JP2004012611A - Non-metal optical fiber cable - Google Patents

Non-metal optical fiber cable Download PDF

Info

Publication number
JP2004012611A
JP2004012611A JP2002163045A JP2002163045A JP2004012611A JP 2004012611 A JP2004012611 A JP 2004012611A JP 2002163045 A JP2002163045 A JP 2002163045A JP 2002163045 A JP2002163045 A JP 2002163045A JP 2004012611 A JP2004012611 A JP 2004012611A
Authority
JP
Japan
Prior art keywords
optical fiber
cable
frp
strength member
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002163045A
Other languages
Japanese (ja)
Inventor
Fumiki Hosoi
細井 文樹
Fuminori Nakajima
中嶋 史紀
Hirotake Tanaka
田中 浩剛
Shinichi Hirukawa
蛭川 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Kyushu Electric Power Co Inc
Original Assignee
Furukawa Electric Co Ltd
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Kyushu Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2002163045A priority Critical patent/JP2004012611A/en
Publication of JP2004012611A publication Critical patent/JP2004012611A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide non-metal optical fiber cables which can be suppressed in an increase in loss by shrinkage at low and high temperatures, can be reduced in permissible bending diameters and are inexpensive. <P>SOLUTION: The non-metal optical fiber cables (1a and 1b) which are formed by integrally coating coated optical fibers or coated optical fiber ribbons (11a and 11b) and tension members, in which the tension members are composed of members exclusive of metal and are composed of fibrous members (13a and 13b) and rod members (12a and 12b). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属部材を構成要素として含まないノンメタル光ファイバケーブルに関するものである。
【0002】
【従来の技術】
近年、光加入者線路網の構築が急速に進んでいる。電柱から宅先へ光ファイバを配線する安価なケーブル構造として、図2に断面図で示すドロップ光ケーブルが考えられる。図2の光ケーブル2は、光ファイバ心線又は光ファイバテープ心線21と抗張力線22とを平行に並べ、ポリ塩化ビニルやポリエチレン等のケーブル被覆24で全体を一括被覆した構造を有する。
【0003】
光ファイバを宅内まで引き落とす方法として近年では電力引き込み線に図2の構造のドロップ光ケーブルを巻き付け、電力引き込み線と一緒に光ファイバを引き込もうという試みが行われている。この光ファイバー複合引込み線(OPDV)の構造を図3に断面図で示す。図3の光ユニット一体型OPDV3は、導体38と電力引込み線被覆39からなる複数本の電力引込み線37に光ユニット36を巻きつけた構造を有する。光ユニット36は、光ファイバ心線又は光ファイバテープ心線31と抗張力線32とを平行に並べ、ポリ塩化ビニルやポリエチレン等のケーブル被覆34で全体を一括被覆した構造を有する。
【0004】
図2、3に示したケーブルはいずれも抗張力体を具備してなる。通常、抗張力体としては金属である鋼線が使用されるが、抗張力体に非金属のものを採用する場合もある。図2の構造では引き込み線として電柱から接続点なしで宅内まで直接ケーブルを引き込む場合も考えられるが、こうした引き込み方法の場合、落雷の際にサージ電流が宅内の光機器を損傷させる恐れがある。また図3の電力引き込み線の場合は電力線と複合されているため、電力線からの誘導電流が光ケーブルの鋼線部に流れる恐れがある。こうした観点から抗張力体として非金属のものを使うことが考えられている。
非金属抗張力体としてはアラミド繊維やガラス繊維といった繊維状のものが考えられる。これに加えて、これらアラミド繊維やガラス繊維を束ね、樹脂で固めて棒状にしたFRP(繊維強化プラスチック)といったものが考えられる。
【0005】
繊維状の抗張力体をケーブルに使用する場合、ケーブルの引っ張り方向に対しては繊維量を調整することによって抗張力機能を持たせることができるが、ケーブルの圧縮方向の力に対しては繊維の場合突っ張り力がないために、抗張力機能を持たない。そのためケーブルが高温や低温にさらされる際に次のような点が問題となる。
【0006】
すなわち、低温ではケーブル外被が収縮するが、その際抗張力体が繊維の場合、圧縮方向に突っ張り力がないために外被の収縮を抑えることができず、外被の収縮によって心線に曲がりが入り、損失増加を引き起こすこととなる。
高温にさらされた場合にも繊維状抗張力体では問題が生じる。ケーブル外被にはケーブル製造時に加工歪と呼ばれる歪が残る。この歪は外被が高温にさらされた時に開放され、外被を収縮させる。したがって繊維状抗張力体の場合にはケーブルが高温にさらされた場合にも外被が収縮して心線に曲がりが入る。
【0007】
一方、繊維を束ねて樹脂で固めた棒状の抗張力体であるFRPの場合には、引張り方向の抗張力機能はもちろん、FRPがロッド状で突っ張りを有しているために圧縮方向に対しても抗張力機能を持っている。したがって低温化又は高温化の外被収縮に対してFRPロッドを使用することで損失増加を抑えることが可能となる。
しかし、FRPは繊維を束ねて固めるという製造工程があり、繊維と比べて高価になるという問題がある。また、FRPは棒状の抗張力体であり円形に曲げると所定の径で折れるが、この折れが起きるものの最小径(最小曲げ径)はFRPの外径が大きいほど大きくなる。したがって抗張力体をFRPで構成した場合、ケーブルの設計張力によってはFRPが太径となってケーブルを大きな径でしか曲げられないといった状況も生じる。
