JPH10177913A - Supeconductive coil - Google Patents

Supeconductive coil

Info

Publication number
JPH10177913A
JPH10177913A JP8359505A JP35950596A JPH10177913A JP H10177913 A JPH10177913 A JP H10177913A JP 8359505 A JP8359505 A JP 8359505A JP 35950596 A JP35950596 A JP 35950596A JP H10177913 A JPH10177913 A JP H10177913A
Authority
JP
Japan
Prior art keywords
fiber
glass
low
bobbin
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8359505A
Other languages
Japanese (ja)
Inventor
Toshihiro Kashima
俊弘 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8359505A priority Critical patent/JPH10177913A/en
Publication of JPH10177913A publication Critical patent/JPH10177913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a cryogenic superconductive coil which is enhanced in performance and stability by a method wherein a spool made of low-thermal change glass or ceramic of prescribed expansion coefficient is used. SOLUTION: A protrudent or columnar spool made of low-thermal change glass or ceramic of expansion coefficient 3.8×10<-6> (1/ deg.C) or below in a temperature range of 300k to 4.2k can be used, and it is preferable that the spool is made of high silicata glass, borosilicata low-alkali glass, high-strength glass or low-thermal change ceramic. Fiber-reinforced plastic where low-thermal change glass fiber or ceramic fiber is used as reinforcing fiber can be used. A coil bobbin formed of low thermal-change glass or fiber-reinforced plastic where low thermal-change glass or the like is used as reinforcing fiber is coated with a material layer of low friction coefficient, whereby a coil bobbin more enhanced in stability can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は極低温にて冷却して用い
られる超電導コイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil used at a very low temperature.

【0002】[0002]

【従来の技術】超電導コイル装置は超電導導体を巻枠に
巻回し、層間にスペーサーを介して形成されるか、外周
面に彫られたラセン溝に沿って超電導導体を巻回した層
コイル要素を順次同心的に複数層重ねて構成される。従
来この巻枠としてはステンレス、アルミニウム等の金属
又はガラス繊維強化プラスチックが、またこれらの特性
を改善したものとして負の熱膨張率を有する有機繊維又
はこれと無機繊維の組み合わせより成る繊維強化プラス
チックが提案されている。
2. Description of the Related Art A superconducting coil device comprises a superconducting conductor wound around a bobbin and a layered coil element formed by interposing a spacer between layers or winding the superconducting conductor along a spiral groove engraved on the outer peripheral surface. A plurality of layers are sequentially and concentrically stacked. Conventionally, a metal frame such as stainless steel and aluminum or glass fiber reinforced plastic has been used as the reel, and a fiber reinforced plastic composed of a combination of an organic fiber having a negative coefficient of thermal expansion or an inorganic fiber and a fiber having a negative coefficient of thermal expansion as those having improved properties thereof. Proposed.

【0003】[0003]

