JPH02112454A - Production of braid made of carbon fiber - Google Patents

Production of braid made of carbon fiber

Info

Publication number
JPH02112454A
JPH02112454A JP25991088A JP25991088A JPH02112454A JP H02112454 A JPH02112454 A JP H02112454A JP 25991088 A JP25991088 A JP 25991088A JP 25991088 A JP25991088 A JP 25991088A JP H02112454 A JPH02112454 A JP H02112454A
Authority
JP
Japan
Prior art keywords
resin
braid
carbon fiber
pitch
based carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25991088A
Other languages
Japanese (ja)
Inventor
Hiroyuki Odawara
小田原 弘之
Masateru Nakoji
昌輝 名小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I C S KK
Osaka Gas Co Ltd
ICS Co Ltd
Original Assignee
I C S KK
Osaka Gas Co Ltd
ICS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I C S KK, Osaka Gas Co Ltd, ICS Co Ltd filed Critical I C S KK
Priority to JP25991088A priority Critical patent/JPH02112454A/en
Publication of JPH02112454A publication Critical patent/JPH02112454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)

Abstract

PURPOSE:To easily produce the subject braid suitable as a reinforcing material for concrete, etc., in high productivity by applying a specific amount of a specific thermosetting resin or a thermoplastic resin to a pitch-based carbon fiber and knitting the coated fiber into a braid. CONSTITUTION:The objective braid is produced by knitting a pitch-based carbon fiber coated with 1-15wt.% of a thermosetting resin having a glass-transition temperature of -5 to +100 deg.C (e.g., phenolic resin, urea resin or epoxy resin) or a thermoplastic resin having a heat-deformation temperature of >=50 deg.C (e.g., PE, PP, PS, acrylic resin, polyethylene terephthalate or polyamide).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素繊維製組紐の製造方法に関し、より詳細
には、コンクリートなどの補強材を製造する上で好適な
炭素fa維製組紐の製造方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing carbon fiber braid, and more specifically, to a method for producing carbon fiber braid, which is suitable for producing reinforcing materials such as concrete. This relates to a manufacturing method.

[従来の技術] 従来、コンクリートなどの構造用補強材として、鉄筋な
どが知られている。しかしながら、鉄筋を構造用補強材
として使用すると、錆が生じ耐久性が十分でないばかり
か、施工性も十分でなく、また軽量化することが囲器で
ある。
[Prior Art] Reinforcing bars and the like have been known as structural reinforcement materials for concrete and the like. However, when reinforcing bars are used as structural reinforcing materials, they not only rust and have insufficient durability, but also have insufficient workability, and it is important to reduce the weight of the enclosure.

上記の点に鑑み、芳香族ポリアミド繊維などの引張強度
の大きな材料で形成された細線を組紐状に編成した構造
用補強材(時開1!380−119853号公報)や、
芳香族ポリアミド411維なとの引張強度の大きな材料
で形成された細線を組紐状に編成し、組紐状物を結合剤
で互いに結着した構造用材料(特開昭61−29015
0号公報)が従業されている。
In view of the above points, a structural reinforcing material made of thin wires made of a material with high tensile strength such as aromatic polyamide fibers knitted into a braided cord (Jikou No. 1!380-119853),
Structural material in which thin wires made of aromatic polyamide 411 fibers and other materials with high tensile strength are knitted into a braid shape, and the braid-like materials are bound together with a binder (Japanese Patent Laid-Open No. 61-29015
Publication No. 0) is employed.

またポリアクリロニトリル系炭素繊維のM紐は公知であ
る。
Further, M strings made of polyacrylonitrile carbon fibers are known.

し発明が解決しようとする課′M1] 上記の構造用補強材および構造用材料によれば、引張強
度の大きな材料として芳香族ポリアミド繊維などを用い
ているため、これらの材料を組紐状に編成することが容
易である。
Problem to be Solved by the Invention M1] According to the above-mentioned structural reinforcing materials and structural materials, aromatic polyamide fibers and the like are used as materials with high tensile strength. It is easy to do.