【0008】
【発明が解決しようとする課題】
本発明は、低温、高温での収縮による損失増加を抑えることができ、かつ、許容曲げ径を小さくでき、しかも廉価なノンメタル光ファイバケーブルを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、鋭意検討を重ねた結果、抗張力体として繊維とFRPとを併用することにより、繊維のみを抗張力体とした場合に問題となる低温、高温での収縮による損失増加を抑えることができ、かつ、FRPのみを抗張力体とした場合に問題となる許容曲げ径を小さくでき、しかもFRPのみを抗張力体とした場合よりも安価となることを見い出し、この知見に基づき本発明を完成するに至った。
【0010】
すなわち本発明は、
(1)光ファイバ心線又は光ファイバテープ心線と抗張力体とを一括被覆して形成した光ファイバケーブルであって、該抗張力体が金属以外の部材で構成されており、その抗張力体が繊維状部材と棒状部材とから構成されていることを特徴とするノンメタル光ファイバケーブル、
(2)光ファイバ心線又は光ファイバテープ心線と抗張力体とが光ファイバケーブルの断面において、横一線に配設されていることを特徴とする(1)項に記載のノンメタル光ファイバケーブル、
(3)前記抗張力体をなす棒状部材について、棒状部材の圧縮弾性率をA[N/mm]、棒状部材の断面積をS[mm]としたとき、
A×S≧3360[N]
であることを特徴とする(1)又は(2)項に記載のノンメタル光ファイバケーブル、
(4)抗張力体とケーブル被覆の密着力をC[N/mm]としたとき、
C≧1×10−3[N/mm]
であることを特徴とする(1)〜(3)項のいずれか1項に記載のノンメタル光ファイバケーブル、および
(5)前記抗張力体をなす棒状部材について、棒状部材の直径をD[mm]としたとき、
1.5≧D
であることを特徴とする(1)〜(4)項のいずれか1項に記載のノンメタル光ファイバケーブル
を提供するものである。
【0011】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明のノンメタル光ファイバケーブルの好ましい実施態様を図1に従って説明する。
図1(a)及び(b)は、ともに本発明のノンメタル光ファイバケーブルを示す断面図である。図1(a)の実施態様は、光ファイバケーブルが、光ファイバ心線又は光ファイバテープ心線11aと棒状抗張力体(FRP)12aおよび繊維状抗張力体13aとを光ファイバケーブルの断面において横一線に配置し、ポリ塩化ビニルやポリエチレン等のケーブル被覆14aで全体を一括被覆した構造を有する。
図1(b)の実施態様は、光ファイバケーブルが、光ファイバ心線又は光ファイバテープ心線11bと棒状抗張力体(FRP)12bとを光ファイバケーブルの断面において横一線に配置し、該棒状抗張力体(FRP)12bの外周を覆うように繊維状抗張力体13bを配設し、ポリ塩化ビニルやポリエチレン等のケーブル被覆14bで全体を一括被覆した構造を有する。これらの構造は、繊維状抗張力体とFRPの両方をケーブル内に内蔵していることを特徴とする。
本発明は、ガラス光ファイバ及びプラスチック光ファイバに適用される。
【0012】
ここで、抗張力体は、繊維状部材としては、アラミド繊維、ガラス繊維などが用いられる。また、棒状部材としては、FRP、プラスチック棒などが用いられる。繊維状部材と棒状部材とは別々に配置してもよいし、組み合わせた抗張力体として配置してもよい。抗張力体の本数に制限はない。図1(b)に示した構造は繊維状部材と棒状部材とを組み合わせて配置したものであり、図1(a)に示した構造よりもケーブルの横幅を更に小さくすることが可能となる。
ケーブル被覆にはポリ塩化ビニル、ポリエチレン、ポリオレフィンなどが用いられる。
【0013】
本発明の光ファイバケーブルでは引張り方向の力に対しては繊維状抗張力体と棒状抗張力体(FRP)の両方で受け持って保護し、外被の収縮による圧縮力に対しては棒状抗張力体(FRP)で保護することによって光ファイバケーブルの損失変動を抑制する。FRPは高価であるが、繊維状抗張力体を一緒に実装することでFRPのみを実装した場合に比べより細径のFRPが使用でき、FRPのコストを抑えることが可能となる。よって、繊維状抗張力体とFRPの両方を実装することで、FRPの外被圧縮力に対する抗張力機能をもつという利点を取り入れつつ、ケーブル全体のトータルコストを下げることが可能となる。
また、繊維状抗張力体を棒状抗張力体(FRP)と併用することでケーブル設計張力が大きなものであっても繊維状抗張力体の量を増やすことで棒状抗張力体(FRP)自体は太径にする必要がなく、棒状抗張力体(FRP)の径を比較的細径に抑えられる。細径のFRPが使用できるため、より小さな径までケーブルを曲げることが可能となる。
【0014】
抗張力体である棒状部材(FRP)の圧縮弾性率A[N/mm]と断面積S[mm]の積(A×S)を大きくすることによって、外被の収縮力に対して十分な突っ張りが得られる。この突っ張り力によって低温、高温時の外被の収縮を抑制することが可能となる。棒状抗張力体の圧縮弾性率Aと断面積Sの積(A×S)は、好ましくは3360[N]以上、より好ましくは4800[N]以上である。
【0015】
また、抗張力体の突っ張りが十分に機能するためには、ケーブル被覆と抗張力体がある程度密着している必要がある。密着不良の場合、抗張力体があっても被覆が滑ることで収縮可能となるため、抗張力体の突っ張りが意味を持たなくなる。そこで抗張力体とケーブル被覆との密着力C[N/mm]を好ましくは1×10−3[N/mm]以上、より好ましくは5×10−3[N/mm]以上とすることで被覆と抗張力体の摩擦を維持し、被覆の収縮を抑制することが可能となる。
【0016】
また、棒状部材の直径を小さくすることによって、ケーブルを曲げたときのFRPの折れを抑制することができる。ケーブルの実使用上は最小曲げ径として60mm確保されていれば問題なく、棒状部材の直径を1.5mm以下とすることによって60mmの最小曲げ径を確保することができる。したがって、棒状抗張力体の直径は、好ましくは1.5mm以下、より好ましくは1.0mm以下である。ここで、最小曲げ径とはケーブルを円形に曲げたときにFRPが折れる円の直径をいう。
【0017】
【実施例】
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。
【0018】
試験1
本発明の光ファイバケーブルを低温又は高温下にさらした際の損失変動を調べた。本発明の光ファイバケーブルは図1(a)に示す構造のものを用いた。比較として繊維のみの抗張力体を有する光ファイバケーブルも低温又は高温下にさらし、損失変動を調べた。試験にあたっては波長は1.55μmとし、温度は−30℃又は70℃とした。試験に用いた光ファイバケーブルは断面形状で外径の長径4.4mm×短径1.6mmであり、繊維状抗張力体にはアラミド繊維(ケブラー、商品名、東レデュポン社製)を用い、棒状抗張力体としてはガラスFRPを使用した。繊維の量は1140dが2本、ガラスFRPは0.4φのものを2本使用した。ケーブルの外被には難燃性を有するポリエチレンを用いた。結果を表1に示す。
【0019】
【表1】

