JPWO2017043654A1 - Method for manufacturing elastic member wire, elastic member wire and elastic member - Google Patents

Method for manufacturing elastic member wire, elastic member wire and elastic member

Info

Publication number
JPWO2017043654A1
JPWO2017043654A1 JP2017538556A JP2017538556A JPWO2017043654A1 JP WO2017043654 A1 JPWO2017043654 A1 JP WO2017043654A1 JP 2017538556 A JP2017538556 A JP 2017538556A JP 2017538556 A JP2017538556 A JP 2017538556A JP WO2017043654 A1 JPWO2017043654 A1 JP WO2017043654A1
Authority
JP
Japan
Prior art keywords
melting point
fiber
wire
resin
elastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017538556A
Other languages
Japanese (ja)
Other versions
JP6440854B2 (en
Inventor
和彦 許斐
和彦 許斐
孝充 佐野
孝充 佐野
聡史 岡部
聡史 岡部
勝 今村
勝 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Publication of JPWO2017043654A1 publication Critical patent/JPWO2017043654A1/en
Application granted granted Critical
Publication of JP6440854B2 publication Critical patent/JP6440854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads

Abstract

本発明に係る弾性部材用線材の製造方法は、液状の熱硬化性樹脂を含浸した第1の強化繊維を、熱可塑性樹脂からなる芯材が外部に露出するように前記芯材に巻き付けて第1の中間線材を作製する第1のステップと、高融点樹脂繊維と低融点熱可塑性樹脂とを、第1の強化繊維が外部に露出するように第1の中間線材に巻き付けて第2の中間線材を作製する第2のステップと、液状の熱硬化性樹脂を含浸した第2の強化繊維を第2の中間線材に巻き付けて第3の中間線材を作製する第3のステップと、第3の中間線材を、硬化温度、または低融点熱可塑性樹脂の融点の温度のうち高い方の温度以上であって高融点樹脂繊維の融点の温度未満に加熱する加熱ステップと、を含む。The method for producing a wire for an elastic member according to the present invention includes winding a first reinforcing fiber impregnated with a liquid thermosetting resin around the core so that the core made of a thermoplastic resin is exposed to the outside. 1st step which produces 1 intermediate | middle wire, It winds around a 1st intermediate | middle wire so that a 1st reinforcement fiber may be exposed outside, and a 2nd intermediate | middle with a high melting point resin fiber and a low melting point thermoplastic resin A second step of producing a wire, a third step of winding a second reinforcing fiber impregnated with a liquid thermosetting resin around the second intermediate wire to produce a third intermediate wire, A heating step of heating the intermediate wire to a temperature equal to or higher than a higher one of a curing temperature or a melting point of the low melting point thermoplastic resin and less than a melting point of the high melting point resin fiber.

Description

本発明は、弾性部材用線材の製造方法、弾性部材用線材および弾性部材に関する。   The present invention relates to a method for manufacturing an elastic member wire, an elastic member wire, and an elastic member.

従来、自動車の燃費向上を実現するための一つの方策として、各種部品の軽量化が追求されている。例えば、エンジンブロックの材料として、鋳鉄の代わりにアルミニウム合金が使われ、エンジンカバーやオイルパンの材料として、鋼の代わりにマグネシウム合金が使われるとともに、フレームやボディの材料として、CFRP(Carbon Fiber Reinforced Plastics)の採用が始まりつつある。   Conventionally, weight reduction of various parts has been pursued as a measure for improving the fuel efficiency of automobiles. For example, aluminum alloy is used instead of cast iron as the material for the engine block, magnesium alloy is used instead of steel as the material for the engine cover and oil pan, and CFRP (Carbon Fiber Reinforced) as the material for the frame and body. The adoption of Plastics) is starting.

近年、自動車の軽量化という観点から、例えばサスペンション用の懸架ばねなどのコイルばねを軽量化することが検討されている。コイルばねなどの弾性部材を軽量化することが可能な弾性部材用線材として、中空の線材や、比重の軽いチタン線材、前述の線材と比して軽量効果が高い炭素繊維などの強化繊維を用いて形成されているCFRPの弾性部材用線材が挙げられる(例えば、特許文献1,2を参照)。   In recent years, from the viewpoint of reducing the weight of automobiles, it has been studied to reduce the weight of coil springs such as suspension springs for suspension. As a wire material for elastic members that can reduce the weight of elastic members such as coil springs, hollow wires, titanium wires with a low specific gravity, and reinforced fibers such as carbon fibers that have a lighter weight effect than the aforementioned wires are used. CFRP elastic member wire formed by the above method (for example, see Patent Documents 1 and 2).

特許文献1には、未硬化の熱硬化性樹脂を含浸せしめてなる連続繊維(補強繊維)からなる芯体と、芯体の熱硬化性樹脂の硬化温度よりも高い熱変形温度を有する熱可塑性樹脂からなる被覆外層と、芯体の熱硬化性樹脂の硬化温度より低い軟化温度または融点を有し、芯体および被覆外層との間に介在して両者と接触して接着する熱可塑性樹脂からなる中間層とを備えた線材が開示されている。特許文献1には、被覆外層の熱可塑性樹脂の変形温度以下で加熱した際、芯体が硬化するとともに、加熱により流動状となった中間層が、芯体と被覆外層とに接触して接着層を形成することで、芯体と被覆外層との間をアンカー効果により結合させ一体化することが記載されている。   Patent Document 1 discloses a core made of continuous fibers (reinforcing fibers) impregnated with an uncured thermosetting resin, and a thermoplastic resin having a thermal deformation temperature higher than the curing temperature of the thermosetting resin of the core. An outer layer made of resin and a thermoplastic resin having a softening temperature or melting point lower than the curing temperature of the thermosetting resin of the core, and interposed between and in contact with the core and the outer layer of the core A wire rod having an intermediate layer is disclosed. In Patent Document 1, when heated at a temperature equal to or lower than the deformation temperature of the thermoplastic resin of the outer coating layer, the core body is cured and the fluidized intermediate layer is brought into contact with and bonded to the core body and the outer coating layer. It is described that by forming a layer, the core body and the outer coating layer are joined and integrated by an anchor effect.

また、特許文献2には、熱可塑性樹脂からなる芯材と、熱可塑性樹脂と繊維とを含む繊維強化複合材からなる芯材を覆う被覆層と、熱可塑性樹脂からなる中空の最外被覆層とを備え、芯材と中空の最外被覆層との間に、熱可塑性樹脂材料が介在する構造部材が記載されている。特許文献2には、芯材、被覆層および最外被覆層では、被覆層の融点が最も低いことが記載されている。   Patent Document 2 discloses a core material made of a thermoplastic resin, a coating layer covering a core material made of a fiber-reinforced composite material including a thermoplastic resin and fibers, and a hollow outermost coating layer made of a thermoplastic resin. And a structural member in which a thermoplastic resin material is interposed between the core material and the hollow outermost coating layer is described. Patent Document 2 describes that the core material, the coating layer, and the outermost coating layer have the lowest melting point of the coating layer.

特公平1−38668号公報Japanese Patent Publication No. 1-3668 特開平6−182882号公報JP-A-6-182882

しかしながら、特許文献1は、芯体と中間層との界面の接着力はその界面に存在する中間層によってのみ結合されており、熱可塑性樹脂が一度流動状体となった後に冷えて固まった後の素材の強度に留まるものであると推測される。熱硬化性樹脂を含浸した芯体の周りを熱可塑性樹脂が覆った構造においては、加熱後の冷却時に硬化した芯体は補強繊維を含む繊維強化プラスチックとして収縮率が小さいのに対し、周りの熱可塑性樹脂の収縮率が大きいため、芯材と中間層とが密着したものであるといえる。このような密着による接着強度では、芯材中の補強繊維と中間層とを強固に固定できず、線材としての強度は低かった。   However, in Patent Document 1, the adhesive force at the interface between the core body and the intermediate layer is bonded only by the intermediate layer existing at the interface, and after the thermoplastic resin has once cooled down and solidified, It is estimated that the strength of the material remains. In the structure in which the periphery of the core body impregnated with the thermosetting resin is covered with the thermoplastic resin, the core body cured upon cooling after heating has a small shrinkage rate as a fiber reinforced plastic containing reinforcing fibers, whereas the surrounding area is small. Since the shrinkage rate of the thermoplastic resin is large, it can be said that the core material and the intermediate layer are in close contact with each other. With such adhesive strength due to adhesion, the reinforcing fibers in the core and the intermediate layer could not be firmly fixed, and the strength as a wire was low.

