 210000002445 nipple Anatomy 0.000 description 3
- -1 polyparaphenylene benzobisoxazole Polymers 0.000 description 3
- 102100040287 GTP cyclohydrolase 1 feedback regulatory protein Human genes 0.000 description 2
- 101710185324 GTP cyclohydrolase 1 feedback regulatory protein Proteins 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Images
Description
本発明は、FRPの製造方法及び同FRPを用いたドロップ光ファイバケーブルに関し、特に、FTTHなどに用いられるドロップ光ケーブル用として好適なFRPの製造方法に関するものである。 The present invention relates to an FRP manufacturing method and a drop optical fiber cable using the FRP, and more particularly to an FRP manufacturing method suitable for a drop optical cable used for FTTH and the like.
情報化社会が到来し、インターネット等の伝送情報容量の増大化に伴ない、ビル、住宅等加入者へも光ファイバケーブルを敷設するFTTH化が急激に進展している。 With the arrival of an information society, the transmission information capacity of the Internet and the like has increased, and the FTTH system in which optical fiber cables are laid to subscribers such as buildings and houses is rapidly progressing.
FTTH用ドロップ光ケーブルとして、抗張力体に金属線、例えば、直径0.4mm程度の単鋼線を使用したものが提案されている。(特許文献1参照) As a drop optical cable for FTTH, a cable using a metal wire, for example, a single steel wire having a diameter of about 0.4 mm, has been proposed as a tensile body. (See Patent Document 1)
しかし、抗張力体に金属線を使用すると、雷サージの問題から、成端キャビネットにてアース工事が必要になる。アース工事は、手間や経費がかかり、各家庭への普及の障害となる。 However, if a metal wire is used for the strength member, grounding work is required in the termination cabinet due to the problem of lightning surge. Grounding work is time-consuming and expensive, and is an obstacle to the spread to each home.
そこで、このような理由から、抗張力体にGFRPなどの無誘導体を用いた、いわゆるIF(Induction Free)ドロップ光ケーブルが主流になりつつある。 For this reason, so-called IF (Induction Free) drop optical cables using non-derivatives such as GFRP as the strength members are becoming mainstream.
しかしながら、従来のIF型ドロップ光ケーブルには、以下に説明する技術的な課題が指摘されていた。
すなわち、IF型のドロップ光ケーブルでは、アース工事が不要となり工事時間や工事コストの削減に寄与するというプラス面がある一方で、抗張力体が主にFRPであるため、金属線と比較して大きな曲げ直径で容易に折損するというマイナス面もある。 In other words, the IF type drop optical cable has the plus side that grounding work is unnecessary and contributes to the reduction of construction time and construction cost. On the other hand, since the tensile strength body is mainly FRP, the bending strength is larger than that of metal wires. There is also the downside of easily breaking at the diameter.
実際に使用される、最終ユーザーである一般家庭内の配線においては、通常、壁に沿わせて敷設するため、コーナー部分に配線する場合、壁にぴったりと沿った状態での敷設が外観上好まれるため、ドロップ光ケーブルの曲げ半径を小さくする要求が高まっている。 In actual home use, the end user's general household wiring is usually laid along the wall, so when laying in the corner, it is preferred to lay along the wall exactly. Therefore, there is an increasing demand for reducing the bending radius of the drop optical cable.
この種のケーブルで折損に至る曲げ直径を小さくするためには、FRP直径を小さくすればよいが、補強繊維が同一の場合、抗張力が減少するといった問題が発生する。 In order to reduce the bending diameter leading to breakage in this type of cable, the FRP diameter may be reduced. However, when the reinforcing fibers are the same, there arises a problem that the tensile strength is reduced.
この問題を回避するために補強繊維には、例えば、ポリパラフェニレンベンゾビスオキサゾール繊維等の高い弾性率を有する有機繊維を用いる方法が考えられる。 In order to avoid this problem, a method using an organic fiber having a high elastic modulus such as a polyparaphenylene benzobisoxazole fiber can be considered as the reinforcing fiber.
