JPH10245259A - Production of reinforcing material for concrete - Google Patents

Production of reinforcing material for concrete

Info

Publication number
JPH10245259A
JPH10245259A JP5163997A JP5163997A JPH10245259A JP H10245259 A JPH10245259 A JP H10245259A JP 5163997 A JP5163997 A JP 5163997A JP 5163997 A JP5163997 A JP 5163997A JP H10245259 A JPH10245259 A JP H10245259A
Authority
JP
Japan
Prior art keywords
fiber
glass fiber
fibers
sheath
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5163997A
Other languages
Japanese (ja)
Inventor
Masaya Kamiyoshi
正弥 神吉
Taketo Uomoto
健人 魚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP5163997A priority Critical patent/JPH10245259A/en
Publication of JPH10245259A publication Critical patent/JPH10245259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Reinforced Plastic Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a reinforcing material excellent in bonding strength to a concrete by impregnating glass fibers with a thermosetting resin, arranging the impregnated glass fibers, winding the surfaces thereof with a multifilament yarn of a specific size at a specified density, fixing the shape so as to provide the cross section with a nearly circular form, covering the fixed impregnated glass fibers with alkali-durable fibers impregnated with a thermosetting resin, carrying out the pultrusion and thermosetting the resin. SOLUTION: A multifilament yarn comprising single filaments having 10-30μm single filament diameter is preferably used as glass fibers and wound around the surface of a glass fiber bundle at 1-100 pitches/10cm density. The yarn having 20-5,000 denier size uses glass fibers, polyester fibers, etc., and aramid fibers are preferred as sheath fibers. The volume content of core fibers is preferably 10-80%. An epoxy resin, etc., are used as a thermosetting resin and the ratio thereof accounts for preferably 20-70% of the reinforcing material. Thereby, the deterioration in strength of the glass fibers with an alkali and interfacial peeling thereof from the sheath fibers are prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンクリート用補
強材の製造方法に関し、更に詳しくは、芯繊維にガラス
繊維を使用した芯鞘構造のコンクリート用補強材であっ
て、アルカリ耐久性に優れ、界面剥離のないコンクリー
ト用補強材の製造方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a reinforcing material for concrete, and more particularly, to a reinforcing material for concrete having a core-sheath structure using glass fiber as a core fiber, which has excellent alkali durability. This is a method for producing a reinforcing material for concrete without interfacial delamination.

【0002】[0002]

【従来の技術】引張強度を強化する目的で従来から使用
されていた鉄筋や高強力鋼に替わって、FRPロッドが
開発され各用途によく使用されている。これらFRPロ
ッドとしては、具体的には、アラミド繊維を使用したA
FRP、炭素繊維を使用したCFRP、ガラス繊維を使
用したGFRP等が提案されており、それぞれ特徴を有
している。例えば、特公昭63−59981号公報に
は、芯部が芳香族ポリエーテルアミドからなり鞘部が熱
硬化性樹脂で形成される棒状体からなるコンクリート用
筋材が開示され、さらに、実開昭49−62911号公
報、及び特開昭63−236848号公報には、芯材に
ガラス繊維を使用し、外層繊維として炭素繊維を使用し
たコンクリート用補強材が開示されている。特公昭63
−59981号公報に開示されたアラミド100%のコ
ンクリート補強材は、常温でのクリープ変形量が大きい
という欠点があり、また、実開昭49−62911号公
報、及び特開昭63−236848号公報に開示された
コンクリート補強材では、外層繊維に使用される炭素繊
維がモジュラスが大きく伸度が低いため脆く加工しにく
いことに加えて電気火花に弱点があり、さらにガラス繊
維及び、炭素繊維はマトリックスとして使用する樹脂と
の相溶性が悪く取り扱いが困難であった。
2. Description of the Related Art FRP rods have been developed and are often used for various purposes instead of reinforcing bars and high-strength steels conventionally used for the purpose of enhancing tensile strength. As these FRP rods, specifically, A using aramid fiber
FRP, CFRP using carbon fiber, GFRP using glass fiber, and the like have been proposed, and each has characteristics. For example, Japanese Patent Publication No. 63-59881 discloses a concrete reinforcing bar composed of a rod-shaped body having a core made of aromatic polyetheramide and a sheath made of a thermosetting resin. JP-A-49-62911 and JP-A-63-236848 disclose a reinforcing material for concrete using glass fiber as a core material and carbon fiber as an outer layer fiber. Tokiko Sho 63
The aramid 100% concrete reinforcing material disclosed in Japanese Unexamined Patent Publication No. 598991/1993 has a drawback that the amount of creep deformation at room temperature is large, and also Japanese Unexamined Utility Model Publication No. 49-62911 and Japanese Unexamined Patent Publication No. 63-236848. In the concrete reinforcing material disclosed in the above, the carbon fiber used for the outer layer fiber has a large modulus and a low elongation, so that it is brittle and difficult to process, in addition to having a weakness in electric spark, and furthermore, glass fiber and carbon fiber are used as a matrix. And the handling was difficult due to poor compatibility with the resin used.