また、特許文献2は、最も融点の低い被覆層を溶融可能な温度で加熱し、中空の被覆層は溶融させること無く変形可能とすることが可能であるものの、各構成要素を構成する材料は全て熱可塑性樹脂であり、融点の違いを利用し固着させているだけであるため、その接着力はその界面または一度溶融した後に冷えて固まった後の素材の強度に留まっていた。このため、芯材と被覆層中の強化繊維とを強固に固定できず、線材としての強度は低かった。   Moreover, although patent document 2 can heat the coating layer with the lowest melting point at a temperature at which it can be melted and the hollow coating layer can be deformed without melting, the material constituting each component is Since all of them are thermoplastic resins and are only fixed using the difference in melting point, the adhesive strength remains at the interface or the strength of the material after being melted once and cooled. For this reason, the core material and the reinforcing fiber in the coating layer could not be firmly fixed, and the strength as a wire was low.

本発明は、上記に鑑みてなされたものであって、軽量化しつつ、強度を向上することができる弾性部材用線材の製造方法、弾性部材用線材および弾性部材を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the manufacturing method of the wire for elastic members, the wire for elastic members, and an elastic member which can improve intensity | strength, reducing in weight.

上述した課題を解決し、目的を達成するために、本発明に係る弾性部材用線材の製造方法は、液状の熱硬化性樹脂を含浸した第1の強化繊維を、熱可塑性樹脂からなる芯材が外部に露出するように前記芯材に巻き付けて第1の中間線材を作製する第1のステップと、前記熱硬化性樹脂の硬化温度よりも高い融点を有する高融点樹脂繊維と、前記高融点樹脂繊維の融点よりも低い融点を有する低融点熱可塑性樹脂とを、前記第1の強化繊維が外部に露出するように前記第1の中間線材に巻き付けて第2の中間線材を作製する第2のステップと、液状の熱硬化性樹脂を含浸した第2の強化繊維を前記第2の中間線材に巻き付けて第3の中間線材を作製する第3のステップと、前記第3の中間線材を、前記硬化温度、または前記低融点熱可塑性樹脂の融点の温度のうち高い方の温度以上であって前記高融点樹脂繊維の融点の温度未満に加熱する加熱ステップと、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, the manufacturing method of the elastic member wire according to the present invention includes a first reinforcing fiber impregnated with a liquid thermosetting resin as a core material made of a thermoplastic resin. Is wound around the core material so as to be exposed to the outside, a first step of producing a first intermediate wire, a high melting point resin fiber having a melting point higher than the curing temperature of the thermosetting resin, and the high melting point A second intermediate wire is produced by wrapping a low melting thermoplastic resin having a melting point lower than the melting point of the resin fiber around the first intermediate wire so that the first reinforcing fiber is exposed to the outside. A third step of winding a second reinforcing fiber impregnated with a liquid thermosetting resin around the second intermediate wire to produce a third intermediate wire, and the third intermediate wire, The curing temperature or the low melting point thermoplastic resin Characterized in that it comprises a heating step of heating to a temperature below the melting point of the high melting point resin fiber comprising at higher temperatures or more of the temperature of the melting point, the.

また、本発明に係る弾性部材用線材の製造方法は、上記の発明において、前記第2のステップは、前記低融点熱可塑性樹脂が、前記高融点樹脂繊維の外周を覆う芯鞘型の複合繊維を前記第1の中間線材に巻き付けて第2の中間線材を作製することを特徴とする。   In the method for manufacturing a wire for an elastic member according to the present invention, in the above invention, the second step is a core-sheath type composite fiber in which the low melting point thermoplastic resin covers an outer periphery of the high melting point resin fiber. Is wound around the first intermediate wire to produce a second intermediate wire.

また、本発明に係る弾性部材用線材の製造方法は、上記の発明において、前記第2のステップは、互いに独立した繊維状をなす前記低融点熱可塑性樹脂および前記高融点樹脂繊維を前記第1の中間線材に巻き付けて第2の中間線材を作製することを特徴とする。   In the method for manufacturing a wire for an elastic member according to the present invention, in the above invention, the second step is the step of adding the low-melting point thermoplastic resin and the high-melting point resin fiber in the form of fibers independent of each other. The second intermediate wire is produced by winding the intermediate wire.

また、本発明に係る弾性部材用線材の製造方法は、上記の発明において、前記低融点熱可塑性樹脂の融点の温度が、前記硬化温度よりも低く、前記加熱ステップは、前記硬化温度以上であって前記高融点樹脂繊維の融点の温度未満に加熱することを特徴とする。   In the method for producing a wire for an elastic member according to the present invention, the melting point of the low-melting thermoplastic resin is lower than the curing temperature, and the heating step is equal to or higher than the curing temperature. And heating to a temperature lower than the melting point of the high melting point resin fiber.

また、本発明に係る弾性部材用線材は、熱可塑性樹脂からなる芯材と、前記芯材に巻き付けられてなる複数の強化繊維を含み、前記芯材を覆う繊維層と、を備え、前記繊維層は、前記複数の強化繊維と、該強化繊維同士を固着する熱硬化性樹脂と、前記複数の強化繊維のうち前記芯材側に位置する強化繊維と交差して前記芯材に巻回されてなり、前記芯材側に位置する強化繊維を前記芯材に固定する高融点樹脂繊維と、当該繊維層および前記芯材を固着する低融点熱可塑性樹脂と、を含んでいることを特徴とする。   The elastic member wire according to the present invention includes a core material made of a thermoplastic resin and a fiber layer that includes a plurality of reinforcing fibers wound around the core material and covers the core material. The layer is wound around the core material so as to intersect the plurality of reinforcing fibers, the thermosetting resin for fixing the reinforcing fibers, and the reinforcing fibers located on the core material side among the plurality of reinforcing fibers. Comprising a high melting point resin fiber that fixes the reinforcing fiber located on the core material side to the core material, and a low melting point thermoplastic resin that fixes the fiber layer and the core material. To do.

また、本発明に係る弾性部材用線材は、上記の発明において、前記強化繊維は、炭素繊維、ガラス繊維、アラミド繊維およびバサルト繊維から選択される少なくとも一つの繊維であることを特徴とする。   In the elastic member wire according to the present invention as set forth in the invention described above, the reinforcing fiber is at least one fiber selected from carbon fiber, glass fiber, aramid fiber, and basalt fiber.

また、本発明に係る弾性部材用線材は、上記の発明において、前記芯材が、ポリプロピレンからなることを特徴とする。   Moreover, the wire for elastic members according to the present invention is characterized in that, in the above invention, the core material is made of polypropylene.

また、本発明に係る弾性部材用線材は、上記の発明において、前記熱硬化性樹脂が、エポキシ樹脂であることを特徴とする。   Moreover, the wire for elastic members according to the present invention is characterized in that, in the above invention, the thermosetting resin is an epoxy resin.

また、本発明に係る弾性部材用線材は、上記の発明において、前記芯材、前記低融点熱可塑性樹脂および前記高融点樹脂繊維は、同一の樹脂系を用いて形成されていることを特徴とする。   Moreover, the wire for an elastic member according to the present invention is characterized in that, in the above invention, the core material, the low-melting point thermoplastic resin, and the high-melting point resin fiber are formed using the same resin system. To do.

また、本発明に係る弾性部材は、上記の発明に係る弾性部材用線材を用いて形成されることを特徴とする。   Moreover, the elastic member which concerns on this invention is formed using the wire for elastic members which concerns on said invention, It is characterized by the above-mentioned.

また、本発明に係る弾性部材は、上記の発明において、前記弾性部材用線材を螺旋状に巻回してなることを特徴とする。   Moreover, the elastic member according to the present invention is characterized in that, in the above invention, the elastic member wire is wound spirally.

