JP2007321060A - Coated fiber-reinforced synthetic resin linear material - Google Patents

Coated fiber-reinforced synthetic resin linear material Download PDF

Info

Publication number
JP2007321060A
JP2007321060A JP2006152973A JP2006152973A JP2007321060A JP 2007321060 A JP2007321060 A JP 2007321060A JP 2006152973 A JP2006152973 A JP 2006152973A JP 2006152973 A JP2006152973 A JP 2006152973A JP 2007321060 A JP2007321060 A JP 2007321060A
Authority
JP
Japan
Prior art keywords
fiber
synthetic resin
side reinforcing
reinforced synthetic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006152973A
Other languages
Japanese (ja)
Inventor
Yuki Meguro
祐樹 目黒
Takahisa Takada
隆久 高田
Masaru Mizuno
大 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP2006152973A priority Critical patent/JP2007321060A/en
Publication of JP2007321060A publication Critical patent/JP2007321060A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated fiber-reinforced synthetic resin linear material ensuring easiness of production and reducing dispersion of performances by regularly arranging organic fibers and inorganic fibers. <P>SOLUTION: The fiber-reinforced synthetic resin linear material 10 comprises reinforcing fibers 12 on the core side composed of the inorganic fibers, reinforcing fibers 14 on the sheath side composed of the organic fibers, a matrix resin 16 interposed between the inorganic fibers and the organic fibers and an outer peripheral coating layer 18. The reinforcing fibers 12 on the core side can be composed of glass fibers and the reinforcing fibers 14 on the sheath side are arranged in a nearly true circular shape on the outer periphery thereof. The reinforcing fibers 14 on the sheath side are composed of the organic fibers such as a polyester. The reinforcing fibers 12 on the core side and the reinforcing fibers 14 on the sheath side are impregnated with the matrix resin 16 which is composed of a thermosetting resin. The outer periphery coating layer 18 is formed so as to coat the outer periphery of the reinforcing fibers 14 on the sheath side and composed of a thermoplastic resin. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被覆付き繊維強化合成樹脂線状物に関し、特に、光ファイバケーブルなどの抗張力体として用いられる被覆付き繊維強化合成樹脂線状物の性能のバラツキを少なくし、かつ、安価にして容易に製造することができる技術に関する。   The present invention relates to a coated fiber reinforced synthetic resin linear material, and in particular, reduces variation in performance of a coated fiber reinforced synthetic resin linear material used as a tensile body such as an optical fiber cable, and is easy to make inexpensive. It relates to technology that can be manufactured.

光ファイバケーブルなどに用いられる被覆付き繊維強化合成樹脂線状物のテンションメンバーは、従来、ガラス繊維単体やアラミド繊維単体で行っていた。ガラス繊維を補強繊維とする被覆付き繊維強化合成樹脂線状物は、引張り強力や引張り弾性率は、テンションメンバーとして問題のない性能であるが、最小曲げ直径(円弧上に曲げた時テンションメンバーが破壊する限界の直径)が大きいという欠点があった。   Conventionally, a tension member of a coated fiber-reinforced synthetic resin wire used for an optical fiber cable or the like has been conventionally made of glass fiber alone or aramid fiber alone. The fiber-reinforced synthetic resin coated fiber with glass fiber as the reinforcing fiber has no problem as a tension member in terms of tensile strength and tensile modulus, but the minimum bending diameter (when the tension member is bent on an arc, There was a drawback that the diameter of the limit of destruction) was large.

一方、アラミド繊維を補強繊維とする被覆付き繊維強化合成樹脂線状物は、引張り強力や引張り弾性率は、過剰品質並みであり、また、最小曲げ直径も被覆付きガラス繊維強化樹脂線状物よりも良好の性能を備えているが、アラミド繊維は、非常に高価な繊維であるという欠点があった。
そこで、特許文献1には、補強繊維として、ガラス繊維などの無機繊維と、アラミド繊維などの有機繊維とを併用した被覆付き繊維強化樹脂線状物が提案されている。この特許文献1に提案されている被覆付き繊維強化合成樹脂線状物は、高性能を維持しつつ、比較的低価格で製造できるという期待があるものの、以下に説明する技術的な課題もあった。
特開2005−281441
On the other hand, the coated fiber reinforced synthetic resin linear material using aramid fiber as the reinforcing fiber has the same tensile strength and tensile modulus as the excess quality, and the minimum bending diameter is more than that of the coated glass fiber reinforced resin linear material. However, aramid fibers have a drawback that they are very expensive fibers.
Therefore, Patent Document 1 proposes a coated fiber-reinforced resin linear material using inorganic fibers such as glass fibers and organic fibers such as aramid fibers in combination as reinforcing fibers. Although the coated fiber-reinforced synthetic resin linear material proposed in Patent Document 1 is expected to be manufactured at a relatively low price while maintaining high performance, there are also technical problems described below. It was.
JP2005-281441

すなわち、特許文献1に提案されている被覆付き繊維強化合樹脂線状物は、無機繊維と有機繊維が不規則に配置されている為に、最小曲げが大きく、しかも、無機繊維と有機繊維との偏在(バラツキ、ないしは斑)が大きく、性能のバラツキが大きくなるという欠点があった。   That is, the coated fiber reinforced composite resin linear material proposed in Patent Document 1 has a large minimum bend because inorganic fibers and organic fibers are irregularly arranged, and the inorganic fibers and organic fibers There is a disadvantage in that the uneven distribution (variation or unevenness) is large and the variation in performance becomes large.