しかしながら、上記芳香族ポリアミド繊維やポリアクリ
ロニトリル系炭素繊維などに代えて、引張弾性率の大き
なピッチ系炭素繊維を用いると、ピッチ系炭素繊維が毛
羽立ち易いため、組紐機で組紐を製造するとき、炭素繊
維がガイドと摺接して切れて易く、炭素m維製組紐の生
産性が十分でないという問題がある。
However, when pitch-based carbon fibers with a large tensile modulus are used instead of the aromatic polyamide fibers and polyacrylonitrile-based carbon fibers, pitch-based carbon fibers tend to become fluffy, so when producing braids with a braiding machine, carbon There is a problem that the fibers easily break due to sliding contact with the guide, and the productivity of the carbon fiber braid is not sufficient.

また組紐は長手方向の応力に対しては大きな強度を示す
ものの、幅方向の応力に対しては容易に歪み、拡幅する
性質、すなわちコンクリートの収縮に対応して幅広とな
る性質を有しているなめ、組紐状の補強材は、補強効果
が十分でない、従って、補強効果に優れた組紐状の補強
材を得るには、細線を互いに一体化する必要があるもの
の、前記のように、ピッチ系炭素繊維を素材とする組紐
にあっては、ピッチ系炭素繊維が毛羽立ち易く、組紐作
製時に切れ易いなめ、一体止することが困難である。
Furthermore, although braided cord exhibits great strength against stress in the longitudinal direction, it easily distorts and widens against stress in the width direction, i.e., it has the property of becoming wider in response to shrinkage of concrete. Reinforcing materials in the form of licks and braids do not have a sufficient reinforcing effect. Therefore, in order to obtain a reinforcing material in the form of braids with excellent reinforcing effects, it is necessary to integrate thin wires with each other. In the case of braids made of carbon fibers, the pitch-based carbon fibers tend to fluff, tend to break during the production of the braids, and are difficult to fasten together.

本発明は、上記の点に鑑みてなされたものであり、補強
効果に優れた構造材を製造する上で好適な炭素繊維製組
紐を簡便がっ生産性よく製造できる炭素繊維製組紐の製
造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and provides a method for manufacturing carbon fiber braids that can easily and efficiently produce carbon fiber braids suitable for producing structural materials with excellent reinforcing effects. The purpose is to provide

[課題を解決するための手段および作用]本発明は、ピ
ッチ系炭素1iI!雑に、ガラス転移温度−5〜100
’Cの熱硬化性樹脂または熱変形温度50℃以上の熱可
塑性樹脂を1〜15重量%付着させた後、組紐に編成す
る炭素繊維製組紐の製造方法により、上記課題を解決す
るものである。
[Means and effects for solving the problems] The present invention provides pitch-based carbon 1iI! Roughly, glass transition temperature -5 to 100
The above-mentioned problem is solved by a method for manufacturing a carbon fiber braid in which 1 to 15% by weight of a thermosetting resin or a thermoplastic resin having a heat distortion temperature of 50° C. or higher is attached and then knitted into a braid. .

上記構成の本発明によれば、組紐作製時に切れ易いピッ
チ系炭素繊維に、特定の熱硬化性樹脂または熱可塑性a
脂を1〜15重量%付着させた後、組紐に編成するので
、ピッチ系炭素繊維が毛羽立つことなく、付着した熱硬
化性樹脂または熱可塑性樹脂により組a機のガイドに対
する炭素繊維の滑り性をよくすることができる。
According to the present invention having the above configuration, a specific thermosetting resin or thermoplastic a is added to the pitch-based carbon fiber that easily breaks during braid production.
Since the pitch-based carbon fibers are knitted into braided cords after adhering 1 to 15% of fat, the attached thermosetting resin or thermoplastic resin improves the slipperiness of the carbon fibers on the guide of the assembling machine. can do well.

なお、本明細書において、硬化とは熱硬化性樹脂の硬化
に限らず、熱可塑性樹脂の固化をも含む意味に用いる。
In addition, in this specification, hardening is used not only to harden a thermosetting resin but also to include solidification of a thermoplastic resin.