本発明によれば、軽量化しつつ、強度を向上することができるという効果を奏する。   According to the present invention, it is possible to improve the strength while reducing the weight.

図1は、本発明の一実施の形態に係る弾性部材用線材の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a wire for an elastic member according to an embodiment of the present invention. 図2は、本発明の一実施の形態に係る弾性部材用線材の製造方法を説明する図である。FIG. 2 is a diagram for explaining a method of manufacturing a wire for an elastic member according to an embodiment of the present invention. 図3は、本発明の一実施の形態に係る弾性部材用線材の製造方法を説明する図である。FIG. 3 is a diagram for explaining a method of manufacturing a wire for an elastic member according to an embodiment of the present invention. 図4は、本発明の一実施の形態に係る弾性部材用線材の製造方法を説明する図である。FIG. 4 is a diagram illustrating a method for manufacturing the elastic member wire according to one embodiment of the present invention. 図5は、本発明の一実施の形態に係る弾性部材用線材の製造方法を説明する図である。Drawing 5 is a figure explaining the manufacturing method of the wire for elastic members concerning one embodiment of the present invention. 図6は、本発明の一実施の形態に係る弾性部材用線材の製造方法を説明する図である。FIG. 6 is a diagram illustrating a method for manufacturing the elastic member wire according to the embodiment of the present invention.

以下、添付図面を参照して本発明を実施するための形態(以下、「実施の形態」という)を説明する。なお、図面は模式的なものであって、各部分の厚みと幅との関係、それぞれの部分の厚みの比率などは現実のものとは異なる場合があり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合がある。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the accompanying drawings. The drawings are schematic, and the relationship between the thickness and width of each part, the ratio of the thickness of each part, and the like may be different from the actual ones, and the mutual dimensions between the drawings. There may be cases where the relationship and ratio of are different.

図1は、本発明の一実施の形態に係る弾性部材用線材の構成を示す模式図である。図1に示す弾性部材用線材1は、芯材に繊維を巻き付けてなる線材を螺旋状に巻くことによってコイルばねとすることで、例えば、自動車のサスペンション用の懸架ばねとして用いられる。   FIG. 1 is a schematic diagram showing a configuration of a wire for an elastic member according to an embodiment of the present invention. The wire 1 for elastic members shown in FIG. 1 is used as a suspension spring for a suspension of an automobile, for example, by forming a coil spring by winding a wire formed by winding a fiber around a core material in a spiral shape.

弾性部材用線材1は、熱可塑性樹脂からなる芯材10と、芯材10に巻き付けられる複数の繊維を含み、該芯材10を覆う繊維強化プラスチック(Fiber Reinforced Plastics:FRP)層11とを有し、螺旋状をなす。   The elastic member wire 1 includes a core material 10 made of a thermoplastic resin and a fiber reinforced plastic (FRP) layer 11 including a plurality of fibers wound around the core material 10 and covering the core material 10. And spiral.

芯材10は、鋳鉄などの鉄系の材料と比して軽い熱可塑性樹脂、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂などを用いて形成される。より具体的に、例えば、ポリオレフィン系樹脂としてポリプロピレンや高密度ポリエチレン(High Density Polyethylene:HDPE)が挙げられ、ポリエステル系樹脂としてポリエチレンテレフタラート(Polyethylene Terephthalate:PET)が挙げられ、ポリアミド系樹脂としてナイロン6が挙げられる。本実施の形態では、芯材10の断面が円をなすものとして説明するが、楕円状をなすものや、多角形状をなすものであってもよい。   The core material 10 is formed using a thermoplastic resin that is lighter than an iron-based material such as cast iron, for example, a polyolefin-based resin, a polyester-based resin, a polyamide-based resin, or the like. More specifically, examples of the polyolefin resin include polypropylene and high density polyethylene (HDPE), examples of the polyester resin include polyethylene terephthalate (PET), and examples of the polyamide resin include nylon 6 Is mentioned. In the present embodiment, the cross section of the core material 10 is described as a circle, but may be an ellipse or a polygon.

FRP層11は、複数の強化繊維を芯材10に巻き付けることによって形成された層をなす。強化繊維としては、炭素繊維、ガラス繊維、芳香族ポリアミド繊維であるアラミド繊維、および玄武岩繊維であるバサルト繊維から選択される少なくとも一つの繊維が用いられる。   The FRP layer 11 is a layer formed by winding a plurality of reinforcing fibers around the core material 10. As the reinforcing fiber, at least one fiber selected from carbon fiber, glass fiber, aramid fiber that is an aromatic polyamide fiber, and basalt fiber that is a basalt fiber is used.

隣り合う強化繊維同士は、熱硬化性樹脂により互いに固着されている。熱硬化性樹脂としては、芯材10の融点より低い温度の熱により硬化する樹脂、例えばエポキシ樹脂が挙げられる。   Adjacent reinforcing fibers are fixed to each other with a thermosetting resin. Examples of the thermosetting resin include a resin that is cured by heat at a temperature lower than the melting point of the core material 10, for example, an epoxy resin.

FRP層11において、高融点樹脂繊維は低融点樹脂繊維によって芯材10に固着されており、芯材10側に位置する強化繊維は高融点樹脂繊維によって締め付けられて芯材10に固定されている。高融点樹脂繊維は、上述した熱硬化性樹脂の硬化温度より高い融点の熱可塑性樹脂のことであり、具体的には、熱硬化性樹脂との組み合わせによりポリプロピレンや、高融点ポリエステル系樹脂、ナイロン66などから選択される。   In the FRP layer 11, the high melting point resin fibers are fixed to the core material 10 by the low melting point resin fibers, and the reinforcing fibers located on the core material 10 side are fastened by the high melting point resin fibers and fixed to the core material 10. . The high melting point resin fiber is a thermoplastic resin having a melting point higher than the curing temperature of the thermosetting resin described above, and specifically, polypropylene, a high melting point polyester resin, nylon in combination with the thermosetting resin. 66 or the like.

芯材10とFRP層11とは、低融点熱可塑性樹脂により互いに固着されている。ここでいう低融点熱可塑性樹脂とは、上述した熱硬化性樹脂の硬化温度以下の融点の熱可塑性樹脂のことであり、具体的には、熱硬化性樹脂との組み合わせにより高密度ポリエチレン(HDPE)、低密度ポリエチレン(Low Density Polyethylene:LDPE)や、低融点共重合オレフィン樹脂、ナイロン12、低融点ポリエステル系樹脂などから選択される。   The core material 10 and the FRP layer 11 are fixed to each other with a low melting point thermoplastic resin. The low melting point thermoplastic resin here is a thermoplastic resin having a melting point equal to or lower than the curing temperature of the above-described thermosetting resin, and specifically, a high-density polyethylene (HDPE) by combination with the thermosetting resin. ), Low density polyethylene (LDPE), low melting point copolymerization olefin resin, nylon 12, low melting point polyester resin, and the like.

すなわち、FRP層11は、上述した複数の強化繊維と、該強化繊維同士を固着する熱硬化性樹脂と、芯材10側の強化繊維を固定する高融点樹脂繊維と、当該FRP層11および芯材10を固着する低融点熱可塑性樹脂と、を含んでいる。高融点樹脂繊維と低融点熱可塑性樹脂とは、高融点樹脂繊維の外周を低融点熱可塑性樹脂が覆うことによって、一本の芯鞘型の樹脂繊維としてもよいし、各々を別の繊維としてもよい。   That is, the FRP layer 11 includes the above-described plurality of reinforcing fibers, a thermosetting resin that fixes the reinforcing fibers, a high-melting point resin fiber that fixes the reinforcing fibers on the core material 10 side, the FRP layer 11 and the core. And a low melting point thermoplastic resin to which the material 10 is fixed. The high-melting point resin fiber and the low-melting point thermoplastic resin may be a single core-sheath type resin fiber by covering the outer periphery of the high-melting point resin fiber with a low-melting point thermoplastic resin. Also good.

