JP2599187B2 - Method of manufacturing composite striatum - Google Patents

Method of manufacturing composite striatum

Info

Publication number
JP2599187B2
JP2599187B2 JP63255223A JP25522388A JP2599187B2 JP 2599187 B2 JP2599187 B2 JP 2599187B2 JP 63255223 A JP63255223 A JP 63255223A JP 25522388 A JP25522388 A JP 25522388A JP 2599187 B2 JP2599187 B2 JP 2599187B2
Authority
JP
Japan
Prior art keywords
fiber core
coating
thermosetting resin
composite filament
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63255223A
Other languages
Japanese (ja)
Other versions
JPH02104786A (en
Inventor
浩 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rope Manufacturing Co Ltd
Original Assignee
Tokyo Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rope Manufacturing Co Ltd filed Critical Tokyo Rope Manufacturing Co Ltd
Priority to JP63255223A priority Critical patent/JP2599187B2/en
Publication of JPH02104786A publication Critical patent/JPH02104786A/en
Application granted granted Critical
Publication of JP2599187B2 publication Critical patent/JP2599187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ropes Or Cables (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高強力低伸度の繊維で複合線条体を製造する
複合線条体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a composite filament which produces a composite filament using high-strength, low-elongation fibers.

[従来の技術] 本出願人は、高強力低伸度の繊維を素材とし、軽量で
かつ断面径当りの引張り強度の高い複合線条体について
の製造技術を開発し、既に特許出願をしてある(特公昭
62−18679号)。
[Prior art] The present applicant has developed a manufacturing technique for a composite filament which is made of high-strength and low-elongation fiber, is lightweight and has high tensile strength per sectional diameter, and has already applied for a patent. Yes
No. 62-18679).

この複合線条体の製造方法は、炭素繊維等の高強力低
伸度の繊維を集合して繊維芯とし、この繊維芯に熱硬化
性樹脂を含浸し、ついでこの繊維芯の周面に乾燥粉末剤
を付着させ、さらにこの繊維芯の外周に繊維を緻密に編
組してその外周を被覆し、こののち繊維心に含浸した熱
硬化性樹脂を加熱して硬化させるようにしたものであ
る。
The method for producing the composite filamentous body is to assemble fibers of high strength and low elongation such as carbon fibers into a fiber core, impregnate the fiber core with a thermosetting resin, and then dry the fiber core on its peripheral surface. A powder agent is adhered, and the fibers are densely braided around the outer periphery of the fiber core to cover the outer periphery. Thereafter, the thermosetting resin impregnated into the fiber core is heated and cured.

このような製造方法にあっては、繊維芯に含浸した熱
可塑性樹脂の外部への漏出をその外周の被覆で防止して
軽量で断面径当りの引張り強度の高い複合線条体を得る
ことができる。
In such a manufacturing method, it is possible to prevent the thermoplastic resin impregnated in the fiber core from leaking to the outside by coating the outer periphery thereof, thereby obtaining a lightweight, high-strength composite filament having a high tensile strength per cross-sectional diameter. it can.

[発明が解決しようとする課題] ところで、繊維芯に含浸した熱硬化性樹脂を加熱して
硬化させた際には、熱硬化性樹脂とほぼ一体的に繊維芯
も収縮するが、ここで繊維芯に含浸した熱硬化性樹脂
と、繊維芯の外周に施した被覆との間に熱収縮率に差が
あり、特に被覆の熱収縮率が熱硬化性樹脂のそれよりも
小さいような場合、熱硬化性樹脂を加熱硬化させた際
に、繊維芯の収縮に被覆が追従し得なくなり、この結
果、繊維芯と被覆との間や繊維芯の内部に空隙が生じ、
複合線条体として要求される緻密性が低下し、また断面
形状も不均一となり、強度上に悪影響が生じることが判
明した。
[Problems to be Solved by the Invention] By the way, when the thermosetting resin impregnated in the fiber core is cured by heating, the fiber core shrinks almost integrally with the thermosetting resin. The thermosetting resin impregnated in the core, there is a difference in heat shrinkage between the coating applied to the outer periphery of the fiber core, especially when the heat shrinkage of the coating is smaller than that of the thermosetting resin, When the thermosetting resin is cured by heating, the coating cannot follow the contraction of the fiber core, and as a result, a gap is generated between the fiber core and the coating or inside the fiber core,
It has been found that the required compactness of the composite filament decreases, and the cross-sectional shape also becomes non-uniform, which adversely affects the strength.

