JP5431827B2 - Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament - Google Patents

Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament Download PDF

Info

Publication number
JP5431827B2
JP5431827B2 JP2009186703A JP2009186703A JP5431827B2 JP 5431827 B2 JP5431827 B2 JP 5431827B2 JP 2009186703 A JP2009186703 A JP 2009186703A JP 2009186703 A JP2009186703 A JP 2009186703A JP 5431827 B2 JP5431827 B2 JP 5431827B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
frp
filament
coated
substantially rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009186703A
Other languages
Japanese (ja)
Other versions
JP2011037133A (en
Inventor
貴之 若原
大 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Priority to JP2009186703A priority Critical patent/JP5431827B2/en
Publication of JP2011037133A publication Critical patent/JP2011037133A/en
Application granted granted Critical
Publication of JP5431827B2 publication Critical patent/JP5431827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

本発明は、ノンメタリック型のドロップ光ケーブル用テンションメンバなどとして用いられる略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法、同FRP線条物を用いたドロップ光ファイバケーブルに関するものである。   The present invention relates to a method for producing a substantially rectangular thermoplastic resin-coated FRP filament used as a tension member for a non-metallic drop optical cable, and a drop optical fiber cable using the FRP filament.

情報化社会が到来し、インターネットなどの伝送情報容量の増大化に伴い、ビル、住宅など加入者へ光ファイバケーブルを敷設する、いわゆるFTTH化が急速に進展している。
FTTH用ドロップ光ファイバケーブルとして、テンションメンバ(以下、TMということがある。)に金属線を使用したものが提案されているが、雷によるサージングを回避するためにアースが必要となり、アース工事の手間と工事費用が嵩み、各家庭への普及において問題があった。
そこで、金属線のTMに代えてFRP(繊維強化合成樹脂)線などのノンメタリックTMを使用することによりアース工事が不要となるノンメタリック型のドロップ光ファイバケーブルが検討され、現在、このノンメタリック型のドロップ光ファイバケーブルが主流となっている。
With the arrival of the information society and the increase in transmission information capacity such as the Internet, so-called FTTH, in which optical fiber cables are laid to subscribers such as buildings and houses, is rapidly progressing.
As a drop optical fiber cable for FTTH, one using a metal wire as a tension member (hereinafter sometimes referred to as TM) has been proposed. However, grounding is necessary to avoid surging due to lightning. The labor and construction cost increased, and there was a problem in the spread to each home.
Therefore, a non-metallic drop optical fiber cable that eliminates the need for grounding work by using non-metallic TM such as FRP (fiber reinforced synthetic resin) wire instead of metal wire TM has been studied. Drop optical fiber cables of the type are mainstream.

従来のノンメタリックドロップ光ファイバケーブルにおいて、FRPのテンションメンバは、一般に丸形断面が主流であった(例えば、特許文献1)。
しかしながら、テンションメンバがFRPであると、金属線と比較して大きな曲げ直径で容易に折損し易いというマイナス面があるので、これを克服する方法として、本出願人は、熱硬化性樹脂が未硬化状のFRPの外周に内、外層の2層の被覆層を形成し、その後にFRP部を加熱硬化し、しかる後、外層の被覆部のみを剥離除去する熱可塑性樹脂被覆付きFRPの製造方法を提案した(特許文献2)。この特許文献2に記載のドロップ光ケーブル用FRPの製造方法によれば、FRPの断面形状を矩形とすることにより、FRPの短辺が0.3mm程度で、ガラス繊維ヤーン等の複数の補強繊維束を用いると、最小曲げ直径が小さく、抗収縮力にも優れたテンションメンバを提供できるが、短辺が0.3mm未満で、補強繊維束として少本数、特に1本の有機合成繊維束を用いる場合は、均一な扁平度の矩形状FRPを得ることが難しいことが判明した。
In conventional non-metallic drop optical fiber cables, FRP tension members generally have a round cross section (for example, Patent Document 1).
However, if the tension member is FRP, there is a disadvantage that it is easy to break with a large bending diameter as compared with a metal wire. Therefore, as a method of overcoming this, the present applicant has not yet used a thermosetting resin. A method for producing FRP with a thermoplastic resin coating, in which two outer coating layers are formed on the outer periphery of the cured FRP, the FRP portion is then heat-cured, and then only the outer coating portion is peeled and removed. (Patent Document 2). According to the method for manufacturing an FRP for a drop optical cable described in Patent Document 2, by making the cross-sectional shape of the FRP rectangular, the short side of the FRP is about 0.3 mm, and a plurality of reinforcing fiber bundles such as glass fiber yarns. Can be used to provide a tension member having a small minimum bending diameter and excellent anti-shrinkage force, but has a short side of less than 0.3 mm and uses a small number of reinforcing fiber bundles, particularly one organic synthetic fiber bundle. In this case, it has been found difficult to obtain a rectangular FRP having a uniform flatness.

より具体的には、ガラス繊維と比較して高い引張り強度と小径に曲げた際の折れ難さから、フィラメント状の有機合成繊維を補強繊維束として使用する場合に、繊度が低い補強繊維束を複数本使用すると、本来的に繊度が低い補強繊維束は製造コストの上昇により高価なので、結果的にFRPのコスト上昇を招く。また、FRPの製造において、補強繊維束の本数は少ないほうが取り扱いの工数も少なく、作業性がよい。さらに、有機合成繊維の種類によっては、1000〜4000dtex程度のマルチフィラメントのみで細繊度のものは存在しないものもあるので、繊度の高いマルチフィラメントを使用せざるを得ないという事情もある。また、低繊度の補強繊維束を、複数本を用いる場合は、取扱い本数が増えることによるクリールへの取り付け作業工数の増加、また、FRP内において補強繊維が均一に分散し難い等の問題があり、とくに短辺の小さな矩形状FRPの製造においては、使用する補強繊維の分散不良や、捻れの発生等の問題が存在していた。   More specifically, because of the high tensile strength compared to glass fibers and the difficulty of bending when bent to a small diameter, when using filamentous organic synthetic fibers as reinforcing fiber bundles, reinforcing fiber bundles with low fineness are used. When a plurality of fibers are used, a bundle of reinforcing fibers that are inherently low in fineness is expensive due to an increase in manufacturing cost, resulting in an increase in the cost of FRP. In the production of FRP, the smaller the number of reinforcing fiber bundles, the fewer the man-hours for handling and the better the workability. Furthermore, depending on the type of organic synthetic fiber, there is a case in which only a multifilament of about 1000 to 4000 dtex and no fineness is present, so that a multifilament having a high fineness must be used. In addition, when multiple bundles of low-fidelity reinforcing fibers are used, there are problems such as an increase in the number of man-hours for attaching to the creel due to an increase in the number of handling, and difficulty in uniformly dispersing the reinforcing fibers in the FRP. In particular, in the production of a rectangular FRP having a small short side, there are problems such as poor dispersion of reinforcing fibers used and occurrence of twisting.

特開2004−163501号公報Japanese Patent Laid-Open No. 2004-163501 特開2005−157159号公報JP 2005-157159 A

以上、従来においては、特にFRP部の短辺が0.3mm未満の略矩形状を有する熱可塑性樹脂被覆FRP線条物の改良された製造方法についての提案はなされていなかった。本発明者らは、光ファイバケーブル用テンションメンバとしての更なる軽量化や、最小曲げ直径の低下の要請に応じた良断面形状のFRPテンションメンバを、連続的に生産性よく製造する方法を鋭意検討した結果、(i)製造工程での補強繊維束の捻れを抑制すること、(ii)FRP断面において繊維の偏りをなくし、形状及び寸法を一定に保つこと、(iii)熱可塑性樹脂被覆層の被覆厚みを全周にわたって均一に制御すること、が必要であることを知得し、これらの具体的な技術を開発することを課題として、本願発明を完成した。   As described above, conventionally, there has been no proposal for an improved method for producing a thermoplastic resin-coated FRP filament having a substantially rectangular shape in which the short side of the FRP portion is less than 0.3 mm. The present inventors have earnestly developed a method for continuously producing an FRP tension member having a good cross-sectional shape in response to a request for further weight reduction as an optical fiber cable tension member and a reduction in minimum bending diameter. As a result of the study, (i) suppressing twisting of the reinforcing fiber bundle in the manufacturing process, (ii) eliminating the unevenness of the fiber in the FRP cross section, and keeping the shape and dimensions constant, (iii) the thermoplastic resin coating layer The present invention was completed with the object of knowing that it is necessary to uniformly control the coating thickness over the entire circumference and developing these specific techniques.