FRP層11における強化繊維は、繊維を一本ずつ芯材10に巻き付けるものであってもよいし、複数の繊維を束にして、一束ずつ、または複数の束を同時に芯材10に巻き付けるものであってもよい。いずれの巻き付けにおいても、各繊維の巻き付け方向は揃っている。また、シート状をなす繊維束を、繊維の長手方向を揃えて芯材10の外表面に設けるようにしてもよい。また、線材の径方向には、一本または複数本(一束を含む)の強化繊維が巻き付けられている。   The reinforcing fiber in the FRP layer 11 may be one in which fibers are wound around the core material 10 one by one, or a plurality of fibers are bundled, and one bundle is wound around the core material 10 at a time. It may be. In any winding, the winding direction of each fiber is aligned. Further, a fiber bundle in the form of a sheet may be provided on the outer surface of the core material 10 with the longitudinal direction of the fibers aligned. Further, one or a plurality (including a bundle) of reinforcing fibers are wound around the radial direction of the wire.

なお、弾性部材用線材1における芯材10、低融点熱可塑性樹脂および高融点樹脂繊維は、同一の樹脂系が用いられることが好ましい。同一の樹脂系とは、系統が同じ樹脂のことをいう。例えば、芯材10としてポリオレフィン系樹脂が用いられる場合、低融点熱可塑性樹脂には低融点ポリオレフィン系樹脂、高融点樹脂繊維には、高融点ポリオレフィン系樹脂が用いられる。   In addition, it is preferable that the same resin system is used for the core material 10, the low melting point thermoplastic resin, and the high melting point resin fiber in the wire member 1 for elastic members. The same resin system means a resin having the same system. For example, when a polyolefin resin is used as the core material 10, a low melting point polyolefin resin is used for the low melting point thermoplastic resin, and a high melting point polyolefin resin is used for the high melting point resin fiber.

続いて、本実施の形態に係る弾性部材用線材1の製造方法について、図2〜図6を参照して説明する。図2〜図6は、本発明の一実施の形態に係る弾性部材用線材の製造方法を説明する図である。   Then, the manufacturing method of the wire 1 for elastic members which concerns on this Embodiment is demonstrated with reference to FIGS. 2-6 is a figure explaining the manufacturing method of the wire for elastic members which concerns on one embodiment of this invention.

まず、予め液状の熱硬化性樹脂を含浸した強化繊維111を芯材10に巻き付ける(図2参照、第1のステップ)。この強化繊維111は所定のピッチで芯材10に巻き付けられており、強化繊維111を巻き付けた後の線材(第1の中間線材)において、芯材10の一部は、外部に露出した状態となっている。   First, the reinforcing fiber 111 impregnated with a liquid thermosetting resin in advance is wound around the core material 10 (see FIG. 2, first step). The reinforcing fibers 111 are wound around the core material 10 at a predetermined pitch, and in the wire material (first intermediate wire material) after the reinforcing fibers 111 are wound, a part of the core material 10 is exposed to the outside. It has become.

芯材10に強化繊維111を巻き付けた後、この線材に、高融点樹脂繊維と低融点熱可塑性樹脂とを含む樹脂繊維112を巻き付ける(図3参照、第2のステップ)。図4は、本発明の一実施の形態に係る弾性部材用線材の製造方法を説明する図であって、高融点樹脂繊維と低融点熱可塑性樹脂とについて説明する図である。本実施の形態では、図4に示すような、高融点樹脂繊維(高融点樹脂層112a)の外周が低融点熱可塑性樹脂(低融点樹脂層112b)に覆われた芯鞘型の樹脂繊維112を巻き付けるものとして説明するが、高融点樹脂繊維と低融点熱可塑性樹脂とが互いに独立した別の繊維である場合は、各々を線材に巻き付ける。樹脂繊維112は、強化繊維111の巻回方向と逆向きの方向に巻回する。このため、強化繊維111と樹脂繊維112とは、交差するように、芯材10に巻回される。樹脂繊維112は、強化繊維111と同様に所定のピッチで巻回される。したがって、巻回後の線材(第2の中間線材)は、芯材10の一部と、強化繊維111の一部とが外部に露出した状態となっている。なお、第2の中間線材では、芯材10に対するFRP層11の固着の観点から、少なくとも強化繊維111の一部が外部に露出していればよい。   After the reinforcing fiber 111 is wound around the core material 10, the resin fiber 112 containing the high melting point resin fiber and the low melting point thermoplastic resin is wound around the wire (see FIG. 3, second step). FIG. 4 is a diagram for explaining a method for manufacturing a wire for an elastic member according to an embodiment of the present invention, and is a diagram for explaining a high melting point resin fiber and a low melting point thermoplastic resin. In the present embodiment, as shown in FIG. 4, the core-sheath type resin fiber 112 in which the outer periphery of the high melting point resin fiber (high melting point resin layer 112a) is covered with the low melting point thermoplastic resin (low melting point resin layer 112b). However, when the high-melting point resin fiber and the low-melting point thermoplastic resin are separate fibers, they are wound around the wire. The resin fiber 112 is wound in a direction opposite to the winding direction of the reinforcing fiber 111. For this reason, the reinforcing fiber 111 and the resin fiber 112 are wound around the core material 10 so as to intersect. The resin fibers 112 are wound at a predetermined pitch in the same manner as the reinforcing fibers 111. Accordingly, the wound wire (second intermediate wire) is in a state in which a part of the core material 10 and a part of the reinforcing fiber 111 are exposed to the outside. In the second intermediate wire, at least a part of the reinforcing fiber 111 may be exposed to the outside from the viewpoint of fixing the FRP layer 11 to the core member 10.

その後、予め液状の熱硬化性樹脂を含浸した強化繊維113を芯材10に巻き付ける(図5参照、第3のステップ)。強化繊維113は、間隔を空けずに(隣り合う強化繊維同士を密着させて)巻回する。強化繊維113は、芯材10の径方向の厚さが、所定の厚さとなるまで重ねて巻回される。強化繊維113の繊維は、強化繊維111の繊維と同じ繊維であることが好ましい。   Thereafter, the reinforcing fiber 113 impregnated with a liquid thermosetting resin in advance is wound around the core material 10 (see FIG. 5, third step). The reinforcing fibers 113 are wound without leaving an interval (adjacent reinforcing fibers are in close contact with each other). The reinforcing fibers 113 are wound in an overlapping manner until the thickness of the core material 10 in the radial direction reaches a predetermined thickness. The fibers of the reinforcing fibers 113 are preferably the same fibers as the fibers of the reinforcing fibers 111.

強化繊維113を巻回後、この線材(第3の中間線材)を、強化繊維111および強化繊維113の熱硬化性樹脂が硬化する温度以上であって、高融点樹脂繊維の融点の温度未満の温度で加熱する(加熱ステップ)。加熱時には、まず低融点熱可塑性樹脂が溶融し、芯材10に接触する。その後、熱硬化性樹脂が硬化することによって、隣り合う強化繊維111同士や、強化繊維113同士、強化繊維111および強化繊維113が固着される。加熱後に線材の温度が室温に戻れば、低融点熱可塑性樹脂が融点以下に冷却されるため、低融点熱可塑性樹脂が固化し、低融点熱可塑性樹脂が芯材10に融着する。   After winding the reinforcing fiber 113, the wire (third intermediate wire) is at or above the temperature at which the thermosetting resin of the reinforcing fiber 111 and the reinforcing fiber 113 is cured, and below the melting point of the high melting point resin fiber. Heat at temperature (heating step). At the time of heating, first, the low-melting point thermoplastic resin melts and contacts the core material 10. Thereafter, the thermosetting resin is cured, so that the adjacent reinforcing fibers 111, the reinforcing fibers 113, the reinforcing fibers 111, and the reinforcing fibers 113 are fixed. When the temperature of the wire returns to room temperature after heating, the low-melting point thermoplastic resin is cooled below the melting point, so that the low-melting point thermoplastic resin is solidified and the low-melting point thermoplastic resin is fused to the core member 10.