また熱硬化性樹脂のガラス転移温度は、硬化剤を含まず
未硬化状態の熱硬化性樹脂のガラス転移温度を意味する
Further, the glass transition temperature of the thermosetting resin means the glass transition temperature of the thermosetting resin in an uncured state without containing a curing agent.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の炭素繊維製組紐の製造方法は、ピッチ系炭素繊
維に、ガラス転移温度−5〜100°Cの熱硬化性樹脂
または熱変形温度50℃以上の熱可塑性樹脂を1〜15
重量%付着させる樹脂付着工程と、組紐に編成する編成
工程とを含んでいる。
The method for producing a carbon fiber braid of the present invention includes adding 1 to 15% of a thermosetting resin with a glass transition temperature of -5 to 100°C or a thermoplastic resin with a heat distortion temperature of 50°C or higher to pitch-based carbon fiber.
The process includes a resin adhesion step for adhering weight percent, and a knitting step for knitting into a braid.

上記VA脂付着工程で使用されるピッチ系炭素繊維とし
ては、ピッチ、液晶ピッチなどを素材とする種々の炭素
繊維が例示される。ピッチは石炭系、石油系のいずれで
あってもよい。上記炭素繊維は、炭素質だけでなく黒鉛
質を含む概念である。炭素繊維は、例えば、繊維径5〜
20uなど適宜の繊維径を有するものが使用できる。
Examples of the pitch-based carbon fiber used in the VA fat adhesion step include various carbon fibers made from pitch, liquid crystal pitch, and the like. The pitch may be either coal-based or petroleum-based. The above-mentioned carbon fiber is a concept that includes not only carbon fiber but also graphite. Carbon fibers, for example, have a fiber diameter of 5 to
A fiber having an appropriate fiber diameter such as 20u can be used.

また炭素繊維としては、高強度タイプ、高伸度タイプ、
高弾性タイプ、汎用タイプなど種々のものが使用でき、
該炭素繊維は、通常、5〜100X103h/n+−程
度の引張弾性率を有しているが、梢遺物に対する補強効
果を高めるため、引張弾性率15 X 103に’J/
lnJ以上の炭素繊維が好ましい。
Carbon fibers include high strength types, high elongation types,
Various types such as high elasticity type and general-purpose type can be used.
The carbon fiber usually has a tensile modulus of about 5 to 100 x 103h/n+-, but in order to enhance the reinforcing effect on treetop relics, the tensile modulus is increased to 15 x 103'J/n.
Carbon fibers with a diameter of lnJ or more are preferred.

なお、前記炭素繊維は、適宜本数、例えば、2〜500
0本程度の炭素繊維フィラメントが結束されたストラン
ドであってもよい。
Note that the carbon fibers may have an appropriate number, for example, 2 to 500.
It may be a strand in which about 0 carbon fiber filaments are tied together.

前記樹脂付着工程では、組紐作製時の糸切れを防止する
ため、特定の熱硬化性樹脂または特定の熱可塑性樹脂を
所定量付着させた上記ピッチ系炭素繊維を用いて組紐を
作製する。
In the resin attachment step, in order to prevent thread breakage during braid production, a braid is produced using the pitch-based carbon fiber to which a predetermined amount of a specific thermosetting resin or a specific thermoplastic resin is attached.

熱硬化性樹脂としては、例えば、フェノール樹脂、尿素
樹脂、エポキシ樹脂、ビニルエステル樹脂、ジアリルフ
タレート樹脂、ウレタン樹脂、不飽和ポリエステル、ポ
リイミドなどが例示される。
Examples of the thermosetting resin include phenol resin, urea resin, epoxy resin, vinyl ester resin, diallyl phthalate resin, urethane resin, unsaturated polyester, and polyimide.

上記熱硬化性樹脂は一種または二種以上混合して使用さ
れる。
The above thermosetting resins may be used alone or in combination of two or more.

熱硬化性樹脂としては、ガラス転移温度−5〜100℃
のものを用いる。熱硬化性樹脂のガラス転移温度が上記
範囲を外れると、組[編成時に糸切れが生じ易くなり、
製織性が十分でない。
The thermosetting resin has a glass transition temperature of -5 to 100°C.
Use the one. If the glass transition temperature of the thermosetting resin is outside the above range, thread breakage will occur easily during knitting,
Weavability is not sufficient.