上記の課題を解決するために、本発明者らは、補強繊維束に付加するテンションを制御して補強繊維を開繊状態にして熱硬化性樹脂含浸槽に導き、樹脂含浸補強繊維を所定の矩形状に絞り成形した後、熱可塑性樹脂被覆工程において、円環状ダイスから吐出された被覆コーン部内周側を減圧として被覆することで前記課題が解決されることを見出した。
すなわち、本発明は、
〔1〕 有機合成繊維からなる補強繊維束に未硬化の熱硬化性樹脂組成物を含浸させる含浸工程(1)、熱硬化性樹脂組成物を含浸させた補強繊維束を矩形の孔形状を有する絞りノズルを使用し、所定の矩形状に賦形する絞り成形工程(2)、絞り成形した矩形状未硬化線条物の外周面に、円環状のダイスから溶融状の熱可塑性樹脂をコーン状に吐出して被覆層を形成する被覆工程(3)、所定の間隙の平行ロールで挟圧して扁平状に賦形するサイジング工程(4)、前記被覆層を冷却水槽に導いて冷却固化する冷却固化工程(5)、前記熱硬化性樹脂を硬化させる加熱硬化工程(6)を含むFRP線条物の製造方法であって、
前記含浸工程(1)は、有機合成繊維からなる補強繊維束を、当該補強繊維束が巻かれたボビンから巻が解除する方向に引き出し、補強繊維束1本当たり40cN以上、280cN以下の張力下に補強繊維束を実質的に無撚り状態に開繊して熱硬化性樹脂を収容した含浸槽に導入してなり、FRP線条物の樹脂含有率を45重量%以下とし、かつ、前記被覆工程(3)は、矩形状未硬化線条物の外周に接触する前において、MIが2g/10分以上のポリオレフィン系熱可塑性樹脂を円環状のダイスから吐出したコーン状熱可塑性樹脂の内部側を減圧状態として被覆する、ことを特徴とする、略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法、
〔2〕前記含浸工程(1)は、補強繊維束を実質的に無撚り状態に開繊する手段が、補強繊維束を繰り出す巻取りボビンから熱硬化性樹脂を収容した含浸槽導入前の補強繊維束のガイド間に、張力調整ガイドを設け、かつ、張力調整ガイドを含む全てのガイドを直径20mm以下の非回転のガイドバーとし、表面粗度Raを1μm以下としてなる、前記〔1〕に記載の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法、
〔3〕前記ガイドバーは、鏡面加工ハードクロムメッキを施してなる、前記〔2〕に記載の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法、
〔4〕前記熱硬化性樹脂がビニルエステル樹脂である前記〔1〕〜〔3〕のいずれかに記載の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法、
〔5〕有機合成繊維の引張弾性率が360cN/dtex以上で、かつ、破断時における伸度が3.5%以上である前記〔1〕〜〔4〕のいずれかに記載の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法、
〔6〕有機合成繊維が芳香族ポリアミド繊維である前記〔1〕〜〔5〕のいずれかに記載の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法、
〔7〕前記〔1〕〜〔6〕のいずれかに記載の製造方法により得られたことを特徴とする略矩形状の熱可塑性樹脂被覆FRP線条物、及び
〔8〕前記〔7〕に記載の略矩形状の熱可塑性樹脂被覆FRP線条物をテンションメンバとして使用してなることを特徴とするドロップ光ファイバケーブル、を提供するものである。
In order to solve the above-mentioned problems, the present inventors control the tension applied to the reinforcing fiber bundle to open the reinforcing fiber and guide it to the thermosetting resin impregnation tank. After drawing into a rectangular shape, the present inventors have found that the above-mentioned problem can be solved by coating the inner peripheral side of the coated cone portion discharged from the annular die as a reduced pressure in the thermoplastic resin coating step.
That is, the present invention
[1] Impregnation step (1) of impregnating a reinforcing fiber bundle made of organic synthetic fibers with an uncured thermosetting resin composition, the reinforcing fiber bundle impregnated with the thermosetting resin composition has a rectangular hole shape A drawing process (2) for shaping into a predetermined rectangular shape using a drawing nozzle, and a melted thermoplastic resin from an annular die is cone-shaped on the outer peripheral surface of the drawn rectangular uncured filament. A coating step (3) for forming a coating layer by discharging to the surface, a sizing step (4) for forming a flat shape by pressing with parallel rolls with a predetermined gap, and cooling for solidifying the coating layer by introducing it into a cooling water bath A method for producing an FRP filamentous article comprising a solidification step (5) and a heat curing step (6) for curing the thermosetting resin,
In the impregnation step (1), the reinforcing fiber bundle made of organic synthetic fiber is pulled out from the bobbin around which the reinforcing fiber bundle is wound, and the tension is reduced to 40 cN or more and 280 cN or less per reinforcing fiber bundle. The reinforcing fiber bundle is opened in a substantially untwisted state and introduced into an impregnation tank containing a thermosetting resin, the resin content of the FRP filament is 45% by weight or less, and the coating Step (3) is an inner side of a cone-shaped thermoplastic resin in which a polyolefin-based thermoplastic resin having an MI of 2 g / 10 min or more is discharged from an annular die before contacting the outer periphery of the rectangular uncured filament. A method of producing a substantially rectangular thermoplastic resin-coated FRP filament,
[2] In the impregnation step (1), the means for opening the reinforcing fiber bundle in a substantially non-twisted state is a reinforcement before introducing the impregnation tank in which the thermosetting resin is accommodated from the winding bobbin for feeding the reinforcing fiber bundle. In the above [1], a tension adjustment guide is provided between the fiber bundle guides, and all guides including the tension adjustment guide are non-rotating guide bars having a diameter of 20 mm or less, and the surface roughness Ra is 1 μm or less. The method for producing the substantially rectangular thermoplastic resin-coated FRP filament described in the above,
[3] The method for producing a substantially rectangular thermoplastic resin-coated FRP filament according to [2], wherein the guide bar is mirror-finished hard chrome plated,
[4] The method for producing a substantially rectangular thermoplastic resin-coated FRP filament according to any one of [1] to [3], wherein the thermosetting resin is a vinyl ester resin,
[5] The substantially rectangular shape according to any one of [1] to [4], wherein the organic synthetic fiber has a tensile elastic modulus of 360 cN / dtex or more and an elongation at break of 3.5% or more. Production method of thermoplastic resin-coated FRP filaments,
[6] The method for producing a substantially rectangular thermoplastic resin-coated FRP filament according to any one of [1] to [5], wherein the organic synthetic fiber is an aromatic polyamide fiber,
[7] A substantially rectangular thermoplastic resin-coated FRP filament obtained by the production method according to any one of [1] to [6], and [8] In the above [7] The drop optical fiber cable is characterized in that the substantially rectangular thermoplastic resin-coated FRP filament described is used as a tension member.

本発明の製造方法によれば、略矩形の断面の長辺側の上下二辺が相互に平行で、かつ補強繊維が均一に分散された略矩形状のFRPを有する熱可塑性樹脂被覆FRP線条物を生産性よく、かつ高い歩留まりで得ることができる。
本発明の略矩形状のFRPを有する熱可塑性樹脂被覆FRP線条物は、被覆線状物としても略矩形の形状をしており、また長手方向に均一な性状を有しているので、これをドロップ光ファイバケーブルのテンションメンバとして使用する場合にも、ドロップ光ファイバケーブル用のテンションメンバとしてケーブル長手方向に垂直な断面において製品ケーブルとして、テンションメンバの性能が充分発揮される上で必要な、ケーブル断面の所望の位置、角度に導入することが容易にでき、製造上のトラブルや、品質上の問題のない、生産性及び品質の安定したドロップ光ファイバケーブルを提供することができる。
According to the production method of the present invention, the thermoplastic resin-coated FRP filament having the substantially rectangular FRP in which the upper and lower sides on the long side of the substantially rectangular cross section are parallel to each other and the reinforcing fibers are uniformly dispersed. Products can be obtained with high productivity and high yield.
The thermoplastic resin-coated FRP filament having a substantially rectangular FRP according to the present invention has a substantially rectangular shape as a coated filament and has a uniform property in the longitudinal direction. When using as a tension member for a drop optical fiber cable, as a tension member for a drop optical fiber cable, as a product cable in a cross section perpendicular to the longitudinal direction of the cable, it is necessary to fully demonstrate the performance of the tension member. A drop optical fiber cable that can be easily introduced at a desired position and angle of the cable cross section and has no production trouble or quality problem and stable in productivity and quality can be provided.

(A)本発明の略矩形状の熱可塑性樹脂被覆FRP線条物の製造工程の前半の一例を示す説明図、(B)同後半を示す説明図である。(A) Explanatory drawing which shows an example of the first half of the manufacturing process of the substantially rectangular thermoplastic resin coating | cover FRP filament of this invention, (B) It is explanatory drawing which shows the second half. 補強繊維束の捻れ(撚り)数の測定方法の説明図である。It is explanatory drawing of the measuring method of the twist (twist) number of a reinforcing fiber bundle. テンションと撚り数の関係を示すグラフである。It is a graph which shows the relationship between tension and the number of twists. 補強繊維束へのテンション付与と開繊状況の説明図である。It is explanatory drawing of the tension | tensile_strength provision to a reinforcing fiber bundle, and the fiber opening condition. 未硬化状FRPを熱可塑性樹脂被覆するダイス部の説明図である。It is explanatory drawing of the die | dye part which coat | covers an uncured FRP with a thermoplastic resin. 熱可塑性樹脂被覆直後の状況説明図である。It is situation explanatory drawing immediately after a thermoplastic resin coating. 実施例1により得られた略矩形状熱可塑性樹脂被覆FRP線条物の断面拡大写真である。2 is a cross-sectional enlarged photograph of a substantially rectangular thermoplastic resin-coated FRP filament obtained in Example 1. FIG. 比較例6による略矩形状熱可塑性樹脂被覆FRP線条物の断面拡大写真である。12 is a cross-sectional enlarged photograph of a substantially rectangular thermoplastic resin-coated FRP filament according to Comparative Example 6. 本発明に係る略矩形状熱可塑性樹脂被覆FRP線条物を用いたドロップ光ファイバケーブルの一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the drop optical fiber cable using the substantially rectangular-shaped thermoplastic resin coating | cover FRP filament according to this invention.