冷却後に得られる線材におけるFRP層11は、図6に示すように、芯材10側に形成され、高融点樹脂繊維、低融点熱可塑性樹脂ならびに強化繊維111に応じた熱硬化性樹脂および強化繊維を含む内部層R11と、内部層R11の外部側に形成され、強化繊維113に応じた熱硬化性樹脂および強化繊維を含む外部層R12と、有する。なお、厳密には、内部層R11と外部層R12との境界には各層の構成要素が混在し、例えば、内部層R11に強化繊維113が含まれていたり、強化繊維111と強化繊維113の各繊維が熱硬化性樹脂によって固着されていたりする。As shown in FIG. 6, the FRP layer 11 in the wire obtained after cooling is formed on the core material 10 side, and includes a high melting point resin fiber, a low melting point thermoplastic resin, and a thermosetting resin and a reinforcing fiber corresponding to the reinforcing fiber 111. an inner layer R 11 comprising, formed on the outer side of the inner layer R 11, an outer layer R 12 containing a thermosetting resin and reinforcing fibers according to the reinforcing fibers 113 have. Strictly speaking, constituent elements of each layer are mixed at the boundary between the inner layer R 11 and the outer layer R 12 , for example, the inner layer R 11 includes the reinforcing fiber 113, or the reinforcing fiber 111 and the reinforcing fiber. Each fiber 113 is fixed by a thermosetting resin.

上述した処理によって、上述した複数の強化繊維と、該強化繊維同士を固着する熱硬化性樹脂と、芯材10側の強化繊維を固定する高融点樹脂繊維と、当該FRP層11および芯材10を固着する低融点熱可塑性樹脂と、を含むFRP層11が形成され、図1に示す弾性部材用線材1を得ることができる。   By the above-described treatment, the above-described plurality of reinforcing fibers, the thermosetting resin that fixes the reinforcing fibers, the high-melting point resin fiber that fixes the reinforcing fibers on the core material 10 side, the FRP layer 11 and the core material 10. An FRP layer 11 containing a low melting point thermoplastic resin that adheres to the elastic member is formed, and the elastic member wire 1 shown in FIG. 1 can be obtained.

なお、強化繊維などを芯材10に巻き付ける方法として、例えば、フィラメントワインディング法(Filament Winding)が挙げられる。なお、複数の繊維がシート状をなしている繊維束を用いる場合は、シートワインディング法(Sheet Winding)により形成する。   In addition, as a method of winding reinforcing fibers or the like around the core material 10, for example, a filament winding method (Filament Winding) can be cited. When a fiber bundle in which a plurality of fibers form a sheet is used, it is formed by a sheet winding method (Sheet Winding).

この弾性部材用線材1を巻回すれば、コイルばねを作製することができる。このコイルばねは、例えば、自動車のサスペンション用の懸架ばねとして用いられる。このほか、弾性部材用線材1の一部を屈曲させて、トーションバーや、スタビライザーなどの弾性部材として使用することも可能である。   If this elastic member wire 1 is wound, a coil spring can be produced. This coil spring is used, for example, as a suspension spring for an automobile suspension. In addition, a part of the elastic member wire 1 can be bent and used as an elastic member such as a torsion bar or a stabilizer.

以上説明した本発明の一実施の形態によれば、芯材10とFRP層11を備えた弾性部材用線材1において、FRP層11が、複数の強化繊維と、該強化繊維同士を固着する熱硬化性樹脂と、芯材10側の強化繊維を固定する高融点樹脂繊維と、当該FRP層11および芯材10を固着する低融点熱可塑性樹脂と、を含むようにしたので、軽量化しつつ、強度を向上することができる。   According to the embodiment of the present invention described above, in the elastic member wire 1 including the core material 10 and the FRP layer 11, the FRP layer 11 has a plurality of reinforcing fibers and heat for fixing the reinforcing fibers to each other. Since the curable resin, the high melting point resin fiber for fixing the reinforcing fiber on the core material 10 side, and the low melting point thermoplastic resin for fixing the FRP layer 11 and the core material 10 are included, Strength can be improved.

また、本発明の一実施の形態によれば、高融点樹脂繊維の外周が低融点熱可塑性樹脂に覆われた芯鞘型の樹脂繊維112を、芯材10に巻き付けた強化繊維111の巻回方向と逆向きの方向に巻回し、加熱によって低融点熱可塑性樹脂のみが溶融して芯材10に融着し、高融点樹脂繊維は強化繊維111を締め付けた状態で残るようにしたので、強化繊維111を芯材10に対して強固に固着させることができる。   In addition, according to one embodiment of the present invention, the winding of the reinforcing fiber 111 in which the core-sheath resin fiber 112 in which the outer periphery of the high melting point resin fiber is covered with the low melting point thermoplastic resin is wound around the core material 10 is wound. Winding in a direction opposite to the direction, only the low-melting point thermoplastic resin is melted and fused to the core material 10 by heating, and the high-melting point resin fiber remains in a state where the reinforcing fiber 111 is tightened. The fiber 111 can be firmly fixed to the core material 10.

また、本発明の一実施の形態によれば、高融点樹脂繊維の外周が低融点熱可塑性樹脂に覆われた芯鞘型の樹脂繊維112を、所定のピッチで巻回し、強化繊維113を巻回した際に、強化繊維111と強化繊維113とが接触するようにしたので、芯材10に固着された強化繊維111と強化繊維113とが熱硬化性樹脂によって固着されるため、芯材10に対する強化繊維113の固着強度を大きくすることができる。   Further, according to one embodiment of the present invention, the core-sheath resin fiber 112 in which the outer periphery of the high melting point resin fiber is covered with the low melting point thermoplastic resin is wound at a predetermined pitch, and the reinforcing fiber 113 is wound. Since the reinforcing fiber 111 and the reinforcing fiber 113 are brought into contact with each other when rotated, the reinforcing fiber 111 and the reinforcing fiber 113 fixed to the core material 10 are fixed by the thermosetting resin. The reinforcing strength of the reinforcing fiber 113 can be increased.

また、本発明の一実施の形態によれば、芯材10、低融点熱可塑性樹脂および高融点樹脂繊維を同一の樹脂系とすることによって、互いの親和性が高くなり、低融点熱可塑性樹脂が溶融した場合であっても高融点樹脂繊維により低融点熱可塑性樹脂が保持される。これにより、高融点樹脂繊維により芯材10側の強化繊維を固定する強度と、低融点熱可塑性樹脂によりFRP層11および芯材10を固着する強度とを確保することができ、強化繊維111を芯材10に押さえつけた状態を維持することができる。   According to one embodiment of the present invention, the core material 10, the low-melting point thermoplastic resin, and the high-melting point resin fiber are made of the same resin system, so that the affinity for each other increases, and the low-melting point thermoplastic resin Even when melted, the low melting point thermoplastic resin is retained by the high melting point resin fiber. Thereby, the strength for fixing the reinforcing fiber on the core material 10 side with the high melting point resin fiber and the strength for fixing the FRP layer 11 and the core material 10 with the low melting point thermoplastic resin can be secured, and the reinforcing fiber 111 is The state pressed against the core material 10 can be maintained.

以下、本発明に係る弾性部材用線材の実施例について説明する。まず、本実施例に係る弾性部材用線材の製造方法および構成について説明する。   Hereinafter, the Example of the wire for elastic members which concerns on this invention is described. First, the manufacturing method and structure of the elastic member wire according to the present embodiment will be described.