Figure 2004012611
【0020】
表1に示すように抗張力体として繊維のみ使用した光ファイバケーブルにおいては、低温での外被収縮力に抗うことができずに損失増加した。一方、本発明の光ファイバケーブルにおいては繊維以外にFRPを実装しており、このFRPの突っ張り効果によって外被の収縮に抗うことが可能となった。
【0021】
試験2
本発明の光ファイバケーブルのうち、棒状部材であるFRPの圧縮弾性率と断面積の積(A×S)を変えて低温又は高温下にさらした際の損失変動を調べた。その他の条件は試験1と同様とした。結果を表2に示す。
【0022】
【表2】
Figure 2004012611
【0023】
表2に示すように棒状部材の突っ張り力を示すA×Sが大きいほど伝送損失増加は抑制されることが分かった。損失変動値としては0.1dB/km以下であれば実使用上問題なくなる。したがって表2の結果からはA×S≧3360[N]が好ましいことがわかった。
【0024】
試験3
外被材料をPVCに変更した以外は試験2と同様に試験を行った。結果を表3に示す。
【0025】
【表3】
Figure 2004012611
【0026】
表3に示すように、外被材料がPVCに変わっても試験2の結果と同様、A×S≧3360[N]が好ましいことがわかった。
【0027】
試験4
FRPと外被との密着力を変えた場合の損失変動を調べた。その他の条件は試験1と同様とした。結果を表4に示す。
【0028】
【表4】
Figure 2004012611
【0029】
表4に示すように、FRPと外被との密着力が大きくなるほど損失変動を抑制する効果が高まることがわかった。したがって、FRPと外被との密着力が1×10−3[N/mm]以上であることが好ましいことがわかった。
【0030】
試験5
FRPの径を変えた場合の最小曲げ径を調べた。その他の条件は試験1と同様とした。結果を表5に示す。
【0031】
【表5】
Figure 2004012611
【0032】
表5に示すように、FRPの外径が小さくなるほど最小曲げ径が小さくなった。したがって、FRPの外径が1.5mm以下であることが好ましいことがわかった。
【0033】
【発明の効果】
抗張力体として繊維状部材及び棒状部材を用いる本発明のノンメタル光ファイバケーブルによれば、繊維状抗張力体のみを実装したケーブルで問題となる低温、高温での収縮による損失増加を抑えることが可能となる。また、棒状抗張力体であるFRPのみを実装したケーブルで問題となるケーブルの許容曲げ径を小さくすることも可能となる。特に、使用するFRPの外径に所定の上限を設けることで、実際の使用環境において必要とされる許容曲げ径を確実に確保できる。さらに、FRPのみを用いたケーブルは高価であるが、繊維状抗張力体を一緒に実装することでFRPのみを実装した場合に比べより細径のFRPが使用でき、FRPのコストを抑えてケーブル自体を廉価に製造することが可能となる。
【図面の簡単な説明】
【図1】図1は、本発明のノンメタル光ファイバケーブルを示す断面図である。
【図2】図2は、従来のドロップ光ケーブルを示す断面図である。
【図3】図3は、従来のドロップ光ケーブルを電力引込み線に巻きつけた光ユニット一体型OPDVを示す断面図である。
【符号の説明】
1a、1b ノンメタル光ファイバケーブル
2 ドロップ光ケーブル
3 光ユニット一体型OPDV
11a、11b、21、31 光ファイバ心線または光ファイバテープ心線
12a、12b 棒状抗張力体(FRP)
22、32 抗張力体
13a、13b 繊維状抗張力体
14a、14b、24、34 ケーブル被覆
36 巻きつけ光ユニット
37 電力引込み線
38 導体
39 電力引込み線被覆[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-metallic optical fiber cable that does not include a metal member as a component.
[0002]
[Prior art]
In recent years, the construction of optical subscriber line networks has been rapidly progressing. As an inexpensive cable structure for wiring an optical fiber from a telephone pole to a house, a drop optical cable shown in a sectional view in FIG. 2 can be considered. The optical cable 2 in FIG. 2 has a structure in which an optical fiber core wire or an optical fiber tape core wire 21 and a tensile strength wire 22 are arranged in parallel, and the whole is collectively covered with a cable coating 24 made of polyvinyl chloride or polyethylene.
[0003]
In recent years, as a method of dropping an optical fiber into a house, an attempt has been made to wind a drop optical cable having the structure shown in FIG. 2 around a power drop line and draw the optical fiber together with the power drop line. FIG. 3 is a sectional view showing the structure of the optical fiber composite drop wire (OPDV). The optical unit integrated type OPDV3 of FIG. 3 has a structure in which the optical unit 36 is wound around a plurality of power service lines 37 including a conductor 38 and a power service line covering 39. The optical unit 36 has a structure in which an optical fiber core fiber or an optical fiber tape core 31 and a tensile strength wire 32 are arranged in parallel, and the whole is collectively covered with a cable coating 34 made of polyvinyl chloride or polyethylene.
[0004]
Each of the cables shown in FIGS. 2 and 3 has a tensile strength member. Normally, a steel wire, which is a metal, is used as the tensile strength member, but a non-metallic tensile strength member may be used in some cases. In the structure of FIG. 2, it is conceivable that a cable is directly drawn into a house from a telephone pole without a connection point as a service line. However, in the case of such a drawing method, a surge current may damage optical devices in the house during a lightning strike. In the case of the power lead-in line shown in FIG. 3, since the power line is combined with the power line, an induced current from the power line may flow to the steel wire portion of the optical cable. From such a viewpoint, it has been considered to use a non-metallic material as the tensile strength member.
As the nonmetallic strength member, a fibrous material such as aramid fiber or glass fiber can be considered. In addition, a rod-shaped FRP (fiber reinforced plastic) made by bundling these aramid fibers or glass fibers and hardening them with a resin is conceivable.
[0005]
When a fibrous strength member is used for a cable, the strength of the cable can be adjusted by adjusting the amount of fiber in the direction in which the cable is pulled. It has no tensile strength due to lack of tension. Therefore, when the cable is exposed to high or low temperature, the following problems occur.
[0006]
In other words, the cable jacket shrinks at low temperatures, but when the tensile strength member is a fiber, the shrinkage of the jacket cannot be suppressed because there is no tension force in the compression direction, and the core bends due to the shrinkage of the jacket. And cause an increase in loss.