本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、有機繊維と無機繊維とを規則的に配置することで、製造の容易性を確保し、かつ、性能のバラツキを小さくすることができる被覆付き繊維強化合成樹脂線状物を提供することにある。   The present invention has been made in view of such conventional problems, and the object of the present invention is to ensure the ease of manufacturing by regularly arranging organic fibers and inorganic fibers. And it is providing the fiber-reinforced synthetic resin linear material with a coating | cover which can make the dispersion | variation in performance small.

上記目的を達成するために、本発明は、無機繊維からなる芯側補強繊維と、有機繊維からなる鞘側補強繊維と、前記無機繊維と前記有機繊維との間に介在するマトリックス樹脂と、前記鞘側補強繊維の外周を覆う外周被覆層とを含む被覆付き繊維強化合成樹脂線状物であって、前記芯側補強繊維の外周に、前記鞘側補強繊維が、当該芯側補強繊維の周囲を包囲するように、真円状に配置した。   To achieve the above object, the present invention provides a core-side reinforcing fiber made of inorganic fibers, a sheath-side reinforcing fiber made of organic fibers, a matrix resin interposed between the inorganic fibers and the organic fibers, A coated fiber-reinforced synthetic resin linear object including an outer periphery covering layer covering an outer periphery of the sheath side reinforcing fiber, wherein the sheath side reinforcing fiber is disposed around the core side reinforcing fiber on the outer periphery of the core side reinforcing fiber. It was arranged in a perfect circle so as to surround.

このように構成した被覆付き繊維強化合成樹脂線状物によれば、芯側補強繊維の外周に、鞘側補強繊維が当該芯側補強繊維の周囲を包囲するように、真円状に配置されているので、無機繊維と有機繊維との偏在がなくなり、性能のバラツキが非常に小さくなる。また、芯側補強繊維の外周に、鞘側補強繊維を真円状に配置する構成なので、製造も簡単に行える。   According to the coated fiber-reinforced synthetic resin linear material configured as described above, the sheath-side reinforcing fiber is arranged in a perfect circle around the core-side reinforcing fiber so as to surround the core-side reinforcing fiber. Therefore, uneven distribution of inorganic fibers and organic fibers is eliminated, and the variation in performance becomes very small. Further, since the sheath side reinforcing fibers are arranged in a perfect circle on the outer periphery of the core side reinforcing fibers, the manufacturing can be easily performed.

前記芯側補強繊維は、ガラス繊維で構成することができる。
前記鞘側補強繊維は、ポリエステル等の有機繊維で構成することができる。
前記マトリックス樹脂は、熱硬化性樹脂で構成することができる。
The core side reinforcing fiber can be made of glass fiber.
The sheath side reinforcing fiber can be composed of an organic fiber such as polyester.
The matrix resin can be composed of a thermosetting resin.

前記被覆付き繊維強化合成樹脂線状物は、最小曲げ直径が6mm以下で、且つ、均一性を有する構成とすることができる。   The coated fiber-reinforced synthetic resin linear material may have a minimum bending diameter of 6 mm or less and a uniformity.

前記被覆付き繊維強化合成樹脂線状物は、直径が1mm以下で、且つ、均一性を有する構成とすることができる。   The coated fiber-reinforced synthetic resin linear material may have a diameter of 1 mm or less and uniformity.

前記被覆付き繊維強化合成樹脂線状物は、前記芯側補強繊維と、前記鞘側補強繊維、および、前記外周被覆層が、同真円状に配置され、その偏平率(真円率)が、7%以下(93%以上)とすることができる。   In the coated fiber-reinforced synthetic resin linear object, the core-side reinforcing fiber, the sheath-side reinforcing fiber, and the outer peripheral covering layer are arranged in the same circular shape, and the flatness (roundness) is , 7% or less (93% or more).

前記被覆付き維強化合成樹脂線状物は、前記芯側補強繊維と、前記鞘側補強繊維、および、前記外周被覆層が、同真円状に配置され、熱収縮に対する特性を均一とすることができる。   In the coated fiber reinforced synthetic resin linear article, the core side reinforcing fiber, the sheath side reinforcing fiber, and the outer peripheral covering layer are arranged in the same circle shape, and the characteristics against heat shrinkage are made uniform. Can do.

前記被覆付き維強化合成樹脂線状物は、前記芯側補強繊維と、前記鞘側補強繊維、および、前記外周被覆層が、同真円状に配置され、前記マトリックス樹脂と前記外周被覆層との間の密着力を、8kg/10mm以上とすることができる。   In the coated fiber-reinforced synthetic resin linear object, the core-side reinforcing fiber, the sheath-side reinforcing fiber, and the outer peripheral covering layer are arranged in the same circle, and the matrix resin and the outer peripheral covering layer The adhesion between the two can be 8 kg / 10 mm or more.