また熱可塑性樹脂としては、ポリエチレン、ポリプロピ
レン、ポリスチレン、アクリル樹脂、ポリエチレンテレ
フタレート、ポリブチレンテレフタレートなどの飽和ポ
リエステル、ポリアミド、ポリアセタール、ポリスルホ
ン、ポリエーテルスルホン、ポリフェニレンスルフィド
、ポリフェニレンオキサイド、ボリアリレート、ポリエ
ーテルスンジレン、ポリエーテルエーテルケトン、ボリ
アミドイミド、ポリエーテルイミド、ポリアミノビスマ
レイミド、芳香族ポリアミドなどが例示される。上記熱
可塑性樹脂は一種または二種以上使用される。上記例示
の熱可塑性樹脂のうち、エンジニアリングプラスチック
として使用されるポリスルホンなとは、特に、耐熱性だ
けでなく、機械的強度に優れているため、結合剤として
好適に使用される。
Examples of thermoplastic resins include polyethylene, polypropylene, polystyrene, acrylic resin, saturated polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides, polyacetals, polysulfones, polyethersulfones, polyphenylene sulfides, polyphenylene oxides, polyarylates, and polyethersundylenes. , polyetheretherketone, polyamideimide, polyetherimide, polyamino bismaleimide, aromatic polyamide, and the like. One or more types of the above thermoplastic resins may be used. Among the above-mentioned thermoplastic resins, polysulfone, which is used as an engineering plastic, is particularly excellent in not only heat resistance but also mechanical strength, and is therefore preferably used as a binder.

また上記熱可塑性樹脂として、熱変形温度50℃以上の
もの用いる。熱可塑性樹脂の熱変形温度が50°C未満
であると、組紐編成時に糸切れが生じ易くなり、製織性
が十分でない。
Further, as the thermoplastic resin, one having a heat deformation temperature of 50° C. or higher is used. If the heat deformation temperature of the thermoplastic resin is less than 50°C, thread breakage tends to occur during knitting of the braid, resulting in insufficient weavability.

なお、樹脂の含浸に際しては、前記熱硬化性樹脂と熱可
塑性樹脂とを併用してもよい。
In addition, upon impregnation with resin, the thermosetting resin and thermoplastic resin may be used together.

また上記熱硬化性樹脂および熱可塑性樹脂のうち、補強
材の一体性および補強性を高めるため、熱硬化性樹脂が
好ましい。
Further, among the thermosetting resins and thermoplastic resins, thermosetting resins are preferred in order to improve the integrity and reinforcing properties of the reinforcing material.

また樹脂付着工程では、前記ピッチ系炭素繊維に熱硬化
性樹脂または熱可塑性樹脂を1〜15重量%付着させる
。樹脂の付着量が1重量%未満であるとピッチ系炭素繊
維の毛羽立ちを十分に抑制できないばかりか、上記範囲
を外れると、サンジング効果が小さく糸切れが生じ易く
なり、製織性が十分でない。
In the resin attachment step, 1 to 15% by weight of a thermosetting resin or thermoplastic resin is attached to the pitch-based carbon fiber. If the amount of resin attached is less than 1% by weight, not only will it not be possible to sufficiently suppress the fluffing of the pitch-based carbon fibers, but if it is outside the above range, the sanding effect will be small and yarn breakage will easily occur, resulting in insufficient weavability.

なお、上記樹脂付着工程における熱硬化性樹脂、熱可塑
性樹脂は、該樹脂が液状であればそのcl、まの状態あ
るいは加熱溶融状態で使用でき、必要に応じて有機溶媒
に溶解した溶液またはエマルジョンなどの分散液として
使用してもよい。
In addition, the thermosetting resin and thermoplastic resin in the above-mentioned resin adhesion step can be used in the Cl, solid state or heated molten state if the resin is in a liquid state, and if necessary, it can be used in a solution or emulsion dissolved in an organic solvent. It may also be used as a dispersion.