【発明が解決しょうとする課題】超電導コイルの用途は
多岐に亙るが、何れも超電導線の電流密度を高くするこ
とがコイル自体の性能を上げるためには極めて重要であ
る。そしてこれは巻枠に巻回した超電導線の安定性に大
きく依存する。超電導線を巻枠に巻回した状態での物理
的安定性は超電導コイル自体の電気的な安定性と深く関
わっている。通常、巻枠としてはステンレス、アルミニ
ウム等の金属又は通常のE−ガラスを用いたガラス繊維
強化プラスチック(GFRP)が用いられているが、ま
ず第一にこれらは室温で巻回して液体窒素(LNT)又
は液体ヘリウム温度(LHeT)迄冷却した時、何れも
巻枠の周方向に大きく収縮し、軸方向に小さく収縮す
る。一方、超電導線は極低温で励磁したとき周方向には
ローレンツ力に由来する反発力により膨張し、巻線は巻
枠から離れる方向に動くことになる。また軸方向には極
低温になると超電導線の垂直方向の正膨張に由来する大
きな収縮のため巻枠軸方向の小さな収縮以上に寸法変化
することになる。この両者の動きが相まって超電導線間
にはミクロな動きが生じ、表面の摩擦発熱に伴う擾乱が
生じ超電導コイルはクエンチに至る。
The applications of superconducting coils are diverse, but increasing the current density of the superconducting wire is extremely important for improving the performance of the coil itself. This greatly depends on the stability of the superconducting wire wound on the bobbin. The physical stability of a superconducting wire wound around a bobbin is closely related to the electrical stability of the superconducting coil itself. Usually, as the bobbin, a metal such as stainless steel or aluminum or a glass fiber reinforced plastic (GFRP) using ordinary E-glass is used. First, these are wound at room temperature to form liquid nitrogen (LNT). ) Or when cooled to liquid helium temperature (LHeT), both shrink greatly in the circumferential direction of the bobbin and shrink slightly in the axial direction. On the other hand, when the superconducting wire is excited at a very low temperature, it expands in the circumferential direction due to the repulsive force derived from the Lorentz force, and the winding moves in a direction away from the bobbin. Further, when the temperature is extremely low in the axial direction, the size of the superconducting wire changes more than the small shrinkage in the axial direction of the bobbin due to the large shrinkage resulting from the positive expansion of the superconducting wire in the vertical direction. These two movements combine to cause microscopic movement between the superconducting wires, causing disturbance due to frictional heating of the surface, and the superconducting coil reaches quench.

【0004】大きな収縮を改善した巻枠として高強力ポ
リエチレンなどの負膨張の有機繊維を用いた繊維強化プ
ラスチックが提案されているが耐熱性に問題がある。則
ち超電導コイルは超電導線の巻枠への固定性を向上させ
るため巻線後エポキシ等の樹脂含浸をするが、その硬化
温度が有機繊維の耐熱性を上回るため超電導線の巻テン
ションで圧縮変形したり、高強度又は負膨張の特性を損
ない、結果として収縮の大きな強度及び弾性率の低い巻
枠となりこれを用いた超電導コイルの特性は低いものと
なる。さらには超電導コイルボビンに金属電極を取り付
ける。この時、超電導線は電極に半田付けされるが巻枠
に熱が印可され、有機繊維の耐熱温度以上になるためそ
の性能は損なわれることになる。またこれら有機繊維を
用いた繊維強化プラスチックの巻枠は圧縮又は曲げ強度
が低く経時的に圧縮クリープを生ずるという欠点を持
つ。超電導コイルボビンは線材の動きを抑制するため大
きなテンションを加えて超電導線が巻回されている。こ
れら有機繊維強化プラスチックを用いたコイルボビンの
場合、圧縮クリープのために加えた巻テンションが経時
的に低下し超電導線は動きやすい状態となるので超電導
コイルは不安定となり低電流値でクエンチすることにな
る。また多層コイルでは大きなテンションを加えて超電
導線を多層に巻回するがその大きな圧縮又は曲げ応力に
より変形しコイル特性は低いものとなる。
A fiber reinforced plastic using negatively swelling organic fibers such as high-strength polyethylene has been proposed as a bobbin having improved large shrinkage, but has a problem in heat resistance. In other words, the superconducting coil is impregnated with a resin such as epoxy after winding to improve the fixation of the superconducting wire to the bobbin.However, since the curing temperature exceeds the heat resistance of the organic fiber, it is compressed and deformed by the winding tension of the superconducting wire. Or a loss of high strength or negative expansion characteristics, resulting in a winding frame having a high strength of contraction and a low elastic modulus, and the characteristics of a superconducting coil using the same are low. Further, a metal electrode is attached to the superconducting coil bobbin. At this time, the superconducting wire is soldered to the electrode, but heat is applied to the bobbin, and the performance thereof is impaired because the superconducting wire becomes higher than the heat resistant temperature of the organic fiber. In addition, a fiber reinforced plastic reel using these organic fibers has a drawback that compression or bending strength is low and compression creep occurs with time. The superconducting coil bobbin has a superconducting wire wound with a large tension applied to suppress the movement of the wire. In the case of coil bobbins using these organic fiber reinforced plastics, the winding tension added for compressive creep decreases with time and the superconducting wire becomes mobile, so the superconducting coil becomes unstable and quench at a low current value. Become. In a multi-layer coil, a superconducting wire is wound in a multi-layer by applying a large tension. However, the super-conducting wire is deformed by a large compressive or bending stress, and the coil characteristics are low.