しかしながら、この方法では、FRP直径を小さくしても必要な抗張力を確保し、曲げ半径を小さくすることもできるが、一般に、補強繊維に高弾性有機繊維を用いたFRPの場合、圧縮弾性率が、汎用のGFRPの1/2〜1/4と低く、細径化することで本体樹脂との接触面積が減少することから、今度は抗収縮力が不足するという別の問題が発生する。 However, in this method, even if the FRP diameter is reduced, the necessary tensile strength can be ensured and the bending radius can be reduced. However, in general, in the case of FRP using a highly elastic organic fiber as the reinforcing fiber, the compression modulus is low. Since it is as low as 1/2 to 1/4 of general-purpose GFRP and the contact area with the main body resin is reduced by reducing the diameter, another problem that the anti-shrinkage force is insufficient occurs.
抗収縮力は、ドロップ光ケーブルにおいては、突っ張り棒的な役割を示し、抗張力体が、本体樹脂の収縮を抑制することで、光ファイバを保護する機能も兼ねる。 In the drop optical cable, the anti-shrinkage force acts as a tension rod, and the strength member also serves to protect the optical fiber by suppressing the shrinkage of the main body resin.
従って、不当に抗張力体の径を小さくして、本体樹脂に対する接触面積あるいは断面積比が小さくなると、抗張力は、保てても抗収縮力は不十分となる恐れが高い。 Therefore, if the diameter of the strength member is unduly reduced to reduce the contact area or the cross-sectional area ratio with respect to the main body resin, there is a high possibility that the anti-shrink force is insufficient even if the tensile strength can be maintained.
本発明はこのような問題点に鑑みてなされたものであって、その目的とするところは、細径化することなく、曲げ半径を小さくすることができるドロップ光ケーブル用FRPの製造方法を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide a method for manufacturing an FRP for a drop optical cable that can reduce the bending radius without reducing the diameter. There is.
上記目的を達成するために、本発明は、補強繊維に熱硬化性樹脂を含浸し、絞りノズルで所定の樹脂含有率にした後に、前記熱硬化性樹脂が未硬化の状態で、その外周に熱可塑性樹脂にて、2層の内,外層部を被覆形成し、その後に、FRP部の前記熱硬化性樹脂を加熱硬化し、しかる後に、2層に被覆した前記外層部のみを剥離除去する熱可塑性樹脂被覆付きFRPの製造方法であって、前記内層部の熱可塑性樹脂にポリエチレン樹脂を用い、前記外層部の熱可塑性樹脂に、前記ポリエチレン樹脂と相溶性を有せず、且つ、前記ポリエチレン樹脂よりも20℃以上融点或いは軟化点が高い熱可塑性樹脂を用い、前記FRP部の断面形状を矩形にするようにした。 In order to achieve the above object, the present invention impregnates a reinforcing fiber with a thermosetting resin, and after making a predetermined resin content with a squeezing nozzle, the thermosetting resin is in an uncured state on the outer periphery thereof. The outer layer portion of the two layers is formed by coating with a thermoplastic resin, and then the thermosetting resin in the FRP portion is heat-cured, and then only the outer layer portion covered by the two layers is peeled and removed. A method for producing FRP with a thermoplastic resin coating, wherein a polyethylene resin is used as the thermoplastic resin of the inner layer portion, the thermoplastic resin of the outer layer portion is not compatible with the polyethylene resin, and the polyethylene A thermoplastic resin having a melting point or a softening point higher than that of the resin by 20 ° C. or higher was used, and the cross-sectional shape of the FRP portion was rectangular.
このように構成したドロップ光ケーブル用FRPの製造方法によれば、ドロップケーブル用の被覆付きFRPを矩形にし、熱可塑性樹脂にて、2層の内,外層部を被覆形成し、熱硬化後に外層部を剥離除去するので、例えば、蒸気硬化を行っても、表面荒れが発生しないで、表面の平滑性が高く保たれる。 According to the manufacturing method of the drop optical cable FRP configured as described above, the coated FRP for the drop cable is formed into a rectangular shape, and the outer layer portion of the two layers is coated with a thermoplastic resin, and the outer layer portion is formed after thermosetting. For example, even if steam curing is performed, surface roughness does not occur and surface smoothness is kept high.