本発明にかかる被覆付き繊維強化合成樹脂線状物によれば、有機繊維と無機繊維とを規則的に配置することで、製造の容易性を確保し、かつ、性能のバラツキを小さくすることができる。   According to the coated fiber-reinforced synthetic resin linear material according to the present invention, by arranging organic fibers and inorganic fibers regularly, it is possible to ensure the ease of manufacturing and reduce the variation in performance. it can.

以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。図1は、本発明にかかる被覆付き繊維強化合成樹脂線状物の一実施例を示している。同図は、繊維強化合成樹脂線状物の縦断面図であり、線状物10は、無機繊維からなる芯側補強繊維12と、有機繊維からなる鞘側補強繊維14と、無機繊維と有機繊維との間に介在するマトリックス樹脂16と、外周被覆層18とを含んでいる。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of a coated fiber-reinforced synthetic resin wire according to the present invention. FIG. 1 is a longitudinal sectional view of a fiber reinforced synthetic resin linear object. The linear object 10 includes a core side reinforcing fiber 12 made of inorganic fibers, a sheath side reinforcing fiber 14 made of organic fibers, inorganic fibers and organic fibers. A matrix resin 16 interposed between the fibers and an outer peripheral coating layer 18 are included.

芯側補強繊維12は、ガラス繊維で構成することができ、本実施例の場合、芯側補強繊維12は、線状物10の断面の中心に配置され、外形は、ほぼ真円状に形成されている。   The core side reinforcing fiber 12 can be composed of glass fiber. In the case of the present embodiment, the core side reinforcing fiber 12 is arranged at the center of the cross section of the linear object 10, and the outer shape is formed in a substantially circular shape. Has been.

鞘側補強繊維14は、芯側補強繊維12の外周にあって、これを包囲するように配置されていて、外形が略真円状に形成されている。鞘側補強繊維14は、ガラス繊維よりも単糸径が大きいポリエステル等の有機繊維で構成されている。   The sheath side reinforcing fiber 14 is disposed on the outer periphery of the core side reinforcing fiber 12 so as to surround the core side reinforcing fiber 12, and the outer shape thereof is formed in a substantially perfect circle shape. The sheath side reinforcing fiber 14 is made of an organic fiber such as polyester having a single yarn diameter larger than that of the glass fiber.

マトリックス樹脂16は、芯側補強繊維12と鞘側補強繊維14とに含浸されるものであって、熱硬化性樹脂で構成する。外周被覆層18は、鞘側補強繊維14の外周を被覆するように形成され、熱可塑性樹脂で構成される。   The matrix resin 16 is impregnated into the core side reinforcing fiber 12 and the sheath side reinforcing fiber 14 and is made of a thermosetting resin. The outer periphery covering layer 18 is formed so as to cover the outer periphery of the sheath side reinforcing fiber 14 and is made of a thermoplastic resin.

本実施例の被覆付き繊維強化合成樹脂線状物10は、最小曲げ直径が6mm以下で、且つ、均一性を有するように構成することが望ましい。また、被覆付き繊維強化合成樹脂線状物10は、直径が1mm以下で、且つ、均一性を有するように構成することができる。   It is desirable that the coated fiber-reinforced synthetic resin linear material 10 of the present embodiment has a minimum bending diameter of 6 mm or less and has uniformity. Moreover, the fiber-reinforced synthetic resin linear article 10 with a coating | coated can be comprised so that a diameter may be 1 mm or less and it has uniformity.

さらに、被覆付き繊維強化合成樹脂線状物10は、芯側補強繊維12と、鞘側補強繊維14、および、外周被覆層18が、同真円状に配置され、その偏平率(真円率)が、7%以下(93%以上)とすることができる。   Furthermore, the coated fiber-reinforced synthetic resin linear article 10 includes a core-side reinforcing fiber 12, a sheath-side reinforcing fiber 14, and an outer peripheral covering layer 18 arranged in the same circular shape, and its flatness (roundness ratio) ) Can be 7% or less (93% or more).

また、被覆付き維強化合成樹脂線状物10は、芯側補強繊維12と、鞘側補強繊維14、および、外周被覆層18が、同真円状に配置され、熱収縮に対する特性を均一とすることができる。   In addition, the coated fiber reinforced synthetic resin linear article 10 has the core side reinforcing fiber 12, the sheath side reinforcing fiber 14, and the outer peripheral covering layer 18 arranged in the same circular shape, and has uniform characteristics against heat shrinkage. can do.

さらにまた、被覆付き維強化合成樹脂線状物10は、芯側補強繊維12と、鞘側補強繊維14、および、外周被覆層18が、同真円状に配置され、マトリックス樹脂16と外周被覆層18との間の密着力を、8kg/10mm以上とすることができる。   Furthermore, the coated fiber reinforced synthetic resin linear article 10 includes a core side reinforcing fiber 12, a sheath side reinforcing fiber 14, and an outer peripheral covering layer 18 arranged in a perfect circle, and the matrix resin 16 and the outer peripheral covering. The adhesive force between the layers 18 can be 8 kg / 10 mm or more.