Problems also arise with fibrous strength members when exposed to high temperatures. Distortion called processing distortion remains in the cable jacket during cable manufacturing. This strain is released when the mantle is exposed to high temperatures, causing the mantle to shrink. Therefore, in the case of the fibrous strength member, even when the cable is exposed to a high temperature, the jacket shrinks and the core wire is bent.
[0007]
On the other hand, in the case of FRP, which is a rod-shaped tensile strength member formed by bundling fibers and hardening with resin, not only the tensile strength function in the tensile direction but also the tensile strength in the compression direction due to the FRP having a rod-like tension. Have a function. Therefore, it is possible to suppress an increase in loss by using the FRP rod against the shrinkage of the jacket at a low temperature or a high temperature.
However, FRP has a manufacturing process of bundling and hardening the fibers, and has a problem that it is more expensive than fibers. FRP is a rod-shaped tensile strength member, and when it is bent in a circular shape, it breaks at a predetermined diameter. However, the minimum diameter (minimum bending diameter) of this bending increases as the outer diameter of the FRP increases. Therefore, when the tensile strength member is made of FRP, there is a situation in which the FRP has a large diameter and the cable can be bent only with a large diameter depending on the design tension of the cable.
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive non-metallic optical fiber cable that can suppress an increase in loss due to shrinkage at low and high temperatures and can reduce the allowable bending diameter.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and found that by using fibers and FRP together as a tensile strength member, it is possible to suppress an increase in loss due to shrinkage at low and high temperatures, which is a problem when only fibers are used as a tensile strength member. And found that the permissible bending diameter, which is a problem when only FRP is used as a tensile strength member, can be reduced, and that the cost is lower than when only FRP is used as a tensile strength member, and the present invention has been completed based on this finding. I came to.
[0010]
That is, the present invention
(1) An optical fiber cable formed by covering an optical fiber core wire or an optical fiber tape core wire and a strength member at a time, wherein the strength member is made of a member other than metal, and the strength member is a fiber. A non-metallic optical fiber cable, comprising a rod-shaped member and a rod-shaped member,
(2) The non-metallic optical fiber cable according to the above (1), wherein the optical fiber core or the optical fiber tape and the tensile strength member are arranged in a horizontal line in the cross section of the optical fiber cable.
(3) Regarding the bar-shaped member forming the tensile strength member, when the compression elastic modulus of the bar-shaped member is A [N / mm 2 ] and the cross-sectional area of the bar-shaped member is S [mm 2 ],
A × S ≧ 3360 [N]
The non-metallic optical fiber cable according to (1) or (2),
(4) When the adhesion between the tensile strength member and the cable coating is C [N / mm],
C ≧ 1 × 10 −3 [N / mm]
(1) The non-metallic optical fiber cable according to any one of (1) to (3), and (5) the rod-shaped member forming the strength member has a diameter of D [mm]. And when
1.5 ≧ D
The present invention provides the non-metallic optical fiber cable according to any one of the above items (1) to (4).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
A preferred embodiment of the non-metallic optical fiber cable of the present invention will be described with reference to FIG.
1A and 1B are cross-sectional views showing a non-metallic optical fiber cable according to the present invention. In the embodiment shown in FIG. 1A, the optical fiber cable is composed of an optical fiber core fiber or an optical fiber tape core 11a, a rod-shaped strength member (FRP) 12a, and a fiber-shaped strength member 13a, which are cross-sectioned in a cross section of the fiber optic cable. And has a structure in which the whole is collectively covered with a cable covering 14a such as polyvinyl chloride or polyethylene.