【0005】この様にコイルのクエンチの要因として線
材の動きを中心とした機械的要因があり、それには巻枠
と超電導線の熱収縮特性の差が挙げられるが、第2に巻
枠の摩擦係数が挙げられる。超電導線はテンションをか
けて巻枠に巻かれており摩擦力Fは F=μN また摩擦発熱Wは W=μNs ここにμは摩擦係数、Nはテンションの法線成分、即ち
垂直抗力、sは超電導線の移動距離である。ここに従来
まで巻枠として使用されているGFRP及びステンレ
ス、アルミニウムなどの金属は摩擦係数が高く、超電導
線が動いたとき高い摩擦発熱を生ずるのでコイルは低い
電流値でクエンチすることになる。この他にステンレ
ス、アルミニウムなどの金属の巻枠の場合は導電性であ
るため特に交流では渦電流に伴うジュール発熱を生ずる
ため不安定となる。この発明は以上の問題点を解消する
ためになされたものであり高性能かつ安定な超電導コイ
ルを得ることを目的とする。
As described above, there is a mechanical factor centering on the movement of the wire as a factor of the quench of the coil, which includes a difference in heat shrinkage characteristics between the bobbin and the superconducting wire. Coefficient. The superconducting wire is wound around the winding frame with tension applied, and the frictional force F is F = μN and the frictional heat W is W = μNs where μ is the friction coefficient, N is the normal component of tension, that is, the normal force, and s is This is the moving distance of the superconducting wire. Here, GFRP and metals such as stainless steel and aluminum which have been conventionally used as winding frames have a high friction coefficient and generate high frictional heat when the superconducting wire moves, so that the coil is quenched at a low current value. In addition, in the case of a metal bobbin such as stainless steel or aluminum, it is conductive, and in particular, in the case of an alternating current, Joule heat is generated due to eddy current, so that it becomes unstable. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to obtain a high-performance and stable superconducting coil.

【0006】[0006]

【課題を解決するための手段】本発明は筒又は柱状の巻
枠に超電導線を巻回した極低温用超電導コイルにおいて
前記巻枠が低熱変化ガラス又はセラミックス、又はこれ
ら低熱変化ガラスの繊維やセラミックスの繊維と樹脂と
を一体成形してなる繊維強化プラスチックより成るか又
はこれらの表面に低い摩擦係数を有する材料の層を形成
したことを特徴とする超電導コイルである。
SUMMARY OF THE INVENTION The present invention relates to a cryogenic superconducting coil in which a superconducting wire is wound around a cylindrical or column-shaped winding frame, wherein the winding frame is made of low heat-change glass or ceramic, or a fiber or ceramic of these low heat-change glass. A superconducting coil characterized by being made of a fiber-reinforced plastic obtained by integrally molding a fiber and a resin, or having a layer of a material having a low friction coefficient formed on the surface thereof.

【0007】本発明に用いられる低熱変化ガラス又はセ
ラミックスとしては300Kより4.2Kでの平均の熱
膨張率が3.8×10−6(1/℃)以下のものなら広
範囲のものが使用できるが例えば高珪酸ガラス、硼珪酸
低アルカリガラス、高強度ガラス及び低熱変化セラミッ
クスなどが特に好ましい。その例としては石英ガラス、
バイコールガラス、パイレックガラス、S−ガラス、T
−ガラス、R−ガラス等が挙げられる。
As the low thermal change glass or ceramic used in the present invention, a wide range of glass can be used as long as the average coefficient of thermal expansion from 300 K to 4.2 K is 3.8 × 10 −6 (1 / ° C.) or less. However, for example, high silicate glass, borosilicate low alkali glass, high strength glass and low heat change ceramic are particularly preferable. Examples are quartz glass,
Vycor glass, Pyrek glass, S-glass, T
-Glass, R-glass and the like.