(実施例1)
マンドレルとして、φ7mm、長手方向の長さが3000mmのポリプロピレン(PP)製の芯材(融点:168℃)を用いた。熱硬化性樹脂であるエポキシ樹脂と、エポキシ樹脂硬化剤との混合液を含浸させた炭素繊維の繊維束2本をφ10mmのガイドを通して、それぞれの幅を約5mmとし、2本の繊維束の間の間隔が約5mmになるように調整して、繊維束の延伸方向が芯材の長手方向に対して+45°をなす状態を維持しながら、芯材の一方の端部から他方の端部まで巻き付けた。その後、その上から低融点の熱可塑性繊維としてのLDPE製の糸(融点:95〜135℃)と、高融点の熱可塑性繊維としてのPP繊維(融点:168℃)との繊維混合束を、繊維混合束の延伸方向が芯材の長手方向に対して−45°をなす(炭素繊維と逆向き)状態を維持しながら、芯材の他方の端部から一方の端部まで約10mmの間隔になるように巻き付けた。さらに、その上から熱硬化性樹脂であるエポキシ樹脂と、エポキシ樹脂硬化剤との混合液を含浸させた炭素繊維の繊維束を積層していき、線材の外径が均一な約φ18mmの未硬化の炭素繊維強化プラスチック(CFRP)線材を成形した。その後、オーブンの天井部に線材の一端を固定し、かつオーブンの底面に固定したワイヤーで線材の他端に引張り荷重を加えた状態で、100℃で1時間加熱した後150℃で4時間加熱硬化させた。これにより本実施例1の弾性部材用線材を得た。なお、繊維束や繊維混合束の巻き付けには、フィラメントワインダーを用いた。表1に、実施例1に係る弾性部材用線材の構成を示す。

Figure 2017043654
Example 1
As the mandrel, a core material (melting point: 168 ° C.) made of polypropylene (PP) having a diameter of 7 mm and a length in the longitudinal direction of 3000 mm was used. Two fiber bundles of carbon fibers impregnated with a mixture of an epoxy resin, which is a thermosetting resin, and an epoxy resin curing agent are passed through a guide of φ10 mm so that each width is about 5 mm, and the distance between the two fiber bundles Was adjusted to be about 5 mm, and the fiber bundle was wound from one end to the other end while maintaining the state in which the fiber bundle stretching direction was + 45 ° with respect to the longitudinal direction of the core. . Thereafter, a fiber mixed bundle of LDPE yarn (melting point: 95 to 135 ° C.) as a low melting thermoplastic fiber and PP fiber (melting point: 168 ° C.) as a high melting thermoplastic fiber from above, An interval of about 10 mm from the other end of the core to one end is maintained while maintaining a state in which the drawing direction of the fiber mixed bundle is −45 ° with respect to the longitudinal direction of the core (opposite to the carbon fiber). Wrapped to become. Further, a fiber bundle of carbon fibers impregnated with a mixed solution of an epoxy resin that is a thermosetting resin and an epoxy resin curing agent is laminated thereon, and an uncured wire having a uniform outer diameter of about φ18 mm. A carbon fiber reinforced plastic (CFRP) wire was molded. Then, with one end of the wire fixed to the ceiling of the oven and a tensile load applied to the other end of the wire with a wire fixed to the bottom of the oven, heated at 100 ° C. for 1 hour and then heated at 150 ° C. for 4 hours Cured. Thus, the elastic member wire of Example 1 was obtained. A filament winder was used for winding the fiber bundle or fiber mixed bundle. Table 1 shows the configuration of the elastic member wire according to the first embodiment.
Figure 2017043654

(実施例2)
実施例1で使用した「低融点の熱可塑性繊維としてのLDPE製の糸と、高融点の熱可塑性繊維としてのPP繊維との繊維混合束」に代えて、低融点共重合オレフィン系樹脂(融点:145℃)とPP繊維(融点:168℃)とからなる芯鞘型構造の繊維を用いた。その他の条件は、実施例1と同様にして、実施例2の弾性部材用線材を得た。表1に、実施例2に係る弾性部材用線材の構成を示す。
(Example 2)
Instead of the “fiber mixture bundle of LDPE yarn as a low melting thermoplastic fiber and PP fiber as a high melting thermoplastic fiber” used in Example 1, a low melting copolymer olefin resin (melting point 145 ° C.) and PP-fiber (melting point: 168 ° C.). The other conditions were the same as in Example 1, and the elastic member wire of Example 2 was obtained. Table 1 shows the configuration of the elastic member wire according to the second embodiment.

(実施例3)
実施例1で使用した「低融点の熱可塑性繊維としてのLDPE製の糸」に代えてHDPE製の糸(融点:135℃)とし、PP製の芯材に代えてHDPE製の芯材(融点:135℃)を用いた。その他の条件は、実施例1と同様にして、実施例3の弾性部材用線材を得た。表1に、実施例3に係る弾性部材用線材の構成を示す。
(Example 3)
HDPE yarn (melting point: 135 ° C.) was used instead of “LDPE yarn as a low melting thermoplastic fiber” used in Example 1, and HDPE core material (melting point) instead of PP core material. : 135 ° C.). The other conditions were the same as in Example 1, and the elastic member wire of Example 3 was obtained. In Table 1, the structure of the wire for elastic members which concerns on Example 3 is shown.

(実施例4)
実施例1で使用した「低融点の熱可塑性繊維としてのLDPE製の糸」に代えてナイロン12の糸(融点:176℃)を用い、「高融点の熱可塑性繊維としてのPP繊維」に代えてナイロン66繊維(融点:265℃)を用い、PP製の芯材に代えてナイロン6(融点:225℃)製の芯材を用いた。実施例4では、加熱硬化条件を100℃で1時間加熱した後180℃で4時間加熱硬化させるものとした。その他の条件は、実施例1と同様にして、実施例4の弾性部材用線材を得た。表1に、実施例4に係る弾性部材用線材の構成を示す。
Example 4
Instead of “LDPE yarn as low melting thermoplastic fiber” used in Example 1, nylon 12 yarn (melting point: 176 ° C.) was used, and “PP fiber as high melting thermoplastic fiber” was used instead. Nylon 66 fiber (melting point: 265 ° C.) was used, and a core material made of nylon 6 (melting point: 225 ° C.) was used instead of the PP core material. In Example 4, the heat-curing conditions were set at 100 ° C. for 1 hour and then heat-cured at 180 ° C. for 4 hours. The other conditions were the same as in Example 1, and the elastic member wire of Example 4 was obtained. In Table 1, the structure of the wire for elastic members which concerns on Example 4 is shown.

(実施例5)
実施例4で使用した「ナイロン12の糸」に代えて低融点ポリエステル系樹脂の糸(融点:160℃)を用い、「ナイロン66繊維」に代えて高融点ポリエステル系樹脂(融点:250℃)を用い、ナイロン6製の芯材に代えてPET製の芯材(融点:255℃)を用いた。その他の条件は、実施例4と同様にして、実施例5の弾性部材用線材を得た。表1に、実施例5に係る弾性部材用線材の構成を示す。
(Example 5)
A low melting polyester resin yarn (melting point: 160 ° C.) was used instead of the “nylon 12 yarn” used in Example 4, and a high melting polyester resin (melting point: 250 ° C.) was used instead of the “nylon 66 fiber”. In place of the nylon 6 core material, a PET core material (melting point: 255 ° C.) was used. Other conditions were the same as in Example 4 to obtain the elastic member wire of Example 5. Table 1 shows the configuration of the elastic member wire according to the fifth embodiment.

(比較例1)
実施例1と同様に、マンドレルとして、φ7mm、長手方向の長さが3000mmのPP製の芯材を用いた。熱硬化性樹脂であるエポキシ樹脂と、エポキシ樹脂硬化剤との混合液を含浸させた炭素繊維の繊維束2本をφ10mmのガイドを通して、それぞれの幅を約5mmとし、2本の繊維束の間の間隔が約5mmになるように調整して、繊維束の延伸方向が芯材の長手方向に対して+45°をなす状態を維持しながら、線材の外径が均一なφ約18mmとなるまで繊維束を積層し、未硬化CFRP線材を成形した。その他の条件は、実施例1と同様にして、比較例1の弾性部材用線材を得た。表1に、比較例1に係る弾性部材用線材の構成を示す。
(Comparative Example 1)
As in Example 1, a PP core material having a diameter of 7 mm and a length in the longitudinal direction of 3000 mm was used as a mandrel. Two fiber bundles of carbon fibers impregnated with a mixture of an epoxy resin, which is a thermosetting resin, and an epoxy resin curing agent are passed through a guide of φ10 mm so that each width is about 5 mm, and the distance between the two fiber bundles The fiber bundle is adjusted so that the stretching direction of the fiber bundle is + 45 ° with respect to the longitudinal direction of the core material while the outer diameter of the wire becomes a uniform φ of about 18 mm. Were laminated to form an uncured CFRP wire. The other conditions were the same as in Example 1, and the elastic member wire of Comparative Example 1 was obtained. Table 1 shows the configuration of the elastic member wire according to Comparative Example 1.