In the embodiment shown in FIG. 1B, the optical fiber cable is such that the optical fiber or optical fiber ribbon 11b and the rod-shaped tensile strength member (FRP) 12b are arranged in a horizontal line in the cross section of the optical fiber cable, and the rod-shaped A fibrous strength member 13b is provided so as to cover the outer periphery of the strength member (FRP) 12b, and has a structure in which the whole is entirely covered with a cable covering 14b of polyvinyl chloride or polyethylene. These structures are characterized in that both the fibrous strength member and the FRP are incorporated in the cable.
The present invention is applied to glass optical fibers and plastic optical fibers.
[0012]
Here, as the tensile member, aramid fiber, glass fiber, or the like is used as the fibrous member. In addition, as the rod-shaped member, an FRP, a plastic rod, or the like is used. The fibrous member and the rod-shaped member may be separately arranged, or may be arranged as a combined tensile strength member. There is no limit on the number of strength members. In the structure shown in FIG. 1B, a fibrous member and a rod-shaped member are arranged in combination, and the width of the cable can be further reduced as compared with the structure shown in FIG. 1A.
For the cable coating, polyvinyl chloride, polyethylene, polyolefin and the like are used.
[0013]
In the optical fiber cable of the present invention, both the fibrous strength member and the rod-shaped strength member (FRP) are used to protect the cable in the tensile direction, and the rod-shaped strength member (FRP) is protected against the compressive force caused by contraction of the jacket. ), The loss fluctuation of the optical fiber cable is suppressed. The FRP is expensive, but by mounting the fibrous tensile members together, a smaller diameter FRP can be used as compared with a case where only the FRP is mounted, and the cost of the FRP can be reduced. Therefore, by mounting both the fibrous tensile strength member and the FRP, it is possible to reduce the total cost of the entire cable while taking advantage of the fact that the FRP has a tensile strength function against the jacket compressive force.
In addition, by using the fibrous strength member together with the rod-shaped strength member (FRP), the rod-shaped strength member (FRP) itself has a large diameter by increasing the amount of the fibrous strength member even if the cable design tension is large. There is no need, and the diameter of the rod-shaped tensile strength member (FRP) can be suppressed to a relatively small diameter. Since a small diameter FRP can be used, the cable can be bent to a smaller diameter.
[0014]
By increasing the product (A × S) of the compressive elastic modulus A [N / mm 2 ] of the rod-shaped member (FRP), which is a tensile strength member, and the cross-sectional area S [mm 2 ], sufficient shrinkage force of the jacket can be obtained. A good tension is obtained. With this tensile force, it is possible to suppress shrinkage of the jacket at low and high temperatures. The product (A × S) of the compression elastic modulus A and the cross-sectional area S of the rod-shaped tensile strength member is preferably 3360 [N] or more, more preferably 4800 [N] or more.
[0015]
In addition, in order for the tension member to work sufficiently, the cable coating and the tension member must be in close contact to some extent. In the case of poor adhesion, even if there is a tensile strength member, the coating can be contracted by slipping, so that the tension of the tensile strength member has no meaning. Therefore, coating is performed by setting the adhesion C [N / mm] between the tensile strength member and the cable coating to preferably 1 × 10 −3 [N / mm] or more, more preferably 5 × 10 −3 [N / mm] or more. It is possible to maintain the friction between the tensile strength member and the tensile strength member and suppress the shrinkage of the coating.
[0016]
Further, by reducing the diameter of the rod-shaped member, it is possible to prevent the FRP from being broken when the cable is bent. In practical use of the cable, there is no problem if a minimum bending diameter of 60 mm is ensured. By setting the diameter of the rod-shaped member to 1.5 mm or less, a minimum bending diameter of 60 mm can be ensured. Therefore, the diameter of the rod-shaped strength member is preferably 1.5 mm or less, more preferably 1.0 mm or less. Here, the minimum bending diameter refers to the diameter of a circle at which the FRP breaks when the cable is bent into a circular shape.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
[0018]
Test 1