【0008】これら低変化ガラス又はセラミックスは溶
融法、ホットプレス法、又はラバー成形法などによりパ
イプ成形しコイルボビンとして用いることが出来る。こ
れらのボビンは低収縮又は低膨張のガラス又はセラミッ
クスのみよりなるため室温から極低温に冷却した際も極
めて寸法変化が小さいという優れた特徴を持つ。またこ
の低変化ガラス繊維又はセラミックス繊維を補強繊維と
する繊維強化プラスチックを使用することも可能であ
る。成形法としては本繊維のロービング、織物にマトリ
ックス樹脂を含浸させながらマンドレルに巻き付けるフ
ィラメントワインディング法、シートワインデイング
法、また本繊維の一方向又は織物のテープ状プリプレグ
をマンドレルに巻き付けるテープワインディング法、オ
ートクレーブ法、等が挙げられる。又使用する低変化ガ
ラス又はセラミックスの使用形態としては、上記長繊維
の他に短繊維又は粒子状のものでもよい。その場合には
SMC法、BMC法、インジェクション法、レジンイン
ジェクション法等、各種の方法を採用することが出来
る。
[0008] These low change glass or ceramics can be used as a coil bobbin by forming a pipe by a melting method, a hot pressing method, a rubber forming method or the like. These bobbins are made of only low-shrinkage or low-expansion glass or ceramics, and therefore have an excellent feature that the dimensional change is extremely small even when cooled from room temperature to extremely low temperature. It is also possible to use a fiber-reinforced plastic having this low-change glass fiber or ceramic fiber as a reinforcing fiber. Examples of the forming method include roving of the present fiber, filament winding method in which a fabric is impregnated with a matrix resin and winding around a mandrel, sheet winding method, tape winding method in which a unidirectional or woven fabric tape prepreg is wound around a mandrel, and autoclave. Method, and the like. The low change glass or ceramic used may be in the form of short fibers or particles in addition to the long fibers. In that case, various methods such as the SMC method, the BMC method, the injection method, and the resin injection method can be adopted.

【0009】これらの方法により得られる繊維強化プラ
スチックはいずれも低熱変化ガラス繊維又はセラミック
ス繊維とマトリックス樹脂の組み合わせよりなる。ここ
で使用されるマトリックスとしてはエポキシ樹脂、不飽
和ポリエステル樹脂、ビニルエステル樹脂、ウレタン樹
脂、アクリレート樹脂などの熱硬化性樹脂やポリエチレ
ン、ポリプロピレン、ポリブテン、ポリビニルアルコー
ル、ポリアミド、ポリアミドイミド、ポリエーテルイミ
ド、アラミド、ポリエチレンテレフタレート、ポリブチ
レンテレフタレート、ポリエチレンナフタレート、ポリ
アリレート、ポリフエニレンスルフィド、ポリサルフォ
ン、ポリエーテルエーテルケトン、ポリエーテルケトン
ケトン等の熱可塑性樹脂を使用することが出来る。この
ときマトリックス樹脂は低温になるにつれ大きく収縮す
る正膨張特性を示すが、各成形法での加工条件を最適化
することにより熱歪みを低熱変化ガラス又はセラミック
ス自体に近い特性とすることが可能である。
[0009] The fiber-reinforced plastics obtained by these methods are all composed of a combination of low heat change glass fibers or ceramic fibers and a matrix resin. As the matrix used here, epoxy resin, unsaturated polyester resin, vinyl ester resin, urethane resin, thermosetting resin such as acrylate resin and polyethylene, polypropylene, polybutene, polyvinyl alcohol, polyamide, polyamide imide, polyether imide, Thermoplastic resins such as aramid, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyarylate, polyphenylene sulfide, polysulfone, polyetheretherketone, and polyetherketoneketone can be used. At this time, the matrix resin shows a positive expansion characteristic that shrinks greatly as the temperature decreases, but by optimizing the processing conditions in each molding method, it is possible to make the thermal strain a characteristic close to that of the low heat-change glass or ceramics itself. is there.