本発明において、外周被覆層18を設けることの技術的意義は、以下の理由に基づいている。すなわち、繊維強化樹脂線状物10に外周被覆層18を設けない場合には、通常、次の工程でケーブル化する場合、更に、その外周に、例えば、PE樹脂の被覆工程があり、これを接着させて一体化させるのが必須にある。ここで、線状物10が被覆無であれば、二回に分けてPE被覆をしなければならない。更に環境下での伸縮を考えた場合に被覆付であれば、伸縮の緩和効果が期待できる。   In the present invention, the technical significance of providing the outer peripheral coating layer 18 is based on the following reason. That is, when the outer peripheral coating layer 18 is not provided on the fiber reinforced resin linear article 10, normally, when the cable is formed in the next step, there is, for example, a PE resin coating step on the outer periphery. It is essential to bond and integrate them. Here, if the linear object 10 is uncoated, PE coating must be performed in two steps. In addition, if expansion / contraction in the environment is considered, if the coating is provided, an expansion / contraction relaxation effect can be expected.

マトリックス樹脂16を適切な含有率にすることで、物性面で最小曲げが良好になるので、可能な限り、マトリックス樹脂の量を低減する方向が望ましい。余分なマトリックス樹脂16は、最小曲げ特性に影響を及ぼすので、過剰なマトリックス樹脂は、排除する。   By setting the matrix resin 16 to an appropriate content, the minimum bending becomes favorable in terms of physical properties. Therefore, it is desirable to reduce the amount of the matrix resin as much as possible. Since excess matrix resin 16 affects the minimum bending properties, excess matrix resin is eliminated.

以上のように構成された被覆付き繊維強化合成樹脂線状物10によれば、芯側補強繊維12の外周に、鞘側補強繊維14が真円状に配置されているので、無機繊維と有機繊維との偏在がなくなり、性能のバラツキが非常に小さくなる。この結果、熱による収縮率及び熱処理後のサンプル形状の安定性に寄与する。   According to the coated fiber-reinforced synthetic resin linear article 10 configured as described above, since the sheath-side reinforcing fibers 14 are arranged in a perfect circle on the outer periphery of the core-side reinforcing fibers 12, inorganic fibers and organic The uneven distribution with the fibers is eliminated, and the variation in performance becomes very small. As a result, it contributes to the shrinkage rate due to heat and the stability of the sample shape after heat treatment.

また、真円状であれば最小曲げの絶対値及びバラツキも小さい為、標準偏差値も小さくなる。真円状でないものは、最小曲げ絶対値及び標準偏差値は大きくなる。さらに、芯側補強繊維12の外周に、鞘側補強繊維14を真円状に配置する構成なので、製造も簡単に行える。   In addition, since the absolute value and variation of the minimum bending are small if the shape is a perfect circle, the standard deviation value is also small. In the case of a non-circular shape, the minimum bending absolute value and the standard deviation value are large. Furthermore, since the sheath side reinforcing fibers 14 are arranged in a perfect circle on the outer periphery of the core side reinforcing fibers 12, the manufacturing can be easily performed.

以下に、より具体的な実施例について説明する。   Hereinafter, more specific examples will be described.

[具体例1]
芯側補強繊維12には、日東紡績(株)製のガラス繊維(商品名:Eガラス、ECE225=7μm)を使用し、また、鞘側補強繊維14には、帝人テクノプロダクツ(株)製ポリエステル繊維(商品名:N300H、280T48)を使用した。外周被覆層18の形成樹脂には、LLDPE(C4タイプ、MFR=2.0)を使用した。
[Specific Example 1]
The core side reinforcing fiber 12 is made of glass fiber (trade name: E glass, ECE225 = 7 μm) manufactured by Nitto Boseki Co., and the sheath side reinforcing fiber 14 is polyester manufactured by Teijin Techno Products Co., Ltd. Fiber (trade name: N300H, 280T48) was used. LLDPE (C4 type, MFR = 2.0) was used as the resin for forming the outer peripheral coating layer 18.

複数のクリールスタンドからガラス繊維とポリエステル繊維を引き出し、ガラス繊維を芯側にポリエステル繊維を鞘側に使用し、ガラス繊維の周囲をポリエステル繊維が包み込むようにするのだが、各繊維を別々のガイドに通し、含浸槽のマトリックス樹脂に浸漬させ、それぞれ多段の絞りノズルで所定の形状に絞り成形し、過剰なマトリックス樹脂を除去した。   Pull out glass fiber and polyester fiber from multiple creel stands, use glass fiber on the core side and polyester fiber on the sheath side so that the polyester fiber wraps around the glass fiber, but each fiber is in a separate guide Then, it was immersed in a matrix resin in an impregnation tank, and drawn into a predetermined shape by a multistage drawing nozzle to remove excess matrix resin.

また、鞘側のポリエステル繊維をスタンドから引き出す際には、デニール当たり0.3gのテンションをかけて行った。ガラス繊維を芯側に、ポリエステル繊維を鞘側に別々にかつ多段の絞りノズルを通した後に、被覆工程直前にガラス繊維とポリエステル繊維を収束させる。   Further, when pulling out the polyester fiber on the sheath side from the stand, a tension of 0.3 g per denier was applied. The glass fibers and the polyester fibers are converged immediately before the coating step after the glass fibers are separately passed through the core side and the polyester fibers are separately passed through the multi-stage squeezing nozzle.