【0003】また、特公平7−18206号公報には、
連続補強繊維束(芯繊維)に、芯繊維の回りを捲回する
繊維、さらに該捲回繊維の外層に二次補強繊維を配置
し、該二次補強繊維の回りに捲回する繊維を配置するこ
とにより繊維と熱硬化性樹脂との界面接着性が低い欠点
を改良した構造用ロッドが開示されている。しかしなが
ら、特公平7−18206号公報では、芯繊維にガラス
繊維を使用するものをその範囲に含むものであるが、二
次補強繊維には芯繊維としてガラス繊維を使用した場合
のガラス繊維のアルカリ耐久性を改良する思想はないか
ら、二次繊維が芯繊維を被覆する思想はなく、ガラス繊
維を芯繊維に使用した場合の問題点を解決したものでは
ない。
Further, Japanese Patent Publication No. 7-18206 discloses that
In the continuous reinforcing fiber bundle (core fiber), a fiber wound around the core fiber, a secondary reinforcing fiber is arranged in an outer layer of the wound fiber, and a fiber wound around the secondary reinforcing fiber is arranged. Thus, there is disclosed a structural rod in which the disadvantage that the interfacial adhesion between the fiber and the thermosetting resin is low is improved. However, in Japanese Patent Publication No. 7-18206, the use of glass fiber as the core fiber is included in the range, but the alkaline durability of the glass fiber when the glass fiber is used as the core fiber for the secondary reinforcing fiber is described. There is no idea of improving the core fiber, and there is no idea of the secondary fiber covering the core fiber, and it does not solve the problem when glass fiber is used as the core fiber.

【0004】[0004]

【発明が解決しようとする課題】本発明は、ガラス繊維
をコンクリート補強材の芯繊維として使用した場合に起
こるアルカリによる強度低下の問題を解決し、加えてガ
ラス繊維を芯繊維に使用した場合に起こる芯繊維と鞘繊
維との界面が剥離するというガラス繊維特有の問題を解
決しコンクリートとの結合力に優れたコンクリート補強
材の製造方法を提案するものである。
DISCLOSURE OF THE INVENTION The present invention solves the problem of strength reduction due to alkali when glass fiber is used as a core fiber of a concrete reinforcing material. An object of the present invention is to solve the problem specific to glass fiber in which the interface between the core fiber and the sheath fiber peels off, and to propose a method for producing a concrete reinforcing material excellent in bonding strength with concrete.

【0005】[0005]

【課題を解決するための手段】本発明は、芯繊維として
ガラス繊維束を用い、該ガラス繊維束を被覆する鞘繊維
からなる芯鞘構造のコンクリート用補強材の製造方法で
あって、該ガラス繊維を熱硬化性樹脂浴に通して該熱硬
化性樹脂を含浸させた後糸軸方向に配列させて繊維束と
なし、該樹脂含浸ガラス繊維束の表面をマルチフラメン
ト糸で捲回して該ガラス繊維束の糸軸方向と垂直な断面
がほぼ円形となるように形状固定を行い、次いで鞘繊維
として熱硬化性樹脂を含浸させたアルカリ耐久性繊維を
用いて該ガラス繊維束の表面を完全に被覆するように該
ガラス繊維束の長手方向に配列させて供給し引抜き成型
を行った後、熱処理により該熱硬化性樹脂を硬化せしめ
ることを特徴とするコンクリート用補強材の製造方法に
ある。以下、本発明を詳細に説明する。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a reinforcing material for concrete having a core-sheath structure comprising a glass fiber bundle as a core fiber and a sheath fiber covering the glass fiber bundle. After passing the fibers through a thermosetting resin bath to impregnate the thermosetting resin, the fibers are arranged in the yarn axis direction to form a fiber bundle, and the surface of the resin-impregnated glass fiber bundle is wound with a multi-filament yarn to form the fiber bundle. The shape of the glass fiber bundle is fixed so that the cross section perpendicular to the yarn axis direction is substantially circular, and then the surface of the glass fiber bundle is completely completed using alkali-durable fibers impregnated with a thermosetting resin as sheath fibers. The glass fiber bundle is arranged in the longitudinal direction of the glass fiber bundle so as to cover it, supplied, drawn, and then cured by heat treatment to cure the thermosetting resin. Hereinafter, the present invention will be described in detail.

【0006】図1は、本発明方法を説明するための概略
工程図であり、芯繊維及び鞘繊維は樹脂浴に通して樹脂
を含浸させる必要があるが、同浴で含浸させるもの、別
浴で含浸させるもののいずれであってもよい。図1に示
すように芯繊維に対しては樹脂絞りを行なった後にマル
チフィラメント糸を捲回させ、さらに樹脂を含浸させた
鞘繊維を配列被覆させる工程からなっている。
FIG. 1 is a schematic process diagram for explaining the method of the present invention. It is necessary to impregnate the core fiber and the sheath fiber with a resin through a resin bath. Any of those impregnated with As shown in FIG. 1, the core fiber is subjected to resin drawing, then the multifilament yarn is wound, and the resin-impregnated sheath fiber is arranged and coated.