The loss fluctuation when the optical fiber cable of the present invention was exposed to low or high temperature was examined. The optical fiber cable of the present invention had a structure shown in FIG. As a comparison, an optical fiber cable having a tensile strength member made of only a fiber was also exposed to a low temperature or a high temperature, and loss fluctuation was examined. In the test, the wavelength was 1.55 μm, and the temperature was −30 ° C. or 70 ° C. The optical fiber cable used in the test had a cross-sectional shape of 4.4 mm in outer diameter and 1.6 mm in shorter diameter, and used aramid fiber (Kevlar, trade name, manufactured by Toray Dupont) as a fibrous tensile strength member. Glass FRP was used as a tensile member. Two 1140d fibers and two 0.4 mm glass FRP fibers were used. A flame-retardant polyethylene was used for the sheath of the cable. Table 1 shows the results.
[0019]
[Table 1]
Figure 2004012611
[0020]
As shown in Table 1, in the optical fiber cable using only the fiber as the tensile strength member, the loss was increased without being able to withstand the contraction force of the jacket at a low temperature. On the other hand, in the optical fiber cable of the present invention, the FRP is mounted in addition to the fiber, and the stretching effect of the FRP makes it possible to resist shrinkage of the jacket.
[0021]
Test 2
In the optical fiber cable of the present invention, the loss fluctuation when exposed to a low temperature or a high temperature while changing the product (A × S) of the compression elastic modulus and the cross-sectional area of the rod-shaped FRP was examined. Other conditions were the same as in Test 1. Table 2 shows the results.
[0022]
[Table 2]
Figure 2004012611
[0023]
As shown in Table 2, it was found that the larger the value of A × S, which indicates the tensile force of the rod-shaped member, the more the transmission loss was suppressed. If the loss fluctuation value is 0.1 dB / km or less, there is no practical problem. Therefore, the results in Table 2 show that A × S ≧ 3360 [N] is preferable.
[0024]
Test 3
The test was performed in the same manner as in Test 2, except that the jacket material was changed to PVC. Table 3 shows the results.
[0025]
[Table 3]
Figure 2004012611
[0026]
As shown in Table 3, it was found that A × S ≧ 3360 [N] was preferable even when the jacket material was changed to PVC, similarly to the result of Test 2.
[0027]
Test 4
The loss fluctuation when the adhesion between the FRP and the jacket was changed was examined. Other conditions were the same as in Test 1. Table 4 shows the results.
[0028]
[Table 4]
Figure 2004012611
[0029]
As shown in Table 4, it was found that the greater the adhesion between the FRP and the jacket, the greater the effect of suppressing loss fluctuation. Therefore, it was found that the adhesion between the FRP and the jacket is preferably 1 × 10 −3 [N / mm] or more.
[0030]
Test 5
The minimum bending diameter when the diameter of the FRP was changed was examined. Other conditions were the same as in Test 1. Table 5 shows the results.
[0031]
[Table 5]
Figure 2004012611
[0032]
As shown in Table 5, the smaller the outer diameter of the FRP, the smaller the minimum bending diameter. Therefore, it was found that the outer diameter of the FRP is preferably 1.5 mm or less.
[0033]
【The invention's effect】
According to the non-metallic optical fiber cable of the present invention using a fibrous member and a rod-shaped member as a tensile member, it is possible to suppress an increase in loss due to shrinkage at low temperature and high temperature, which is a problem in a cable mounting only the fibrous tensile member. Become. In addition, it becomes possible to reduce the allowable bending diameter of the cable, which is a problem in the cable in which only the FRP which is the bar-shaped tensile strength member is mounted. In particular, by providing a predetermined upper limit to the outer diameter of the FRP to be used, an allowable bending diameter required in an actual use environment can be reliably ensured. Furthermore, although a cable using only FRP is expensive, a smaller diameter FRP can be used by mounting a fibrous tensile member together as compared with a case where only FRP is mounted, and the cost of the FRP is reduced and the cable itself is reduced. Can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a non-metallic optical fiber cable according to the present invention.
FIG. 2 is a sectional view showing a conventional drop optical cable.
FIG. 3 is a sectional view showing an optical unit integrated OPDV in which a conventional drop optical cable is wound around a power drop line.
[Explanation of symbols]
1a, 1b Non-metallic optical fiber cable 2 Drop optical cable 3 Optical unit integrated OPDV
11a, 11b, 21, 31 Optical fiber or optical fiber tape 12a, 12b Rod-shaped tensile strength member (FRP)
22, 32 Tensile strength members 13a, 13b Fibrous strength members 14a, 14b, 24, 34 Cable coating 36 Winding light unit 37 Power drop line 38 Conductor 39 Power drop line coating