本発明の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法は、請求項1に記載のとおりである。本発明の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法の実施の形態について添付図面を参照にして説明する。図1は、本発明の略矩形状の熱可塑性樹脂被覆FRP線条物の製造工程を示す概略図で、(A)は、前段として、未硬化FRPの熱可塑性樹脂被覆及び扁平賦形、冷却までを、(B)は、加熱硬化、巻取りまでの後段を示しており、図面において、工程を前段、後段に分けたのは、紙幅の都合であって、両工程は途切れることなく連続している。
図1(A)及び(B)においては、図の右側から左に工程が移動することを示している。
本発明の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法は、特に、有機合成繊維からなる補強繊維束に未硬化の熱硬化性樹脂組成物を含浸させる含浸工程(1)の前段階で、有機合成繊維からなる補強繊維束を当該補強繊維束が巻かれたボビンから巻が解除する方向に引き出し、補強繊維束1本当たり40cN以上、280cN以下の張力下で、複数の非回転棒(以下「開繊バー」或いは「テンションバー」或いは単に「バー」ということがある)に接触させ、内在している繊維の入れ違い、タルミ、もつれ等のひずみにより発生する繊維束としての撚り、捻れを発現させず、補強繊維束を実質的に無撚り状態に開繊して熱硬化性樹脂を収容した含浸槽に導入すること、絞り成形した矩形状未硬化線条物の外周面に、円環状のダイスから溶融状の熱可塑性樹脂をコーン状に吐出して被覆する被覆工程(3)において、矩形状未硬化線条物の外周に接触する前においてコーン状熱可塑性樹脂の内部側を減圧状態として被覆すること、を特徴としている。開繊バーは通常、強度、耐久性の点から金属製のバーが好ましく、セラミックス等の材料からなるものであってもよい。また張力が280cNを超えると張力が大き過ぎて、内在ひずみをかえって絡みに変えてしまい、結果として捻れを発現させてしまう結果となる。一方、張力が40cNを下まわると、内在ひずみが除去されることなく、そのまま絞り成形工程に持ち込まれ、捻れ等として発現されるので良くない。
The method for producing the substantially rectangular thermoplastic resin-coated FRP filament of the present invention is as described in claim 1. An embodiment of a method for producing a substantially rectangular thermoplastic resin-coated FRP filament of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic view showing a production process of a substantially rectangular thermoplastic resin-coated FRP filament according to the present invention. (A) shows, as a preceding stage, thermoplastic resin coating and flat shaping, cooling of uncured FRP. (B) shows the subsequent stage until heat curing and winding. In the drawing, the process is divided into the first and second stages because of the paper width, and both processes are continuous without interruption. ing.
1A and 1B show that the process moves from the right side to the left side of the figure.
The method for producing a substantially rectangular thermoplastic resin-coated FRP filament according to the present invention is particularly prior to the impregnation step (1) in which a reinforcing fiber bundle made of organic synthetic fibers is impregnated with an uncured thermosetting resin composition. At the stage, the reinforcing fiber bundle made of organic synthetic fiber is pulled out from the bobbin around which the reinforcing fiber bundle is wound, and the plurality of non-rotating rotations are performed under a tension of 40 cN or more and 280 cN or less per reinforcing fiber bundle. Twist as a fiber bundle that is brought into contact with a rod (hereinafter sometimes referred to as “opening bar” or “tension bar” or simply “bar”) and caused by distortion of the fibers that are inherent, twisting, entanglement, etc. Without exhibiting twist, opening the reinforcing fiber bundle into a substantially untwisted state and introducing it into an impregnation tank containing a thermosetting resin, on the outer peripheral surface of a drawn rectangular uncured filament, Is it an annular die? In the coating step (3) for discharging and coating the molten thermoplastic resin in a cone shape, the inner side of the cone-shaped thermoplastic resin is coated in a reduced pressure state before contacting the outer periphery of the rectangular uncured filament. It is characterized by that. The spread bar is usually preferably a metal bar from the viewpoint of strength and durability, and may be made of a material such as ceramics. On the other hand, when the tension exceeds 280 cN, the tension is too large, and the internal strain is changed to entanglement, resulting in a twist. On the other hand, if the tension falls below 40 cN, the inherent strain is not removed and is brought into the draw forming process as it is, and it is not good because it is manifested as twist.

先ず、本発明者らは、補強繊維の開繊について、以下の実験を行い、補強繊維束には、捻れ(撚り)がないことが望ましいが、撚り数が0.5回/m以下であれば開繊が可能であることを知得した。   First, the present inventors conducted the following experiment on the opening of the reinforcing fiber, and it is desirable that the reinforcing fiber bundle has no twist (twist), but the number of twists is 0.5 times / m or less. I learned that it could be opened.

FRPを構成する補強繊維に対して、熱可塑性樹脂被覆FRP線条物の製造工程で撚り(捻り)が入るのを防ぐには、当該補強繊維が巻かれている巻軸(ボビン)を回転することなく巻軸方向に取り出す、いわゆる縦取りは、1回(1周)繰り出す毎に繊維に1回撚りが加わるため適当ではなく、巻取りボビンを回転させながら、或いは巻取りボビンが回転しながら回転方向に取り出す、いわゆる横繰り出し(横取り)が必須条件である。
しかしながら、単に、通常の横繰り出しを行っただけでは、撚りの回避は出来ない。
何故なら、一般的な連続繊維フィラメントは、その製造段階において、紡糸後の水冷却工程や、加熱延伸工程等で、構成する多数の単繊維間で、必ずもつれ(単繊維間の長さの違い等に起因する繊維長の不揃い部等)が発生し、これらが内在しており、繰出し時にテンションをかけた際、もつれた部分が戻ろうとして繊維全体の捻れ、すなわち撚りに発展するためである。これは補強繊維が連続状のマルチフィラメントヤーンであることから発生する固有の課題である。
そこで、まず繊維の繰り出しテンションと捻れ量の関係を、以下の方法で調査した。
In order to prevent twisting in the manufacturing process of the thermoplastic resin-coated FRP filamentous material with respect to the reinforcing fiber constituting the FRP, the winding shaft (bobbin) around which the reinforcing fiber is wound is rotated. The so-called longitudinal take-up without taking out in the direction of the winding axis is not appropriate because the fiber is twisted once each time it is drawn out (one round), and is not suitable while rotating the take-up bobbin or while taking up the take-up bobbin. So-called lateral feeding (storing), which is taken out in the rotation direction, is an essential condition.
However, twisting cannot be avoided simply by performing normal lateral feeding.
This is because a general continuous fiber filament is always entangled between a large number of single fibers constituting a water cooling process after spinning or a heat drawing process in the production stage (difference in length between single fibers). This is because, when the tension is applied at the time of feeding, the entangled part returns and the whole fiber twists, that is, twists develop. . This is an inherent problem that arises because the reinforcing fibers are continuous multifilament yarns.
Therefore, first, the relationship between the fiber feeding tension and the twist amount was investigated by the following method.

(繊維繰り出し時のテンションと捻れ(撚り)の関係)
図2に示すように芳香族アラミド繊維のマルチフィラメント(東レデュポン社製:ケブラー29、1670dtex/1000f)が巻かれたボビンBから、繊維Fを真直ぐ20m繰出し、ボビンBと先端部H間に所定のテンションを掛けたまま先端を把持した状態で、2本の非回転バーRで繊維Fの上下をしっかり挟み、バーを先端側へ逐次平行移動し、その間に存在する撚りを先端側へ移動させ、最先端側に撚りが溜まった状態とした。2本のバーによる繊維の把持を維持し、かつ水平に固定した状態で、先端の把持部Hに溜まった撚りが戻る方向に回転させて、撚りがなくなる迄の回転数nを測定し、さらに、回転数nを20mで除して、1m当たりの撚り数(T/m)を求めた。
なお、繊維束へのテンションの負荷は、図2における先端部Hの左方に設けた滑車状糸ガイド(図示省略)を介して、繊維束端に設けたフック部に錘を吊るす方法を採用し、錘の重量を種々変えて荷重を変化させた。
(Relationship between tension and twist during fiber unwinding)
As shown in FIG. 2, a fiber F is fed straight 20 m from a bobbin B wound with a multifilament of aromatic aramid fibers (manufactured by Toray DuPont: Kevlar 29, 1670 dtex / 1000f). While holding the tip with the tension applied, the top and bottom of the fiber F are firmly sandwiched between the two non-rotating bars R, the bar is sequentially translated to the tip side, and the twist existing between them is moved to the tip side. The twist was collected on the most advanced side. While maintaining the holding of the fiber by the two bars and fixing it horizontally, the twist accumulated in the holding portion H at the tip is rotated in the returning direction, and the number of rotations n until the twist disappears is measured. The number of twists per meter (T / m) was determined by dividing the rotational speed n by 20 m.
The tension applied to the fiber bundle adopts a method in which a weight is suspended from a hook portion provided at the end of the fiber bundle via a pulley-like thread guide (not shown) provided to the left of the tip H in FIG. The load was changed by changing the weight of the weight in various ways.

図3は、繊維に負荷するテンションを変化させた場合の撚り(回転数/20m)との関係を示すグラフであり、テンション500cNまではリニアな関係にあり、テンションが高い状態では、捻れが入り易いことが確認された。   FIG. 3 is a graph showing the relationship with the twist (number of rotations / 20 m) when the tension applied to the fiber is changed. The tension is linear up to 500 cN, and the twist enters when the tension is high. It was confirmed that it was easy.

また、補強繊維の捻れを防止するためには、補強繊維を開繊状態にすることが有効であることが知得された。捻れを防止するために繊維を開繊する検討を行ったところ、繊維をバーに押し当てるだけという簡単な方法で開繊できることが分かった。ただし、この開繊方法では、バーに入る時の繊維の捻れを0.5回転/m以下に抑えないと開繊しきれないことが確認され、繊維束の捻れ或いは撚りを0.5回/m以下にするには、先の図3のグラフより、テンションを280cN以下にすればよいことが判明した。
本発明の製造方法において、「実質的に無撚り状態に開繊」とは、補強繊維束が撚り或いは捻れを全く有しないか、有していても1m当たり0.5回以下であることをいう。
Further, it has been found that it is effective to open the reinforcing fibers in order to prevent twisting of the reinforcing fibers. As a result of examining the opening of the fiber to prevent twisting, it was found that the fiber can be opened by a simple method of pressing the fiber against the bar. However, in this opening method, it is confirmed that the fiber cannot be fully opened unless the twist of the fiber when entering the bar is reduced to 0.5 rotation / m or less, and the twist or twist of the fiber bundle is 0.5 times / twist. From the graph of FIG. 3, it was found that the tension should be 280 cN or less in order to make it m or less.
In the production method of the present invention, “substantially unopened state” means that the reinforcing fiber bundle has no twist or twist at all, or 0.5 times or less per 1 m. Say.

繰り出し工程の張力調整は、図4に示すように、巻取りボビンからボビン回転方向に繰り出された補強繊維束Fを第1のテンションバーTB1上を経由させ、次いで張力調整のため上下に遥動可能な張力調整ガイドバー(以下「ダンサー」という。)DBの下半側と接触させ、しかる後スリット状ガイドGを介して、補強繊維束を40m/分所定の速度で走行させ、スリット状ガイドGにおける補強繊維束の開繊性を、ダンサー(揺動子)DBの回転の有無、外径等を変化させ、開繊性との関係を確認する実験を行った。テンションを90cNとした場合の、ダンサーDBの形状と開繊性の関係をまとめて表1に示す。なお、評価は、補強繊維束は、少なくとも繊維幅が10mm以上に開繊していれば捻れが見られないことから、10mm以上に開繊している場合を「○」、10mm未満を「×」とした。
なお、開繊度合いは、スリット状ガイドGにおける繊維の拡がり幅をノギスで測定した。
補強繊維束の拡がり幅をフィラメント数で除した数値を糸幅率とすれば、糸幅率は、8〜12μm/フィラメントが好ましく、9〜11μm/フィラメントが特に好ましいことが確認された。
As shown in FIG. 4, the tension adjustment in the unwinding process is performed by passing the reinforcing fiber bundle F unrolled from the take-up bobbin in the bobbin rotation direction via the first tension bar TB1, and then swinging up and down for tension adjustment. A possible tension adjustment guide bar (hereinafter referred to as “dancer”) DB is brought into contact with the lower half side of the DB, and then the reinforcing fiber bundle is caused to travel at a predetermined speed of 40 m / min via the slit-shaped guide G, thereby the slit-shaped guide. Experiments were conducted to confirm the relationship between the fiber opening property of G and the fiber opening property by changing the presence or absence of rotation of the dancer (oscillator) DB, the outer diameter, and the like. Table 1 summarizes the relationship between the shape of the dancer DB and the spreadability when the tension is 90 cN. In addition, the evaluation shows that the reinforcing fiber bundle is not twisted if at least the fiber width is opened to 10 mm or more. "
In addition, the fiber spreading width in the slit-shaped guide G was measured with a vernier caliper.
Assuming that the value obtained by dividing the spreading width of the reinforcing fiber bundle by the number of filaments is the yarn width ratio, it was confirmed that the yarn width ratio is preferably 8 to 12 μm / filament, and particularly preferably 9 to 11 μm / filament.