直径が約0.5φmmに賦形したのち押出機にて、LLDPE樹脂を押出し被覆し、150℃の蒸気硬化槽内(約12m)を速度10m/minで導き、樹脂組成物を硬化させた。硬化後の被覆付き繊維強化樹脂線状物を真円状にする為に240℃に加熱されたノズル内(約φ0.8mm)を通過させ、余計なLLDPEを取り除き、キャタピラの間に通過させ巻き取り装置にて巻き取った。   After shaping to a diameter of about 0.5φ mm, the LLDPE resin was extrusion coated with an extruder, and the inside of a 150 ° C. steam curing tank (about 12 m) was guided at a speed of 10 m / min to cure the resin composition. Pass through the nozzle (approx. Φ0.8mm) heated to 240 ° C in order to make the coated fiber-reinforced resin linear material after curing into a perfect circle, remove excess LLDPE and pass between the caterpillars. It wound up with the take-up device.

得られた被覆付き繊維強化樹脂線状物の断面形状を図1に示している。線状物の断面は、被覆樹脂層のLLDPEも真円状であるため、三層真円構造になっていた。芯がわのガラス繊維含有率が、約20体積%、鞘側の有機繊維含有率が約40体積%であった。   The cross-sectional shape of the obtained coated fiber-reinforced resin linear material is shown in FIG. The cross section of the linear object had a three-layer perfect circle structure because the LLDPE of the coating resin layer was also perfectly round. The glass fiber content of the core was about 20% by volume, and the organic fiber content on the sheath side was about 40% by volume.

[比較例1]
芯側補強繊維12には、日東紡績(株)製のガラス繊維(商品名:Eガラス、ECE225=7μm)を使用し、また、鞘側補強繊維14には、帝人テクノプロダクツ(株)製ポリエステル繊維(商品名:N300H、280T48)を使用した。外周被覆層18の形成樹脂には、LLDPE(C4タイプ、MFR=2.0)を使用した。
[Comparative Example 1]
The core side reinforcing fiber 12 is made of glass fiber (trade name: E glass, ECE225 = 7 μm) manufactured by Nitto Boseki Co., and the sheath side reinforcing fiber 14 is polyester manufactured by Teijin Techno Products Co., Ltd. Fiber (trade name: N300H, 280T48) was used. LLDPE (C4 type, MFR = 2.0) was used as the resin for forming the outer peripheral coating layer 18.

複数のクリールスタンドからガラス繊維とポリエステル繊維を引き出し、ガラス繊維を芯側にポリエステル繊維を鞘側に使用し、ガラス繊維の周囲をポリエステル繊維が包み込むようにするのだが、各繊維を別々のガイドに通し、含浸槽のマトリックス樹脂に浸漬させ、一段目の絞りノズルでガラス繊維(芯側)とポリエステル繊維(鞘側)を収束させ且つ線状物を所定の形状に絞り成形し、過剰なマトリックス樹脂を除去した。   Pull out glass fiber and polyester fiber from multiple creel stands, use glass fiber on the core side and polyester fiber on the sheath side so that the polyester fiber wraps around the glass fiber, but each fiber is in a separate guide Passing through and immersing in the matrix resin of the impregnation tank, the glass fiber (core side) and the polyester fiber (sheath side) are converged with the first-stage squeeze nozzle, and the linear material is drawn into a predetermined shape, and excess matrix resin Was removed.

最終の絞りノズル(φ0.5mm)を通過させた後、押出機にてLLDPE樹脂を押出し被覆し、150℃の蒸気硬化槽内(約12m)を速度10m/minで導き、樹脂組成物を硬化させた。硬化後の被覆付き繊維強化樹脂線状物を真円状にする為に240℃に加熱されたノズル内(約φ0.8mm)を通過させ、余計なLLDPEを取り除き、キャタピラの間に通過させ巻き取り装置にて巻き取った。   After passing through the final squeezing nozzle (φ0.5mm), LLDPE resin is extrusion coated with an extruder, and the inside of a 150 ° C steam curing tank (about 12m) is guided at a speed of 10m / min to cure the resin composition. I let you. Pass through the nozzle (approx. Φ0.8mm) heated to 240 ° C in order to make the coated fiber-reinforced resin linear material after curing into a perfect circle, remove excess LLDPE and pass between the caterpillars. It wound up with the take-up device.

得られた被覆付き繊維強化樹脂線状物の断面形状を図2に示している。同図から明らかなように、芯側のガラス繊維は、鞘側のポエステル繊維により外周を包囲されておらず、これらが同心円状の配置になっていなかった。   FIG. 2 shows a cross-sectional shape of the obtained coated fiber-reinforced resin linear material. As is clear from the figure, the glass fibers on the core side were not surrounded by the sheath side polyester fibers, and these were not arranged in a concentric shape.

また、芯側のガラス繊維と鞘側のポリエステル繊維とが、断面の中心から外周側に大きく偏在していた。線状物のガラス繊維含有率は、約20体積%、鞘側の有機繊維含有率が約40体積%であった。   Further, the glass fiber on the core side and the polyester fiber on the sheath side were unevenly distributed from the center of the cross section to the outer peripheral side. The glass fiber content of the linear product was about 20% by volume, and the organic fiber content on the sheath side was about 40% by volume.