Claims (5)

光ファイバ心線又は光ファイバテープ心線と抗張力体とを一括被覆して形成した光ファイバケーブルであって、該抗張力体が金属以外の部材で構成されており、その抗張力体が繊維状部材と棒状部材とから構成されていることを特徴とするノンメタル光ファイバケーブル。An optical fiber cable formed by collectively coating an optical fiber core fiber or an optical fiber tape core and a strength member, wherein the strength member is formed of a member other than metal, and the strength member is formed of a fibrous member. A non-metallic optical fiber cable comprising a rod-shaped member. 光ファイバ心線又は光ファイバテープ心線と抗張力体とが光ファイバケーブルの断面において、横一線に配設されていることを特徴とする請求項1記載のノンメタル光ファイバケーブル。2. The non-metallic optical fiber cable according to claim 1, wherein the optical fiber or the optical fiber tape and the strength member are arranged in a horizontal line in the cross section of the optical fiber cable. 前記抗張力体をなす棒状部材について、棒状部材の圧縮弾性率をA[N/mm]、棒状部材の断面積をS[mm]としたとき、
A×S≧3360[N]
であることを特徴とする請求項1又は2記載のノンメタル光ファイバケーブル。
Regarding the bar-shaped member forming the strength member, when the compression elastic modulus of the bar-shaped member is A [N / mm 2 ] and the cross-sectional area of the bar-shaped member is S [mm 2 ],
A × S ≧ 3360 [N]
The non-metallic optical fiber cable according to claim 1 or 2, wherein
抗張力体とケーブル被覆の密着力をC[N/mm]としたとき、
C≧1×10−3[N/mm]
であることを特徴とする請求項1〜3のいずれか1項に記載のノンメタル光ファイバケーブル。
When the strength of adhesion between the tensile strength member and the cable coating is C [N / mm],
C ≧ 1 × 10 −3 [N / mm]
The non-metallic optical fiber cable according to any one of claims 1 to 3, wherein
前記抗張力体をなす棒状部材について、棒状部材の直径をD[mm]としたとき、
1.5≧D
であることを特徴とする請求項1〜4のいずれか1項に記載のノンメタル光ファイバケーブル。
When the diameter of the rod-shaped member is D [mm] for the rod-shaped member forming the tensile strength member,
1.5 ≧ D
The non-metallic optical fiber cable according to any one of claims 1 to 4, wherein
JP2002163045A 2002-06-04 2002-06-04 Non-metal optical fiber cable Pending JP2004012611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163045A JP2004012611A (en) 2002-06-04 2002-06-04 Non-metal optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163045A JP2004012611A (en) 2002-06-04 2002-06-04 Non-metal optical fiber cable

Publications (1)

Publication Number Publication Date
JP2004012611A true JP2004012611A (en) 2004-01-15

Family

ID=30431624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163045A Pending JP2004012611A (en) 2002-06-04 2002-06-04 Non-metal optical fiber cable

Country Status (1)

Country Link
JP (1) JP2004012611A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192922A (en) * 2006-01-17 2007-08-02 Fujifilm Corp Plastic optical fiber cable
JP2007321060A (en) * 2006-06-01 2007-12-13 Ube Nitto Kasei Co Ltd Coated fiber-reinforced synthetic resin linear material
JP2008185742A (en) * 2007-01-30 2008-08-14 Furukawa Electric Co Ltd:The Optical fiber cable and its manufacturing method
JP2009210930A (en) * 2008-03-05 2009-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical fiber tape and its single-core separation tool
JP2013257396A (en) * 2012-06-12 2013-12-26 Fujikura Ltd Optical fiber cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192922A (en) * 2006-01-17 2007-08-02 Fujifilm Corp Plastic optical fiber cable
JP2007321060A (en) * 2006-06-01 2007-12-13 Ube Nitto Kasei Co Ltd Coated fiber-reinforced synthetic resin linear material
JP2008185742A (en) * 2007-01-30 2008-08-14 Furukawa Electric Co Ltd:The Optical fiber cable and its manufacturing method
JP2009210930A (en) * 2008-03-05 2009-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical fiber tape and its single-core separation tool
JP2013257396A (en) * 2012-06-12 2013-12-26 Fujikura Ltd Optical fiber cable

Similar Documents

Publication Publication Date Title
US7218821B2 (en) Optical fiber cables
US6370303B1 (en) Optical fiber cable with support member for indoor and outdoor use
US6101305A (en) Fiber optic cable
KR20060030026A (en) Fiber optic cable having a strength member
US20190265425A1 (en) Deployable Fiber Optic Cable with Partially Bonded Ribbon Fibers
JP2004012611A (en) Non-metal optical fiber cable
JP5546412B2 (en) Optical cable
KR102228020B1 (en) Optical fiber composite ground wire using composite material
JP4185473B2 (en) Optical fiber cord
JP2000206382A (en) Multicore tight buffer optical fiber and multicore optical cable using it
US6987916B2 (en) Fiber optic central tube cable with bundled support member
JP2005062287A (en) Optical fiber cable
JP4388006B2 (en) Optical cable
JPH10148737A (en) Aerial outdoor optical cable
US20070230879A1 (en) Armored fiber optic cable having a centering element and methods of making
EP1939660A2 (en) Indoor optical fiber cable
WO2022254556A1 (en) Fiber-optic cable and fiber-optic cable manufacturing device
JP2002365499A (en) Self-supporting optical cable
JP3926278B2 (en) Fiber optic cable
JP2005037641A (en) Optical fiber cable
JPH0990181A (en) Optical fiber cable
JP4047248B2 (en) Optical drop cable
KR20220028815A (en) Optical cable
JP2000249881A (en) Structure of optical fiber cable
JP2004014263A (en) Tension member, cable using the same, and cable for hdtv system camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050601

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Effective date: 20080422

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826