樹1指の付着量は、種々の方法で制御することができる
6例えば、溶剤非含有の液状または加熱溶融状態の樹脂
を使用するときは、該樹脂の粘度、浸漬や噴震などの塗
布手段による付着量の調整や、樹脂付着後にロールなど
で過剰の樹脂を絞出す方法などにより、樹脂の付着量を
制御できる。また樹脂を溶奴含有の溶液や分散液として
使用するときは、樹脂の含有板や粘度などを調整するこ
とにより樹脂の付着量を制御することができる。
The amount of adhesion per tree finger can be controlled by various methods6.For example, when using a solvent-free liquid or heated molten resin, the viscosity of the resin and the application method such as dipping or squirting can be controlled. The amount of resin deposited can be controlled by adjusting the amount of deposited resin or by squeezing out excess resin with a roll or the like after the resin has been deposited. Further, when the resin is used as a solution or dispersion containing a melt, the amount of resin deposited can be controlled by adjusting the resin content plate, viscosity, etc.

なお、樹脂付着工程でピッチ系炭素繊維に付着した樹脂
は、乾燥させることなく、編成工程に洪してもよいが、
乾燥させるのが好ましい、編成工程の前に樹脂を乾燥さ
せると、炭素繊維の一体性が大きくなるので、編成時の
糸切れをより一層防止することができる。
Note that the resin attached to the pitch-based carbon fibers in the resin adhesion process may leak into the knitting process without drying.
Drying the resin before the knitting process, which is preferably dried, increases the integrity of the carbon fibers, thereby further preventing yarn breakage during knitting.

上記のようにして前記熱硬化性樹脂または熱可塑性樹脂
をピッチ系炭素繊維に付着させた後、編成工程で組紐を
作製する。
After the thermosetting resin or thermoplastic resin is attached to the pitch-based carbon fibers as described above, a braid is produced in a knitting process.

上記編成工程は、通常、炭素繊維を結束したストランド
をボビンワインダーに巻き取り、組紐機を用いて、適宜
の打ち数で編成することにより行なわれる。その際、編
成時に炭素繊維に作用させる張力や打ち数を調整するこ
とにより、組紐のピッチや凹凸部の大きさなどを制御す
ることができる。
The above knitting process is usually carried out by winding a strand of bound carbon fibers around a bobbin winder and knitting the strand with an appropriate number of strokes using a braiding machine. At this time, by adjusting the tension and number of strokes applied to the carbon fibers during knitting, it is possible to control the pitch of the braid and the size of the uneven portions.

また編成工程において、炭素繊維の打ち数をかI整する
ことにより、種々の形態の組紐、例えば、平打紐状、角
打紐状、丸打紐状の組紐を作製することができる。また
組紐の芯部は中空であってもよいが、補強性の点から、
打ち数3〜8で芯部が中実のものが好ましい。
Furthermore, in the knitting process, by adjusting the number of strokes of the carbon fibers, various types of braids, such as flat braids, square braids, and round braids, can be produced. Also, the core of the braid may be hollow, but from the point of view of reinforcement,
It is preferable that the number of strokes is 3 to 8 and the core is solid.

上記のような方法によれば、樹脂付着工程を経た後、編
成工程で組紐を作製するので、毛羽立ち易いピッチ系炭
素繊維であっても、組紐機のガイドとの滑り性がよくな
り、炭素繊維の糸切れを防止しつつ、効率よく炭素M&
維塑製組紐製造することができる。
According to the method described above, since the braid is produced in the knitting process after the resin adhesion process, even pitch-based carbon fibers that tend to fluff can be easily slipped on the guide of the braiding machine, and the carbon fibers Efficiently carbon M& while preventing thread breakage.
Fiber plastic braid can be manufactured.