表1に示すように、ダンサー形状が、(i)ローラー等の回転物である場合は、その外径に関係なく繊維束が捻れ、開繊性評価が不良である。(ii)ダンサー形状が固定バーであっても、径が大きいもの(φ40mm)は繊維束が捻れ、開繊性評価が不良である。固定バーとは表面が回転しない棒状のテンションバーのことである。(iii)第1のテンションバーTB1も回転するものを用いると繊維束が捻れる。(iv) 第1のテンションバーTB1は、固定バーであっても、径が太いものは繊維束が捻れる。(v)φ15mm以下の固定バーを使用すると繊維が10mm以上に開く開繊が起こるようになり、繊維束の捻れが見られなかった。
以上の実験結果から、本発明の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法においては、概略図4に示すようなガイド類の配置として、補強繊維束の走行ライン中には、U字型等の湾曲状凹部の様な、繊維がまとまるような部分は排除し、繊維を繰り出したら素早く開繊し、そのまま含浸、絞り工程まで持っていくことにより、捻れをなくすことができることを知得した。
As shown in Table 1, when the dancer shape is (i) a rotating object such as a roller, the fiber bundle is twisted regardless of the outer diameter, and the openability evaluation is poor. (ii) Even if the dancer shape is a fixed bar, if the diameter is large (φ40 mm), the fiber bundle is twisted, and the openability evaluation is poor. The fixed bar is a bar-like tension bar whose surface does not rotate. (iii) If the first tension bar TB1 is also rotated, the fiber bundle is twisted. (iv) Even if the first tension bar TB1 is a fixed bar, if the diameter is large, the fiber bundle is twisted. (v) When a fixing bar having a diameter of 15 mm or less was used, the fiber opened to open to 10 mm or more, and twisting of the fiber bundle was not observed.
From the above experimental results, in the manufacturing method of the substantially rectangular thermoplastic resin-coated FRP filament of the present invention, as an arrangement of guides as shown in FIG. It is possible to eliminate twisting by removing the part where the fibers are gathered, such as U-shaped curved concave parts, and opening the fiber as soon as it is unwound and taking it to the impregnation and drawing process. I knew it.

また、直径15mmの固定バーについて、表面がハードクロムメッキの鏡面加工品と、それをサンドペーパーで表面を段階的に荒らしたものを用意して繰り出しテスト行ったところ、サンドペーパーで荒らした固定バーには、毛羽や繊維由来の収束剤が付着・堆積していった。したがって、固定バーの表面は、収束剤の付着を防ぐ観点から、表面粗度Raが1μm以下の表面とすることが好ましい。   In addition, a fixed bar with a diameter of 15 mm, a mirror-finished product with a hard chrome plating surface, and a surface-treated surface with sandpaper were prepared and tested. The fluff and fiber-derived sizing agent adhered and deposited on the surface. Therefore, the surface of the fixing bar is preferably a surface having a surface roughness Ra of 1 μm or less from the viewpoint of preventing the adhesion of the sizing agent.

次に本発明の熱可塑性樹脂被覆FRP線条物の製造方法の第2の特徴である被覆工程について詳述する。図1(A)に示すように開繊状態で熱硬化性樹脂組成物が収容された含浸槽5中に導かれた補強繊維束Fは、含浸槽中のガイドを経て、未硬化状線状物1aとして矩形の断面が段階的に最終的な矩形形状に収斂するように配置された矩形の孔形状を有する絞りノズル群6を経て、熱可塑性樹脂被覆用の溶融押出機7のクロスヘッド部8に配置され、その先端部が所定の絞り形状である図5に示す最終絞りノズル60で矩形に賦形され、クロスヘッド部8を通過させることによって熱可塑性樹脂被覆が施される。
図5は、未硬化状線状物1aが、絞りノズル群6a〜6dを経て、クロスヘッドに装着された最終絞りノズルに導かれる状態を上部から眺めた平断面図で示している。最終絞りノズル60は、クロスヘッドからの熱で加熱されるので、未硬化線状物の樹脂が硬化するのを防ぐため水による循環冷却をするため二重ジャケットになっており、給水パイプ61と排水パイプ62とを備えている。
Next, the coating process which is the second feature of the method for producing the thermoplastic resin-coated FRP filament of the present invention will be described in detail. As shown in FIG. 1 (A), the reinforcing fiber bundle F introduced into the impregnation tank 5 in which the thermosetting resin composition is accommodated in the opened state passes through a guide in the impregnation tank, and is uncured linear. As a product 1a, a crosshead portion of a melt extruder 7 for coating a thermoplastic resin passes through a squeezing nozzle group 6 having a rectangular hole shape arranged so that a rectangular cross section gradually converges to a final rectangular shape. 8 is formed into a rectangular shape by a final throttle nozzle 60 shown in FIG. 5 having a predetermined throttle shape, and a thermoplastic resin coating is applied by passing the crosshead part 8.
FIG. 5 is a plan sectional view of the uncured linear object 1a as viewed from above in a state where the uncured linear object 1a is guided to the final throttle nozzle mounted on the cross head 8 through the throttle nozzle groups 6a to 6d. Since the final squeezing nozzle 60 is heated by the heat from the cross head, it has a double jacket for circulating cooling with water in order to prevent the resin of the uncured linear material from being cured. And a drain pipe 62.

一方、熱可塑性樹脂被覆は、図5に示すように、溶融押出機7の先端に取り付けられたクロスヘッド8において、導管部90を経て、円環状のダイス91から溶融樹脂を押出し、未硬化線状物の外周を継ぎ目なく被覆することによって行われる。
この被覆に際して、図6に示すように、円環状ダイス91から吐出された被覆樹脂は、最終絞りノズルを経て連続的に供給される未硬化線状物1aの外周と接触する前においてコーン状熱可塑性樹脂95の内部側94を、パイプ93に接続された減圧ラインにより減圧状態とする必要がある。減圧度は、当該減圧操作によって、未硬化線状物と被覆樹脂との接触点Tを、ダイス91の出口面から所定の距離(10±4mm)となるように調整することによって被覆外形の変動を抑制し、かつ、未硬化状線条物1aに随伴する空気や、熱硬化性樹脂組成物中の揮発ガス等を吸引することによって、被覆部の発泡や、熱硬化性樹脂組成物を発生源として蓄積された異物等による被覆破れ等の工程トラブル、製品欠陥等を防止するのに十分な減圧度とする必要がある。
減圧度は、−1〜−15kPaが好ましい。未硬化状線状物の外周と熱可塑性樹脂被覆とを接触させ被覆した後、上下一対の平行ロール9で挟圧して偏平状に賦形(サイジング)し、未硬化状熱可塑性樹脂被覆FRP線条物1bとして冷却水槽10へ送り出される。
On the other hand, as shown in FIG. 5, the thermoplastic resin coating is obtained by extruding a molten resin from an annular die 91 through a conduit portion 90 in a crosshead 8 attached to the tip of a melt extruder 7, and uncured wire. This is done by coating the outer periphery of the material seamlessly.
In this coating, as shown in FIG. 6, the coating resin discharged from the annular die 91 has a cone-shaped heat before coming into contact with the outer periphery of the uncured linear object 1a continuously supplied through the final squeezing nozzle. The inner side 94 of the plastic resin 95 needs to be decompressed by a decompression line connected to the pipe 93. The degree of vacuum is changed by adjusting the contact point T between the uncured linear object and the coating resin to a predetermined distance (10 ± 4 mm) from the exit surface of the die 91 by the pressure reduction operation. And the air accompanying the uncured filament 1a, the volatile gas in the thermosetting resin composition, etc. are sucked to generate foaming of the covering portion and the thermosetting resin composition. The degree of decompression must be sufficient to prevent process troubles such as coating breakage due to foreign matter accumulated as a source, product defects, and the like.
The degree of vacuum is preferably −1 to −15 kPa. After the outer periphery of the uncured linear material and the thermoplastic resin coating are in contact with each other and coated, they are sandwiched by a pair of upper and lower parallel rolls 9 and shaped into a flat shape (sizing), and the uncured thermoplastic resin-coated FRP wire It is sent out to the cooling water tank 10 as the strip 1b.

次いで未硬化状熱可塑性樹脂被覆FRP線条物1bは、図1(B)に示す如く、両端がシールされた加圧した水蒸気加熱硬化槽11に挿通して、内部の熱硬化性樹脂を硬化し、以後、冷却水槽(図1(B)、12)で冷却された略矩形状の熱可塑性樹脂被覆FRP線条物素線1とした後、巻取り機14によりボビンに巻き取られる。なお、図1(B)では、線条物の引取り装置としてネルソンローラー13を用いているが、引取り装置は、ネルソンタイプに限らず、ベルトタイプやキャタピラタイプの装置であってもよい。
また、以上の図1においては、1本の略矩形状の熱可塑性樹脂被覆FRP線条物を製造する方法を示しているが、クロスヘッドダイ部に最終絞りノズルを複数本装着可能な構造とし、かつ、絞り成形された複数本未硬化状線条物を個別に熱可塑性樹脂被覆が可能な被覆ダイス構造とすること等によって、複数本の同時生産が可能にすることができ、この場合は、生産性の向上を図ることができる。
Next, as shown in FIG. 1B, the uncured thermoplastic resin-coated FRP filament 1b is inserted into a pressurized steam heat curing tank 11 sealed at both ends to cure the internal thermosetting resin. After that, the substantially rectangular thermoplastic resin-coated FRP filamentary element wire 1 cooled in the cooling water tank (FIGS. 1B and 12) is taken up by the winder 14 and wound on the bobbin. In FIG. 1B, the Nelson roller 13 is used as the wire take-up device, but the take-up device is not limited to the Nelson type but may be a belt type or a caterpillar type device.
1 shows a method of manufacturing one substantially rectangular thermoplastic resin-coated FRP filament, but it has a structure in which a plurality of final aperture nozzles can be mounted on the crosshead die part. In addition, a plurality of uncured filaments that have been drawn and formed into a coated die structure that can be individually coated with a thermoplastic resin can enable simultaneous production of a plurality of pieces. , Productivity can be improved.