【0007】本発明に芯繊維として使用するガラス繊維
は、市販のガラス繊維が使用でき、単繊維径が10〜3
0μmの範囲にある単繊維からなるマルチフィラメント
糸を使用するものが例示され、トータルデニール、フィ
ラメント数等についてはコンクリート補強材の用途によ
って適宜決めらる。該ガラス繊維は、樹脂浴に供給され
熱硬化性樹脂を含浸させるが、ガラス繊維の1本1本に
樹脂が浸透するように拡巾された状態で供給される。該
樹脂浴を通過した後、該ガラス繊維は余分の樹脂を取り
除き繊維束として集束される(樹脂絞り)。
As the glass fiber used as the core fiber in the present invention, a commercially available glass fiber can be used, and the single fiber diameter is 10 to 3
An example using a multifilament yarn composed of a single fiber in the range of 0 μm is exemplified, and the total denier, the number of filaments, and the like are appropriately determined depending on the use of the concrete reinforcing material. The glass fibers are supplied to a resin bath and impregnated with a thermosetting resin. The glass fibers are supplied in a widened state so that the resin penetrates into each of the glass fibers. After passing through the resin bath, the glass fibers are removed as a fiber bundle by removing excess resin (resin squeezing).

【0008】次いで該ガラス繊維束の表面に別途準備さ
れたマルチフィラメント糸を1〜100ピッチ/10c
mの密度で捲回させて該繊維束の断面形状がほぼ円形に
なるように形状を固定化する必要がある。該捲回数が1
ピッチ/10cm未満では、芯繊維のガラス繊維束の断
面を円形に保持することが困難であり、捲回数が100
ピッチ/10cmを超えるものは、作業効率が低下する
のみならず芯繊維(ガラス繊維)と鞘繊維のなじみが悪
くなり好ましくない。さらに好ましい捲回密度の範囲
は、2〜80ピッチ/10cmである。
Next, a multifilament yarn separately prepared is provided on the surface of the glass fiber bundle at a pitch of 1 to 100 pitch / 10c.
It is necessary to wind the fiber bundle at a density of m and fix the shape so that the cross-sectional shape of the fiber bundle becomes substantially circular. The number of turns is 1
If the pitch is less than / 10 cm, it is difficult to keep the cross section of the glass fiber bundle of the core fiber in a circular shape, and the number of turns is 100.
When the pitch exceeds 10 cm, not only the working efficiency is reduced but also the adaptability between the core fiber (glass fiber) and the sheath fiber is deteriorated, which is not preferable. A more preferable range of the winding density is 2 to 80 pitch / 10 cm.

【0009】該マルチフィラメント糸は、繊維の種類と
しては特に限定されるものではなくガラス繊維、炭素繊
維、アラミド系繊維を用いてもよく、また、ポリエステ
ル繊維やポリアミド繊維を用いてもよいが、後述する鞘
繊維と同種の繊維である方が工程作業上は取り扱い性が
よい。また、該マルチフィラメント糸の繊度(トータル
デニール)は、20〜5000デニールの範囲にあるも
のを使用することが必要である。該マルチフィラメント
糸のデニールが20デニール未満では、該ガラス繊維束
を硬く捲回して該ガラス繊維の円形断面の形状を保持す
ることが困難となり、また、5000デニールを超える
と該ガラス繊維束の捲回繊維による表面の凹凸が大とな
り、さらに該マルチフィラメント糸には通常は樹脂が含
浸されていないのでマルチフィラメント糸の割合が増加
することは芯繊維(ガラス繊維)と鞘繊維のなじみが悪
くなり好ましくない。さらに好ましい繊度の範囲は、5
0〜3000デニールである。また、該マルチフィラメ
ント糸を構成する単繊維はそのデニールが細いものが好
ましく0.5〜5デニールの範囲のものが好適に使用さ
れる。
The type of the multifilament yarn is not particularly limited, and may be glass fiber, carbon fiber, aramid fiber, or polyester fiber or polyamide fiber. Fibers of the same type as the sheath fibers described later have better handleability in the process. Further, it is necessary to use a multifilament yarn having a fineness (total denier) in the range of 20 to 5000 denier. If the denier of the multifilament yarn is less than 20 denier, it becomes difficult to wind the glass fiber bundle firmly to maintain the circular cross-sectional shape of the glass fiber, and if it exceeds 5000 denier, the winding of the glass fiber bundle becomes difficult. The surface irregularities due to the round fibers become large, and furthermore, since the multifilament yarn is not usually impregnated with a resin, an increase in the ratio of the multifilament yarn increases the compatibility between the core fiber (glass fiber) and the sheath fiber. Not preferred. A more preferred fineness range is 5
It is 0 to 3000 denier. Further, the monofilament constituting the multifilament yarn preferably has a small denier, and preferably has a denier in the range of 0.5 to 5 denier.

【0010】次いで表面にマルチフィラメント糸を捲回
させたガラス繊維束に樹脂を含浸させた鞘繊維を供給す
る。該鞘繊維は、該ガラス繊維束の表面が鞘繊維により
完全に被覆されるように配列させて供給することが重要
であり、このためには、該ガラス繊維束を通すガイド孔
の周りに鞘繊維が均等に分散する状態で供給必要があ
る。
Next, a sheath fiber obtained by impregnating a resin into a glass fiber bundle having a multifilament yarn wound on the surface is supplied. It is important that the sheath fibers are arranged and supplied so that the surface of the glass fiber bundle is completely covered by the sheath fiber, and for this purpose, the sheath fiber is wound around a guide hole through which the glass fiber bundle passes. The fibers need to be supplied in a state of being evenly dispersed.