[実施例2]
芯側補強繊維12には、日東紡績(株)製のガラス繊維(商品名:Eガラス、ECE225)を使用し、また、鞘側補強繊維14には、帝人テクノプロダクツ(株)製ポリエステル繊維(商品名:N303H、280T24)を使用した。ポリエステル繊維のフィラメント数が48fから24fと半分になっている。その他引き出しから巻き取りまでは、具体例1と同様な方法で行った。
[Example 2]
The core side reinforcing fiber 12 is made of glass fiber (trade name: E glass, ECE225) manufactured by Nitto Boseki Co., and the sheath side reinforcing fiber 14 is polyester fiber (manufactured by Teijin Techno Products Co., Ltd.). Trade name: N303H, 280T24) was used. The number of filaments of the polyester fiber is halved from 48f to 24f. The other processes from drawing to winding were performed in the same manner as in Example 1.

[比較例2]
芯側補強繊維12には、日東紡績(株)製のガラス繊維(商品名:Eガラス、ECE225)を使用し、また、鞘側補強繊維14には、帝人テクノプロダクツ(株)製ポリエステル繊維(商品名:N303H、280T24)を使用した。ポリエステル繊維のフィラメント数が48fから24fと半分になっている。その他引き出しから巻き取りまでは、比較例1と同様な方法で行った。
[Comparative Example 2]
The core side reinforcing fiber 12 is made of glass fiber (trade name: E glass, ECE225) manufactured by Nitto Boseki Co., and the sheath side reinforcing fiber 14 is polyester fiber (manufactured by Teijin Techno Products Co., Ltd.). Trade name: N303H, 280T24) was used. The number of filaments of the polyester fiber is halved from 48f to 24f. The other processes from drawing to winding were performed in the same manner as in Comparative Example 1.

得られた被覆付き繊維強化樹脂線状物の断面形状を図3に示している。同図から明らかなように、芯側のガラス繊維と鞘側のポリエステル繊維とは、断面の中心にほぼ位置していたものの、芯側のガラス繊維は、鞘側のポリエステル繊維により外周を包囲されておらず、芯側のガラス繊維の一部が、鞘側のポリエステル繊維の外側にはみ出していた。   FIG. 3 shows a cross-sectional shape of the obtained coated fiber-reinforced resin linear material. As is apparent from the figure, the core-side glass fiber and the sheath-side polyester fiber were almost located at the center of the cross section, but the core-side glass fiber was surrounded by the sheath-side polyester fiber. However, a part of the glass fiber on the core side protruded outside the polyester fiber on the sheath side.

Figure 2007321060
Figure 2007321060

上記表1は、上述した具体例および比較例で得られた線状物の物性をまとめたものである。具体例1,2では、FRP偏平率(%、真円率)が、6.2(93.8)ないしは5.3(94.2)であるが、比較例1,2では、15.0(85.0),16.2(83.8)と非常に大きくなっている。また、具体例1,2では、最小曲げ直径(mm)が、6mm以下ないしは4mm以下であるが、比較例1,2では、6〜12mmと非常に大きくなっている。   Table 1 above summarizes the physical properties of the linear materials obtained in the specific examples and comparative examples described above. In specific examples 1 and 2, the FRP flatness ratio (%, roundness) is 6.2 (93.8) or 5.3 (94.2), but in comparative examples 1 and 2, 15.0 (85.0), 16.2 (83.8). Further, in specific examples 1 and 2, the minimum bending diameter (mm) is 6 mm or less or 4 mm or less, but in comparative examples 1 and 2, it is very large as 6 to 12 mm.

さらに、熱収縮率(%)は、具体例1,2では、0.05ないしは0.03であるのに対して、比較例1,2では、0.18,0.2となっていて、その差が非常に大きく、また、熱処理後のサンプル状態も具体例1,2では、安定しており、特に、熱特性に優れることが確認された。   Further, the thermal shrinkage rate (%) is 0.05 to 0.03 in the specific examples 1 and 2, whereas it is 0.18 and 0.2 in the comparative examples 1 and 2, The difference was very large, and the sample state after the heat treatment was stable in Examples 1 and 2, and it was confirmed that the thermal characteristics were particularly excellent.

本発明にかかる被覆付き繊維強化合成樹脂線状物によれば、有機繊維と無機繊維とを規則的に配置することで、製造の容易性を確保し、かつ、性能のバラツキを小さくすることができるので、光ファイバケーブルの抗張力体として有効に利用することができる。   According to the coated fiber-reinforced synthetic resin linear material according to the present invention, by arranging organic fibers and inorganic fibers regularly, it is possible to ensure the ease of manufacturing and reduce the variation in performance. Therefore, it can be effectively used as a tensile body of an optical fiber cable.