以下、本発明の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法に使用できる原材料について説明する。
本発明の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法に使用できる補強繊維としての有機合成繊維は、芳香族ポリアミド繊維(アラミド繊維)、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリパラフェニレンベンゾビスチアゾール(PBT)繊維等を挙げることができる。
また、これらの有機合成繊維は、引張弾性率が360cN/dtex以上で、かつ、破断時における伸度が3.5%以上であるものが好ましい。
引張弾性率が360cN/dtex以上であれば、光ファイバケーブルのテンションメンバとして、光ファイバ心線を保護するための高い抗張力を有しており、破断時の伸度が3.5%以上であればFRPが曲がり難くなることが少なく、ドロップ光ファイバケーブル化後の取り扱いや配線工事等に支障のない、十分な耐座屈性能を保有できる。
さらにより好ましい引張弾性率は、480cN/dtex以上である。
Hereinafter, the raw material which can be used for the manufacturing method of the substantially rectangular-shaped thermoplastic resin coating | cover FRP filament of this invention is demonstrated.
Organic synthetic fibers as reinforcing fibers that can be used in the method for producing a substantially rectangular thermoplastic resin-coated FRP filament of the present invention include aromatic polyamide fibers (aramid fibers), polyarylate fibers, polyparaphenylene benzobisoxazole ( PBO) fiber, polyparaphenylene benzobisthiazole (PBT) fiber, and the like.
These organic synthetic fibers preferably have a tensile elastic modulus of 360 cN / dtex or more and an elongation at break of 3.5% or more.
If the tensile modulus is 360 cN / dtex or more, it has a high tensile strength to protect the optical fiber core as a tension member of the optical fiber cable, and the elongation at break is 3.5% or more. Therefore, it is difficult for the FRP to be bent, and it is possible to have sufficient buckling resistance without hindering the handling and wiring work after the drop optical fiber cable.
An even more preferable tensile elastic modulus is 480 cN / dtex or more.

使用する有機合成繊維としては、構成する単繊維径が10〜15μmで、複数のヤーンを合撚していない、いわゆるマルチフィラメント状のものが望ましく500〜2000dtexが使用される。この場合、番手の大きいもの、つまり2000dtexを超える補強繊維を用いた場合、FRPとした際の矩形性に悪影響を及ぼし、後の熱可塑性樹脂による薄肉被覆成形工程において、均一な被覆を行うことが難しくなる。また、単糸の引き揃えが悪くなり、FRP化した際に引張性能が不十分となるおそれがある。一方、500dtex以下のヤーンも市販されているが、工程が煩雑となる上、コスト上昇につながり経済的でない。また、有機合成繊維は、細径化及び軽量化を目的として使用されてきた実績から芳香族ポリアミド繊維が好ましい。芳香族ポリアミド繊維としては、メタ系、パラ系に大別されその種類を問わないが、例えば、東レ・デュポン株式会社から販売されているポリパラフェニレンテレフタルアミド繊維(商品名「ケブラー」)、帝人株式会社から販売されているパラ系アラミド繊維「テクノーラ」及び「トワロン」等のアラミド繊維を例示できる。   As the organic synthetic fiber to be used, a so-called multifilament-shaped fiber having a single fiber diameter of 10 to 15 μm and not twisting a plurality of yarns is desirable, and 500 to 2000 dtex is used. In this case, when a reinforcing fiber having a large count, that is, a reinforcing fiber exceeding 2000 dtex is used, it has an adverse effect on the rectangularity when FRP is used, and a uniform coating can be performed in a subsequent thin-wall coating molding process using a thermoplastic resin. It becomes difficult. In addition, the single yarn is poorly aligned, and there is a possibility that the tensile performance becomes insufficient when it is made into FRP. On the other hand, yarns of 500 dtex or less are also commercially available, but the process becomes complicated and the cost increases, which is not economical. In addition, the organic synthetic fiber is preferably an aromatic polyamide fiber because it has been used for the purpose of reducing the diameter and weight. Aromatic polyamide fibers can be broadly classified into meta and para types, regardless of their type. For example, polyparaphenylene terephthalamide fibers (trade name “Kevlar”), Teijin sold by Toray DuPont Co., Ltd. Examples thereof include aramid fibers such as “Technola” and “Twaron” para-aramid fibers sold by the corporation.

FRP線条物の補強繊維の体積含有率は、要求される物性により決定されるが、より細径化を目的とする本願発明においては、概ね55〜70Vol.%程度とすることが好ましく、即ち補強繊維の体積含有率と補完関係にある樹脂含有率は45Vol.%以下、30%Vol.以上とすることが、熱可塑性樹脂被覆直後の挟圧ロールによるサイジングでの絞り現象の発生等が起こり難く、好ましく、また硬化後に得られるFRPの機械的物性の低下を抑制することが出来る。   The volume content of the reinforcing fiber of the FRP filamentous material is determined by the required physical properties, but in the present invention for the purpose of further reducing the diameter, it is generally 55 to 70 Vol. %, That is, the resin content complementary to the volume content of the reinforcing fiber is 45 Vol. % Or less, 30% Vol. The above is preferable because the occurrence of a squeezing phenomenon during sizing by a pinching roll immediately after coating with a thermoplastic resin hardly occurs, and a decrease in mechanical properties of the FRP obtained after curing can be suppressed.

また、本発明の熱可塑性樹脂被覆FRP線条物において、補強繊維としての有機合成繊維の結着に使用できる熱硬化性樹脂は、テレフタル酸系又はイソフタル酸系の不飽和ポリエステル樹脂、ビニルエステル樹脂(エポキシアクリレート樹脂など)またはエポキシ樹脂などが一般的であり、これらに硬化用触媒などを添加して使用されるが、とりわけビニルエステル樹脂(エポキシアクリレート樹脂など)が耐熱性などの物性の点から好ましい。   Further, in the thermoplastic resin-coated FRP filament of the present invention, the thermosetting resin that can be used for binding organic synthetic fibers as reinforcing fibers is terephthalic acid-based or isophthalic acid-based unsaturated polyester resin, vinyl ester resin. (Epoxy acrylate resins, etc.) or epoxy resins are common, and these are used after adding a curing catalyst, etc. Especially, vinyl ester resins (epoxy acrylate resins, etc.) are from the viewpoint of physical properties such as heat resistance. preferable.

熱硬化性樹脂組成物には、炭酸カルシウムを添加することができる。炭酸カルシウムの平均粒径は、樹脂含浸槽での沈降や熱可塑性樹脂被覆破れの防止、FRP部での均一分散性等の観点から、3μm以下のものが好ましい。
炭酸カルシウムの添加量は、熱硬化性樹脂100質量部に対して、0.5〜3質量部である。添加量が0.5〜3質量部の範囲であれば、熱可塑性樹脂被覆FRP線条物の寸法変動率が低く、良好な最小曲げ特性を備え、ドロップ光ファイバケーブルのテンションメンバとしての使用が可能である。
Calcium carbonate can be added to the thermosetting resin composition. The average particle diameter of calcium carbonate is preferably 3 μm or less from the viewpoint of sedimentation in a resin impregnation tank, prevention of thermoplastic resin coating breakage, uniform dispersibility in the FRP portion, and the like.
The addition amount of calcium carbonate is 0.5 to 3 parts by mass with respect to 100 parts by mass of the thermosetting resin. If the addition amount is in the range of 0.5 to 3 parts by mass, the dimensional variation rate of the thermoplastic resin-coated FRP filament is low, it has good minimum bending characteristics, and can be used as a tension member of a drop optical fiber cable. Is possible.

未硬化状FRP線条物1aの被覆層に用いる熱可塑性樹脂は、図9に示す本体被覆部47の熱可塑性樹脂と相溶性のある樹脂から選択される。また、熱可塑性樹脂被覆FRP線条物の製造工程において、FRP部の外周の状態や、被覆熱可塑性樹脂層の偏肉等が確認し易い点から、透明な熱可塑性樹脂を用いることが好ましい。   The thermoplastic resin used for the coating layer of the uncured FRP filament 1a is selected from resins compatible with the thermoplastic resin of the main body coating portion 47 shown in FIG. Moreover, in the manufacturing process of the thermoplastic resin-coated FRP filament, it is preferable to use a transparent thermoplastic resin from the viewpoint that the state of the outer periphery of the FRP portion, the uneven thickness of the coated thermoplastic resin layer, etc. can be easily confirmed.

さらに、被覆層に用いる熱可塑性樹脂は、FRP部とのアンカー接着構造を得るため、熱硬化性樹脂の加熱硬化時に内周が、溶融状ないし軟化状態を呈することが望ましく、硬化温度110〜150℃の範囲に融点または軟化点を有する、ポリオレフィン系樹脂がより好適である。
アンカー接着の度合いは、被覆層に用いた熱可塑性樹脂からのFRP部の引抜力が10N/10mm以上であることが好適である。
Further, the thermoplastic resin used for the coating layer preferably has an inner periphery in a molten or softened state when the thermosetting resin is heated and cured in order to obtain an anchor adhesion structure with the FRP portion, and a curing temperature of 110 to 150. A polyolefin resin having a melting point or softening point in the range of ° C. is more preferred.
The degree of anchor adhesion is preferably such that the pulling force of the FRP part from the thermoplastic resin used for the coating layer is 10 N / 10 mm or more.

被覆層の厚みを、0.02〜0.1mm程度の厚みとするには、薄膜成形性の良い樹脂が望ましく、例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)などが好適である。   In order to set the thickness of the coating layer to about 0.02 to 0.1 mm, a resin with good thin film moldability is desirable. For example, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), etc. Is preferred.