【0011】該鞘繊維は樹脂を含浸しているのでガラス
繊維の周りに均等に分散させることが乾燥状態の繊維を
分散させるよりははるかに難しく、また繊維束を引抜き
ながら余分な樹脂を除くことが必要であり、これら分散
・配列・引抜きを同時に行い、且つ、ガラス繊維表面を
完全に被覆するものが好ましい。鞘繊維をガラス繊維束
の表面に被覆させるには、図2に示すようなガイドに通
して分散・配列・引抜きを同時に行なうものが好適に例
示される。すなわち、ガイド孔4には該ガラス繊維を通
し、該ガイド孔4の周りに3個以上の鞘繊維用ガイド孔
5を設ける。図2に示すものは、本発明方法に使用する
ガイドの実施態様を説明する図であり、本発明はこれに
限定されるものではない。
Since the sheath fibers are impregnated with resin, it is much more difficult to disperse them evenly around glass fibers than to disperse fibers in a dry state. It is preferable that the dispersion, arrangement and drawing are performed simultaneously and that the surface of the glass fiber is completely covered. In order to coat the sheath fiber on the surface of the glass fiber bundle, a method in which dispersion, arrangement and drawing are simultaneously performed through a guide as shown in FIG. 2 is preferably exemplified. That is, the glass fiber is passed through the guide hole 4, and three or more sheath fiber guide holes 5 are provided around the guide hole 4. FIG. 2 illustrates an embodiment of a guide used in the method of the present invention, and the present invention is not limited to this.

【0012】本発明に使用する鞘繊維は、アルカリ耐久
性の繊維である必要がある。アルカリ耐久性繊維とは、
炭素繊維、ビニロン繊維、アラミド系繊維等が有効に例
示されるが、炭素繊維は伸度が少なくコンクリートに負
荷された荷重により炭素繊維が先に破断するおそれがあ
り、アラミド系繊維を使用するものが最適に例示され
る。アラミド系繊維としては、公知のアラミド繊維が使
用出来るが、特にアルカリ耐久性に優れることから、芳
香族ポリエーテルアミド繊維、なかでもコポリパラフェ
ニレン−3,4’−オキシジフェニレンテレフタルアミ
ド繊維を使用するものが好ましい。なお、本発明に使用
する芯繊維と鞘繊維との使用割合は、該芯繊維の体積含
有率(芯鞘繊維に対する芯繊維の割合)が10〜80
%、好ましくは20〜70%の範囲となるものが好適に
提示される。該体積含有率が10%未満では、ガラス繊
維の特長をコンクリート補強材に反映させることが出来
ず引張強度が不足し、また、該体積含有率が80%を超
えると鞘繊維による被覆が困難になり本発明の目的を達
成することが出来ず好ましくない。
The sheath fibers used in the present invention must be alkali-durable fibers. What is alkali durable fiber?
Carbon fiber, vinylon fiber, aramid fiber, etc. are effectively exemplified, but the carbon fiber has a low elongation and the carbon fiber may be broken first by a load applied to concrete, and aramid fiber is used. Is optimally exemplified. Known aramid fibers can be used as the aramid fibers, but aromatic polyetheramide fibers, especially copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fibers, are used because of their excellent alkali durability. Are preferred. In addition, the usage ratio of the core fiber and the sheath fiber used in the present invention is such that the volume content of the core fiber (the ratio of the core fiber to the core-sheath fiber) is 10 to 80.
%, Preferably those in the range of 20 to 70% are suitably presented. If the volume content is less than 10%, the characteristics of glass fiber cannot be reflected on the concrete reinforcing material, resulting in insufficient tensile strength. If the volume content exceeds 80%, coating with the sheath fiber becomes difficult. It is not preferable because the object of the present invention cannot be achieved.

【0013】さらに本発明に使用する熱硬化性樹脂とし
ては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニル
エステル樹脂(例えばエポキシアクリレート樹脂)、フ
ェノール樹脂、メラミン樹脂等が有効に使用される。こ
の熱硬化性樹脂の補強材に占める割合は、20〜70%
が好ましく、さらに好ましくは30〜60%の範囲であ
る。該熱硬化性樹脂の体積含有率が10%未満では、芯
繊維と鞘繊維との接着性が不十分であり、また、70%
を超えると繊維による補強効果が発揮されず本発明の目
的を達成することが出来ず好ましくない。
Further, as the thermosetting resin used in the present invention, epoxy resin, unsaturated polyester resin, vinyl ester resin (for example, epoxy acrylate resin), phenol resin, melamine resin and the like are effectively used. The proportion of the thermosetting resin in the reinforcing material is 20 to 70%
Is more preferable, and more preferably in the range of 30 to 60%. If the volume content of the thermosetting resin is less than 10%, the adhesiveness between the core fiber and the sheath fiber is insufficient, and 70%
If the ratio exceeds the above, the reinforcing effect of the fiber is not exhibited, and the object of the present invention cannot be achieved, which is not preferable.