本発明にかかる被覆付き繊維強化合成樹脂線状物の一実施例を示す断面説明図である。It is a section explanatory view showing one example of a fiber reinforced synthetic resin linear article with a covering concerning the present invention. 本発明の比較例の被覆付き繊維強化合成樹脂線状物の一例を示す断面説明図である。It is sectional explanatory drawing which shows an example of the fiber-reinforced synthetic resin linear material with a coating of the comparative example of this invention. 本発明の他の比較例の被覆付き繊維強化合成樹脂線状物を示す断面説明図である。。It is sectional explanatory drawing which shows the fiber reinforced synthetic resin linear material with a coating of the other comparative example of this invention. .

符号の説明Explanation of symbols

10 被覆付き繊維強化合成樹脂線状物
12 芯側補強繊維
14 鞘側補強繊維
16 マトリックス樹脂
18 外周被覆層
DESCRIPTION OF SYMBOLS 10 Covered fiber reinforced synthetic resin linear material 12 Core side reinforcing fiber 14 Sheath side reinforcing fiber 16 Matrix resin 18 Outer peripheral coating layer

Claims (9)

無機繊維からなる芯側補強繊維と、有機繊維からなる鞘側補強繊維と、前記無機繊維と前記有機繊維との間に介在するマトリックス樹脂と、前記鞘側補強繊維の外周を覆う外周被覆層とを含む被覆付き繊維強化合成樹脂線状物であって、
前記芯側補強繊維の外周に、前記鞘側補強繊維が、当該芯側補強繊維の周囲を包囲するように、真円状に配置されていることを特徴とする被覆付き繊維強化合成樹脂線状物。
A core side reinforcing fiber made of an inorganic fiber, a sheath side reinforcing fiber made of an organic fiber, a matrix resin interposed between the inorganic fiber and the organic fiber, and an outer peripheral covering layer covering an outer periphery of the sheath side reinforcing fiber; A coated fiber-reinforced synthetic resin linear material comprising
A sheathed fiber reinforced synthetic resin wire, wherein the sheath side reinforcing fiber is arranged in a perfect circle around the core side reinforcing fiber so as to surround the core side reinforcing fiber. object.
前記芯側補強繊維が、ガラス繊維であることを特徴とする請求項1記載の被覆付き繊維強化合成樹脂線状物。   2. The coated fiber-reinforced synthetic resin wire according to claim 1, wherein the core-side reinforcing fiber is a glass fiber. 前記鞘側補強繊維が、ポリエステル等の有機繊維であることを特徴とする請求項1記載の被覆付き繊維強化合成樹脂線状物。   The coated fiber-reinforced synthetic resin wire according to claim 1, wherein the sheath-side reinforcing fibers are organic fibers such as polyester. 前記マトリックス樹脂が、熱硬化性樹脂であることを特徴とする請求項1記載の被覆付き繊維強化合成樹脂線状物。   The coated fiber-reinforced synthetic resin wire according to claim 1, wherein the matrix resin is a thermosetting resin. 前記被覆付き繊維強化合成樹脂線状物は、最小曲げ直径が6mm以下で、且つ、均一性を有することを特徴とする請求項1〜4のいずれか1項記載の被覆付き繊維強化合成樹脂線状物。   The coated fiber-reinforced synthetic resin wire according to any one of claims 1 to 4, wherein the coated fiber-reinforced synthetic resin wire has a minimum bending diameter of 6 mm or less and has uniformity. State. 前記被覆付き繊維強化合成樹脂線状物は、直径が1mm以下で、且つ、均一性を有することを特徴とする請求項1〜4のいずれか1項記載の被覆付き繊維強化合成樹脂線状物。   The coated fiber-reinforced synthetic resin linear product according to any one of claims 1 to 4, wherein the coated fiber-reinforced synthetic resin linear product has a diameter of 1 mm or less and has uniformity. . 前記被覆付き繊維強化合成樹脂線状物は、前記芯側補強繊維と、前記鞘側補強繊維、および、前記外周被覆層が、同真円状に配置され、その偏平率(真円率)が、7%以下(93%以上)とすることを特徴とする請求項1〜6のいずれか1項記載の被覆付き繊維強化合成樹脂線状物。   In the coated fiber-reinforced synthetic resin linear object, the core-side reinforcing fiber, the sheath-side reinforcing fiber, and the outer peripheral covering layer are arranged in the same circular shape, and the flatness (roundness) is 7% or less (93% or more). The coated fiber-reinforced synthetic resin linear product according to any one of claims 1 to 6. 前記被覆付き維強化合成樹脂線状物は、前記芯側補強繊維と、前記鞘側補強繊維、および、前記外周被覆層が、同真円状に配置され、熱収縮に対する特性を均一とすることを特徴とする請求項7記載の被覆付き繊維強化合成樹脂線状物。   In the coated fiber reinforced synthetic resin linear article, the core side reinforcing fiber, the sheath side reinforcing fiber, and the outer peripheral covering layer are arranged in the same circle shape, and the characteristics against heat shrinkage are made uniform. The coated fiber-reinforced synthetic resin wire according to claim 7. 前記被覆付き維強化合成樹脂線状物は、前記芯側補強繊維と、前記鞘側補強繊維、および、前記外周被覆層が、同真円状に配置され、前記マトリックス樹脂と前記外周被覆層との間の密着力を、8kg/10mm以上とすることを特徴とする請求項7記載の被覆付き繊維強化合成樹脂線状物。   In the coated fiber-reinforced synthetic resin linear object, the core-side reinforcing fiber, the sheath-side reinforcing fiber, and the outer peripheral covering layer are arranged in the same circle, and the matrix resin and the outer peripheral covering layer The coated fiber-reinforced synthetic resin linear product according to claim 7, wherein the adhesion between the two is 8 kg / 10 mm or more.
JP2006152973A 2006-06-01 2006-06-01 Coated fiber-reinforced synthetic resin linear material Pending JP2007321060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006152973A JP2007321060A (en) 2006-06-01 2006-06-01 Coated fiber-reinforced synthetic resin linear material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152973A JP2007321060A (en) 2006-06-01 2006-06-01 Coated fiber-reinforced synthetic resin linear material