【0010】これをフィラメントワインディング法につ
いて以下述べる。低熱変化ガラスを補強繊維とし巻角度
を変えてロービングを巻回して成形した円柱又は円筒の
温度に伴う寸法変化は図1に示すように巻き角度に依存
しこれを適当に選ぶことにより周方向は低収縮に、軸方
向は高収縮とすることが出来る。配向角は軸方向に対し
て±35〜90度とするのが適当である。この様にして
得られた低熱変化ガラスを用いた超電導コイルボビンの
室温から極低温にしたときの外周熱歪みはほぼ0に近
い。一方超電導線自体の収縮は非常に大きいため極低温
度では超電導線自体の巻テンションは大幅に増すことに
なる。又この超電導コイルに通電した時、超電導線には
ローレンツ力が働き径方向に拡がり線材に加わったテン
ションは減少するがその割合は相対的に少なく超電導線
には大きな巻テンションが保持されることになる。上記
複合材料中の繊維とマトリックス樹脂の混合比率は繊維
の体積分率(Vf)として35〜85%が好ましく、よ
り好ましくは40〜70%である。Vfが35%より少
ないと繊維の補強効果が発現せず85%を越えると機械
的特性が悪化するため好ましくない。一方通常のEガラ
スを用いたGFRPの場合はガラス繊維及びマトリック
ス樹脂とも大きな収縮を持つので巻き角度に無関係に周
方向には大きな収縮となる。またステンレス、アルミニ
ウムなどの金属を用いたコイルボビンはこのGFRPよ
り更に大きな収縮となる。
This will be described below with reference to the filament winding method. The dimensional change with temperature of a cylinder or cylinder formed by winding a roving with a low heat change glass as a reinforcing fiber and changing the winding angle while changing the winding angle depends on the winding angle as shown in FIG. A low shrinkage and a high shrinkage in the axial direction can be achieved. It is appropriate that the orientation angle is ± 35 to 90 degrees with respect to the axial direction. When the temperature of the superconducting coil bobbin using the low heat change glass obtained in this manner is changed from room temperature to extremely low temperature, the outer peripheral thermal strain is almost zero. On the other hand, since the contraction of the superconducting wire itself is very large, the winding tension of the superconducting wire itself increases significantly at extremely low temperatures. When the superconducting coil is energized, Lorentz force acts on the superconducting wire, and the superconducting wire expands in the radial direction, reducing the tension applied to the wire.However, the ratio is relatively small, and the superconducting wire retains a large winding tension. Become. The mixing ratio of the fibers and the matrix resin in the composite material is preferably 35 to 85%, more preferably 40 to 70%, as a fiber volume fraction (Vf). If Vf is less than 35%, the effect of reinforcing the fiber is not exhibited, and if it exceeds 85%, the mechanical properties deteriorate, which is not preferable. On the other hand, in the case of GFRP using ordinary E glass, both the glass fiber and the matrix resin have large shrinkage, so that the shrinkage is large in the circumferential direction regardless of the winding angle. Further, a coil bobbin using a metal such as stainless steel or aluminum has a larger shrinkage than GFRP.