上記のようにして得られた炭素繊維製組紐は、ピッチ系
炭素繊維の構造材を製造する上で好適である。より詳細
には、上記炭素繊維製組紐は熱硬化性樹脂または熱可塑
性樹脂を含有しているため、樹脂との親和性に優れてお
り、上記炭素繊維製組紐に、熱硬化性樹脂または熱可塑
性樹脂を容易に付着ないし含浸させることができる。ま
たvj41m脂をさらに付着ないし含浸させることによ
り、組紐中の空隙部に存在する空気が排除されたボイド
のない組紐状物が得られる。従って、炭素繊維製組紐の
一体性を高めるため、熱硬化性樹脂または熱可塑性樹脂
をさらに付着ないし含浸させ、硬化させることにより、
機械的強度に優れた構造材を得ることができる。
The carbon fiber braid obtained as described above is suitable for manufacturing pitch-based carbon fiber structural materials. More specifically, since the carbon fiber braid contains a thermosetting resin or a thermoplastic resin, it has excellent affinity with resin, and the carbon fiber braid contains a thermosetting resin or a thermoplastic resin. It can be easily attached or impregnated with resin. Furthermore, by further adhering to or impregnating the vj41m fat, a void-free braid-like product in which air present in the voids in the braid is removed can be obtained. Therefore, in order to improve the integrity of the carbon fiber braid, by further adhering or impregnating a thermosetting resin or thermoplastic resin and curing it,
A structural material with excellent mechanical strength can be obtained.

得られた構造材は、上記熱硬化性樹脂または熱可塑性樹
脂により一体化していると共に、組紐の凹凸部によりコ
ンクリート構造物に対する付着性を高めることができる
ので、コンクリート等の構造物内に埋設しても、構造材
の圧縮応力により構造物のひび割れを防止することがで
き、コンクリート構造物に対して優れた補強効果を示す
The obtained structural material is integrated with the above-mentioned thermosetting resin or thermoplastic resin, and the uneven parts of the braid can improve adhesion to concrete structures, so it can be buried in structures such as concrete. However, the compressive stress of the structural material can prevent the structure from cracking, and it has an excellent reinforcing effect on concrete structures.

なお、炭素繊維製組紐に対する樹脂の付着ないし含浸量
は、構造材の一体性、コンクリート構造物に対する補強
性を損わない範囲で適宜選択することができるが、好ま
しくは樹脂の全量が10〜50f!量%、より好ましく
は20〜30重量%となるように付着ないし含浸させる
のが好ましい。
The amount of resin attached to or impregnated into the carbon fiber braid can be appropriately selected within a range that does not impair the integrity of the structural material and the reinforcing properties for concrete structures, but preferably the total amount of resin is 10 to 50 f. ! It is preferable to attach or impregnate the resin in an amount of 20 to 30% by weight, more preferably 20 to 30% by weight.

上記樹脂の全量が1ofIL量%未満であると構造材の
一体性が十分でなく、50重量%を越えると、組紐の割
合が低下して補強性能が損われる。
If the total amount of the resin is less than 1 of IL%, the integrity of the structural material will be insufficient, and if it exceeds 50% by weight, the proportion of braid will decrease and the reinforcing performance will be impaired.

なお、炭素繊維製組紐を用いて製造された構造材は、コ
ンクリートなどとの親和性を高めるため、シランカップ
リング剤、チタンカップリング剤などで表面処理しても
よい。
Note that the structural material manufactured using the carbon fiber braid may be surface-treated with a silane coupling agent, a titanium coupling agent, etc. in order to improve its compatibility with concrete and the like.

さらには、構造材は表面にさらに凹凸部が形成された断
面異形状であってもよい、このような構造材によれば、
上記組紐の凹凸部による補強効果と相まってコンクリー
ト構造物に対する付着力を高めることができ、補強効果
をより一層高めることができる。
Furthermore, according to such a structural material, the structural material may have an irregular cross-sectional shape with further unevenness formed on the surface.
Coupled with the reinforcing effect due to the uneven portions of the braid, the adhesion to the concrete structure can be increased, and the reinforcing effect can be further enhanced.

上記の構造用補強材は、所望する補強性などに応じて適
宜の径を有していてもよいが、通常、1〜50關、好ま
しくは2〜25印で十分である。
The above-mentioned structural reinforcing material may have an appropriate diameter depending on the desired reinforcing properties, but a diameter of 1 to 50 mm, preferably 2 to 25 mm is usually sufficient.

上記のようにして得られた構造材は、コンクリートに埋
設される主筋、プレストレスコンクリートの鋼材などの
代用として使用できる。なお、構造用補強材は、必要に
応じて、所定長さに切断してもよい。
The structural material obtained as described above can be used as a substitute for main reinforcement buried in concrete, steel material for prestressed concrete, etc. Note that the structural reinforcing material may be cut into a predetermined length if necessary.