Publications (1)

Publication Number Publication Date
JP2007321060A true JP2007321060A (en) 2007-12-13

Family

ID=38854154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152973A Pending JP2007321060A (en) 2006-06-01 2006-06-01 Coated fiber-reinforced synthetic resin linear material

Country Status (1)

Country Link
JP (1) JP2007321060A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043654A1 (en) * 2015-09-09 2017-03-16 日本発條株式会社 Method for producing wire rod for elastic members, wire rod for elastic members, and elastic member
JP2019518101A (en) * 2016-04-26 2019-06-27 リミテッド ライアビリティ カンパニー“アニソプリント” Composite thread for reinforcement, prepreg, tape for 3D printing and equipment for preparing it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108132A (en) * 1990-08-29 1992-04-09 Ube Nitto Kasei Co Ltd Production filament material made of fiber-reinforced thermoset resin
JPH05124119A (en) * 1991-11-01 1993-05-21 Ube Nitto Kasei Co Ltd Manufacture of small-gage wire-shaped article made of fiber-reinforced resin
JP2004012611A (en) * 2002-06-04 2004-01-15 Furukawa Electric Co Ltd:The Non-metal optical fiber cable
JP2005281441A (en) * 2004-03-29 2005-10-13 Nitto Boseki Co Ltd Fiber-reinforced resin linear product and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108132A (en) * 1990-08-29 1992-04-09 Ube Nitto Kasei Co Ltd Production filament material made of fiber-reinforced thermoset resin
JPH05124119A (en) * 1991-11-01 1993-05-21 Ube Nitto Kasei Co Ltd Manufacture of small-gage wire-shaped article made of fiber-reinforced resin
JP2004012611A (en) * 2002-06-04 2004-01-15 Furukawa Electric Co Ltd:The Non-metal optical fiber cable
JP2005281441A (en) * 2004-03-29 2005-10-13 Nitto Boseki Co Ltd Fiber-reinforced resin linear product and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043654A1 (en) * 2015-09-09 2017-03-16 日本発條株式会社 Method for producing wire rod for elastic members, wire rod for elastic members, and elastic member
JPWO2017043654A1 (en) * 2015-09-09 2018-04-19 日本発條株式会社 Method for manufacturing elastic member wire, elastic member wire and elastic member
JP2019518101A (en) * 2016-04-26 2019-06-27 リミテッド ライアビリティ カンパニー“アニソプリント” Composite thread for reinforcement, prepreg, tape for 3D printing and equipment for preparing it
JP7152017B2 (en) 2016-04-26 2022-10-12 リミテッド ライアビリティ カンパニー“アニソプリント” Composite thread for reinforcement, prepreg, tape for 3D printing and equipment for preparing same

Similar Documents

Publication Publication Date Title
US5084221A (en) Process for manufacturing a twisted frp structure
US20080282664A1 (en) Composite rope structures and systems and methods for making composite rope structures
JP6129963B2 (en) High-strength fiber composite and strand structure and multi-strand structure
JPH0686718B2 (en) Method for manufacturing composite twisted filament
CN101932430A (en) Flexible continuous tape and manufacture method thereof by the multifilament manufacturing
WO2005047950A1 (en) Drop optical fiber cable and frp tension member used for the cable
KR101499474B1 (en) Method for Producing pipe
JP2007321060A (en) Coated fiber-reinforced synthetic resin linear material
JP7031821B2 (en) Fiber reinforced resin tubular body and its manufacturing method
JPH01174413A (en) Composite yarn prepreg
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
JP2984021B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JPS60243611A (en) Wire rod carrying spiral spacer for communication and its manufacture
JP3596983B2 (en) Fiber reinforced optical fiber cord and method of manufacturing the same
JP7423870B2 (en) Fiber-reinforced resin rod and method for manufacturing fiber-reinforced resin rod
CN114311764B (en) Composite fiber pultrusion product and pultrusion method
JP3671601B2 (en) How to unwind glass roving
CN112064383A (en) Improved composite material rope structure
JP2849418B2 (en) Tension member for reinforcing optical fiber ribbon and method of manufacturing the same
JP2011037133A (en) Method for manufacturing approximately rectangular frp string-like object coated with thermoplastic resin, and drop optical fiber cable using the frp string-like object
JPH02112454A (en) Production of braid made of carbon fiber
JPH0428082Y2 (en)
JP2005014346A (en) Frp spring cable
JPH02122918A (en) Hollow cylindrical composite and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129