【0011】一方、周方向熱歪みについては負膨張の有
機繊維を用いたFRPのコイルボビンが提案されてい
る。この場合は極低温でボビンの周方向が膨張するので
超電導線の巻テンションを高く保持できるというもので
ある。しかしながら無機繊維にはなく有機繊維に共通の
欠点として圧縮クリープが生じ、巻きテンションが経
時的に低下する。多層巻などで超電導線に過大な巻テ
ンションをかけたとき圧縮又は曲げ変形が生ずるという
問題がある。この点では無機材料である本低熱変化ガラ
ス又はセラミックス自体より成るコイルボビンはもとよ
り該ガラス繊維又はセラミックス繊維を用いた繊維強化
プラスチックは圧縮クリープが実質上極めて小さく、圧
縮及び曲げ応力に対する耐性も著しく高い。以上よりG
FRPや金属を超電導コイルの巻枠として使用する場
合、最大の問題点は周方向の大きな収縮に伴う超電導線
の緩みによりコイルが容易にクエンチすることである。
また負膨張の有機繊維を用いた繊維強化プラスチックを
用いた場合は経時的にテンションが緩み、又た過大なテ
ンションによりコイルボビンが変形して線材が動き易く
なり、結果としてコイルが容易にクエンチする方向に変
化することである。本発明よりなる巻枠を用いた超電導
コイルは極低温での周方向での熱歪みが実質上殆どない
ため初期の巻テンションが高く保持され且つ経時的にも
安定に保たれるのでコイル特性も耐クエンチ性が高く電
流密度の大きな高性能コイルとすることができる。
On the other hand, a coil bobbin of FRP using organic fibers of negative expansion has been proposed for thermal distortion in the circumferential direction. In this case, since the circumferential direction of the bobbin expands at an extremely low temperature, the winding tension of the superconducting wire can be kept high. However, as a drawback common to organic fibers but not inorganic fibers, compression creep occurs and the winding tension decreases with time. When an excessive tension is applied to a superconducting wire in a multilayer winding or the like, there is a problem that compression or bending deformation occurs. In this respect, the fiber reinforced plastic using the glass fiber or the ceramic fiber as well as the coil bobbin made of the low heat change glass or the ceramic itself, which is an inorganic material, has a substantially extremely low compression creep and a remarkably high resistance to compression and bending stress. G
When FRP or metal is used as the winding frame of a superconducting coil, the biggest problem is that the coil is easily quenched due to the loosening of the superconducting wire due to large circumferential contraction.
When fiber-reinforced plastics using organic fibers with negative expansion are used, the tension is loosened over time, and the coil bobbin is deformed due to excessive tension, making it easier for the wire to move, and consequently the direction in which the coil is easily quenched. Is to change. The superconducting coil using the winding frame according to the present invention has substantially no thermal distortion in the circumferential direction at cryogenic temperatures, so that the initial winding tension is kept high and stable over time. A high-performance coil having high quench resistance and high current density can be obtained.

【0012】次にコイルボビン材料の摩擦係数について
述べる。コイルボビンに巻回された超電導線は接触する
コイルボビンや含浸エポキシとの熱膨張率の差に起因す
る熱応力と初期の巻テンション及びローレンツ力のバラ
ンスにより安定な位置に移動する。今コイルボビンと超
電導線の関係に着目すると超電動線の動きに伴い両者の
間には摩擦係数に比例した摩擦発熱が生ずる。本発明よ
りなる低熱変形ガラス、セラミックス又はこれらの繊維
を用いた繊維強化プラスチックよりなるコイルボビンに
低摩擦係数の材料層を形成することにより、更に安定な
コイルボビンを作成することが可能となる。低摩擦係数
材料としては1〜4個のフッ素置換記を有するα−オレ
フィンのポリマー又はその共重合体よりなるフッ素系高
分子、パラフィン、ワックス、エチレン、又はプロピレ
ンを単量体とするポリマー又は共重合体よりなるオレフ
ィン系の高分子、二硫化モリブデンなどのモリブデン化
合物などが挙げられる。これらの内特に好ましいのはポ
リテトラフルオロエチレン(テフロン)、高分子量ポリ
エチレン、これらの材料の積層方法としては溶液コーテ
ィング法、溶融コーティング法、溶射法、蒸着法、スパ
ッタリング法、プラズマ重法等各種の方法を採用するこ
とが可能である。
Next, the friction coefficient of the coil bobbin material will be described. The superconducting wire wound around the coil bobbin moves to a stable position due to the balance between the thermal stress caused by the difference in the coefficient of thermal expansion between the coil bobbin and the impregnated epoxy and the initial winding tension and Lorentz force. Focusing now on the relationship between the coil bobbin and the superconducting wire, frictional heat is generated between the two along with the movement of the superconducting wire in proportion to the friction coefficient. By forming a material layer having a low coefficient of friction on a coil bobbin made of the low heat deformation glass, ceramics or fiber reinforced plastic using these fibers according to the present invention, a more stable coil bobbin can be produced. Examples of the low friction coefficient material include a polymer of α-olefin having 1 to 4 fluorine substitutions or a fluorine-based polymer composed of a copolymer thereof, a polymer containing paraffin, wax, ethylene, or propylene as a monomer or copolymer. An olefin-based polymer composed of a polymer, a molybdenum compound such as molybdenum disulfide, and the like can be given. Of these, particularly preferred are polytetrafluoroethylene (Teflon), high molecular weight polyethylene, and as a method for laminating these materials, various methods such as a solution coating method, a melt coating method, a thermal spraying method, a vapor deposition method, a sputtering method, and a plasma heavy method. It is possible to adopt a method.