このため、表面の整径工程を必要としないし、硬化方法に蒸気硬化以外の方法、例えば、加熱ローラーに接触させることで硬化させることを適用できる可能性がある。 For this reason, there is a possibility that a sizing step on the surface is not required, and it is possible to apply a curing method other than vapor curing, for example, curing by contacting a heating roller.
FRP部の断面積の大きさが同一の場合、矩形の方が円形と比較して周長が長くなりFRPと被覆の接着面積が多くなる。従って、抗収縮性は、円形断面の場合よりも向上する。 When the cross-sectional area of the FRP portion is the same, the rectangular shape has a longer circumference than the circular shape, and the bonding area between the FRP and the coating increases. Accordingly, the anti-shrink property is improved as compared with the case of the circular cross section.
また、FRP部の断面形状を矩形とすると、矩形は、厚み方向には曲げやすく最小曲げ直径を小さくできる。加えて幅方向には曲げにくく折れにくいため、工事の際に容易に折損を起こすようなことが無くなる。 Further, if the cross-sectional shape of the FRP portion is a rectangle, the rectangle can be easily bent in the thickness direction, and the minimum bending diameter can be reduced. In addition, since it is difficult to bend and break in the width direction, it is not easily broken during construction.
本発明では、前記加熱硬化には、高圧蒸気を用いることができる。
また、前記加熱硬化は、加熱ローラーに接触させることにより行うこともできる。
In the present invention, high-pressure steam can be used for the heat curing.
Moreover, the said heat curing can also be performed by making it contact with a heating roller.
本発明の製造方法で得られた熱可塑性樹脂被覆付きFRPは、ドロップ光ケーブルの抗張力体に用いることができる。 The FRP with a thermoplastic resin coating obtained by the production method of the present invention can be used as a tensile body of a drop optical cable.
本発明にかかるドロップ光ケーブル用FRPの製造方法によれば、整形工程を行うことなく、表面平滑性に優れた熱可塑樹脂製被覆付きのFRPが得られる。 According to the method for producing an FRP for a drop optical cable according to the present invention, an FRP with a thermoplastic resin coating excellent in surface smoothness can be obtained without performing a shaping step .
以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.
図1は、本発明にかかるFRPを用いたドロップ光ケーブルの製造方法により得られたドロップ光ケーブルの一例を示している。同図に示したドロップ光ケーブル1は、光ファイバ心線2と、抗張力体3と、メッセンジャーワイヤー4とを備えている。
FIG. 1 shows an example of a drop optical cable obtained by a method for manufacturing a drop optical cable using FRP according to the present invention. The drop optical cable 1 shown in the figure includes an optical
抗張力体3は、繊維強化熱硬化性樹脂製のFRP部5を、熱可塑性樹脂製の内被覆部6で被覆した偏平な矩形断面に形成されていて、一対の抗張力体3が、光ファイバ心線2の上下に所定の間隔を置いて、これを挟むようにして、同軸上に配置されている。
The
メッセンジャーワイヤー4は、一方の被覆抗張力体3の上方に配置されていて、光ファイバ心線2、被覆抗張力体3およびメッセンジャーワイヤー4は、熱可塑性樹脂製の本体被覆部7により一括被覆した構成を備えている。本体被覆部7には、光ファイバ心線2の両側に位置対応して、一対のノッチ8が対向するように形成されている。
The
また、メッセンジャーワイヤー4の外周には、円形状の本体被覆部7が設けられていて、メッセンジャーワイヤー4は、それ以外の部分と分離できるように、細幅部9で連結されている。
Further, a circular main