そこで、被覆の構成素材として、繊維芯に含浸する熱
硬化性樹脂と同等の熱収縮率の素材を選べばよいわけで
あるが、しかし用途に応じて種々の特性が要求される複
合線条体を製造するに当り、その都度、被覆用の素材を
選択、変更することは生産性の低下を招き、得策でな
い。
Therefore, a material having a heat shrinkage equivalent to that of the thermosetting resin impregnated into the fiber core may be selected as a constituent material of the coating. However, a composite filament that requires various characteristics according to the application is required. It is not advisable to select and change the material for the coating every time when manufacturing the product.

本発明はこのような点に着目してなされたもので、そ
の目的とするところは、熱硬化性樹脂と被覆との間に熱
収縮率に差があっても、被覆が繊維芯に追従するように
収縮して該繊維芯の外周に常に密着する複合線条体の製
造方法を提供することにある。
The present invention has been made by paying attention to such a point, and the purpose thereof is that even if there is a difference in heat shrinkage between the thermosetting resin and the coating, the coating follows the fiber core. Accordingly, it is an object of the present invention to provide a method for producing a composite filament which shrinks in such a manner and always adheres to the outer periphery of the fiber core.

[課題を解決するための手段] 本発明はこのような目的を達成するために、炭素繊
維、ポリアラミド繊維、ガラス繊維、炭化珪素繊維等の
高強力低伸度繊維を集束、撚合、編組等の手段により集
合して繊維芯を形成し、この繊維芯に不飽和ポリエステ
ル、エポキシ、ポリウレタン、ポリイミド等の熱硬化性
樹脂を含浸し、ついでこの繊維芯の外周に被覆素材の巻
付け或いは編組により緻密な被覆を施し、こののち繊維
芯を加熱してその内部の熱硬化性樹脂を硬化させて複合
線条体を得るに当り、繊維芯の外周に被覆を施す際にそ
の被覆の素材に予め、繊維芯に含浸した熱硬化性樹脂の
熱収縮率に相当する伸びを与えておくようにしたもので
ある。
[Means for Solving the Problems] In order to achieve such an object, the present invention bundles, twists, braids and the like high-strength low-elongation fibers such as carbon fibers, polyaramid fibers, glass fibers, and silicon carbide fibers. To form a fiber core, impregnating the fiber core with a thermosetting resin such as unsaturated polyester, epoxy, polyurethane, or polyimide, and then winding or braiding a coating material on the outer periphery of the fiber core. Applying a dense coating, then heating the fiber core and curing the thermosetting resin inside to obtain a composite striated body, when applying a coating to the outer periphery of the fiber core, An elongation corresponding to the heat shrinkage of the thermosetting resin impregnated in the fiber core is given.

[作用] 繊維芯の外周に施された被覆の素材に、繊維芯に含浸
した熱硬化性樹脂の熱収縮率に相当する伸びが予め与え
られているから、熱硬化性樹脂の硬化に伴う繊維芯の収
縮に追従するようにその外周の被覆も収縮し、したがっ
て繊維芯と被覆との間や繊維芯の内部に空隙が残るよう
なことがない。
[Function] Since the material of the coating applied to the outer periphery of the fiber core is given in advance an elongation corresponding to the heat shrinkage of the thermosetting resin impregnated in the fiber core, the fiber accompanying the curing of the thermosetting resin is provided. The outer peripheral coating shrinks to follow the shrinkage of the core, so that no void remains between the fiber core and the coating or inside the fiber core.