【0013】[0013]

【実施例】本発明の低熱変化ガラス又はセラミックス自
体を用いたコイルボビンは以下のように行った。ガラス
及びセラミックスとしてはパイレックス、窒化珪素を各
々溶融法、ホットプレス法にて外径100×長さ500
mm、肉厚13mmの成形体を得た。またFRPについ
ては補強繊維としてTガラス(日東紡)、及びクオルツ
ェル(サンゴバン)を、マトリックスとしてはエポキシ
樹脂を使用し、以下の割合で均一混合しドープを作成し
た。 エピコート 827(油化シェル) 100 エピキュアー YH−300(油化シェル) 80 EMI−24(油化シェル) 1 次に各種繊維にエポキシ樹脂を含浸させながらマンドレ
ルに巻き付け、円筒状とした。次にこれをマンドレル上
に保持したまま100°C×2hr、その後130°C
×3hrにて硬化成形し繊維体積含有率65%の成形体
を得た。またこの内、低熱変化セラミックス及びTガラ
ス繊維強化プラスチックの円筒については表面の摩擦係
数を下げるため各々テフロン及び二硫化モリブデン(M
oS)の膜を表面に形成した。その方法としては、前
者は溶剤ゾルスプレー法により塗布、乾燥及び焼き付け
た後、15μmのまた後者はスパッタリング法により1
μmの皮膜を作成した。この様にして得られた各円筒は
これと同じ素材よりなるフランジを接合しコイルボビン
用巻枠を得た。これに1.2mmφの超電導導体をテン
ション10Kgfにて巻回した。その後、前記エポキシ
樹脂をコイルに含浸させ同じ条件で硬化させて超電導コ
イルを完成した。
EXAMPLE A coil bobbin using the low heat change glass or ceramics of the present invention was prepared as follows. Pyrex and silicon nitride are used as glass and ceramics, respectively.
mm and a molded body having a thickness of 13 mm were obtained. Also, for FRP, T glass (Nitto Bo) and Quolzell (Saint-Gobain) were used as reinforcing fibers, and epoxy resin was used as a matrix. Epicoat 827 (oiled shell) 100 Epicure YH-300 (oiled shell) 80 EMI-24 (oiled shell) 1 Next, various fibers were wound around a mandrel while being impregnated with an epoxy resin to form a cylinder. Next, while keeping this on a mandrel, 100 ° C. × 2 hr, and then 130 ° C.
The molded article was cured at × 3 hr to obtain a molded article having a fiber volume content of 65%. Among them, low heat change ceramics and T glass fiber reinforced plastic cylinders are made of Teflon and molybdenum disulfide (M
A film of oS 2 ) was formed on the surface. As for the method, the former is applied, dried and baked by a solvent sol spray method, and then the latter is applied by sputtering to a thickness of 15 μm.
A μm film was formed. Each of the thus obtained cylinders was joined to a flange made of the same material to obtain a coil bobbin bobbin. A 1.2 mmφ superconducting conductor was wound around this with a tension of 10 kgf. Thereafter, the coil was impregnated with the epoxy resin and cured under the same conditions to complete a superconducting coil.