以上このように構成されたドロップ光ケーブル1は、メッセンジャーワイヤー4を用いて電柱間に架設され、加入者宅に引き込む際には、まず、細幅部9を切断して、メッセンジャーワイヤー4を分離し、次に、ノッチ8の部分から分断して、光ファイバ心線2を取り出して、加入者側と心線2を接続することになる。
The drop optical cable 1 configured as described above is installed between utility poles using the
本実施例の場合、抗張力体3は、繊維強化熱硬化性樹脂製のFRP部5に熱可塑性樹脂製の内被覆部6を施したものであり、ドロップ光ケーブル1の断面中心軸Oに対して、光ファイバ心線2の中心軸,メッセンジャーワイヤー4の中心軸、および、矩形断面に形成された一対の抗張力体3の幅方向の中心軸がそれぞれ同軸上になるように配置されている。
In the case of the present embodiment, the
このような抗張力体3は、補強繊維に熱硬化性樹脂を含浸し、絞りノズルで所定の樹脂含有率にした後に、前記熱硬化性樹脂が未硬化の状態で、その外周に熱可塑性樹脂にて、2層の内層部6および外層部を被覆形成し、その後に、FRP部5の熱硬化性樹脂を加熱硬化し、しかる後に、2層に被覆した外層部のみを剥離除去することで熱可塑性樹脂被覆付きFRPとして製造される。
Such a
この場合、内層部6の熱可塑性樹脂にはポリエチレン樹脂を用い、外層部の熱可塑性樹脂に、ポリエチレン樹脂と相溶性を有せず、且つ、ポリエチレン樹脂よりも20℃以上融点或いは軟化点が高い熱可塑性樹脂を用いる。
In this case, a polyethylene resin is used for the thermoplastic resin of the
また、この場合、FRP部5の補強繊維としては、例えば、ガラス繊維,アラミド繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維等の中から適宜選択する。
In this case, the reinforcing fiber of the
また、本発明の補強繊維の結着に使用できる熱硬化性樹脂は、テレフタル酸系又はイソフタル酸系の不飽和ポリエステル樹脂、ビニルエステル樹脂(エポキシアクリレート樹脂など)またはエポキシ樹脂等が一般的であり、これらに硬化用触媒等を添加して使用されるが、とりわけビニルエステル樹脂(エポキシアクリレート樹脂など)が耐熱性等の物性の点から好ましい。 The thermosetting resin that can be used for binding the reinforcing fiber of the present invention is generally a terephthalic acid-based or isophthalic acid-based unsaturated polyester resin, a vinyl ester resin (such as an epoxy acrylate resin), or an epoxy resin. These are used by adding a curing catalyst or the like, and vinyl ester resins (such as epoxy acrylate resins) are particularly preferred from the viewpoint of physical properties such as heat resistance.
また、FRP部5は、ガラスヤーンを補強繊維とする場合、耐曲げ性や細径化の点から外径が0.9mm以下の繊維強化熱硬化性樹脂硬化物とすることが望ましい(より好ましくは0.6mm以下)。
In addition, when the glass yarn is used as the reinforcing fiber, the
FRP部5の加熱硬化には、高圧蒸気を用いることができる。また、これ以外に、加熱ローラーに接触させることにより加熱硬化を行うことができる。
High-pressure steam can be used for the heat curing of the
矩形断面の抗張力体3は、ドロップ光ケーブル1を敷設するにあたり、曲げる方向(図1においては、左右方向)に対して、抗張力体3の厚みが小さくなるように配置することにより、曲げ半径をより小さくでき、敷設性をより高めることができる。
The
以下に、本発明のより具体的な具体例について説明するが、本発明は上記実施例ないしは下記具体例に限定されるものではない。 Specific examples of the present invention will be described below, but the present invention is not limited to the above examples or the following specific examples.
22.5tex(ECE225−1/0 1.0Z R41 T:日東グラスファイバー製)のガラスヤーン19本に、熱硬化性ビニルエステル樹脂(エスターH−8100:ジャパンコンポジット製)を含浸した後に、絞りノズルを通過させ0.9mm×0.3mmの矩形断面に絞り成形した。 After impregnating 19 glass yarns of 22.5tex (ECE225-1 / 0 1.0Z R41 T: made by Nitto Glass Fiber) with thermosetting vinyl ester resin (Ester H-8100: made by Japan Composite), a squeezing nozzle Was drawn to a rectangular cross section of 0.9 mm × 0.3 mm.