[実施例] 以下に、実施例に基づいて、本発明をより詳細に説明す
る。
[Examples] The present invention will be described in more detail below based on Examples.

ピッチを原料とした2000フイラメントからなるピッ
チ系炭素繊維(引張強度3001q/+nn(、引張弾
性率20 x 1031q/n()を、エポキシ樹脂(
油化シェル■製、商品名エビコー)−1001、ガラス
転移温度30″C)の10重量%メチルエチルケトン溶
液に一浸漬し、ロールで過剰の樹脂を除去し、150°
Cの乾煤機を通過させることにより、サイジング剤であ
るエポキシ樹脂が5重量%付着した炭素繊維を作製した
Pitch-based carbon fiber (tensile strength 3001q/+nn (, tensile modulus 20 x 1031q/n ()) consisting of 2000 filaments made from pitch, epoxy resin (
Manufactured by Yuka Shell ■, trade name Ebiko-1001, immersed in a 10% by weight methyl ethyl ketone solution with a glass transition temperature of 30''C), removed excess resin with a roll, and heated at 150°C.
Carbon fibers having 5% by weight of epoxy resin as a sizing agent attached thereto were produced by passing through a soot drying machine (C).

また上記エポキシ樹脂に代えて、表に示すガラス転移温
度−10℃を有するエポキシ樹脂(油化シェル社製、商
品名エピコート828) 、ガラス転移温度120℃を
有するエポキシ樹脂(油化シェル社fM>を用いると共
に上記と同様にして、エポキシ樹脂の付着量の異なる炭
素繊維を作製した。
In addition, instead of the above epoxy resin, an epoxy resin having a glass transition temperature of -10°C shown in the table (manufactured by Yuka Shell Co., Ltd., trade name Epicote 828), an epoxy resin having a glass transition temperature of 120°C (Yuka Shell Co., Ltd. fM> Carbon fibers with different amounts of epoxy resin deposited were produced in the same manner as above.

そして、組紐l1l(国分鉄工■製)を用いて打ち数8
の条件で上記炭素la維を組紐に編成したところ、表に
示す結果を得た。
Then, using braided cord l1l (manufactured by Kokubu Iron Works), make 8 strokes.
When the carbon la fibers were knitted into a braid under the following conditions, the results shown in the table were obtained.

(以下、余白) 優 :製織性が良好であり、糸切れが生じない。(Hereafter, margin) Excellent: Weaving properties are good and thread breakage does not occur.

不可:は製碕注が不良であり、糸切れが生じな4表より
明らかなように、ガラス転移温度−10℃および120
℃の樹脂を用いたものや、樹脂の付着量が0.5重量%
および20重量%のものは、いずれも組紐製造時に糸切
れが生じ、製織性が十分でないのに対して、ガラス転移
温度30℃のエポキシ樹脂を1〜15重量%付着させた
炭素繊維を用いたものは、いずれも糸切れがなく製織性
に優れていた。
Unsatisfactory: indicates poor sintering and thread breakage.As is clear from Table 4, the glass transition temperature is -10℃ and 120℃.
℃ resin or resin adhesion amount is 0.5% by weight
and 20% by weight, yarn breakage occurred during braid production and the weavability was not sufficient, whereas carbon fibers with 1 to 15% by weight of epoxy resin with a glass transition temperature of 30°C were used. All of the fabrics had excellent weavability with no thread breakage.

〔発明の効果コ 以上のように、本発明によれば、ピッチ系炭素繊維に、
特定の熱硬化性樹脂または熱可塑性樹脂を1〜15重量
%付着させた後、組紐に編成するので、組紐作製時に糸
切れし易いピッチ系炭素繊維であっても組紐機のガイド
との滑り性をよくし、構造材を製造する上で好適な炭素
繊維製組紐を簡便かつ生産性よく製造することができる
[Effects of the Invention] As described above, according to the present invention, pitch-based carbon fiber has
Since 1 to 15% by weight of a specific thermosetting resin or thermoplastic resin is attached and then knitted into a braid, even pitch-based carbon fibers, which tend to break easily when making braids, can easily slide against the guide of the braiding machine. This makes it possible to easily and efficiently manufacture carbon fiber braids suitable for manufacturing structural materials.