LLDPEを用いる場合には、次の様な特性を有するものを用いることがより好ましい。その特性とは、JIS K6760によるメルトインデックスMIが2g/10min以上、密度0.920〜0.940g/cm3、JIS Z1702による引張試験において、引張強度が30 MPa以上であり、1%モジュラスが150〜250 MPaの範囲の値を有するものが好ましい。
また、MIが2g/10min以上の範囲にある異なるMFRの2種の樹脂を混合して使用してもよい。なお、MIの上限は、概ね4g/10minである。
When LLDPE is used, it is more preferable to use one having the following characteristics. The properties are as follows: melt index MI according to JIS K6760 is 2 g / 10 min or more, density is 0.920 to 0.940 g / cm 3 , tensile strength is 30 MPa or more in a tensile test according to JIS Z1702, and 1% modulus is 150. Those having a value in the range of ~ 250 MPa are preferred.
Moreover, you may mix and use 2 types of resin of different MFR which has MI in the range of 2 g / 10min or more. Note that the upper limit of MI is approximately 4 g / 10 min.

得られた熱可塑性樹脂被覆FRP線条物は、この後必要に応じて更に成型用加熱金型ブロック等を通過させ、矩形状に整形することも出来る。   The obtained thermoplastic resin-coated FRP filament can then be further shaped into a rectangular shape by passing through a molding heating mold block or the like as necessary.

本発明は、前記製造方法で得られた熱可塑性樹脂被覆FRP線条物及び同熱可塑性樹脂被覆FRP線条物を用いたドロップ光ファイバケーブルをも提供する。
図9は、本発明の光ファイバケーブルの一例を示す断面模式図である。同図に示すドロップ光ファイバケーブル1は、光ファイバ心線42と、熱可塑性樹脂被覆FRP線条物からなるテンションメンバ43と、メッセンジャーワイヤー44とを備えている。
The present invention also provides a thermoplastic resin-coated FRP filament obtained by the production method and a drop optical fiber cable using the thermoplastic resin-coated FRP filament.
FIG. 9 is a schematic cross-sectional view showing an example of the optical fiber cable of the present invention. The drop optical fiber cable 1 shown in the figure includes an optical fiber core 42, a tension member 43 made of a thermoplastic resin-coated FRP filament, and a messenger wire 44.

テンションメンバ43は、FRPからなる芯部45を、熱可塑性樹脂被覆層46で被覆した偏平な略矩形状断面に形成されていて、一対のテンションメンバ43が、光ファイバ心線42の上下方向に所定の間隔を置いて、これを挟むようにして、同軸上に配置されている。   The tension member 43 is formed in a flat, substantially rectangular cross section in which a core portion 45 made of FRP is covered with a thermoplastic resin coating layer 46, and the pair of tension members 43 are arranged in the vertical direction of the optical fiber core wire 42. It arrange | positions coaxially so that this may be pinched | interposed at predetermined intervals.

メッセンジャーワイヤー44は、一方のテンションメンバ43の上に配置されていて、光ファイバ心線42、テンションメンバ43は、熱可塑性樹脂製の本体被覆部47により一括被覆した構成を備えている。本体被覆部47には、光ファイバ心線42の両側に位置に対応して、一対のノッチ48が対向するように形成されている。また、メッセンジャーワイヤー44は、それ以外の部分と分離できるように、細幅部49で連結されている。   The messenger wire 44 is disposed on one tension member 43, and the optical fiber core wire 42 and the tension member 43 have a configuration in which they are collectively covered with a main body covering portion 47 made of thermoplastic resin. A pair of notches 48 are formed on the body covering portion 47 so as to face each other on both sides of the optical fiber core wire 42. Further, the messenger wire 44 is connected by a narrow width portion 49 so as to be separable from other portions.

以下、本発明を実施例に従ってより具体的に説明するが、本発明は下記実施例に制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely according to an Example, this invention is not restrict | limited to the following Example.

実施例1
図1(A)に示す工程において、補強繊維としてパラ系芳香族アラミド繊維のマルチフィラメント(東レデュポン社製:ケブラー29 1670dtex/1000f、破断伸度3.6%、引張弾性率490cN/dtex)が巻かれたボビンBから、ダンサー3の繰出しテンションを200cNとして繰出し、ビニルエステル樹脂(昭和高分子製、R−3130)100質量部と、熱硬化性触媒として化薬アクゾー社製の商品名「カドックスBCH50」4質量部、及び「カヤブチルB」1質量部の混合触媒を添加した未硬化状熱硬化性樹脂を収容した含浸槽5に導き、補強繊維束Fに熱硬化性樹脂を含浸させた後、段階的に形状を減少させた絞りノズル群6を経て、最終絞りノズルで1.18×0.15mmの矩形絞りノズルを通過させ、樹脂含有率を30容積%とした。直鎖状低密度ポリエチレン(日本ユニカー社製LLDPE、NUCG5361、MI=4)を円環状のダイスから押出温度170℃で溶融押出し、減圧度−10kPaで被覆厚み約0.1mmに被覆し、間隙1.40mmの平行サイジングローラ10で加圧した後、引き続いて、冷却槽11に導いて熱可塑性樹脂被覆層を冷却した。
Example 1
In the step shown in FIG. 1 (A), a para-aromatic aramid fiber multifilament (manufactured by Toray DuPont: Kevlar 29 1670 dtex / 1000f, elongation at break 3.6%, tensile modulus 490 cN / dtex) is used as the reinforcing fiber. From the wound bobbin B, the tension of the dancer 3 is extended to 200 cN, 100 parts by weight of vinyl ester resin (Showa High Polymer, R-3130), and the trade name “Cadox” manufactured by Kayaku Akzo as a thermosetting catalyst. After being led to an impregnation tank 5 containing an uncured thermosetting resin to which 4 parts by mass of BCH50 ”and 1 part by mass of“ Kayabutyl B ”are added, the reinforcing fiber bundle F is impregnated with the thermosetting resin. , After passing through the diaphragm nozzle group 6 whose shape has been reduced in stages, the final diaphragm nozzle passes through a rectangular diaphragm nozzle of 1.18 × 0.15 mm, The fat content was 30 volume%. Linear low-density polyethylene (LLDPE, NUCG5361, MI = 4 manufactured by Nihon Unicar Co., Ltd.) was melt-extruded from an annular die at an extrusion temperature of 170 ° C., coated at a reduced pressure of −10 kPa to a coating thickness of about 0.1 mm, and a gap of 1 After pressing with the parallel sizing roller 10 of 40 mm, the thermoplastic resin coating layer was subsequently cooled to the cooling tank 11.

しかる後、0.4MPa(概ね145℃)の水蒸気圧加熱硬化槽12に40m/minの速度で導いて、硬化させた。引き続き冷却水槽13を通過させ冷却した。硬化、冷却後の被覆形状が1.40×0.34mmで、FRPの外形は1.26×0.14mmの線条物1を得た。同図に示す断面拡大写真から分かるように、断面の上下の長辺は相互に平行で、円環状ダイスで被覆したことを反映して、均一厚みで被覆されており、短辺は、R状を呈していた。   Thereafter, it was guided to a steam pressure heat curing tank 12 of 0.4 MPa (approximately 145 ° C.) at a speed of 40 m / min and cured. Subsequently, it was cooled by passing through a cooling water tank 13. A linear product 1 having a coating shape after curing and cooling of 1.40 × 0.34 mm and an outer shape of FRP of 1.26 × 0.14 mm was obtained. As can be seen from the enlarged photograph of the cross section shown in the figure, the upper and lower long sides of the cross section are parallel to each other, and are coated with a uniform thickness, reflecting the fact that they are coated with an annular die, and the short side has an R shape. Was presenting.

実施例2
実施例1において、補強繊維束Fの張力を100cNとして開繊維した補強繊維束を含浸槽に導入した他は、実施例1と同様にして、熱可塑性樹脂被覆FRP線条物を得た。得られた熱可塑性樹脂被覆FRP線条物の形状及び物性は実施例1と同様であった。
Example 2
In Example 1, a thermoplastic resin-coated FRP filament was obtained in the same manner as in Example 1 except that the reinforcing fiber bundle opened with the tension of the reinforcing fiber bundle F set to 100 cN was introduced into the impregnation tank. The shape and physical properties of the obtained thermoplastic resin-coated FRP filament were the same as in Example 1.

比較例1、2
実施例1において、補強繊維束Fの張力を300cN(比較例1)、400cN(比較例2)として開繊維した補強繊維束を含浸槽に導入した他は、実施例1と同様にして熱可塑性樹脂被覆FRP線条物を得た。比較例1及び2共に、製造工程において、補強繊維束の捻回が観察され、製品は被覆線状物の長手方向に補強繊維のもつれ部が観察された。FRPの断面形状は上面と下面が平行な略矩形状ではなく、光ファイバケーブルの製造工程での不具合が懸念された。
Comparative Examples 1 and 2
In Example 1, the reinforcing fiber bundle F was set to 300 cN (Comparative Example 1) and 400 cN (Comparative Example 2), and the opened reinforcing fiber bundle was introduced into the impregnation tank. A resin-coated FRP filament was obtained. In both Comparative Examples 1 and 2, twisting of the reinforcing fiber bundle was observed in the manufacturing process, and the product was observed to be entangled with the reinforcing fiber in the longitudinal direction of the coated wire. The cross-sectional shape of the FRP is not a substantially rectangular shape in which the upper surface and the lower surface are parallel, and there has been a concern about problems in the manufacturing process of the optical fiber cable.

実施例3,4及び比較例3,4
実施例1において、熱可塑性樹脂被覆時の減圧度を−15kPa(実施例3)、減圧度0kPa(比較例3)、また、実施例1において被覆樹脂のMIを2.4g/10min(日本ユニカー社製LDPE、NUC8321)(実施例4)、1.2g/10min(日本ユニカー社製LLDPE、NUCG7651)(比較例4)とした他は実施例1と同条件で熱可塑性樹脂被覆FRP線条物を得た。実施例3及び4による熱可塑性樹脂被覆FRP線条物は、実施例1と同様の良形状のものであったが、減圧度が0kPaの比較例3では、未硬化状線条物に随伴して空気を持ち込んだ状態で被覆されるため、硬化時に発泡して被覆破れが起こるため、連続生産が不可能であった。MIを1.2g/10minとした比較例4においては、上下面での被覆厚みが不均一(即ち偏肉)となり、その結果被覆切れが発生し、長尺生産は、1000m程度が限度であった。
Examples 3 and 4 and Comparative Examples 3 and 4
In Example 1, the degree of vacuum during the thermoplastic resin coating was -15 kPa (Example 3), the degree of vacuum was 0 kPa (Comparative Example 3), and the MI of the coating resin in Example 1 was 2.4 g / 10 min (Nihon Unicar). LDPE, NUC8321) (Example 4), 1.2 g / 10 min (Nidec Unicar LLDPE, NUCG7651) (Comparative Example 4), and the same thermoplastic resin-coated FRP filaments as in Example 1. Got. The thermoplastic resin-coated FRP filaments according to Examples 3 and 4 had the same good shape as in Example 1, but in Comparative Example 3 with a degree of vacuum of 0 kPa, the uncured filaments were accompanied. In this case, since the coating is performed in a state where air is brought in, foaming occurs at the time of curing and the coating is broken, so that continuous production is impossible. In Comparative Example 4 in which MI was 1.2 g / 10 min, the coating thickness on the upper and lower surfaces was uneven (that is, uneven thickness), resulting in the occurrence of coating breakage, and the long production was limited to about 1000 m. It was.