続いてクロスヘッドダイに導き、LLDPE(NUCG5223:日本ユニカー製)で押し出し被覆し直ちに水冷し、1.2mm×0.6mmの略矩形被覆未硬化FRPを得た。 Subsequently, it was led to a crosshead die, extruded and coated with LLDPE (NUCG 5223: manufactured by Nihon Unicar), and immediately cooled with water to obtain a 1.2 mm × 0.6 mm substantially rectangular coated uncured FRP.
更に続いてクロスヘッドダイに導き、FEP(NP−100:ダイキン工業製)で押し出し被覆し直ちに水冷し、1.5mm×0.9mmの略矩形2層被覆未硬化FRPを得た。 Subsequently, it was led to a crosshead die, extruded and coated with FEP (NP-100: manufactured by Daikin Industries), and immediately cooled with water to obtain an uncured FRP of 1.5 mm × 0.9 mm coated substantially rectangular two layers.
得られた2層被覆未硬化FRPを蒸気硬化槽に導き、145℃の高圧蒸気を用い硬化を行い、更に外層被覆であるFEP層を剥がすことで、1.2mm×0.6mmの略矩形被覆FRPを得た。 The resulting two-layer coating uncured FRP is guided to a steam curing tank, cured using high-pressure steam at 145 ° C., and then the outer layer coating, the FEP layer, is peeled off to provide a substantially rectangular coating of 1.2 mm × 0.6 mm FRP was obtained.
得られた略矩形被覆FRPの被覆表面状態は平滑であり、ドロップケーブルを製造する際に発泡を起こしたり、ニップル等に詰まるようなことはなかった。 The coated surface state of the obtained substantially rectangular coated FRP was smooth and did not cause foaming or clogging in the nipple or the like when the drop cable was produced.
22.5tex(ECE225−1/0 1.0Z R41 T:日東グラスファイバー製)のガラスヤーン14本に熱硬化性ビニルエステル樹脂(エスターH−8100:ジャパンコンポジット製)を含浸した後に、絞りノズルを通過させφ0.5mmの円形断面に絞り成形した。 After impregnating 14 glass yarns of 22.5tex (ECE225-1 / 0 1.0Z R41 T: made by Nitto Glass Fiber) with thermosetting vinyl ester resin (Ester H-8100: made by Japan Composite), the squeezing nozzle was used. It was drawn and formed into a circular cross section of φ0.5 mm.
続いてクロスヘッドダイに導き、LLDPE(NUCG5223:日本ユニカー製)で押し出し被覆し、更にFEP(NP−100:ダイキン工業製)で押し出し被覆し、直ちに間隔が0.7mmに調整された2個のローラー間を通過させ扁平させた後に水冷し、1.3mm×0.7mmの略矩形2層被覆未硬化FRPを得た。 Subsequently, it was led to a crosshead die, covered with extrusion by LLDPE (NUCG 5223: manufactured by Nihon Unicar), and further covered by extrusion with FEP (NP-100: manufactured by Daikin Industries). After passing between the rollers and flattening, it was cooled with water to obtain a 1.3 mm × 0.7 mm substantially rectangular two-layer coated uncured FRP.
得られた2層被覆未硬化FRPを蒸気硬化槽に導き、145℃の高圧蒸気を用い硬化を行い、更に外層被覆であるFEP層を剥がすことで、1.1mm×0.5mmの略矩形被覆FRPを得た。 The obtained two-layer coating uncured FRP is guided to a steam curing tank, cured using high-pressure steam at 145 ° C., and then the outer layer coating FEP layer is peeled off to obtain a substantially rectangular coating of 1.1 mm × 0.5 mm. FRP was obtained.
得られた略矩形被覆FRPの被覆表面状態は平滑であり、ドロップケーブルを製造する際に発泡を起こしたり、ニップル等に詰まるようなことはなかった。 The coated surface state of the obtained substantially rectangular coated FRP was smooth and did not cause foaming or clogging in the nipple or the like when the drop cable was produced.