[実施例] 以下、本発明の実施例について図面を参照して説明す
る。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

実施例1 7μの炭素繊維12000本を1単位とし、これを15本撚
合して繊維芯aを形成し、この繊維芯aをエポキシ樹脂
を収容したタンクbに通して繊維芯aにエポキシ樹脂を
40重量%含浸し、さらにこの繊維芯aを賦形ダイスcに
通して所要の断面形状に成形するとともに、余剰の樹脂
を除去する。ついで、この繊維芯aをタルク(乾燥粉末
剤)が収容されたタンクd内に通してその周面にタルク
を付着させる。
Example 1 A fiber core a was formed by twisting 15 carbon fibers of 12000 into 1 unit and fifteen of them were twisted to form a fiber core a. The fiber core a was passed through a tank b containing an epoxy resin, and the epoxy resin was applied to the fiber core a. To
The fiber core a is impregnated with 40% by weight, and the fiber core a is formed into a required cross-sectional shape by passing it through a shaping die c, and excess resin is removed. Next, the fiber core a is passed through a tank d containing talc (dry powder), and talc is adhered to the peripheral surface thereof.

こののち繊維芯aをラッピング装置eに通して、平行
に密接した状態に引揃えた1000デニールのポリエステル
ヤーン8本を繊維芯aの外周に5mmのピッチで緻密に巻
付けて被覆fを施す。この際、繊維芯aに含浸したエポ
キシ樹脂と被覆fとの熱収縮率の差を補正するために、
被覆fの素材であるポリエステルヤーンに1000デニール
当り400gの張力で少なくとも2%の伸びを与えながら、
該ポリエステルヤーンを繊維芯aの外周に巻付ける。つ
いで、被覆fを施した繊維芯aを加熱槽gに通して、18
0℃で90分間加熱し、繊維芯aの内部の未硬化のエポキ
シ樹脂を完全に硬化させて直径4.5mmの複合線条体を得
る。
Thereafter, the fiber core a is passed through a wrapping device e, and eight 1000 denier polyester yarns which are aligned in parallel and closely contacted with each other are densely wound around the outer periphery of the fiber core a at a pitch of 5 mm to apply a coating f. At this time, in order to correct the difference in the thermal shrinkage between the epoxy resin impregnated in the fiber core a and the coating f,
While giving at least 2% elongation to the polyester yarn which is the material of the coating f at a tension of 400 g per 1000 deniers,
The polyester yarn is wound around the outer periphery of the fiber core a. Next, the fiber core a provided with the coating f was passed through a heating tank g,
Heating at 0 ° C. for 90 minutes completely cures the uncured epoxy resin inside the fiber core a to obtain a composite filament having a diameter of 4.5 mm.

エポキシ樹脂の硬化に伴い繊維芯aが収縮するが、被
覆fの素材に予め伸びが与えられているから、該被覆f
も繊維芯aに追従するように収縮し、したがって繊維芯
aと被覆fとの間や繊維芯aの内部に空隙が残るような
ことがない。
The fiber core a shrinks with the curing of the epoxy resin, but since the material of the coating f has been previously stretched, the coating f
Also shrink so as to follow the fiber core a, so that no void remains between the fiber core a and the coating f or inside the fiber core a.

実施例2 実施例1におけるポリエステルヤーンによる被覆fに
代えて、1000デニールのポリエステルマルチ糸によりリ
ード9mm1×16打ブレードの編組で被覆fを形成する。こ
の際、繊維芯aに含浸したエポキシ樹脂と被覆fとの熱
収縮率の差を補正するために、被覆fの素材であるポリ
エステルマルチ糸に1000デニール当り2.5Kgの張力で少
なくとも2%の伸びを与えながら編組する。そしてこの
のち、被覆fを施した繊維芯aを180℃で90分間加熱し
て繊維芯aの内部のエポキシ樹脂を硬化させる。
Example 2 In place of the coating f with the polyester yarn in Example 1, a coating f is formed by a braid of a 9 mm × 16 lead braid with 1000 denier polyester multi-yarn. At this time, in order to correct the difference in heat shrinkage between the epoxy resin impregnated in the fiber core a and the coating f, the polyester multi yarn as the material of the coating f is stretched by at least 2% at a tension of 2.5 kg per 1000 denier. And braiding. After that, the fiber core a provided with the coating f is heated at 180 ° C. for 90 minutes to cure the epoxy resin inside the fiber core a.