【0014】なお、該鞘繊維の被覆の維持安定化のため
に、鞘繊維の周りを該鞘繊維と同種、又は、異種のアル
カリ耐久性繊維を用いて螺旋状に捲回させて強固な構造
としたものが例示される。
In order to maintain and stabilize the coating of the sheath fiber, the sheath fiber is spirally wound around the sheath fiber using the same or different alkali-durable fiber as the sheath fiber, and has a strong structure. Are exemplified.

【0015】[0015]

【発明の作用】本発明の方法によって得られるコンクリ
ート補強材は、図3に示すように芯繊維1の周りをマル
チフィラメント糸2が捲回し、さらに該マルチフィラメ
ント糸2の外側に鞘繊維3が該芯繊維1の糸軸方向に配
列し、該芯繊維を被覆している構造を有する。従ってコ
ンクリート補強材として使用されても、該ガラス繊維が
直接コンクリートに接触することはなく、ガラス繊維の
アルカリによる強度低下の問題を克服したものである。
図3は、本発明の方法によって得られるコンクリート補
強材を示す斜視図である。
In the concrete reinforcing material obtained by the method of the present invention, a multifilament yarn 2 is wound around a core fiber 1 as shown in FIG. The core fibers 1 are arranged in the yarn axis direction and have a structure covering the core fibers. Therefore, even when used as a concrete reinforcing material, the glass fiber does not come into direct contact with the concrete, thereby overcoming the problem of strength reduction of the glass fiber due to alkali.
FIG. 3 is a perspective view showing a concrete reinforcement obtained by the method of the present invention.

【0016】ガラス繊維は鞘繊維のみならず含浸樹脂と
のなじみが悪く、その対策として鞘繊維にも樹脂を含浸
させるため鞘繊維の側圧が大となり、その結果、鞘繊維
を用いて配列・被覆・引抜き成型を行なう際に、該ガラ
ス繊維束の断面形状が変形し円形とはなり難い。例え
ば、図2に示すガイドを使用した場合には、該ガラス繊
維束の断面形状はほぼ三角状をなし、このため鞘繊維に
よる完全な被覆を得るのが困難であるばかりか、コンク
リート補強材として使用した場合に補強材内部の応力分
散が不均一となり芯成分と鞘成分の界面での剥離(界面
剥離)の原因となる。該界面剥離はガラス繊維束がコン
クリートのアルカリ成分と接触する機会となるものであ
り疲労耐久性が低下する原因となるものである。本発明
方法では、この問題解決のために芯繊維1のガラス繊維
束はその糸軸と垂直な断面の形状がほぼ円形に形成され
ており、鞘繊維の被覆が均一に行われるだけでなく、こ
れにより荷重負荷時に補強材内部の応力が均等に分散し
界面剥離が発生し難く、その結果疲労耐久性が向上する
ことがわかった。
[0016] The glass fiber is poorly compatible with not only the sheath fiber but also the impregnated resin. As a countermeasure, the resin is impregnated into the sheath fiber, so that the lateral pressure of the sheath fiber becomes large. As a result, the sheath fiber is arranged and coated using the sheath fiber. -The cross-sectional shape of the glass fiber bundle is not easily formed into a circular shape when the drawing molding is performed. For example, when the guide shown in FIG. 2 is used, the cross-sectional shape of the glass fiber bundle is substantially triangular, which makes it difficult to obtain a complete covering with the sheath fiber and also as a concrete reinforcing material. When used, the stress distribution inside the reinforcing material becomes non-uniform and causes separation at the interface between the core component and the sheath component (interface separation). The interfacial peeling is an opportunity for the glass fiber bundle to come into contact with the alkali component of the concrete, and is a cause of deterioration in fatigue durability. In the method of the present invention, in order to solve this problem, the glass fiber bundle of the core fiber 1 has a cross section perpendicular to the yarn axis formed in a substantially circular shape, and not only is the sheath fiber coated uniformly, As a result, it has been found that the stress inside the reinforcing material is evenly dispersed when a load is applied, and interface separation hardly occurs, and as a result, fatigue durability is improved.

【0017】[0017]

【実施例】以下、実施例により本発明をさらに具体的に
説明するが、本発明はこれにより何等限定されるもので
はない。なお、実施例中の[部]は重量部を示し、ま
た、実施例及び比較例で用いた物性値は以下の方法によ
り測定を行った。 (1)引張強度 試料(補強材)の引張試験は、変位制御型オートグラフ
(10トン)を用い、試料長を40cm、引張速度を5
mm/分で行い、n数は10〜20として測定し、その
平均値で引張強度(初期)を求めた。 (2)耐久性引張強度 試料(補強材)を温度40℃の環境下で1.0モル/L
の水酸化ナトリウム溶液に60日間浸漬した後、前記の
方法で引張強度を測定し、初期引張強度の維持率で示し
た。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. In the examples, [parts] indicates parts by weight, and the physical properties used in the examples and comparative examples were measured by the following methods. (1) Tensile strength A tensile test of a sample (reinforcing material) was performed using a displacement control type autograph (10 tons) with a sample length of 40 cm and a tensile speed of 5
The measurement was performed at a rate of mm / min, and the number of n was measured as 10 to 20, and the tensile strength (initial) was determined from the average value. (2) Durable tensile strength A sample (reinforcing material) was subjected to 1.0 mol / L in an environment at a temperature of 40 ° C.
After immersion in a sodium hydroxide solution for 60 days, the tensile strength was measured by the method described above, and the result was shown by the retention rate of the initial tensile strength.