実施例5,及び6
実施例1において、最終絞りノズルの、孔の幅及び厚み寸法を0.97×0.21mmに変更し、実施例1よりノズル孔の断面積を大きくし、減圧度を−5kPaとした以外は実施例1と同様にして熱可塑性樹脂被覆FRP線条物を得た(実施例5)。得られたFRP部の樹脂含有率は42Vol.%で、幅及び厚み寸法は1.02×0.20mmであった。
次に熱硬化性樹脂組成物に日東粉化工業株式会社製炭酸カルシウム(NS#200、平均粒径約2.0μm)を1質量部添加した樹脂組成とし、減圧度を−10kPaとした以外は実施例5と同様にして熱可塑性樹脂被覆FRP線条物を得た(実施例6)。得られたFRP部の樹脂含有率は41Vol.%で、幅及び厚み寸法は1.02×0.20mmであった。
実施例5及び6のいずれの熱可塑性樹脂被覆FRP線条物もFRP形状は良好であった。
Examples 5 and 6
In Example 1, except that the hole width and thickness dimension of the final aperture nozzle were changed to 0.97 × 0.21 mm, the cross-sectional area of the nozzle hole was made larger than that in Example 1, and the degree of vacuum was −5 kPa. A thermoplastic resin-coated FRP filament was obtained in the same manner as in Example 1 (Example 5). The resin content of the obtained FRP part was 42 Vol. %, The width and thickness dimensions were 1.02 × 0.20 mm.
Next, except that 1 part by mass of calcium carbonate (NS # 200, average particle size of about 2.0 μm) manufactured by Nitto Flour Chemical Co., Ltd. was added to the thermosetting resin composition, and the degree of vacuum was −10 kPa. A thermoplastic resin-coated FRP filament was obtained in the same manner as in Example 5 (Example 6). The resin content of the obtained FRP part was 41 Vol. %, The width and thickness dimensions were 1.02 × 0.20 mm.
The FRP shape of each of the thermoplastic resin-coated FRP filaments of Examples 5 and 6 was good.

比較例5
実施例1において、最終絞りノズルの、孔の幅及び厚み寸法を1.10×0.25mmに変更し、実施例1よりノズル孔の断面積を大きくした以外は実施例1と同様にして熱可塑性樹脂被覆FRP線条物を得たが、得られたFRP部の樹脂含有率は57Vol.%で、平行サイジングローラ10で加圧サイジングする際に熱硬化性樹脂が被覆ダイス側に逆流し、この熱硬化性樹脂が溶融状被覆コーンに接触したため被覆破れが発生した。その結果連続生産が不可能であった。
Comparative Example 5
In Example 1, heat was applied in the same manner as in Example 1 except that the hole width and thickness of the final aperture nozzle were changed to 1.10 × 0.25 mm and the cross-sectional area of the nozzle hole was made larger than that in Example 1. A plastic resin-coated FRP filament was obtained, but the resin content of the obtained FRP part was 57 Vol. %, When the pressure sizing was performed by the parallel sizing roller 10, the thermosetting resin flowed back to the coating die side, and the thermosetting resin contacted the molten coating cone. As a result, continuous production was impossible.

比較例6
絞りノズル群及び最終絞りノズルを円形状とし、最終絞りノズルの孔形状をφ0.48mmとした以外は、実施例1と同様にして熱可塑性樹脂被覆FRP線条物を得た。得られたFRP部の樹脂含有率は31Vol.%で、断面形状は図8の断面写真に示す如くであって、長辺の上下二辺が平行ではなく、楕円状であり、FRP部においても、補強繊維の存在が不均一となり、塊状の熱硬化性樹脂が点在し、本発明の実施例1によるFRP部と比較して、形状の均一性が劣っていた。
以上の実施例、比較例の条件及び形状等について、まとめて表2に示す。
Comparative Example 6
A thermoplastic resin-coated FRP filament was obtained in the same manner as in Example 1 except that the aperture nozzle group and the final aperture nozzle were circular and the hole shape of the final aperture nozzle was φ0.48 mm. The resin content of the obtained FRP part was 31 Vol. %, The cross-sectional shape is as shown in the cross-sectional photograph of FIG. 8, the upper and lower sides of the long side are not parallel, and are elliptical, and the presence of the reinforcing fiber is non-uniform even in the FRP part, and the shape is The thermosetting resin was scattered and the shape uniformity was inferior compared with the FRP part by Example 1 of this invention.
The conditions and shapes of the above examples and comparative examples are collectively shown in Table 2.

比較例の製造条件では補強繊維のもつれの発生、減圧度に起因する発泡現象の発生、熱可塑性被覆樹脂の破れ発生、FRP内部の補強繊維の不均一等が発生した。一方、実施例の条件ではいずれも製造上の問題は発生せず、従来製造できなかったFRP部が矩形状であり、かつ短辺が0.3mm未満のFRP熱可塑性被覆線状物が得られた。   Under the manufacturing conditions of the comparative example, entanglement of reinforcing fibers, occurrence of foaming phenomenon due to the degree of decompression, tearing of the thermoplastic coating resin, unevenness of reinforcing fibers inside the FRP, and the like occurred. On the other hand, none of the production problems occurred under the conditions of the examples, and the FRP thermoplastic coated wire having a rectangular FRP portion and a short side of less than 0.3 mm, which could not be produced conventionally, was obtained. It was.

本発明の製造方法によれば、略矩形状の熱可塑性樹脂被覆FRP線条物であって、略矩形の断面の長辺側の上下二辺が相互に平行で、かつ補強繊維が均一に分散された略矩形状の熱可塑性樹脂被覆FRP線条物を生産性よく、かつ高い歩留まりで得ることができるので、ドロップ光ファイバケーブルのテンションメンバ等や、細径のFRP線条物の製造方法として有効に利用できる。
本発明の略矩形状の熱可塑性樹脂被覆FRP線条物は、長手方向に均一性を有しているので、これをドロップ光ファイバケーブルのテンションメンバとして使用する場合にも、製造上のトラブルや、品質上の問題のない、生産性及び品質の安定したドロップ光ファイバケーブル用テンションメンバとして有効に利用できる。
本発明による光ファイバケーブルは、最小曲げ半径が小さい、軽量、細径化されたノンメタリック型のドロップ光ファイバケーブルとして有効に利用できる。
According to the manufacturing method of the present invention, a substantially rectangular thermoplastic resin-coated FRP filament, the upper and lower sides on the long side of the substantially rectangular cross section are parallel to each other, and the reinforcing fibers are uniformly dispersed Since a substantially rectangular thermoplastic resin-coated FRP filament can be obtained with high productivity and high yield, it can be used as a manufacturing method for a tension member of a drop optical fiber cable or a small-diameter FRP filament. It can be used effectively.
Since the substantially rectangular thermoplastic resin-coated FRP filament of the present invention has uniformity in the longitudinal direction, even when it is used as a tension member of a drop optical fiber cable, manufacturing troubles and It can be effectively used as a tension member for a drop optical fiber cable with no problem in quality and stable in productivity and quality.
The optical fiber cable according to the present invention can be effectively used as a non-metallic drop optical fiber cable that has a small minimum bending radius and is light and thin.

1、43 熱可塑性樹脂被覆FRP線条物(被覆付きFRPTM)
1a 未硬化状FRP線条物
1b 熱可塑性樹脂被覆未硬化状FRP線条物
2 テンションバー
3 張力調整ガイド
4 ガイドバー
5 樹脂含浸槽
6 絞りノズル群
7 溶融押出機
8 クロスヘッド部
9 平行ロール
10 冷却水槽
11 加熱硬化槽
12 冷却水槽
13 ネルソンローラー(引取機)
14 巻取り装置
41 ドロップ光ファイバケーブル
42 光ファイバ心線
43 略矩形状被覆付きFRPTM
44 メッセンジャーワイヤー(支持線)
45 FRP部
46 被覆部
47 本体被覆部
48 ノッチ
49 細幅部
60 最終絞りノズル
61 給水パイプ
62 排水パイプ
90 樹脂導管部
91 円環状ダイス
93 減圧用パイプ接続端
94 コーン状熱可塑性樹脂の内部
95 コーン状熱可塑性樹脂(被覆コーン)
F 補強繊維束
B ボビン
R 2本の非回転バー
H 先端部
TB1 第1のテンションバー
DB ダンサー(揺動子)
G スリット状ガイド
T 未硬化線状物と被覆樹脂との接点
1, 43 Thermoplastic resin-coated FRP filaments (FRPTM with coating)
DESCRIPTION OF SYMBOLS 1a Uncured FRP filament 1b Thermoplastic-resin-coated uncured FRP filament 2 Tension bar 3 Tension adjustment guide 4 Guide bar 5 Resin impregnation tank 6 Drawing nozzle group 7 Melt extruder 8 Crosshead part 9 Parallel roll 10 Cooling water tank 11 Heat curing tank 12 Cooling water tank 13 Nelson roller (take-up machine)
14 Winding device 41 Drop optical fiber cable 42 Optical fiber core wire 43 FRPTM with substantially rectangular coating
44 Messenger wire (support wire)
45 FRP portion 46 covering portion 47 main body covering portion 48 notch 49 narrow width portion 60 final throttle nozzle 61 water supply pipe 62 drainage pipe 90 resin conduit portion 91 annular die 93 pressure reducing pipe connection end 94 inside of cone-shaped thermoplastic resin 95 cone Thermoplastic resin (coated cone)
F Reinforcing fiber bundle B Bobbin R Two non-rotating bars H Tip section TB1 First tension bar DB Dancer (oscillator)
G Slit-shaped guide T Contact between uncured linear material and coating resin