実施例3 23μのガラス繊維4450tex(番手)を1単位とし、こ
れを7本平行に引揃える状態に集束して繊維芯aを形成
し、この繊維芯aに不飽和ポリエステル樹脂を43重量%
含浸してから、この繊維芯aを賦形ダイスcに通し、断
面形状の成形と余剰樹脂の除去を行ない、さらにその周
面にタルクを付着させ、こののち繊維芯aの外周に、厚
さ15μ、幅20mmのポリエステルテープ5mmのピッチで緻
密に巻付けて被覆fを形成する。この際、繊維芯aに含
浸した不飽和ポリエステル樹脂と被覆fとの熱収縮率の
差を補正するために、被覆fの素材であるポリエステル
テープに550gの張力で少なくとも3%の伸びを与えなが
ら巻付ける。そしてこののち、被覆fを施した繊維芯g
を130℃で90分間加熱して繊維芯aの内部の不飽和ポリ
エステル樹脂を硬化させて直径6.2mmの複合線条体を得
る。
Example 3 Seven units of 23μ glass fiber 4450 tex (count) were bundled in a state of being aligned in parallel to form a fiber core a, and an unsaturated polyester resin was added to the fiber core a by 43% by weight.
After impregnation, the fiber core a is passed through a shaping die c to form a cross-sectional shape and remove excess resin. Further, talc is adhered to the peripheral surface thereof. The coating f is formed by densely winding at a pitch of 5 mm and a polyester tape having a width of 15 mm and a width of 20 mm. At this time, in order to correct the difference in thermal shrinkage between the unsaturated polyester resin impregnated in the fiber core a and the coating f, the polyester tape as the material of the coating f is stretched at least 3% with a tension of 550 g at a tension of 550 g. Wrap. And after this, the fiber core g with the coating f
Is heated at 130 ° C. for 90 minutes to cure the unsaturated polyester resin inside the fiber core a to obtain a composite filament having a diameter of 6.2 mm.

なお、いずれの実施例においても、内部の熱硬化性樹
脂が未硬化のままの状態で、複数本の複合線条体を編
組、或いは撚合してロープ状にし、これを加熱槽に通し
て前記熱硬化性樹脂を硬化させるような場合であっても
よい。
In any of the examples, in a state where the internal thermosetting resin remains uncured, a plurality of composite filaments are braided or twisted into a rope shape, and this is passed through a heating tank. The case where the thermosetting resin is cured may be used.

[発明の効果] 以上説明したように本発明によれば、繊維芯の外周に
被覆を施す際にその被覆の素材に予め熱硬化性樹脂の熱
収縮率に相当する伸びを与えておくようにしたから、熱
硬化性樹脂と被覆との間に熱収縮率に差があっても、被
覆が繊維芯の収縮に追従するように収縮して該繊維芯の
外周に常に密着し、したがって繊維芯と被覆との間や繊
維芯の内部に空隙が残らず、緻密性が高く、断面形状も
均一な複合線条体を得ることができる。
[Effects of the Invention] As described above, according to the present invention, when a coating is applied to the outer periphery of a fiber core, elongation corresponding to the heat shrinkage of the thermosetting resin is given to the material of the coating in advance. Therefore, even if there is a difference in the heat shrinkage between the thermosetting resin and the coating, the coating shrinks so as to follow the shrinkage of the fiber core and always adheres to the outer periphery of the fiber core. No void remains between the coating and the coating or inside the fiber core, and a composite filament having a high density and a uniform cross-sectional shape can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は複合線条体の製造工程を示す工程図、第2図は
複合線条体の平面図である。
FIG. 1 is a process diagram showing a production process of a composite filament, and FIG. 2 is a plan view of the composite filament.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高強力低伸度繊維を集束、撚合、編組等の
手段により集合して繊維芯を形成し、この繊維芯に熱硬
化性樹脂を含浸し、ついでこの繊維芯の外周に被覆素材
の巻付け或いは編組により緻密な被覆を施し、こののち
繊維芯を加熱してその内部の熱硬化性樹脂を硬化させて
複合線条体を得るに当り、繊維芯の外周に被覆を施す際
にその被覆の素材に予め、繊維芯に含浸した熱硬化性樹
脂の熱収縮率に相当する伸びを与えておくことを特徴と
する複合線条体の製造方法。
1. A fiber core is formed by gathering high strength and low elongation fibers by means such as bundling, twisting and braiding, and impregnating the fiber core with a thermosetting resin. A dense coating is applied by winding or braiding the coating material, and thereafter, the fiber core is heated to cure the thermosetting resin inside to obtain a composite filament, and the outer periphery of the fiber core is coated. A method for producing a composite filament, wherein the material of the coating is given in advance an elongation corresponding to the heat shrinkage of the thermosetting resin impregnated in the fiber core.
JP63255223A 1988-10-11 1988-10-11 Method of manufacturing composite striatum Expired - Lifetime JP2599187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255223A JP2599187B2 (en) 1988-10-11 1988-10-11 Method of manufacturing composite striatum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255223A JP2599187B2 (en) 1988-10-11 1988-10-11 Method of manufacturing composite striatum