【0018】(3)芯繊維/鞘繊維の剥離有無の判定 掴み間隔20cmの距離で両端を把持し固定した試料
(補強材)のほぼ中央部に1Kgf/mm2の繰り返し
荷重(100回)を負荷した後、該試料の軸方向垂直断
面を切断し、芯/鞘繊維の境界の剥離状態を判定する。
(3) Judgment of presence / absence of peeling of core fiber / sheath fiber A repetitive load (100 times) of 1 kgf / mm 2 was applied to a substantially central portion of a sample (reinforcing material) having both ends gripped and fixed at a gripping distance of 20 cm. After loading, the sample is cut in the axial vertical section to determine the peeling state of the core / sheath fiber boundary.

【0019】[実施例1〜12]芯繊維として、単繊維
直径が13μmのガラス繊維マルチフィラメント糸(日
東グラスファイバー製RSP110PA−535)を2
7本合糸して、ガラス繊維束を得た。該ガラス繊維束を
以下の構成からなる樹脂浴に導き、樹脂含浸後に引抜き
成型法により補強材の芯材とした。 ・熱硬化性樹脂: 日本ユピカ製アクリレート樹脂ネオ
ポール8250(H)100部 ・硬化促進剤: 3部 ・滑剤: 1部 ・樹脂濃度: キシレン溶媒中 38%
[Examples 1 to 12] As the core fiber, a glass fiber multifilament yarn having a single fiber diameter of 13 µm (RSP110PA-535 manufactured by Nitto Glass Fiber) was used.
Seven fibers were combined to obtain a glass fiber bundle. The glass fiber bundle was led into a resin bath having the following structure, and after impregnation with the resin, was used as a core material of a reinforcing material by a drawing method.・ Thermosetting resin: 100 parts of acrylate resin Neopol 8250 (H) manufactured by Nippon Yupika ・ Curing accelerator: 3 parts ・ Lubricant: 1 part ・ Resin concentration: 38% in xylene solvent

【0020】次いで、該ガラス繊維束芯材の表面に、下
記に示すアラミド繊維よりなるマルチフィラメント糸
(400デニール/266デニール)を捲回させた後、
前記と同じ樹脂浴で樹脂含浸させた下記に示すアラミド
繊維(1500デニール/1000フィラメント)54
本を鞘繊維として使用して、該ガラス繊維束の表面を完
全に被覆するように、ガラス繊維束を通すガイド孔の周
りに9ケの鞘繊維供給用ガイド孔を設けた二重ノズル
に、該ガラス繊維束と鞘繊維とを同時に供給してガラス
繊維束の長手方向に配列させた。 アラミド繊維: コポリパラフェニレン−3,4’−オ
キシジフェニレンテレフタルアミド繊維{帝人株式会社
製 テクノーラ(登録商標)}
Next, a multifilament yarn (400 denier / 266 denier) made of the following aramid fiber is wound on the surface of the glass fiber bundle core material.
Aramid fiber (1500 denier / 1000 filament) shown below impregnated with resin in the same resin bath 54
Using the book as a sheath fiber, to completely cover the surface of the glass fiber bundle, a double nozzle provided with nine sheath fiber supply guide holes around a guide hole for passing the glass fiber bundle, The glass fiber bundle and the sheath fiber were simultaneously supplied to arrange the glass fiber bundle in the longitudinal direction. Aramid fiber: copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber {Technola (registered trademark) manufactured by Teijin Limited>

【0021】次いで前記3成分よりなる芯鞘構造の繊維
束を温度:160℃、時間:7.5分で熱処理して含浸
した熱硬化性樹脂を硬化せしめて線径6mmの補強材を
得た(実施例1)。同様に該補強材において、芯繊維と
してのガラス繊維、鞘繊維としてのアラミド繊維及び熱
硬化性樹脂の体積含有率(全補強材に対する体積含有
率)、芯繊維に捲回するアラミド繊維の繊度と捲回密度
とを表1記載のように変化させて得られた補強材(実施
例2〜12)の性能を表1に併せて示す。
Next, the fiber bundle having a core-sheath structure composed of the above three components was heat-treated at a temperature of 160 ° C. and a time of 7.5 minutes to cure the impregnated thermosetting resin to obtain a reinforcing material having a wire diameter of 6 mm. (Example 1). Similarly, in the reinforcing material, the volume content of the glass fiber as the core fiber, the aramid fiber as the sheath fiber and the thermosetting resin (volume content relative to the total reinforcing material), the fineness of the aramid fiber wound around the core fiber, The performance of the reinforcing material (Examples 2 to 12) obtained by changing the winding density as shown in Table 1 is also shown in Table 1.