Claims (8)

有機合成繊維からなる補強繊維束に未硬化の熱硬化性樹脂組成物を含浸させる含浸工程(1)、熱硬化性樹脂組成物を含浸させた補強繊維束を矩形の孔形状を有する絞りノズルを使用し、所定の矩形状に賦形する絞り成形工程(2)、絞り成形した矩形状未硬化線条物の外周面に、円環状のダイスから溶融状の熱可塑性樹脂をコーン状に吐出して被覆層を形成する被覆工程(3)、所定の間隙の平行ロールで挟圧して扁平状に賦形するサイジング工程(4)、前記被覆層を冷却水槽に導いて冷却固化する冷却固化工程(5)、前記熱硬化性樹脂を硬化させる加熱硬化工程(6)を含むFRP線条物の製造方法であって、
前記含浸工程(1)は、有機合成繊維からなる補強繊維束を、当該補強繊維束が巻かれたボビンから巻が解除する方向に引き出し、補強繊維束1本当たり40cN以上、280cN以下の張力下に補強繊維束を実質的に無撚り状態に開繊して熱硬化性樹脂を収容した含浸槽に導入してなり、FRP線条物の樹脂含有率を45重量%以下とし、かつ、前記被覆工程(3)は、矩形状未硬化線条物の外周に接触する前において、MIが2g/10分以上のポリオレフィン系熱可塑性樹脂を円環状のダイスから吐出したコーン状熱可塑性樹脂の内部側を減圧状態として被覆する、ことを特徴とする、長手方向垂直断面におけるFRP部短辺が0.3mm未満の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法。
An impregnation step (1) of impregnating a reinforcing fiber bundle made of organic synthetic fiber with an uncured thermosetting resin composition, a squeezing nozzle having a rectangular hole shape for the reinforcing fiber bundle impregnated with the thermosetting resin composition Using the drawing process (2), which is shaped into a predetermined rectangular shape, the molten thermoplastic resin is discharged in a cone shape from an annular die onto the outer peripheral surface of the drawn rectangular uncured filament. A covering step (3) for forming a covering layer, a sizing step (4) for forming a flat shape by pressing with parallel rolls of a predetermined gap, and a cooling and solidifying step for cooling and solidifying the covering layer by introducing it into a cooling water bath ( 5) A method for producing an FRP filamentous article comprising a heat curing step (6) for curing the thermosetting resin,
In the impregnation step (1), the reinforcing fiber bundle made of organic synthetic fiber is pulled out from the bobbin around which the reinforcing fiber bundle is wound, and the tension is reduced to 40 cN or more and 280 cN or less per reinforcing fiber bundle. The reinforcing fiber bundle is opened in a substantially untwisted state and introduced into an impregnation tank containing a thermosetting resin, the resin content of the FRP filament is 45% by weight or less, and the coating Step (3) is an inner side of a cone-shaped thermoplastic resin in which a polyolefin-based thermoplastic resin having an MI of 2 g / 10 min or more is discharged from an annular die before contacting the outer periphery of the rectangular uncured filament. A method for producing a substantially rectangular thermoplastic resin-coated FRP filament having a short side of the FRP portion in the longitudinal vertical cross section of less than 0.3 mm, characterized in that the coating is coated in a reduced pressure state.
前記含浸工程(1)は、補強繊維束を実質的に無撚り状態に開繊する手段が、補強繊維束を繰り出す巻取りボビンから熱硬化性樹脂を収容した含浸槽導入前の補強繊維束のガイド間に、張力調整ガイドを設け、かつ、張力調整ガイドを含む全てのガイドを直径20mm以下の非回転のガイドバーとし、表面粗度Raを1μm以下としてなる、請求項1に記載の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法。 In the impregnation step (1), the means for opening the reinforcing fiber bundle in a substantially non-twisted state is a method of introducing the reinforcing fiber bundle before introducing the impregnation tank containing the thermosetting resin from the winding bobbin for feeding the reinforcing fiber bundle. 2. The substantially rectangular shape according to claim 1 , wherein a tension adjustment guide is provided between the guides, and all the guides including the tension adjustment guide are non-rotating guide bars having a diameter of 20 mm or less, and the surface roughness Ra is 1 μm or less. A method for producing a thermoplastic resin-coated FRP filament having a shape. 前記ガイドバーは、鏡面加工ハードクロムメッキを施してなる、請求項2に記載の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法。 The method for producing a substantially rectangular thermoplastic resin-coated FRP filament according to claim 2, wherein the guide bar is mirror-finished hard chrome plated. 前記熱硬化性樹脂がビニルエステル樹脂である請求項1〜3のいずれかに記載の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法。 The said thermosetting resin is vinyl ester resin, The manufacturing method of the substantially rectangular-shaped thermoplastic resin coating | cover FRP filament in any one of Claims 1-3. 有機合成繊維の引張弾性率が360cN/dtex以上で、かつ、破断時における伸度が3.5%以上である請求項1〜4のいずれかに記載の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法。 The substantially rectangular thermoplastic resin-coated FRP wire according to any one of claims 1 to 4, wherein the organic elastic fiber has a tensile elastic modulus of 360 cN / dtex or more and an elongation at break of 3.5% or more. Manufacturing method of the article. 有機合成繊維が芳香族ポリアミド繊維である請求項1〜5のいずれかに記載の略矩形状の熱可塑性樹脂被覆FRP線条物の製造方法。 The method for producing a substantially rectangular thermoplastic resin-coated FRP filamentous material according to any one of claims 1 to 5, wherein the organic synthetic fiber is an aromatic polyamide fiber. 請求項1〜6のいずれかに記載の製造方法により得られたことを特徴とする略矩形状の熱可塑性樹脂被覆FRP線条物。 A substantially rectangular thermoplastic resin-coated FRP filament obtained by the production method according to claim 1. 請求項7に記載の略矩形状の熱可塑性樹脂被覆FRP線条物をテンションメンバとして使用してなることを特徴とするドロップ光ファイバケーブル。 A drop optical fiber cable comprising the substantially rectangular thermoplastic resin-coated FRP filament according to claim 7 as a tension member.
JP2009186703A 2009-08-11 2009-08-11 Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament Active JP5431827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186703A JP5431827B2 (en) 2009-08-11 2009-08-11 Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186703A JP5431827B2 (en) 2009-08-11 2009-08-11 Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament

Publications (2)

Publication Number Publication Date
JP2011037133A JP2011037133A (en) 2011-02-24
JP5431827B2 true JP5431827B2 (en) 2014-03-05

Family

ID=43765427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186703A Active JP5431827B2 (en) 2009-08-11 2009-08-11 Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament

Country Status (1)

Country Link
JP (1) JP5431827B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6445822B2 (en) * 2014-09-26 2018-12-26 帝人株式会社 Reinforcing fiber bundles, reinforcing fiber bundle opening device, and reinforcing fiber bundle opening method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768544A (en) * 1993-09-01 1995-03-14 Showa Denko Kk Impregnation of fiber bundle with resin
JPH07178828A (en) * 1993-12-21 1995-07-18 Sekisui Chem Co Ltd Production of pultrusion molding
JPH08258167A (en) * 1995-03-27 1996-10-08 Showa Denko Kk Manufacture of fiber reinforced resin structure
CN1115242C (en) * 1997-11-07 2003-07-23 宇部日东化成株式会社 Fiber-reinforced composite hollow structure, method for prodn. thereof, and apparatus therefor
JP4077300B2 (en) * 2002-11-11 2008-04-16 宇部日東化成株式会社 Drop optical fiber cable
JP2005148373A (en) * 2003-11-14 2005-06-09 Ube Nitto Kasei Co Ltd Frp made tension member and drop optical fiber cable
JP2004302373A (en) * 2003-04-01 2004-10-28 Fuji Photo Film Co Ltd Optical fiber coating method and coating device
JP2005049658A (en) * 2003-07-29 2005-02-24 Furukawa Electric Co Ltd:The Optical fiber cable
JP4156498B2 (en) * 2003-11-28 2008-09-24 宇部日東化成株式会社 Manufacturing method of FRP for drop optical cable
JP2006058775A (en) * 2004-08-23 2006-03-02 Fuji Photo Film Co Ltd Method of coating plastic optical fiber
JP5064944B2 (en) * 2007-09-06 2012-10-31 古河電気工業株式会社 Fiber optic cable
JP2009172995A (en) * 2007-12-27 2009-08-06 Ube Nitto Kasei Co Ltd Thermoplastic resin-coated frp cable and method of manufacturing the same

Also Published As

Publication number Publication date
JP2011037133A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
WO2020253158A1 (en) Binding-yarn-layer-free stranded optical cable and manufacturing method therefor
US20230241837A1 (en) Continuous Fiber Reinforced Thermoplastic Resin Composite Material and Method for Producing Same
JP3777145B2 (en) Glass fiber reinforced thermoplastic resin pellet and method for producing the same
JP6150422B2 (en) Fiber optic cable
JP2009172995A (en) Thermoplastic resin-coated frp cable and method of manufacturing the same
JP5467828B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin pellets
US7421169B2 (en) Optical fiber cable
JP5431827B2 (en) Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament
JP4906522B2 (en) Method and apparatus for manufacturing thermoplastic resin-coated FRP filaments
JP7031821B2 (en) Fiber reinforced resin tubular body and its manufacturing method
JP4077300B2 (en) Drop optical fiber cable
JPH01174413A (en) Composite yarn prepreg
JP4829865B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin pellets
JP2006089154A (en) Traverser and winder of fiber bundle, and fiber bundle package manufacturing device
JP3368642B2 (en) Single groove spiral slot and method for manufacturing the same
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP2018016733A (en) Long fiber reinforced thermoplastic resin linear article and manufacturing method therefor
JP4282128B2 (en) Method for producing aramid fiber reinforced curable resin wire
JPH07257818A (en) Roving package
JPH07228422A (en) Package for roving
CN219133302U (en) Continuous fiber reinforced thermoplastic composite sheet and production system
JP4216417B2 (en) Winding method of spacer for optical fiber cable
JP4134500B2 (en) Optical fiber cable manufacturing method and manufacturing apparatus
JP3671601B2 (en) How to unwind glass roving
JP2007321060A (en) Coated fiber-reinforced synthetic resin linear material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5431827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250