Publications (2)

Publication Number Publication Date
JPH02104786A JPH02104786A (en) 1990-04-17
JP2599187B2 true JP2599187B2 (en) 1997-04-09

Family

ID=17275739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255223A Expired - Lifetime JP2599187B2 (en) 1988-10-11 1988-10-11 Method of manufacturing composite striatum

Country Status (1)

Country Link
JP (1) JP2599187B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502005006007D1 (en) * 2005-07-15 2009-01-02 Teijin Aramid Bv Cord
WO2014196432A1 (en) * 2013-06-05 2014-12-11 小松精練株式会社 High-strength fiber composite, strand structure, and multi-strand structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120767A (en) * 1978-03-08 1979-09-19 Monberu Kk Rope and production thereof
JPS58169587A (en) * 1981-12-10 1983-10-06 シユランバ−ガ−・オ−バ−シ−ズ・エス・エ− Graphite fiber tensile member and production of cable assembly using same
JPH0660471B2 (en) * 1986-09-18 1994-08-10 東邦レーヨン株式会社 Compound striatum

Also Published As

Publication number Publication date
JPH02104786A (en) 1990-04-17

Similar Documents

Publication Publication Date Title
US4534163A (en) Rope or cable and method of making same
US4050230A (en) Rope
KR920003384B1 (en) Production of multitwisted-type tensile form and manufacturing method for the same
US4677818A (en) Composite rope and manufacture thereof
JPS61194276A (en) Composite reinforcing member and method and apparatus for producing the same
JP2599187B2 (en) Method of manufacturing composite striatum
WO1994015015A1 (en) Complex fiber string and method of manufacturing the same
JPH03218817A (en) Fiber reinforced plastic rod with ridge on surface and its manufacture
JPH0615078Y2 (en) Reinforcing material for concrete
JPH0693579A (en) Composite material and its production
JP3724593B2 (en) Method for producing linear fiber reinforced plastic and method for producing fiber reinforced plastic cable
JPH0489346A (en) Concrete reinforcing member and its production
JPH01272889A (en) Terminal setting of composite filamentous form or twisted form thereof
JPH0333285A (en) Cable-like composite material and production thereof
JPH02242987A (en) Strand for twisted yarn of fiber composite material, twisted yarn and production thereof
JP3231064B2 (en) How to connect FRP striatum
JPH0480451A (en) Structural material and its manufacture
JPH0414731Y2 (en)
JP2516714B2 (en) Method for manufacturing composite twisted strength member
CA1234520A (en) Rope or cable and method of making same
JPH0351384A (en) Twist structural body made of fiber reinforced thermosetting resin and production thereof
USRE29133E (en) Constant length composite glass fiber cable under varying temperature conditions
US3821879A (en) Constant length composite glass fiber cable under varying temperature conditions
JPH0735948Y2 (en) Reinforcing material for concrete
JPH05337927A (en) Manufacture of concrete reinforcing material