加熱硬化を150℃に温調された加熱ローラーに接触させて行った以外は実施例1と同様な方法で略矩形断面の被覆FRPを得た。得られた略矩形被覆FRPの被覆表面状態は平滑であり、ドロップケーブルを製造する際に発泡を起こしたり、ニップル等に詰まるようなことはなかった。 A coated FRP having a substantially rectangular cross section was obtained in the same manner as in Example 1 except that the heat curing was performed by contacting the heated roller adjusted to 150 ° C. The coated surface state of the obtained substantially rectangular coated FRP was smooth and did not cause foaming or clogging in the nipple or the like when the drop cable was produced.
熱可塑性樹脂被覆をLLDPE(NUCG5223:日本ユニカー製)のみで被覆した以外は、実質的に具体例1と同様な方法で略矩形被覆FRPを得た。 A substantially rectangular coated FRP was obtained in substantially the same manner as in Example 1 except that the thermoplastic resin coating was coated only with LLDPE (NUCG 5223: Nippon Unicar).
得られた略矩形被覆FRPの被覆表面は蒸気が水滴化した際に発生したクレーター状の凹凸が数多く見受けられ、ドロップケーブル製造の際にニップルで詰まり断線してしまい、連続的に製造することは不可能であった。 The coated surface of the obtained substantially rectangular coated FRP has many crater-like irregularities that occurred when the steam was formed into water droplets. It was impossible.
熱可塑性樹脂被覆をLLDPE(NUCG5223:日本ユニカー製)のみで被覆した以外は、実質的に具体例2と同様な方法で製造を試みたが、被覆樹脂が加熱ローラーに付着してしまい、連続的に製造することは不可能であった。 Except for coating the thermoplastic resin coating only with LLDPE (NUCG 5223: manufactured by Nihon Unicar), production was attempted in substantially the same manner as in Example 2, but the coating resin adhered to the heating roller and was continuously It was impossible to manufacture.
本発明にかかる本発明にかかるドロップ光ケーブル用FRPの製造方法によれば、整形工程を行うことなく、表面平滑性に優れた熱可塑樹脂製被覆付きのFRPが得られ、また、本発明に係るFRPを用いたドロップ光ファイバケーブルによれば、FRP部の断面形状を矩形とすることにより、最小曲げ直径が小さく、抗収縮力に優れたドロップ光ケーブルとなるので、加入者住宅に敷設する際に有効に活用することができる。 According to the method for manufacturing an FRP for a drop optical cable according to the present invention, an FRP with a thermoplastic resin coating excellent in surface smoothness can be obtained without performing a shaping step, and according to the present invention. According to the drop optical fiber cable using FRP, since the cross-sectional shape of the FRP portion is rectangular, the drop optical cable has a small minimum bending diameter and excellent anti-shrinkage force. It can be used effectively.
1 ドロップ光ケーブル
2 光ファイバ心線
3 抗張力体
4 メッセンジャーワイヤー
5 FRP部
6 内層部
7 本体被覆部
8 ノッチ
9 細幅部
DESCRIPTION OF SYMBOLS 1 Drop
Claims (3)
前記熱硬化性樹脂が未硬化の状態で、その外周に熱可塑性樹脂にて、2層の内,外層部を被覆形成し、その後に、FRP部の前記熱硬化性樹脂を加熱硬化し、しかる後に、2層に被覆した前記外層部のみを剥離除去する熱可塑性樹脂被覆付きFRPの製造方法であって、
前記内層部の熱可塑性樹脂にポリエチレン樹脂を用い、前記外層部の熱可塑性樹脂に、前記ポリエチレン樹脂と相溶性を有せず、且つ、前記ポリエチレン樹脂よりも20℃以上融点或いは軟化点が高い熱可塑性樹脂を用い、前記FRP部の断面形状を矩形にすることを特徴とするドロップ光ケーブル用FRPの製造方法。 After impregnating the reinforcing fiber with a thermosetting resin and adjusting the resin content with a squeezing nozzle,
With the thermosetting resin in an uncured state, the outer periphery of the two layers is formed by coating the outer periphery with a thermoplastic resin, and then the thermosetting resin in the FRP portion is heated and cured. Later, a method for producing FRP with a thermoplastic resin coating, which peels and removes only the outer layer part coated on two layers,
A polyethylene resin is used as the thermoplastic resin of the inner layer portion, the thermoplastic resin of the outer layer portion is not compatible with the polyethylene resin, and has a melting point or a softening point higher than that of the polyethylene resin by 20 ° C. A method for producing an FRP for a drop optical cable, wherein a plastic resin is used and the cross-sectional shape of the FRP portion is rectangular.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003398483A JP4156498B2 (en) | 2003-11-28 | 2003-11-28 | Manufacturing method of FRP for drop optical cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003398483A JP4156498B2 (en) | 2003-11-28 | 2003-11-28 | Manufacturing method of FRP for drop optical cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005157159A JP2005157159A (en) | 2005-06-16 |