【0022】[比較例1〜4]実施例1において、捲回
繊維の捲回密度を0.5ピッチ/10cmとした以外は
実施例1と同様にして作成したもの(比較例1)、該捲
回密度を105ピッチ/10cmとした以外は実施例1
と同様にして作成したもの(比較例2)、さらに実施例
1において、捲回繊維の繊度を15デニールとし、捲回
密度を12ピッチ/10cmとした以外は実施例1と同
様に作成したもの(比較例3)、該捲回繊維の繊度を5
100デニールとし、捲回密度を12ピッチ/10cm
とした以外は実施例1と同様に作成したもの(比較例
4)の補強材の性能を表1に併せて示す。
[Comparative Examples 1 to 4] The same procedure as in Example 1 was repeated except that the winding density of the wound fiber was changed to 0.5 pitch / 10 cm (Comparative Example 1). Example 1 except that the winding density was 105 pitch / 10 cm
(Comparative Example 2), and further produced in the same manner as in Example 1 except that the fineness of the wound fiber was set to 15 denier and the winding density was set to 12 pitch / 10 cm. (Comparative Example 3), the fineness of the wound fiber was 5
100 denier, winding density 12 pitch / 10cm
Table 1 also shows the performance of the reinforcing material prepared in the same manner as in Example 1 (Comparative Example 4) except for the above.

【0023】[0023]

【表1】 [Table 1]

【0024】表1において、芯繊維束の断面の真円性の
判定として、◎印はほとんど真円であるものを示し、○
印はほぼ真円であるものを示し、×印は真円でないもの
をそれぞれ示す。
In Table 1, as a judgment of the roundness of the cross section of the core fiber bundle, the mark ◎ indicates that the cross section is almost a perfect circle,
The mark indicates a substantially perfect circle, and the cross indicates a non-perfect circle.

【0025】[比較例5]実施例1において、補強材の
繊維束として、ガラス繊維のみを使用し実施例1の樹脂
浴にて含浸させ、繊維束の体積含有率を55%とする以
外は同様に引抜き成型、熱処理を行い線径6mmのガラ
ス繊維補強材を得た。この補強材を実施例1と同様の評
価を行なった結果は以下の通りである。 初期引張強度 169Kgf/mm2 耐久性引張強度 50%
Comparative Example 5 The procedure of Example 1 was repeated except that only glass fibers were used as the fiber bundle of the reinforcing material, and the fiber bundle was impregnated with the resin bath of Example 1 so that the volume content of the fiber bundle was 55%. Similarly, drawing and heat treatment were performed to obtain a glass fiber reinforcing material having a wire diameter of 6 mm. The same evaluation as in Example 1 was performed on this reinforcing material, and the results are as follows. Initial tensile strength 169Kgf / mm 2 Durable tensile strength 50%

【0026】実施例1〜12では、芯繊維束の断面が円
形になり、鞘繊維による被覆も完全に行われ引張強度の
耐久性がある補強材が得られたが、比較例1,3では被
覆性が十分でなく引張強度の耐久性が悪く、比較例2,
4では初期の引張強度が十分でなく芯繊維のガラス繊維
束と鞘繊維の接着牲が不良であり引張強度の耐久性もな
かった。比較例5は、初期の引張強度は高いものが得ら
れるが引張強度の耐久性が不良であり、いずれも本発明
の目的を達成することは出来なかった。
In Examples 1 to 12, the cross-section of the core fiber bundle was circular, and the covering with the sheath fiber was completely performed to obtain a reinforcing material having a durable tensile strength. In Comparative Examples 1 and 3, Comparative Example 2 lacks sufficient coverage and poor tensile strength durability.
In No. 4, the initial tensile strength was not sufficient, the adhesion between the core fiber glass fiber bundle and the sheath fiber was poor, and the durability of the tensile strength was not sufficient. In Comparative Example 5, although the initial tensile strength was high, the durability of the tensile strength was poor, and none of the objectives of the present invention could be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を説明するための概略工程図であ
る。
FIG. 1 is a schematic process drawing for explaining the method of the present invention.

【図2】本発明方法に使用するガイドの実施態様を説明
する図である。
FIG. 2 is a diagram illustrating an embodiment of a guide used in the method of the present invention.

【図3】本発明の方法によって得られるコンクリート補
強材を示す斜視図である。
FIG. 3 is a perspective view showing a concrete reinforcement obtained by the method of the present invention.

【符号の説明】[Explanation of symbols]