Claims (1)

【特許請求の範囲】[Claims]  ピッチ系炭素繊維に、ガラス転移温度−5〜100℃
の熱硬化性樹脂または熱変形温度50℃以上の熱可塑性
樹脂を1〜15重量%付着させた後、組紐に編成するこ
とを特徴とする炭素繊維製組紐の製造方法。
Pitch-based carbon fiber has a glass transition temperature of -5 to 100℃
1. A method for producing a carbon fiber braid, which comprises depositing 1 to 15% by weight of a thermosetting resin or a thermoplastic resin having a heat deformation temperature of 50° C. or higher, and then knitting it into a braid.
JP25991088A 1988-10-14 1988-10-14 Production of braid made of carbon fiber Pending JPH02112454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25991088A JPH02112454A (en) 1988-10-14 1988-10-14 Production of braid made of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25991088A JPH02112454A (en) 1988-10-14 1988-10-14 Production of braid made of carbon fiber

Publications (1)

Publication Number Publication Date
JPH02112454A true JPH02112454A (en) 1990-04-25

Family

ID=17340630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25991088A Pending JPH02112454A (en) 1988-10-14 1988-10-14 Production of braid made of carbon fiber

Country Status (1)

Country Link
JP (1) JPH02112454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278955A (en) * 1990-06-18 1994-01-11 International Business Machines Corporation Open systems mail handling capability in a multi-user environment
JP2021502318A (en) * 2017-11-10 2021-01-28 ツェーハーテー ジャーマニー ゲーエムベーハーCHT Germany GmbH Coated textiles formed from aqueous polymer dispersions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278955A (en) * 1990-06-18 1994-01-11 International Business Machines Corporation Open systems mail handling capability in a multi-user environment
JP2021502318A (en) * 2017-11-10 2021-01-28 ツェーハーテー ジャーマニー ゲーエムベーハーCHT Germany GmbH Coated textiles formed from aqueous polymer dispersions
EP3707303B1 (en) 2017-11-10 2021-12-08 CHT Germany GmbH Fibre products with a coating made formed from aqueous polymer dispersions
US11926957B2 (en) 2017-11-10 2024-03-12 CHT Germany GmbH Fiber products with a coating formed from aqueous polymer dispersions

Similar Documents

Publication Publication Date Title
US5077113A (en) Filament-reinforced resinous structural rod
EP0000734B1 (en) Method for making rods or tubes having a constant profile of fibre reinforced material
JP2009242964A (en) Carbon fiber and method for producing the same
JPH06285855A (en) Strand for molding of long fiber reinforced synthetic resin product and its pellet
JP7031821B2 (en) Fiber reinforced resin tubular body and its manufacturing method
JPH02112454A (en) Production of braid made of carbon fiber
JPH02105830A (en) Production of carbon fibber braid
JPH02216270A (en) Structural material and production thereof
JPS6218246A (en) Manufacture of reinforcing member having protuberance on surface thereof
KR100580226B1 (en) fiber reinforced polymer pipe forming equipment for grouting and its manufacture method
JPH01174413A (en) Composite yarn prepreg
JPH01229867A (en) Apparatus and method for impregnating multifilament and multifiber structure having continuous length
JPH0718099B2 (en) Rope
JPH0489346A (en) Concrete reinforcing member and its production
JPS62288633A (en) Composite material of continuous carbon fiber and polyolefin resin
JPH0323676B2 (en)
JPH0621492B2 (en) Structural material
JP3421956B2 (en) Method for producing flexible structural material
JP2599187B2 (en) Method of manufacturing composite striatum
JPH0333285A (en) Cable-like composite material and production thereof
JPH07132561A (en) Preparation of flexible structural material
JPH10245259A (en) Production of reinforcing material for concrete
JPH0786263B2 (en) Structural material and manufacturing method thereof
JPH06168775A (en) Heater and manufacture thereof
JP5966390B2 (en) Continuous fiber reinforcement and method for producing continuous fiber reinforcement