JP4156498B2 true JP4156498B2 (en) | 2008-09-24 |
Family
ID=34723318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003398483A Expired - Fee Related JP4156498B2 (en) | 2003-11-28 | 2003-11-28 | Manufacturing method of FRP for drop optical cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4156498B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5306614B2 (en) * | 2007-08-09 | 2013-10-02 | 古河電気工業株式会社 | Fiber optic cable |
JP5431827B2 (en) * | 2009-08-11 | 2014-03-05 | 宇部エクシモ株式会社 | Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament |
JP5802047B2 (en) * | 2010-04-28 | 2015-10-28 | 株式会社フジクラ | Fiber optic cable |
CN107320838B (en) * | 2017-07-17 | 2023-10-13 | 佛山市迪华科技有限公司 | Forming method and equipment of interventional therapy guide wire |
-
2003
- 2003-11-28 JP JP2003398483A patent/JP4156498B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005157159A (en) | 2005-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005148373A (en) | Frp made tension member and drop optical fiber cable | |
JP4589629B2 (en) | Aluminum conductor composite core reinforced cable and manufacturing method | |
CA1301421C (en) | Continuous molding method for rod-like product | |
JP4156498B2 (en) | Manufacturing method of FRP for drop optical cable | |
CN101622564B (en) | Optical cable | |
KR101916231B1 (en) | Central strength member for gap conductor and the method for manufacturing thereof | |
CN110767359A (en) | Aluminum-coated composite core wire cable and production process thereof | |
CN112102981B (en) | Metal-clad composite molded line stranded reinforced core overhead conductor and manufacturing method thereof | |
CN105717598A (en) | Leading-in optical cable | |
JP4077300B2 (en) | Drop optical fiber cable | |
JP2000206382A (en) | Multicore tight buffer optical fiber and multicore optical cable using it | |
JPH09113773A (en) | Coated optical fiber ribbon | |
CN114690354A (en) | Special spring flexible optical cable and manufacturing method thereof | |
JP4116968B2 (en) | FRP tensile body for drop optical fiber cable | |
WO2019168037A1 (en) | Anisotropic thermal conductive resin fiber, anisotropic thermal conductive resin member, and manufacturing method of these | |
JP3596983B2 (en) | Fiber reinforced optical fiber cord and method of manufacturing the same | |
JP3940500B2 (en) | Reinforced optical fiber cord and manufacturing method thereof | |
JPH0749450Y2 (en) | Fiber Optic Tension Member | |
CN112037974B (en) | Composite material reinforced insulated wire and manufacturing method thereof | |
JP2005037641A (en) | Optical fiber cable | |
CN203287582U (en) | Tensile stress wire made of FRP and inlead optical fiber cable employing same | |
CN108022690A (en) | A kind of pipe band laying optoelectronic composite cable and manufacture method | |
CN209747175U (en) | Deformation-resistant armored insulating aluminum alloy cable | |
JP2849418B2 (en) | Tension member for reinforcing optical fiber ribbon and method of manufacturing the same | |
JP2849421B2 (en) | Optical fiber supporting spacer and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080605 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080624 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080709 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4156498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140718 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |