JPS60243611A - Wire rod carrying spiral spacer for communication and its manufacture - Google Patents

Wire rod carrying spiral spacer for communication and its manufacture

Info

Publication number
JPS60243611A
JPS60243611A JP9882684A JP9882684A JPS60243611A JP S60243611 A JPS60243611 A JP S60243611A JP 9882684 A JP9882684 A JP 9882684A JP 9882684 A JP9882684 A JP 9882684A JP S60243611 A JPS60243611 A JP S60243611A
Authority
JP
Japan
Prior art keywords
core
spacer
thermoplastic resin
intermediate layer
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9882684A
Other languages
Japanese (ja)
Other versions
JPH042165B2 (en
Inventor
Kazuaki Toda
和昭 戸田
Shigehiro Matsuno
繁宏 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP9882684A priority Critical patent/JPS60243611A/en
Publication of JPS60243611A publication Critical patent/JPS60243611A/en
Publication of JPH042165B2 publication Critical patent/JPH042165B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high adhesive strength by bringing a thermosetting resin into contact with a center core in an hardened stage, and executing its joining processing under pressure, when a spiral spacer is manufactured by using a fiber-reinforcing thermosetting resin hardened material for a tensile strength material of center core, and surrounding this outside periphery by a laminated body of thermosetting resin and high-density polyethylene. CONSTITUTION:A glass lobing 5 functioning as a strand of a spiral spacer is immersed in a liquid thermosetting resin 6 which becomes an intermediate layer, drawn out and passed through in a drawing die and used as a center core material. Subsequently, it is passed through in a crosshead die 8, and thereafter, its outside periphery is covered annularly with high-density polyethylene, and next, passed through a cooling layer and cooled, put into a hardening tank 9 and hardened at 140 deg.C by applying a pressure of 3.7kg/cm<2>. Thereafter, it is passed through in a die having a shaping die 10A and 10B, and an obtained strand 11 is wound around a bobbin 12, and used as the spiral space. In this way, the resin being the intermediate layer is brought into contact with the lobing 5 in an uncured state, cured at the time when it is passed through the drawing die 7, and their contact strength is raised in advance.

Description

【発明の詳細な説明】 本発明は元ファイノ々等の通信用線材を保護担持するた
めの螺旋スペーサの構造及び製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure and manufacturing method of a helical spacer for protecting and supporting communication wires such as original fins.

通信用の元ファイノ々は、その外周をシリコーンゴムな
どで被覆した素線、またはその外周をさらに被根した心
線のいずれかまたは双方を複数本集合してケーブル化し
たものを布設使用する場合が多い。
For communication cables, cables are constructed by collecting a plurality of wires whose outer periphery is coated with silicone rubber, or core wires whose outer periphery is further covered, or both. There are many.

この元ファイバケーブルは、一般的には、光ファイノ々
素線又は心線ヲ保膿し、安定な区画配列化を図るセパレ
ータと、布設時または使用中に作用する外力に抗する機
能をもつ抗張力材とt儂えている。
This original fiber cable is generally made of a separator that protects the optical fibers or cores and ensures a stable arrangement of sections, and a tensile strength that has the function of resisting external forces that act during installation or use. The wood and t are shining.

このような光ファイバを湾曲部に配線したり、捲設した
り、可動通信票に使用したりする場合は、ケーブル化の
ため、抗張力材を中芯としで配し、その外周には、長手
方向に走る複数の互いに平行な螺旋状#l−Nする構造
のスペーサ本体を配した構造のものが採用されることが
多い0 この、ような螺旋スペーサとしては、既に種々の形状構
造のものが知られている0このスペーサの本体は熱可塑
性樹脂からなるものが奨用されている。
When such optical fibers are routed around curved sections, rolled up, or used in movable communication tags, a tensile strength material is placed as a core to make a cable, and the outer periphery is lined with longitudinal A spacer body with a plurality of spacer bodies having a parallel spiral structure running in the direction of the It is recommended that the main body of this spacer be made of thermoplastic resin.

また中芯としては、金属線、高強度合成繊維、繊維強化
熱硬化性樹脂硬化*(以下F’RPと称するO)などが
あけられるが、この中で、ガラス長繊維を用いたF凡P
は、その@量性、高抗張力性、非電気伝4性、元ファイ
ノ々と近似した熱膨張係数及び可撓性など諸般の性質全
全体総合して特に優れた性質を有している。
In addition, metal wires, high-strength synthetic fibers, fiber-reinforced thermosetting resin cured* (hereinafter referred to as F'RP), etc. can be used as the core, but among these, F'RP using long glass fibers can be used.
It has particularly excellent properties in all its properties, such as its mass, high tensile strength, non-electrical conductivity, thermal expansion coefficient similar to that of the original phino, and flexibility.

しかしながら、この棟のスペーサにおいても、中芯とス
ペーサ本体との引張剪断接層強度については必ずしも満
足できる性能のものが得られるに至っていない0 すなわち、この種のスペーサが、担持している線材を保
護するためには、スペーサの抗張力、抗圧縮力及び温度
変化に対する安定性等が十分であることを要し、とくに
スペーサ本体と中芯との引張剪断接層強度ないし接着力
が環境温度変化に十分耐えられるものでなければならな
い。通常の熱可塑性樹脂素材の熱膨張係数を基準とする
とき、外気温の昇降による温度差が40℃あるとすれば
、上記接層強度が60驚以上ないと接着界面破壊が生じ
、補強材を嵌挿した特徴を生かしきれなくなる。ところ
が、従来のガラス絨維強化プラスチック芯材を中芯にし
てその硬化後にスペーサ本体を配したものでは上記接層
力が弱く、せいぜい30[M度までの強度のものしか得
られないのでおる。
However, even in this type of spacer, a satisfactory tensile shear bond strength between the core and the spacer body has not necessarily been achieved. In order to protect the spacer, it is necessary that the spacer has sufficient tensile strength, compressive strength, and stability against temperature changes.In particular, the tensile shear bonding strength or adhesive strength between the spacer body and the core must be sufficiently strong against environmental temperature changes. It must be durable enough. Based on the coefficient of thermal expansion of a normal thermoplastic resin material, if the temperature difference due to the rise and fall of outside temperature is 40 degrees Celsius, if the contact strength is not 60 degrees or more, bond interface failure will occur and the reinforcing material will be damaged. It becomes impossible to make full use of the features inserted. However, in the case where the conventional glass fiber-reinforced plastic core material is used as the core material and the spacer body is arranged after the core material is cured, the above-mentioned bonding force is weak, and a strength of up to 30 [M degrees] can be obtained at most.

このようにセパレータ本体と中芯の接着力が低い場合は
、元ファイバを螺旋スペーサに配列化するケーブル化工
程においてすら、螺旋状溝が変位するため、元ファイバ
との位相がずれて糧々のトラブルを起すおそれがあり、
また元ファイバケーブルとして布設して使用中に外気の
温度変化によって熱膨張係数が中芯より大きい熱可塑性
樹脂旨のセパレータ本体が単独に挙動して光ファイAに
熱応力を与え、マイクロベンディングによる伝送損失の
増加ヶ生じさせるなど、光ファイノ々の伝送特性の根本
にかかわる問題となりかねない。
If the adhesive strength between the separator body and the core is low, the spiral grooves will be displaced even during the cable production process in which the original fibers are arranged in a helical spacer, causing a phase shift with the original fibers and causing problems. There is a risk of causing trouble.
In addition, when the original fiber cable is installed and used, the separator body, which is made of thermoplastic resin with a coefficient of thermal expansion larger than that of the central core, acts independently due to changes in the temperature of the outside air, applying thermal stress to optical fiber A, and transmitting it by microbending. This may cause problems that affect the fundamentals of the transmission characteristics of optical fibers, such as increased loss.

これらの欠点を解消するため、本発明者は、中芯の抗張
力材(zF )LPとし、その外周全複数の連続した互
いに平行な螺旋状#l全有する熱可塑性樹脂スペーサ本
体によV*榎してなる螺旋スペーサにおいて、該中芯F
RPとスペーサ本体との接着強度が同上したもの及びこ
れを製造する方法全鋭意検討した結果、ここに本発明に
到達したOすなわち、上記目的を達成する本発明にかか
る螺旋スペーサ及びその製造方法の要旨は、特許請求の
範囲第1,2項にそれぞれ記載のとおりであるが、これ
ヲ喪するに、物の発明としては、中芯とスペーサ本体と
が直接に接着することなく、両者の中間にスペーサ本体
と相溶度の高い熱可塑性樹脂からなる中間層が介在して
おり、中間層と中?L−箇削力T fff紬枡触により
硬化後の中芯表面が少なくとも60¥i以上の引張剪断
接着強度を有するアンカー効果をもつ粗面からなり、か
つ、中間層とスペーサ本体とは殆んど完全に融合した層
構造を有するスペーサであることを特徴としている。
In order to eliminate these drawbacks, the present inventor has created a thermoplastic resin spacer body with a tensile strength material (zF) LP as the center core and a plurality of continuous and mutually parallel spiral #l around the entire outer periphery. In the spiral spacer made of
As a result of intensive study on the adhesive strength between the RP and the spacer body and the method for manufacturing the same, we have hereby arrived at the present invention.That is, the spiral spacer and the method for manufacturing the same according to the present invention that achieve the above object. The gist is as stated in claims 1 and 2, respectively, but apart from this, as a product invention, the center core and the spacer body are not directly bonded to each other, but the center core and the spacer body are not directly bonded to each other. There is an intermediate layer made of a thermoplastic resin that is highly compatible with the spacer body, and the intermediate layer and the middle layer are interposed. L - Cutting force T fff The center core surface after hardening by pongee contact is made of a rough surface with an anchor effect having a tensile shear adhesive strength of at least 60 yen or more, and the intermediate layer and the spacer body are hardly connected. The spacer is characterized by having a completely fused layer structure.

また、方法の発明は、上記スペーサを製造する方法であ
って、未硬化のFRP中芯材料表面に上記中間層を形成
して冷却固化した後に、これを圧力下に加熱して中芯樹
脂材料を硬化させ、中芯と中間層の極めて良好な接着状
態をもたらし、その後に中間層と相溶度の高い熱可塑性
1M脂材料を異形成形し被着させて上記スペーサを製造
する方法である。
The method invention also provides a method for manufacturing the spacer, which comprises forming the intermediate layer on the surface of an uncured FRP core material, cooling and solidifying it, and then heating the intermediate layer under pressure to form a core resin material. In this method, the above-mentioned spacer is manufactured by curing the core and the intermediate layer to bring about an extremely good adhesion state between the core and the intermediate layer, and then shaping and depositing a thermoplastic 1M resin material having high compatibility with the intermediate layer.

これ全一層詳細に補足説明すると以下のとおりである。A more detailed supplementary explanation of this is as follows.

スペーサ本体はその寸法、断l形状を特に溝部の深さな
どを問わないが、必ずや外周面に前述した複数の蝶旋状
#IをMしなければならない。
The spacer main body is not concerned about its dimensions, cross-sectional shape, and especially the depth of the groove, but the plurality of spiral shapes #I described above must be formed on the outer circumferential surface.

その材質は、ケーブル布設後通常加わる外力に耐える抗
圧縮力全有する熱可塑性w脂であればよく、例えば、各
種ナイロン、各種ポリエチレン及びポリゾロピレンのホ
モポリマ又は共1合体、各種ABSなどがあるが、これ
らに限定されるものではないn 中芯は、要求される引張強度などに応じて、単糸径9〜
13ミクロン程度のガラス繊維や芳香族ポリアミド繊維
からなるロービングの必要本数を集束したものに、不飽
和アルキド樹脂とスチレンなどの重合性単量体と全含有
する混合物すなわち不飽和ボ17 エステル樹脂に過酸
化物系の硬化用触媒等を敷部配合してなる未硬化、の熱
硬化性樹脂を含浸して、加熱し、架橋硬化させたものが
好適であるが、必ずしも上記の仕様に限定されるもので
ない。
The material may be any thermoplastic resin that has full compression resistance to withstand external forces normally applied after cable installation, such as various types of nylon, homopolymers or combinations of polyethylene and polyzolopyrene, and various types of ABS. The diameter of the core is not limited to 9 to 9, depending on the required tensile strength, etc.
A required number of rovings made of glass fibers or aromatic polyamide fibers of about 13 microns are bundled together, and a mixture containing all of the unsaturated alkyd resin and polymerizable monomers such as styrene, that is, the unsaturated bo-17 ester resin, is Preferably, it is impregnated with an uncured thermosetting resin containing an oxide-based curing catalyst, etc., heated, and crosslinked and cured, but it is not necessarily limited to the above specifications. It's not something.

また中間層材料11脂は、スペーサ本体材料樹脂と同種
のものが最適であるが、異麺のものでも両者の界面が分
別困難となるよう溶解度パラメータの近似したものでお
れば、必ずしも同一ないし同一の樹脂でなくてもよい。
In addition, the intermediate layer material 11 is optimally of the same kind as the resin of the spacer body material, but it is not necessarily the same or identical as long as it has a similar solubility parameter so that it is difficult to separate the interface between the two, even if they are made of different noodles. It does not have to be a resin.

とくに注意すべきは、中芯の樹脂組成物は中間層の被梳
後に硬化され、中芯の表面が中芯材料を引抜き成形して
そのまま硬化したものにくらべて、粗である点である。
Particular attention should be paid to the fact that the resin composition of the core is hardened after the intermediate layer is carded, and the surface of the core is rougher than that of a material obtained by pultrusion molding the core material and then hardening it as is.

一般に、絞りダイスによジ賦形後、そのまま金型を通し
て硬化処理された、いわゆる引抜成形法による中芯は、
表面が平滑であるが、本発明の部材としての中芯の表面
は、中間層を被覆した後、圧力下に加熱され、加圧下及
びその後の硬化工程を経て形成されるので、中芯表面が
上記一般の中芯にくらべて粗で、中間層に対する十分な
係止力を有している。また、上記の方法tとるため、中
芯材料中のスチレン等の重合性単量体や硬化用触媒であ
る過酸化物がどの一部が中間層中に移行し又は中間層と
作用して、中芯と中間層との界面が、多少架橋された構
造となっているとも考えられるが、これは必ずしも確認
されていない。いずれにせよ、上述の構造のものは、後
述のとおジ従来品にくらべて格段にすぐれた接着強度を
有するのである。
In general, cores produced by the so-called pultrusion method, which are formed by a drawing die and then passed through the mold and hardened, are
Although the surface of the core is smooth, the surface of the core as a member of the present invention is heated under pressure after being coated with the intermediate layer, and is formed under pressure and through a subsequent curing process, so that the surface of the core is smooth. It is rougher than the general core described above and has sufficient locking force for the intermediate layer. In addition, since the above method t is used, some of the polymerizable monomers such as styrene in the core material and the peroxide as a curing catalyst migrate into the intermediate layer or interact with the intermediate layer. It is also thought that the interface between the core and the intermediate layer has a somewhat crosslinked structure, but this has not necessarily been confirmed. In any case, the structure described above has much better adhesive strength than the conventional products described below.

次に本発明にかかる方法について説明する。この種のス
ペーサの製法としては、ガラス繊維ロービングに、不飽
和アルキド樹脂に重合性単量体および必要に応じて触媒
などを加えた液状の未硬化熱硬化性樹脂を含浸した後、
絞9ダイスにより所定の寸法形状に賦形し、加熱された
筒状の金型に挿通して表面を平滑に硬化した後、スペー
サ本体用の熱可塑性樹脂で被覆し成形するのが通例であ
る。しかしこの製法によるときは、金型での硬化に時間
を賛し、このため生産速度ヲ上げるには、金型を長くす
る必要があり、そうすると金型からの引取抵抗が増大す
るなどの背反する問題を含んでいる。
Next, the method according to the present invention will be explained. The manufacturing method for this type of spacer involves impregnating glass fiber roving with a liquid uncured thermosetting resin made by adding a polymerizable monomer and, if necessary, a catalyst to an unsaturated alkyd resin.
It is customary to shape it into a predetermined size and shape using a 9-drawing die, insert it into a heated cylindrical mold to harden the surface to make it smooth, and then cover it with thermoplastic resin for the spacer body and mold it. . However, when this manufacturing method is used, it takes time to harden in the mold, so in order to increase the production speed, it is necessary to lengthen the mold, which has a trade-off such as increasing the resistance to take it out from the mold. contains problems.

この引取抵抗を小さくするため、金型内面は鏡面に仕上
げられているので、この金型により硬化して製造された
中芯FRPの表面は当然ながら平滑となり、その外周を
スペーサ本体形成用熱可塑性樹脂により被覆したときは
、中芯とスペーサ本体との引張剪断接着強度が主として
該熱可塑性樹脂を中芯F RPの外周に押出して固化す
るときの熱可塑性樹脂の収縮力に依存しているため、十
分な接着強度が得られない0 しかしながら、本発明の方法は、F I’L Pの中芯
と中間層の熱可塑性樹脂とを、高接看強度が得られるよ
う中芯含浸樹脂の未硬化の段階で接触させてから加圧下
で接合処理し、しかる後スペーサ本体形成用の熱可塑性
樹脂により所定のスペーサ形状に二次被覆するものであ
る。すなわち、本発明の好適な一例では、補強繊維束に
液状熱硬茫−脂を含浸し、絞シダイスで所定の寸法形状
に賦形した未硬化状物を、クロスへラドダイに挿通して
中間層形成用材料である熱可塑性樹脂によジ押出し被覆
し・、該熱可塑性樹脂による被機部を冷却した後、該熱
可塑性樹脂の融点付近の温度に加圧下の蒸気あるいは液
状熱媒体により加熱された硬化槽に導入して、中芯の熱
硬化性樹脂部を硬化する。
In order to reduce this pulling resistance, the inner surface of the mold is finished with a mirror finish, so the surface of the core FRP produced by hardening with this mold is naturally smooth, and the outer periphery is covered with thermoplastic material for forming the spacer body. When coated with resin, the tensile shear adhesive strength between the core and the spacer body mainly depends on the shrinkage force of the thermoplastic resin when it is extruded to the outer periphery of the core FRP and solidified. However, in the method of the present invention, the core of FI'L P and the thermoplastic resin of the intermediate layer are bonded together without the core impregnated resin in order to obtain high contact strength. After being brought into contact during the curing stage, a bonding process is performed under pressure, and then a predetermined spacer shape is secondarily coated with a thermoplastic resin for forming the spacer body. That is, in a preferred embodiment of the present invention, a reinforcing fiber bundle is impregnated with liquid thermosetting resin, and the uncured material is formed into a predetermined size and shape using a drawing die, and the uncured material is passed through a rad die into the cloth to form the intermediate layer. The molding material is extruded and coated with a thermoplastic resin, and after cooling the machine part made of the thermoplastic resin, it is heated with steam or liquid heat medium under pressure to a temperature near the melting point of the thermoplastic resin. The thermosetting resin portion of the core is cured.

この方法によれば、中間層の熱可塑性樹脂は中芯材料で
ある未硬化FRPの硬化に際し、該熱可塑性樹脂の融点
付近の温度にまで昇温され、しかも、中芯のFRP部と
の界面は中芯材料樹脂の硬化時の発熱によシさらに高温
となり、中間層形成樹脂は溶融状態で加圧下にFRP部
と接着されるので、その接着は、少くともいわゆるアン
カー効果を有する接着となシ極めて強力なものとなる。
According to this method, the thermoplastic resin of the intermediate layer is heated to a temperature near the melting point of the thermoplastic resin when the uncured FRP that is the core material is cured, and moreover, The temperature becomes even higher due to the heat generated during curing of the core material resin, and the intermediate layer forming resin is bonded to the FRP part under pressure in a molten state, so the bonding is at least one that has a so-called anchor effect. It becomes extremely powerful.

このようにして得られた中芯FRP’kI411’間層
の熱可塑性樹脂により被覆した連続細棒状成形物は、そ
の外径が必ずしも均一ではなく、またFRP中の繊維の
ケバなどのため微少凸部會有していたりすることがある
ので、必要に応じてPk足寸法形状の整形ダイスに挿通
して中間層被覆の表面を整形して外径を均一化してから
、適宜のlビンに捲取って螺旋スペーサの素線とするの
が好ましい。
The continuous thin rod-shaped molded product coated with the thermoplastic resin between the core FRP'kI411' layers obtained in this way does not necessarily have a uniform outer diameter, and has slight convexities due to the fuzz of the fibers in the FRP. If necessary, the surface of the intermediate layer coating is shaped to have a uniform outer diameter by inserting it into a shaping die with Pk dimensions and shape, and then rolled into an appropriate L bottle. It is preferable to take it and use it as a strand of a helical spacer.

次に、この螺旋スペーサの素線を軸部に円形の透孔を有
するクロスへラドダイに挿通し、その透孔の周囲に設け
た所足の断面形状の開口金有するノズルを回転させなが
ら、前記素線の中間層形成用被覆樹脂と同aまたは近似
した溶解度・ぞラメータをもつスペーサ本体形成用熱可
塑性樹脂を押出して中芯を被覆しく以下この被aを二次
被覆という。戸、所足寸法形状の複数の連続した螺旋状
溝を有するスペーサ本体を形成する。このスペーサ本体
の螺旋のピッチは、二次被覆時の引取速度とノズルの回
転速度から相対的に決足される。
Next, the wire of this spiral spacer is inserted into a cross having a circular through hole in the shaft part through a rad die, and while rotating a nozzle having an aperture with the desired cross-sectional shape provided around the through hole, A thermoplastic resin for forming the spacer body having the same or similar solubility/parameter as the coating resin for forming the intermediate layer of the strands is extruded to cover the core.This coating a is hereinafter referred to as the secondary coating. A spacer body is formed having a plurality of continuous spiral grooves having the desired dimensions and shape. The pitch of the spiral of the spacer body is determined relative to the take-up speed during secondary coating and the rotational speed of the nozzle.

このようにして得られる本発明による螺旋スペーサは、
スペーサ素線の形成過程において、9多のFI’LP部
と中間層上形成する熱可塑性樹脂による被覆部との接着
が強固になっており、さらに素線の外周に前記スペーサ
本体形成用熱可塑性樹脂による螺旋状の二次被覆を行な
うので、素線外皮の中間層と二次被覆とが、両者の境界
において溶融状態で自己接着あるいは融合接着して一体
化される結果、中芯のFRP部と螺旋状スペーサ本体部
全室めた熱可塑性樹脂による被覆部の接着は強固に維持
される。
The helical spacer according to the invention thus obtained is
In the process of forming the spacer wire, the adhesion between the nine FI'LP parts and the thermoplastic resin covering part formed on the intermediate layer is strong, and the thermoplastic resin for forming the spacer body is attached to the outer periphery of the wire. Since a spiral secondary coating is performed with resin, the intermediate layer of the wire outer sheath and the secondary coating are integrated by self-adhesion or fusion bonding in a molten state at the boundary between the two, resulting in the FRP part of the core The adhesion between the entire body of the spiral spacer and the thermoplastic resin coating remains strong.

以下本発明の実施例および比較例について説明する。Examples and comparative examples of the present invention will be described below.

実施例1 螺旋スペーサの素線として、単糸径13ミクロンのガラ
スロービング5に、スチレンを重合性単量体として配合
5した不飽和ポリエステル樹脂(三井東圧化学製;ニス
ターH−8000)とBPO系触媒全2部添加混合した
液状熱硬化性樹脂611−1絞クダイス7により2■の
径に成形して中芯1の素材である中芯材料を得、クロス
ヘッドダイ8に挿通して、核中芯材料の外周に高密度ポ
リエチレン(三井石油化学製:ハイゼツクス 6300
M。
Example 1 As the strands of a helical spacer, a glass roving 5 with a single fiber diameter of 13 microns was mixed with an unsaturated polyester resin (manufactured by Mitsui Toatsu Chemicals; Nyster H-8000) containing styrene as a polymerizable monomer and BPO. A liquid thermosetting resin 611-1 in which all two parts of the system catalyst were added and mixed was formed into a diameter of 2 mm using a drawing die 7 to obtain a core material which is the material of the core 1, and inserted into a crosshead die 8. High-density polyethylene (Mitsui Petrochemicals: Hi-Zex 6300) is used around the outer periphery of the core material.
M.

MIo、1.比重0.952 )を0.6 mの厚みで
環状に押出して中間層2による一次被覆をし、該−次被
櫃層全冷却槽を通して冷却した後、これを蒸気圧3.7
製で140℃に加熱された硬化層9に導入して硬化し、
さらに−次被榎された中間層の外表面部分を150℃に
加熱し軟化状態にして整形ダイスIOA及びIOHによ
り整形し、中芯FRP部のガラス含有率が75重量%、
中芯外径2.0鰭、−次被覆後の外径3.0 mの螺旋
スペーサ用素線11を得た○この素線11を連続的に供
給し、ボビン】2に巻取った後、これをクロスへラドダ
イ】3に挿通し、ノズル14全回転させなから該素線の
外周に前記の素線に使用したものと同一の高密度ポリエ
チレンを、等間隔に山径6.4圏、谷径4. Owgの
6条の突起を有し、螺旋のピッチが150簡になるよう
二次被覆して第1図に示すスペーサ本体3金成形した。
MIo, 1. (specific gravity: 0.952) is extruded into a ring shape with a thickness of 0.6 m, and is primarily covered with the intermediate layer 2. After cooling the entire layer through a cooling tank, it is heated to a vapor pressure of 3.7.
introduced into the cured layer 9 heated to 140°C and cured,
Furthermore, the outer surface portion of the coated intermediate layer was heated to 150° C. to soften it, and then shaped using shaping dies IOA and IOH, so that the glass content of the core FRP portion was 75% by weight.
A strand 11 for a spiral spacer with a core outer diameter of 2.0 fins and an outer diameter of 3.0 m after second coating was obtained. After this strand 11 was continuously supplied and wound onto a bobbin 2, , insert this into the cross RAD die] 3, rotate the nozzle 14 fully, and then apply the same high-density polyethylene as that used for the above-mentioned wire to the outer circumference of the wire at equal intervals with a thread diameter of 6.4 mm. , valley diameter 4. The spacer body had 6 Owg protrusions, was coated with a second layer so that the spiral pitch was 150, and was molded using three metals as shown in FIG.

このようにして得られた螺旋スペーサ4の引張剪断接着
強度を、次の方法によジ測定した0すなわち、200m
長の被測定サンプルの一端から20■の位置に、カッタ
ーナイフにより螺旋スペーサ本体および中間Ml形成す
る熱可塑性樹脂層の厚み部分に線刻全施し、その後に、
螺旋本体音形成する熱可塑性樹脂′と同一の樹脂をシー
ト状に押出して、サンプルの両端部約18−を含めて両
側に各々約50tsの測足用把持部が形成されるように
溶融接着する。このように調整し準備したサンプルにつ
き、5簡/分の速度で長さ方向の引張試験全行ない、前
述の20簡の長さについての引張剪断接着強力をめ、こ
の強力’1FRP外周の周面積で除して接着強度を測足
したn この測足方法による接着強度は、144驚であった0 また、この螺旋スペーサの中芯PRP部とスペーサ本体
の接着の耐久性を見るため、長さ40〇−の螺旋スペー
ササンプル1に〜30℃、+60℃の雰囲気中に、各1
時間づつ交互に放置すること全301繰返すヒートサイ
クルテストを行った。
The tensile shear adhesive strength of the spiral spacer 4 thus obtained was measured by the following method.
At a position 20 mm from one end of the long sample to be measured, a cutter knife was used to inscribe the entire thickness of the thermoplastic resin layer forming the spiral spacer body and the intermediate Ml, and then,
Extrude the same resin as the thermoplastic resin used to form the helical body sound into a sheet, and melt-bond it so that foot measuring grips of about 50 ts are formed on both sides of the sample, including about 18 mm at each end. . For the sample prepared in this manner, a tensile test was carried out in the longitudinal direction at a speed of 5 strips/minute, and the tensile shear adhesive strength for the aforementioned 20 strips was determined. The adhesion strength was measured by dividing the sum by n.The adhesion strength by this method of measurement was 144 times. 40〇- spiral spacer sample 1 in an atmosphere of ~30℃ and +60℃, respectively.
A heat cycle test was conducted in which the samples were left to stand for a total of 301 times.

その結果、サンプルの両端面において、中芯のFRP部
と被覆熱可塑性樹脂層との相対的な寸法変化は全く認め
られず、このヒートサイクルテスト後のサンプルを再度
測定した接着強度も144¥iと全く変化なく、この螺
旋スペーサの中芯とスペーサ本体との接着は上記のよう
なヒートサイクルテストによっても損われないことが確
認された。
As a result, no relative dimensional change was observed between the core FRP part and the covering thermoplastic resin layer on both end faces of the sample, and the adhesive strength when the sample was re-measured after this heat cycle test was 144 yen. There was no change at all, and it was confirmed that the adhesion between the core of this spiral spacer and the spacer body was not impaired even by the heat cycle test as described above.

実施例2 実施例1と同一のガラスロービング及びう熱硬化性樹脂
全使用し、絞りダイスによジ1+w+の径に成形し、直
鎖状低密度ポリエチレン(日本ユニカー、l!:Gl’
LSN−7047,MI 1.0.比重0、918 )
 k 0.5 mの厚みで押出して一次被核し、実施例
1と同じ条件で冷却し加熱硬化した後、整形して、−次
被槍の外径2.8■の螺旋スペーサ用累線會得た。この
素線の外周に、高密度ポリエチレン(昭和電工製;ショ
ウレックス5300W。
Example 2 The same glass roving and thermosetting resin as in Example 1 were used, molded to a diameter of 1+w+ using a drawing die, and linear low-density polyethylene (Nippon Unicar, l!: Gl'
LSN-7047, MI 1.0. Specific gravity 0,918)
It was extruded to a thickness of 0.5 m to form a primary envelop, cooled and heated under the same conditions as in Example 1, and then shaped to form a helical spacer with an outer diameter of 2.8 mm. I met you. High-density polyethylene (manufactured by Showa Denko; Showa Rex 5300W) was applied to the outer periphery of this wire.

MI O,30,比重0.949 )を、等間隔に山径
5.2M、谷径3.8mの4条の突起を有し、螺旋のピ
ッチが10010+になるように二次複機してスペーサ
本体を形成した。こうして得られた螺旋スペーサの上記
接着強度は106!Mであり、実施例1と同様のヒート
サイクルのテストを行ったが、中芯FRP部と熱可塑性
樹脂によるスペーサ本体との接着状態の変化は全く認め
られなかった。
MI O, 30, specific gravity 0.949) was made into a secondary compound machine with four protrusions equally spaced with a peak diameter of 5.2 m and a valley diameter of 3.8 m, and the spiral pitch was 10010+. A spacer body was formed. The adhesive strength of the spiral spacer thus obtained was 106! M, and the same heat cycle test as in Example 1 was conducted, but no change in the adhesion state between the core FRP portion and the spacer body made of the thermoplastic resin was observed.

実施例3 補強用繊維として、芳香族ポリアミド繊維(デュポン社
製:Kevler 49.1420デニール)に、不飽
和ポリエステル樹脂(日本ユビカ製;3464)および
実施例1と同じ触媒全配合した熱硬化性樹脂を含浸し、
絞りダイスにより外径3箇に成形して、その外周にウレ
タン変性ABS樹脂(宇部サイコン製:440.MI 
1.5.比重1、107 ) k 0.8 mの厚みで
環状に押出して一次複機し、該−法被後を冷却した後、
飽和蒸気圧で150℃に加熱された加圧下の硬化槽に導
入して硬化し、FRP部の繊維含有率が65N量チ、外
径3. Otm、−法被後の外径4.6 tmの螺旋ス
ペーサ素線を得た。この素線を連続的に供給して、この
外周に一次板横に使用したものと同一の変性ABS樹脂
により、等間隔の山径15m、谷径7日、リブ厚み2簡
の6条の突起を有し、螺旋のピッチが300調になるよ
うに二次被接した。得られた螺旋スペーサの中芯FRP
部とスペーサ本体の上記接着強度は152υであった。
Example 3 As a reinforcing fiber, a thermosetting resin was used in which aromatic polyamide fiber (manufactured by DuPont: Kevler 49.1420 denier), unsaturated polyester resin (manufactured by Nippon Yubica; 3464), and the same catalyst as in Example 1 were all blended. impregnated with
It is formed into three outer diameters using a drawing die, and urethane-modified ABS resin (manufactured by Ube Saikon: 440.MI) is applied to the outer periphery.
1.5. Specific gravity 1,107) k After extruding into a ring shape with a thickness of 0.8 m and primary compounding, and cooling the coat,
The fiber content of the FRP part was 65 N and the outer diameter was 3. Otm, - A spiral spacer wire having an outer diameter of 4.6 tm after being coated was obtained. This strand is continuously supplied, and the same modified ABS resin as that used on the side of the primary plate is used on the outer periphery to form six protrusions with a peak diameter of 15 m, a valley diameter of 7 days, and a rib thickness of 2 strips at equal intervals. , and was secondarily welded so that the spiral pitch was 300 pitches. Core FRP of the obtained spiral spacer
The adhesive strength between the part and the spacer body was 152υ.

また、前の実施例と同じ方法でヒートサイクルテスト後
行ったが、その結果、サンプル両端における中芯FFL
Pの飛び出しは全くなく、また上記接着強度の低下も認
められなかった。
In addition, a heat cycle test was performed in the same manner as in the previous example, and as a result, the center core FFL at both ends of the sample was
There was no protrusion of P at all, and no decrease in the adhesive strength was observed.

実施例4 実施例1と同一の構成および条件で、未硬化中芯1i’
 RP金環状に仮積成形した後、該仮積を冷却固化し、
硬化槽の熱媒として加圧水を使用して、140℃で4贅
の圧力下に加熱硬化した。その後−次複機の熱可塑性樹
脂を150℃で整形して、外径3mの螺旋スペーサ用素
線を得た。この素線を連続的に供給し、その外周に一次
僅機と同一のHDPEケ、等間隔に山径6.4 wm、
谷径4、Oxの6条の突起′に有し、螺旋のピッチが】
50簡になるよう 二次抜機して、スペーサ不体會成形
した〇この螺旋スペーサの前記接着強度は、142製で
あり、ヒートサイクルテスト後においても、中芯PRP
と熱可塑性樹脂層の接着状態の変化は認められなかった
Example 4 With the same configuration and conditions as Example 1, uncured medium core 1i'
After forming a temporary volume into a RP gold ring shape, the temporary volume is cooled and solidified,
Using pressurized water as a heating medium in the curing tank, the material was cured by heating at 140° C. under a pressure of 4 degrees. Thereafter, the thermoplastic resin of the second composite machine was shaped at 150° C. to obtain a strand for a spiral spacer with an outer diameter of 3 m. This strand is continuously supplied, and around its outer periphery, there are HDPE layers, which are the same as those of the first wire, at equal intervals with a thread diameter of 6.4 wm.
It has a valley diameter of 4, 6 protrusions of Ox, and a spiral pitch of]
The adhesive strength of this spiral spacer is that of 142, and even after the heat cycle test, the core PRP
No change in the adhesion state of the thermoplastic resin layer was observed.

比較例1 実施例】と同じガラスロービングに、実施例1と同一組
成の熱硬化成樹脂を含浸して絞りダイスにより2■の径
に成形し、これを内径2■、長さ50cIr1の内向を
鏡面仕上はした円筒金型に通し、外部より赤外線ヒータ
により ]、 40 Cに加熱して606n/分の速度
で硬化し、1i’RP部のガラス含有率が75重量%、
外径2■の螺旋スペーサ用、累+Wを作った。この索M
を連続的に供給して、実施例1と同一の樹脂により同一
条件、同一形状にスペーサ本体ケ被覆して、螺旋スペー
サを得た。この螺旋スペーサの中芯FRPとスペーサ本
体の前記接着強度は、30製しかなく、前実施例と同一
のヒートサイクルナス14行なったところ、サンプルの
両端からFRP部が3.4寵とび出しており。
Comparative Example 1 The same glass roving as in Example was impregnated with a thermosetting resin having the same composition as in Example 1, and formed into a diameter of 2 cm using a drawing die. It was passed through a cylindrical mold with a mirror finish, heated to 40 C using an infrared heater from the outside, and cured at a rate of 606 n/min, so that the glass content of the 1i'RP part was 75% by weight.
I made cum +W for a spiral spacer with an outer diameter of 2cm. This rope M
was continuously supplied, and the spacer main body was coated with the same resin as in Example 1 under the same conditions and in the same shape to obtain a spiral spacer. The adhesive strength between the center core FRP of this spiral spacer and the spacer body is only 30, and when the same heat cycle as in the previous example was repeated for 14 times, the FRP part protruded from both ends of the sample by 3.4 cm. .

螺旋のピッチも乱れていた。The pitch of the spiral was also disordered.

比較例2 比較例1と同一の条件で硬化工程を経た中芯FRPに、
中間層およびスペーサ本体全実施例1と同一の条件、形
状に被覆した螺旋スペーサを得た。
Comparative Example 2 Core FRP was cured under the same conditions as Comparative Example 1.
Intermediate layer and spacer body A spiral spacer coated under the same conditions and shape as in Example 1 was obtained.

この螺旋スペーサにおける前記接着強度は25¥iしか
なく、ヒートサイクルテスト後のサンプルの両端にはF
RPが3.7 ms程とび出しており、螺旋のピッチも
乱れていた。
The adhesive strength of this spiral spacer is only 25 yen, and both ends of the sample after the heat cycle test are F
The RP jumped out by about 3.7 ms, and the pitch of the spiral was also disordered.

以上の実施例と比較例の各材料および寸法などの構成な
らびに前述の方法により測定した上記接着強度およびヒ
ートサイクルテスト結果、試料長150箇のサンプルを
5簡/分の速度で引張試験を行った結果にもとづく引張
強度および引張弾性率をまとめて示すと、第1表のとお
りである。
The composition of each material and dimension of the above Examples and Comparative Examples, the adhesive strength and heat cycle test results measured by the above method, and the tensile test was conducted on 150 samples with a sample length of 5 samples per minute. Table 1 summarizes the tensile strength and tensile modulus based on the results.

以上実施例および比較例について説明したが、中芯FR
Pの一次被覆および二次被覆に使用する熱可塑性樹脂は
、螺旋スペーサのスペーサ本体として要求される耐圧縮
強度などに応じて選択すればよく、また、−次被覆と二
次被覆の上記接着力を大きくするため、同一もしくは同
種の樹脂が望ましいが、両波S樹脂間の化学的接着力が
良好なものであれば、異極材料を使用してもよい。
Although the examples and comparative examples have been explained above, the center core FR
The thermoplastic resin used for the primary coating and the secondary coating of P may be selected depending on the compressive strength required for the spacer body of the spiral spacer, and the above-mentioned adhesive strength between the primary coating and the secondary coating. In order to increase the resistance, it is desirable to use the same or the same type of resin, but materials with different polarities may be used as long as the chemical adhesion between the two wave S resins is good.

すなわち、本発明は、中芯のFRP部を中間層を形成す
る熱可塑性樹脂により−次被機してなる素線と、該木線
の外周に#、旋状の二次被覆を施して形成したスペーサ
本体との結合構造からなるものであるが、中芯のFRP
部とスペーサ本体である熱可塑性樹脂からなる螺旋状部
との接着強度は、−次被覆層と二次被覆ノーとの融合接
着および中芯1’ R,Pの表面と中間層の両者が流動
状態にある間の圧着により形成された粗面境界層を介し
て発現されているのであって、上述した接N構造および
これ全現出する上記工程が発明構成の重要な装作となる
That is, the present invention is formed by forming a core FRP part with a thermoplastic resin that forms an intermediate layer, and applying a circular secondary coating to the outer periphery of the wood wire. It consists of a bonding structure with the spacer body, but the center core is made of FRP.
The adhesion strength between the spiral part and the spiral part made of thermoplastic resin which is the spacer body is determined by the fusion adhesion between the secondary coating layer and the secondary coating layer and the fluidity of both the surface of the core 1' R, P and the intermediate layer. It is expressed through the rough surface boundary layer formed by pressure bonding while in the state, and the above-mentioned contact-N structure and the above-mentioned process for fully expressing it are important features of the structure of the invention.

つぎに、中芯FRPと一次被覆熱可塑性樹脂の前記の接
着性と硬化条件との関係について、実験結果をもとにさ
らに補足説明する。実験はつぎの方法によった。
Next, the relationship between the adhesiveness and curing conditions of the core FRP and the primary coating thermoplastic resin will be further explained based on experimental results. The experiment was conducted in the following manner.

すなわち、未硬化の中芯FRPを熱可塑性樹脂により一
次抜機後、該−次被援を冷却固化し、しかる後硬化槽に
導入して加熱硬化するに際し1、硬化条件として、硬化
槽内の圧力、温f’に変化させて硬化させた各種サング
ルの接着強度を測足した。
In other words, after first cutting an uncured core FRP with a thermoplastic resin, the material is cooled and solidified, and then introduced into a curing tank and heated to harden.1. The adhesive strength of various samples cured by changing the temperature to f' was measured.

より具体的に説明すれば、補強淑維として単糸径】3ミ
クロンのガラスロービングに、不飽和アルキド樹脂とス
チレンを重合性単量体とする不飽和ポリエステル樹脂(
三井東圧化学製;ニスターH−8000)に対し過酸化
物系触媒を2部添加してなる熱硬化性樹脂を含浸した後
、これを絞りダイスにより外径2闘、ガラス含有率が7
5重量饅の未硬化の細棒状に成形し、その後クロスへラ
ドダイに挿通して、直鎖状低誓度ポリエチレン(以下L
LDPEと称する。)(日本ユニカー製=OR8N−7
047,MI 1.0.比X O,918)で厚さ1m
に環状に被覆した後、該被覆部を水冷固化し、蒸気、加
圧水、シリコンオイルの各々を熱媒体として、圧力およ
び温度を変化させた硬化槽に導入し加熱硬化させて得た
LLDPE被榎F几抜機ンプルにつき、つぎの方法によ
り前記接着強度を測足した。
More specifically, as a reinforcing fiber, a glass roving with a single fiber diameter of 3 microns is coated with an unsaturated polyester resin containing an unsaturated alkyd resin and styrene as polymerizable monomers.
After impregnating a thermosetting resin made by adding 2 parts of a peroxide catalyst to Nistar H-8000 (manufactured by Mitsui Toatsu Chemical Co., Ltd.), it is squeezed using a die to obtain an outer diameter of 2 mm and a glass content of 7 mm.
It is formed into an uncured thin rod of 5 weight, and then inserted into a cross through a RAD die to form a linear low-density polyethylene (hereinafter referred to as L).
It is called LDPE. ) (Made by Nippon Unicar = OR8N-7
047, MI 1.0. ratio X O,918) and thickness 1m
After being coated in an annular shape, the coated portion was solidified by water cooling, and then introduced into a curing tank in which the pressure and temperature were varied using steam, pressurized water, and silicone oil as heating media, and heat-cured. The adhesion strength of each sample was measured using the following method.

まず、長さ200簡の測定用サンプルの一端から20m
の位置に、カッターナイフにより熱可塑性樹脂による被
覆部の厚み全層に線刻を施し、その他は実施例1に記載
した方法によQ測足用把持部を形成し、その後実施例1
と同一の条件で測定した0 この、硬化条件と接着強度に関する実験の結果’(r第
2表に示す。
First, 20 m from one end of the measurement sample with a length of 200 strips.
At the position shown in FIG.
The results of this experiment regarding curing conditions and adhesive strength are shown in Table 2.

第 2 表 第2表から硬化条件と接着強度の関係會みると、熱媒体
を蒸気としたときは、140℃および150℃において
、最大の接着強度が得られている。蒸気を熱媒体とする
実験では、温度を変化させるために、蒸気圧を必然的に
変えているので、火線だけから温度と圧力の何れが接着
強度により多く影響するかを知ることはできないが、シ
リコンオイルt−140℃に加熱し常圧下で硬化させた
ときは、スチレン(重合性単量体)が気化し、軟化状態
にあるLLDPB被覆を破り、著しく形状が不良となる
のみならず、硬化後のFRPも多孔質状となり、引張破
断強度及び引張弾性率などの物性も低下して、螺旋スペ
ーサの素線としては供し得ないものとなる。
Table 2 Looking at the relationship between curing conditions and adhesive strength from Table 2, the maximum adhesive strength was obtained at 140°C and 150°C when steam was used as the heat medium. In experiments using steam as a heat medium, in order to change the temperature, the steam pressure is necessarily changed, so it is not possible to know from the caustic line alone whether temperature or pressure has a greater effect on bond strength. When silicone oil is heated to -140°C and cured under normal pressure, styrene (polymerizable monomer) vaporizes and breaks the softened LLDPB coating, resulting in not only a markedly poor shape but also hardening. The resulting FRP also becomes porous and its physical properties such as tensile strength at break and tensile modulus of elasticity deteriorate, making it unusable as a wire for a helical spacer.

ところが、これと比較して熱媒として加圧水を用い、4
Mの加圧下で140℃で硬化したときは形状も良好であ
り、接着強度も蒸気による140℃の値に近似している
。このことから、硬化工程で加えられる圧力は硬化時の
スチレン(重合性単量体)の気化を防いでおり、未硬化
の中芯’i;’fLpと熱可塑性樹脂の双方を流動状態
で加圧接触させることによって、未硬化FRP層の熱硬
化反応が進行中もこの接触状態が維持もしくは促進され
て、アンカー効果的接層構造の具現に役立っていると考
えられる。
However, compared to this, using pressurized water as a heating medium,
When cured at 140°C under the pressure of M, the shape is good and the adhesive strength is close to the value obtained at 140°C with steam. From this, the pressure applied during the curing process prevents styrene (polymerizable monomer) from vaporizing during curing, and both the uncured core 'i;'fLp and the thermoplastic resin are heated in a fluid state. It is believed that by making pressure contact, this contact state is maintained or promoted even while the thermosetting reaction of the uncured FRP layer is progressing, and is useful for realizing an anchor effective contact structure.

この中芯FRP表面と中間層の両者とも#t、!ill
!I状態にある間の圧看により形成された本発明特有の
境界ノーの形態は、得られfc螺旋スペーサもしくは螺
旋スペーサ素線の中芯F RP表面?!−観察すること
によっても確認される。すなわち、本発明に用いる中芯
材料の表面形状と比較例1の中芯材料の表面形状とを比
較するため、それぞれの中芯表面を、100倍の倍率で
撮影した電子顕微鏡写真で観察すると、本発明による中
芯FRPの表面は、従来の一般の引抜成形品のそれに比
較して、著しい粗面が形成されており、この粗面により
、中間層の熱可塑性樹脂に対する十分な係止力を伴った
アンカー効果重接N構造が具現されている0なお、この
観察に供したサンプルは、前述の各螺旋スペーサをキシ
レン溶液中に浸漬して、熱可塑性樹脂層のみ溶解するこ
とにより、FRP表面部分を露出させて得たものである
Both the core FRP surface and the intermediate layer are #t! ill
! The shape of the boundary node unique to the present invention formed by compression while in the I state is obtained on the central FRP surface of the fc helical spacer or the helical spacer strand. ! -Also confirmed by observation. That is, in order to compare the surface shape of the core material used in the present invention and the surface shape of the core material of Comparative Example 1, the surface of each core was observed using an electron micrograph taken at a magnification of 100 times. The surface of the core FRP according to the present invention has a significantly roughened surface compared to that of conventional general pultrusion molded products, and this roughened surface provides sufficient locking force to the thermoplastic resin of the intermediate layer. Note that the samples used for this observation were obtained by immersing each of the above-mentioned helical spacers in a xylene solution to dissolve only the thermoplastic resin layer. It was obtained by exposing the part.

なお、一般的に言って、熱可塑性樹脂として硬度の高い
ものを用いた場合は、アンカー効果的接層構造を呈して
いる凹凸界面を変形させるのに要するエネルギーが大と
なるためか接着強度が大となる傾向があるので、この点
とスペーサ本体としての抗圧縮力を勘案して材料樹脂全
選択するのが好ましい。
Generally speaking, when a thermoplastic resin with high hardness is used, the adhesive strength decreases, probably because the energy required to deform the uneven interface exhibiting an anchor-effective contact structure is large. Therefore, it is preferable to select all resin materials in consideration of this point and the anti-compressive force of the spacer body.

筐た、必須ではないが中芯のFki、 P ′N5を熱
可塑性樹脂により一次被覆し、硬化したあと、該−法被
at表面を整形して外径會均−化したものを素線とする
ときは、この整形を施こさない場合の不利益、すなわち
、外径が不均一のため、スペーサ本体形成のための二次
被覆に際して中芯のFRP部が中央に配置されなくなる
芯ずれの現象および中芯が透孔ガイドに引つかかり操業
が円滑にいかなくなる現象ならびに螺旋スペーサとして
の最終形状が不均一になる結果を防止できる0 以上詳細に説明したとおり、本発明による通信用線材担
持用螺旋スペーサは、抗張力体としての中芯FRP部と
熱可塑性樹脂による螺旋状スペーサ部との接着が極めて
強固であるため、光ファイバを螺旋状溝に配列するケー
ブル化工程、あるいはケーブル化後の布設ならびに布設
後の使用状態において、該光ファイノ々の保禮および担
持の機能を十分に発揮する信頼度が極めて高いものであ
り、非金属性を要求される分野や可動通信票など可撓性
が要求される分野での通信用線材担持用螺旋ス
Although not essential, the core Fki and P'N5 of the casing are first coated with a thermoplastic resin, and after curing, the surface of the outer layer is shaped to equalize the outer diameter, and then the wire is When doing so, the disadvantage of not performing this shaping is that due to the non-uniform outer diameter, the center core FRP part is not placed in the center during the secondary coating to form the spacer body, resulting in misalignment. It is possible to prevent the phenomenon in which the core gets caught in the through-hole guide, which makes the operation unsmooth, and the final shape of the helical spacer becomes uneven. The helical spacer has an extremely strong adhesion between the core FRP part as a tensile strength member and the spiral spacer part made of thermoplastic resin, so it is difficult to use during the cable production process in which optical fibers are arranged in a spiral groove or during the installation after cable production. In addition, it has extremely high reliability to fully demonstrate the function of protecting and supporting the optical fibers in the usage state after installation, and is suitable for fields that require non-metallic properties and for flexible applications such as movable communication slips. Spiral thread for supporting communication wires in required fields