(比較例2)
比較例1で使用したφ7mm、長手方向の長さが3000mmのPP製の芯材の周りにLDPEフィルム(厚さ10μm)を2重に巻き付け、この層を芯材とFRP層との間の中間層とした。その他の条件は、比較例1と同様にして、比較例2の弾性部材用線材を得た。表1に、比較例2に係る弾性部材用線材の構成を示す。
(Comparative Example 2)
An LDPE film (thickness 10 μm) is wrapped around the PP core material of φ7 mm and the length in the longitudinal direction of 3000 mm used in Comparative Example 1, and this layer is intermediate between the core material and the FRP layer. Layered. The other conditions were the same as in Comparative Example 1, and the elastic member wire of Comparative Example 2 was obtained. Table 1 shows the configuration of the elastic member wire according to Comparative Example 2.

続いて、本実施例に係る試験内容について説明する。   Subsequently, test contents according to the present example will be described.

(引き抜き抵抗力試験)
上述したようにして得られた弾性部材用線材を400mmの長さに切り出して、この切り出した試験片について、芯材の引き抜き試験を行った。引き抜き試験には、フォースゲージを使用して引き抜き抵抗力の測定を行った。表1に、弾性部材用線材の引き抜き抵抗力試験結果を示す。
(Pullout resistance test)
The elastic member wire obtained as described above was cut into a length of 400 mm, and a core material pull-out test was performed on the cut specimen. In the pull-out test, the pull-out resistance was measured using a force gauge. Table 1 shows the pulling resistance test result of the elastic member wire.

次に、本実施例に係る弾性部材用線材の引き抜き抵抗力試験結果について説明する。実施例1〜5に係る弾性部材用線材は、引き抜き抵抗力が7〜20Nであるのに対し、比較例1,2に係る弾性部材用線材は、引き抜き抵抗力が2N以下であった。これにより、本実施例1〜5では、弾性部材用線材における芯材とFRP層との間が強固に固着されていることがわかる。この結果から、上述した実施の形態のように、FRP層が、複数の強化繊維と、該強化繊維同士を固着する熱硬化性樹脂と、芯材側の強化繊維を固定する高融点樹脂繊維と、当該FRP層および芯材を固着する低融点熱可塑性樹脂とを含む構成とすることによって、芯材とFRP層との間の引き抜き抵抗力が向上するといえる。   Next, the pulling resistance test result of the elastic member wire according to the present embodiment will be described. The elastic member wires according to Examples 1 to 5 had a pulling resistance of 7 to 20 N, whereas the elastic member wires according to Comparative Examples 1 and 2 had a pulling resistance of 2 N or less. Thereby, in the present Examples 1-5, it turns out that the core material and FRP layer in the wire for elastic members are firmly fixed. From this result, as in the above-described embodiment, the FRP layer includes a plurality of reinforcing fibers, a thermosetting resin that fixes the reinforcing fibers to each other, and a high melting point resin fiber that fixes the reinforcing fibers on the core side. It can be said that pulling resistance between the core material and the FRP layer is improved by including the FRP layer and the low-melting point thermoplastic resin to which the core material is fixed.

このように、本発明はここでは記載していない様々な実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。   As described above, the present invention can include various embodiments and the like not described herein, and various design changes and the like can be made without departing from the technical idea specified by the claims. It is possible.

以上のように、本発明に係る弾性部材用線材の製造方法、弾性部材用線材および弾性部材は、軽量化しつつ、強度を向上するのに好適である。   As described above, the elastic member wire manufacturing method, elastic member wire, and elastic member according to the present invention are suitable for improving the strength while reducing the weight.

1 弾性部材用線材
10 芯材
11 繊維強化プラスチック(FRP)層
111,113 強化繊維
112 樹脂繊維
112a 高融点樹脂層
112b 低融点樹脂層
DESCRIPTION OF SYMBOLS 1 Wire material for elastic members 10 Core material 11 Fiber reinforced plastic (FRP) layer 111,113 Reinforcement fiber 112 Resin fiber 112a High melting point resin layer 112b Low melting point resin layer

Claims (11)

液状の熱硬化性樹脂を含浸した第1の強化繊維を、熱可塑性樹脂からなる芯材が外部に露出するように前記芯材に巻き付けて第1の中間線材を作製する第1のステップと、
前記熱硬化性樹脂の硬化温度よりも高い融点を有する高融点樹脂繊維と、前記高融点樹脂繊維の融点よりも低い融点を有する低融点熱可塑性樹脂とを、前記第1の強化繊維が外部に露出するように前記第1の中間線材に巻き付けて第2の中間線材を作製する第2のステップと、
液状の熱硬化性樹脂を含浸した第2の強化繊維を前記第2の中間線材に巻き付けて第3の中間線材を作製する第3のステップと、
前記第3の中間線材を、前記硬化温度、または前記低融点熱可塑性樹脂の融点の温度のうち高い方の温度以上であって前記高融点樹脂繊維の融点の温度未満に加熱する加熱ステップと、
を含むことを特徴とする弾性部材用線材の製造方法。
A first step of producing a first intermediate wire by wrapping a first reinforcing fiber impregnated with a liquid thermosetting resin around the core so that the core made of a thermoplastic resin is exposed to the outside;
The first reinforcing fiber has a high melting point resin fiber having a melting point higher than the curing temperature of the thermosetting resin and a low melting point thermoplastic resin having a melting point lower than the melting point of the high melting point resin fiber. A second step of winding the first intermediate wire so as to be exposed to produce a second intermediate wire;
A third step of winding a second reinforcing fiber impregnated with a liquid thermosetting resin around the second intermediate wire to produce a third intermediate wire;
A heating step of heating the third intermediate wire to the curing temperature or the higher of the melting point of the low-melting point thermoplastic resin to a temperature higher than the melting point of the high-melting point resin fiber;
The manufacturing method of the wire for elastic members characterized by including.
前記第2のステップは、前記低融点熱可塑性樹脂が、前記高融点樹脂繊維の外周を覆う芯鞘型の複合繊維を前記第1の中間線材に巻き付けて第2の中間線材を作製する
ことを特徴とする請求項1に記載の弾性部材用線材の製造方法。
In the second step, the low-melting point thermoplastic resin wraps a core-sheath type composite fiber covering an outer periphery of the high-melting point resin fiber around the first intermediate wire to produce a second intermediate wire. The manufacturing method of the wire for elastic members of Claim 1 characterized by the above-mentioned.
前記第2のステップは、互いに独立した繊維状をなす前記低融点熱可塑性樹脂および前記高融点樹脂繊維を前記第1の中間線材に巻き付けて第2の中間線材を作製する
ことを特徴とする請求項1に記載の弾性部材用線材の製造方法。
In the second step, the low-melting point thermoplastic resin and the high-melting point resin fibers that are independent of each other are wound around the first intermediate wire to produce a second intermediate wire. Item 2. A method for producing a wire for an elastic member according to Item 1.
前記低融点熱可塑性樹脂の融点の温度が、前記硬化温度よりも低く、
前記加熱ステップは、前記硬化温度以上であって前記高融点樹脂繊維の融点の温度未満に加熱する
ことを特徴とする請求項1〜3のいずれか一つに記載の弾性部材用線材の製造方法。
The melting point temperature of the low-melting thermoplastic resin is lower than the curing temperature,
The method for producing a wire for an elastic member according to any one of claims 1 to 3, wherein the heating step is performed at a temperature equal to or higher than the curing temperature and lower than a melting point of the high melting point resin fiber. .
熱可塑性樹脂からなる芯材と、
前記芯材に巻き付けられてなる複数の強化繊維を含み、前記芯材を覆う繊維層と、
を備え、
前記繊維層は、
前記複数の強化繊維と、
該強化繊維同士を固着する熱硬化性樹脂と、
前記複数の強化繊維のうち前記芯材側に位置する強化繊維と交差して前記芯材に巻回されてなり、前記芯材側に位置する強化繊維を前記芯材に固定する高融点樹脂繊維と、
当該繊維層および前記芯材を固着する低融点熱可塑性樹脂と、
を含んでいることを特徴とする弾性部材用線材。
A core made of thermoplastic resin;
A plurality of reinforcing fibers wound around the core material, and a fiber layer covering the core material;
With
The fiber layer is
The plurality of reinforcing fibers;
A thermosetting resin that bonds the reinforcing fibers together;
A high melting point resin fiber that is wound around the core material so as to intersect with the reinforcing fiber positioned on the core material side among the plurality of reinforcing fibers, and fixes the reinforcing fiber positioned on the core material side to the core material When,
A low-melting point thermoplastic resin for fixing the fiber layer and the core material;
The wire for elastic members characterized by including.
前記強化繊維は、炭素繊維、ガラス繊維、アラミド繊維およびバサルト繊維から選択される少なくとも一つの繊維である
ことを特徴とする請求項5に記載の弾性部材用線材。
The elastic member wire according to claim 5, wherein the reinforcing fiber is at least one fiber selected from a carbon fiber, a glass fiber, an aramid fiber, and a basalt fiber.
前記芯材が、ポリプロピレンからなる
ことを特徴とする請求項5または6に記載の弾性部材用線材。
The wire for an elastic member according to claim 5 or 6, wherein the core material is made of polypropylene.
前記熱硬化性樹脂が、エポキシ樹脂である
ことを特徴とする請求項5〜7のいずれか一つに記載の弾性部材用線材。
The wire for an elastic member according to any one of claims 5 to 7, wherein the thermosetting resin is an epoxy resin.
前記芯材、前記低融点熱可塑性樹脂および前記高融点樹脂繊維は、同一の樹脂系を用いて形成されている
ことを特徴とする請求項5〜8のいずれか一つに記載の弾性部材用線材。
The said core material, the said low melting-point thermoplastic resin, and the said high melting-point resin fiber are formed using the same resin system. For elastic members as described in any one of Claims 5-8 characterized by the above-mentioned. wire.
請求項5〜9のいずれか一つに記載の弾性部材用線材を用いて形成されることを特徴とする弾性部材。   The elastic member formed using the wire for elastic members as described in any one of Claims 5-9. 前記弾性部材用線材を螺旋状に巻回してなることを特徴とする請求項10に記載の弾性部材。   The elastic member according to claim 10, wherein the elastic member wire is wound spirally.
JP2017538556A 2015-09-09 2016-09-09 Method for manufacturing elastic member wire, elastic member wire and elastic member Active JP6440854B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015177502 2015-09-09
JP2015177502 2015-09-09
PCT/JP2016/076702 WO2017043654A1 (en) 2015-09-09 2016-09-09 Method for producing wire rod for elastic members, wire rod for elastic members, and elastic member

Publications (2)

Publication Number Publication Date
JPWO2017043654A1 true JPWO2017043654A1 (en) 2018-04-19
JP6440854B2 JP6440854B2 (en) 2018-12-19

Family

ID=58239914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017538556A Active JP6440854B2 (en) 2015-09-09 2016-09-09 Method for manufacturing elastic member wire, elastic member wire and elastic member

Country Status (2)

Country Link
JP (1) JP6440854B2 (en)
WO (1) WO2017043654A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055314B1 (en) 2020-12-28 2022-04-18 中川産業株式会社 Manufacturing method of the bar and the dipping device used for it

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659040A (en) * 1979-10-18 1981-05-22 Kato Hatsujo Kaisha Ltd Fiber reinforced resin coil and its shaping core bar
JPS592842A (en) * 1982-06-30 1984-01-09 宇部日東化成株式会社 Blank for forming coating fiber reinforced plastic product
JPS6312786A (en) * 1986-07-03 1988-01-20 清水建設株式会社 Rod material
JPH0369344A (en) * 1989-08-09 1991-03-25 Nippon Oil Co Ltd Manufacture of frp hollow product
JPH04136530A (en) * 1990-09-27 1992-05-11 Toyama Pref Gov Frp coil spring and manufacture thereof
JPH06182882A (en) * 1992-07-14 1994-07-05 Composite Dev Corp Structural member made of fiber-reinforced thermoplastic material and its production
JP2000027082A (en) * 1998-07-07 2000-01-25 Nippon Steel Corp Wire and twisted wire made of fiber-reinforced plastic and production thereof
JP2003026819A (en) * 2001-05-11 2003-01-29 Ube Nitto Kasei Co Ltd Fiber-reinforced composite and method for producing the same
JP2007321060A (en) * 2006-06-01 2007-12-13 Ube Nitto Kasei Co Ltd Coated fiber-reinforced synthetic resin linear material
JP2015175433A (en) * 2014-03-14 2015-10-05 ミズノ テクニクス株式会社 Fiber-reinforced resin coil spring and process of manufacture of fiber-reinforced resin coil spring
JP2015194260A (en) * 2011-03-30 2015-11-05 ユニチカ株式会社 Process of manufacture of thermoplastic polymer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659040A (en) * 1979-10-18 1981-05-22 Kato Hatsujo Kaisha Ltd Fiber reinforced resin coil and its shaping core bar
JPS592842A (en) * 1982-06-30 1984-01-09 宇部日東化成株式会社 Blank for forming coating fiber reinforced plastic product
JPS6312786A (en) * 1986-07-03 1988-01-20 清水建設株式会社 Rod material
JPH0369344A (en) * 1989-08-09 1991-03-25 Nippon Oil Co Ltd Manufacture of frp hollow product
JPH04136530A (en) * 1990-09-27 1992-05-11 Toyama Pref Gov Frp coil spring and manufacture thereof
JPH06182882A (en) * 1992-07-14 1994-07-05 Composite Dev Corp Structural member made of fiber-reinforced thermoplastic material and its production
JP2000027082A (en) * 1998-07-07 2000-01-25 Nippon Steel Corp Wire and twisted wire made of fiber-reinforced plastic and production thereof
JP2003026819A (en) * 2001-05-11 2003-01-29 Ube Nitto Kasei Co Ltd Fiber-reinforced composite and method for producing the same
JP2007321060A (en) * 2006-06-01 2007-12-13 Ube Nitto Kasei Co Ltd Coated fiber-reinforced synthetic resin linear material
JP2015194260A (en) * 2011-03-30 2015-11-05 ユニチカ株式会社 Process of manufacture of thermoplastic polymer
JP2015175433A (en) * 2014-03-14 2015-10-05 ミズノ テクニクス株式会社 Fiber-reinforced resin coil spring and process of manufacture of fiber-reinforced resin coil spring

Also Published As

Publication number Publication date
WO2017043654A1 (en) 2017-03-16
JP6440854B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
US10456996B2 (en) Tank manufacturing method and tank
US9982734B2 (en) Composite coil spring
US10240654B2 (en) Hybrid spring device
JP6839197B2 (en) fishing rod
JP6654458B2 (en) Tank manufacturing method
JP2015526661A5 (en)
JP6251070B2 (en) Manufacturing method of shaft-shaped composite member
JP2018128116A5 (en)
JP6440854B2 (en) Method for manufacturing elastic member wire, elastic member wire and elastic member
JPWO2017163860A1 (en) Coil spring
WO2017073772A1 (en) Coil spring wire rod and coil spring
JP6696789B2 (en) Tank manufacturing method
JP6715791B2 (en) Fishing rod having a rod body to which attachment parts are attached, tubular body, and method for manufacturing the same
CN108350968B (en) Wire material for elastic member and elastic member
JP4431351B2 (en) Pressure vessel manufacturing method
JPS6032539B2 (en) Coil spring manufacturing method
WO2017073771A1 (en) Wire rod for elastic member, and elastic member
JP2007064389A (en) Coil spring made of fiber-reinforced resin, and its manufacturing method
JP2008307791A (en) Manufacturing method of frp container
WO2021186734A1 (en) Tube intermediate and tube production method
JP6995704B2 (en) A fishing rod with a rod body to which mounting parts are attached
JP2015139930A (en) Manufacturing method of bar-shaped part and bar-shaped part
JP2020190058A (en) Fiber strand, reinforced mat, board, and manufacturing method of fiber strand
JP2020063821A (en) Method for manufacturing high-pressure tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181120

R150 Certificate of patent or registration of utility model

Ref document number: 6440854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250