1は芯繊維 2は捲回繊維 3は鞘繊維 4はガラス繊維束を通すカイド孔 5は鞘繊維用ガイド孔 1 is a core fiber 2 is a wound fiber 3 is a sheath fiber 4 is a guide hole for passing a glass fiber bundle 5 is a guide hole for a sheath fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 芯繊維としてガラス繊維束を用い、該ガ
ラス繊維束を被覆する鞘繊維からなる芯鞘構造のコンク
リート用補強材の製造方法において、該ガラス繊維を熱
硬化性樹脂浴に通して該熱硬化性樹脂を含浸させた後糸
軸方向に配列させて繊維束となし、該樹脂含浸ガラス繊
維束の表面に繊度20〜5000デニールのマルチフラ
メント糸を捲回密度が1〜100ピッチ/10cmの範
囲で捲回させて該ガラス繊維束の糸軸方向と垂直な断面
がほぼ円形となるように形状固定を行い、次いで鞘繊維
として熱硬化性樹脂を含浸させたアルカリ耐久性繊維を
用いて該ガラス繊維束の表面を完全に被覆するように該
ガラス繊維束の長手方向に配列させて供給し引抜き成型
を行った後、熱処理により該熱硬化性樹脂を硬化せしめ
ることを特徴とするコンクリート用補強材の製造方法。
1. A method for producing a reinforcing material for concrete having a core-sheath structure comprising a glass fiber bundle as a core fiber and a sheath fiber covering the glass fiber bundle, wherein the glass fiber is passed through a thermosetting resin bath. After the thermosetting resin is impregnated, it is arranged in the yarn axis direction to form a fiber bundle, and a multi-filament yarn having a fineness of 20 to 5000 denier is wound on the surface of the resin-impregnated glass fiber bundle at a winding density of 1 to 100 pitches. The glass fiber bundle is wound in the range of / 10 cm, the shape is fixed so that the cross section perpendicular to the yarn axis direction of the glass fiber bundle is substantially circular, and then alkali-durable fiber impregnated with a thermosetting resin is used as a sheath fiber. After the glass fiber bundle is arranged in the longitudinal direction of the glass fiber bundle so as to completely cover the surface of the glass fiber bundle and supplied and subjected to drawing molding, the thermosetting resin is cured by heat treatment. Manufacturing method of concrete reinforcement.
【請求項2】 該ガラス繊維束を通すガイド孔の周りに
3以上の鞘繊維用ガイド孔を設けて該鞘繊維をほぼ均等
に分散せしめて供給し引き抜きを行なう請求項1記載の
コンクリート用補強材の製造方法。
2. The reinforcement for concrete according to claim 1, wherein three or more guide holes for the sheath fiber are provided around the guide hole through which the glass fiber bundle is passed, and the sheath fibers are supplied in a state of being substantially uniformly dispersed and then drawn. The method of manufacturing the material.
【請求項3】 アルカリ耐久性繊維がアラミド系繊維で
ある請求項1、または請求項2記載のコンクリート用補
強材の製造方法。
3. The method according to claim 1, wherein the alkali-durable fiber is an aramid fiber.
JP5163997A 1997-03-06 1997-03-06 Production of reinforcing material for concrete Pending JPH10245259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5163997A JPH10245259A (en) 1997-03-06 1997-03-06 Production of reinforcing material for concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5163997A JPH10245259A (en) 1997-03-06 1997-03-06 Production of reinforcing material for concrete

Publications (1)

Publication Number Publication Date
JPH10245259A true JPH10245259A (en) 1998-09-14

Family

ID=12892427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5163997A Pending JPH10245259A (en) 1997-03-06 1997-03-06 Production of reinforcing material for concrete

Country Status (1)

Country Link
JP (1) JPH10245259A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281441A (en) * 2004-03-29 2005-10-13 Nitto Boseki Co Ltd Fiber-reinforced resin linear product and its manufacturing method
JP2014502319A (en) * 2010-10-21 2014-01-30 リフォーステック リミテッド Reinforcing bar and method for manufacturing the same
WO2016125666A1 (en) * 2015-02-03 2016-08-11 日本電気硝子株式会社 Concrete reinforcing material and concrete formed body
JP2016188157A (en) * 2015-03-30 2016-11-04 公益財団法人鉄道総合技術研究所 Fiber for reinforcing concrete and concrete structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281441A (en) * 2004-03-29 2005-10-13 Nitto Boseki Co Ltd Fiber-reinforced resin linear product and its manufacturing method
JP2014502319A (en) * 2010-10-21 2014-01-30 リフォーステック リミテッド Reinforcing bar and method for manufacturing the same
WO2016125666A1 (en) * 2015-02-03 2016-08-11 日本電気硝子株式会社 Concrete reinforcing material and concrete formed body
JP2016188157A (en) * 2015-03-30 2016-11-04 公益財団法人鉄道総合技術研究所 Fiber for reinforcing concrete and concrete structure

Similar Documents

Publication Publication Date Title
US4677818A (en) Composite rope and manufacture thereof
EP0417612B1 (en) Filament-reinforced resinous structural rod
CA2001788C (en) Composite rope and manufacturing method for the same
JP2640240B2 (en) Rope manufacturing method
EP0333279A2 (en) Braided textile sleeves
EP0058783B1 (en) Tubing of hybrid, fibre-reinforced synthetic resin
US5749211A (en) Fiber-reinforced plastic bar and production method thereof
US4976550A (en) Expanded fiber-reinforced bearings
EP1502503B1 (en) Fishing rod
EP0628674B1 (en) Fiber-reinforced plastic rod and method of manufacturing the same
JPH10245259A (en) Production of reinforcing material for concrete
FI76739B (en) FOERSTAERKNINGSSTAONG FOER VULSTEN AV ETT YTTERDAECK.
JPH0615078Y2 (en) Reinforcing material for concrete
JPS6218246A (en) Manufacture of reinforcing member having protuberance on surface thereof
US20020174591A1 (en) Damage resistant fishing rod
JPH0323676B2 (en)
JPH02216270A (en) Structural material and production thereof
JPH0718099B2 (en) Rope
JPH02105830A (en) Production of carbon fibber braid
JP2516710B2 (en) Composite twist type tensile strength body
JPS5955946A (en) Light weight composite member
JP4816429B2 (en) Fiber cord tension member
JP2008139582A (en) Fiber cord tension member
JPH0735948Y2 (en) Reinforcing material for concrete
JPH02112454A (en) Production of braid made of carbon fiber