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明に係る螺旋スペーサの一実施例を示す断
面図、第2図は上記スペーサの斜視図、第3図は本発明
による螺旋スペーサ用素線の製造方法、第4図は不発明
による螺旋スペーサ製造方法をそれぞれ実施する一芙施
態様を示す概略図である。 1・・・中芯、2・・・中間層、3・・・スペーサ本体
、4・・・螺旋スペーサ、5・・・ロービング、6・・
・熱硬化性樹脂、7・・・絞9ダイス、8・・・クロス
へラドダイ、9・・・硬1し檜、IOA、B・・・整形
ダイス、11・・・素線、12・・・ゼビン、13・・
・クロスヘッドダイ、14・・・ノズル 第1図 鵬2図
FIG. 1 is a sectional view showing an embodiment of a helical spacer according to the invention, FIG. 2 is a perspective view of the spacer, FIG. 3 is a method of manufacturing a strand for a helical spacer according to the invention, and FIG. 1A and 1B are schematic diagrams illustrating one embodiment of the method for manufacturing a helical spacer according to the invention, respectively; FIG. DESCRIPTION OF SYMBOLS 1... Core, 2... Middle layer, 3... Spacer body, 4... Spiral spacer, 5... Roving, 6...
・Thermosetting resin, 7...Drawing 9 dies, 8...Cross to rad die, 9...Hard cypress, IOA, B...Shaping die, 11...Element wire, 12...・Zevin, 13...
・Crosshead die, 14... Nozzle Fig. 1 Peng Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)繊維強化熱硬化性樹脂硬化物からなる細棒状中芯
と、この中芯を囲繞する熱可塑性樹脂からなる中間層と
、この中間層との相溶度が大きい熱可塑性樹脂からなり
外周に長手方向に延び互いに平行な複数の螺旋状溝tI
Mえたスペーサ本体とが一体に結合され、上記スペーサ
本体内周と中間層外周とは融合し、上記中間層円周と中
芯外周との境界が少なくとも両者の圧力下流′wJ接触
によるアンカー接y#構造をMすることを特徴とする通
信用線材担持用螺旋スペーサ。
(1) A thin rod-shaped core made of a cured fiber-reinforced thermosetting resin, an intermediate layer made of a thermoplastic resin surrounding this core, and an outer periphery made of a thermoplastic resin with high compatibility with this intermediate layer. a plurality of spiral grooves tI extending longitudinally and parallel to each other;
The spacer body which has been formed is joined together, the inner circumference of the spacer body and the outer circumference of the intermediate layer are fused, and the boundary between the circumference of the intermediate layer and the outer circumference of the center core is at least in contact with the anchor due to pressure downstream of the two. #A spiral spacer for supporting a communication wire, characterized by having an M structure.
(2)補強繊維束に未硬化の熱硬化性樹脂を含浸させた
細棒状の中芯材ケ、溶融した熱可塑性樹脂で抜根し、こ
れを冷却して該熱可塑性at脂全全同化、続いて硬化僧
門において加圧下に加熱し、中芯の未硬化樹脂を硬化さ
せつつ上記中芯と熱可塑性樹脂とを密着させて補強用素
線を得た後、上記素線の外周部面に、上記熱可塑性樹脂
との相溶度が大きい溶融した熱可塑性樹脂材料を、上記
素線の長手方向に走る複数の平行螺旋状溝を形成するよ
う被根成形することを特徴とする第1項の通信用線材担
持用螺旋スペーサの製造方法。
(2) Thin rod-shaped core material made of reinforcing fiber bundles impregnated with uncured thermosetting resin, removed with molten thermoplastic resin, cooled to completely assimilate the thermoplastic AT fat, and then After heating under pressure in a curing chamber to harden the uncured resin in the core and bring the core and thermoplastic resin into close contact to obtain a reinforcing wire, the outer peripheral surface of the wire is heated. Item 1, characterized in that a molten thermoplastic resin material having high compatibility with the thermoplastic resin is molded to form a plurality of parallel spiral grooves running in the longitudinal direction of the strands. A method for manufacturing a spiral spacer for supporting communication wires.
JP9882684A 1984-05-18 1984-05-18 Wire rod carrying spiral spacer for communication and its manufacture Granted JPS60243611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9882684A JPS60243611A (en) 1984-05-18 1984-05-18 Wire rod carrying spiral spacer for communication and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9882684A JPS60243611A (en) 1984-05-18 1984-05-18 Wire rod carrying spiral spacer for communication and its manufacture

Publications (2)

Publication Number Publication Date
JPS60243611A true JPS60243611A (en) 1985-12-03
JPH042165B2 JPH042165B2 (en) 1992-01-16

Family

ID=14230096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9882684A Granted JPS60243611A (en) 1984-05-18 1984-05-18 Wire rod carrying spiral spacer for communication and its manufacture

Country Status (1)

Country Link
JP (1) JPS60243611A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168104A (en) * 1986-01-20 1987-07-24 Sumitomo Electric Ind Ltd Spacer for housing optical fiber and its production
JPS6318311A (en) * 1986-07-10 1988-01-26 Ube Nitto Kasei Kk Manufacture of spacer for carrying optical fiber
JPS6396519U (en) * 1986-12-11 1988-06-22
JPH0271207A (en) * 1988-06-20 1990-03-09 Ube Nitto Kasei Co Ltd Protective pipe for optical fiber and flat type optical fiber code formed by using this pipe
JPH032310U (en) * 1989-05-29 1991-01-10

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387154B1 (en) * 1999-06-03 2003-06-18 우베-니토 카세이 가부시키가이샤 Spacer for optical fiber cable, manufacturing method of the same and optical fiber cable using the spacer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948704A (en) * 1982-09-10 1984-03-21 Furukawa Electric Co Ltd:The Optical cable unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948704A (en) * 1982-09-10 1984-03-21 Furukawa Electric Co Ltd:The Optical cable unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168104A (en) * 1986-01-20 1987-07-24 Sumitomo Electric Ind Ltd Spacer for housing optical fiber and its production
JPH0476448B2 (en) * 1986-01-20 1992-12-03 Sumitomo Electric Industries
JPS6318311A (en) * 1986-07-10 1988-01-26 Ube Nitto Kasei Kk Manufacture of spacer for carrying optical fiber
JPS6396519U (en) * 1986-12-11 1988-06-22
JPH0271207A (en) * 1988-06-20 1990-03-09 Ube Nitto Kasei Co Ltd Protective pipe for optical fiber and flat type optical fiber code formed by using this pipe
JPH032310U (en) * 1989-05-29 1991-01-10

Also Published As

Publication number Publication date
JPH042165B2 (en) 1992-01-16

Similar Documents

Publication Publication Date Title
US5437899A (en) Structural element formed of a fiber reinforced thermoplastic material and method of manufacture
US4814133A (en) Method of forming the spacer of an optical fiber cable
US4770834A (en) Method for continuous molding of a rod-like product
US3970495A (en) Method of making a tubular shaft of helically wound filaments
CA1269552A (en) Reinforced optical fiber and production of the same
US4781434A (en) Spacer of optical fiber cable and method for forming the same
EP0291639A1 (en) Thermoplastic composite pipe tube with resin rich inner portion and method of manufacturing the same
US7329444B2 (en) Composite poles with an integral mandrel and methods of making the same
JPS60243611A (en) Wire rod carrying spiral spacer for communication and its manufacture
JP2659110B2 (en) Fiber reinforced resin composite pipe and method for producing the same
US3141052A (en) Method of forming seamless hollow plastic shapes
JP4077300B2 (en) Drop optical fiber cable
JP2869130B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
EP3967483A1 (en) Composite molded body molding system and production method
RU2009037C1 (en) Method for manufacturing long length articles made of polymer compositions
JP2005017380A (en) Optical fiber cable and its manufacturing method
JP2007321060A (en) Coated fiber-reinforced synthetic resin linear material
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JPS63152786A (en) Fiber reinforced thermoplastic resin pipe and manufacture thereof
JPS6120427B2 (en)
JP2004122683A (en) Manufacturing method of fiber reinforced thermoplastic resin ring
JPH0428082Y2 (en)
JP2022081847A (en) Method of manufacturing molded products

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term