【0014】[0014]

【比較例】比較例として以下のものを作成し比べた。ガ
ラスとしては通常のE−ガラスまたFRPとしては、補
強繊維としてE−ガラス繊維(日東紡)、高強力ポリエ
チレン繊維(東洋紡、SK−60)及び高強力ポリエチ
レン繊維/アルミナ繊維(住友化学、アルテックス)=
50/50(体積比)を用い上記エポキシをマトリック
スとしてフィラメントワインディング法により実施例と
同一形状のパイプを作成した。また金属としてアルミニ
ウムパイプについても検討した。この様にして得られた
各円筒にこれと同一素材よりなるフランジを接合し同一
条件で超電導コイルを作成し特性を調べた。これらの結
果を表1に示す。
[Comparative Example] The following was prepared as a comparative example and compared. E-glass as a normal glass or FRP as an E-glass fiber (Nitto Boseki), a high-strength polyethylene fiber (Toyobo, SK-60) and a high-strength polyethylene fiber / alumina fiber (Sumitomo Chemical, Altex) ) =
Using the 50/50 (volume ratio) and the epoxy as a matrix, a pipe having the same shape as that of the example was prepared by a filament winding method. Aluminum pipe was also studied as metal. A flange made of the same material was joined to each of the thus obtained cylinders, a superconducting coil was prepared under the same conditions, and the characteristics were examined. Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】(熱膨張率)巻枠の外表面にストレインゲ
ージを張り付けた後、液体He中に浸漬し円周方向の寸
法変化を測定した。測定位置は両端部を10cm開け等
間隔(7.5cm)に5点測定し平均値を求めた。ガラ
ス、金属自体で巻枠を作成するときはこれらの平板より
5mm立方体のテストピースを切り出した。またFRP
の場合は補強繊維であるがラス繊維自体を試料とした。
これらについてTMA(Thermal Mechan
ical Analyzer)法にて室温より液体He
中に浸漬し円周方向の寸法変化を測定した。 (摩擦係数)各コイルボビンより10×10×5mmの
試料を切り出し超電導線材のマトリックスである5mm
φのCuNiを10Nの力を印可しながら押しつけて液
体He中で摩擦係数を測定した。 (応力緩和)各コイルボビンより10×10×5mmの
試料を切り出し、液体He中にてクロスヘッド間隔を5
mm一定とし30MPaの圧縮応力を加え100min
後の応力を測定した。以下により応力緩和率(X)を測
定した。 X=σ/σ×100% σ: 初期応力 30MPa σ : 100min後の応力 (圧縮応力)各パイプからx(パイプ断面から見て接線
方向)、y(パイプ長手方向)、z(x,y軸に対して
90゜方向)の長さが5、10、5mmの直方体を切り
出しx方向に1mm/minの速度で室温にて圧縮特性
を測定した。これより圧縮強度、圧縮弾性率を算出し
た。 (初期コイル特性)超電導コイル装置を液体He中に浸
漬してトレーニング特性を調べた。コイル装置を50H
z電源に接続し電流を0より徐々に増加させ電圧が発生
するときの電流値をクエンチ電流値(Iq)とした。こ
の操作を繰り返し最大となる回の電流値(Iq)を求め
た。 (コイル耐久性)2万時間運転した後のコイル特性を前
述の方法で調べた。
(Coefficient of thermal expansion) A strain gauge was attached to the outer surface of the bobbin, immersed in liquid He, and the dimensional change in the circumferential direction was measured. The measurement position was measured at five points at equal intervals (7.5 cm) with both ends opened by 10 cm, and the average value was obtained. When forming a bobbin from glass or metal itself, a 5 mm cube test piece was cut out from these flat plates. Also FRP
In the case of (1), the lath fiber itself was used as a sample, though it was a reinforcing fiber.
For these, TMA (Thermal Machine)
liquid Heal from the room temperature by the Ionic Analyzer) method.
It was immersed in the sample and the dimensional change in the circumferential direction was measured. (Coefficient of friction) A sample of 10 × 10 × 5 mm was cut out from each coil bobbin, and 5 mm which was a matrix of a superconducting wire was cut out.
The coefficient of friction was measured in liquid He by pressing CuNi of φ while applying a force of 10N. (Stress relaxation) A sample of 10 × 10 × 5 mm was cut out from each coil bobbin, and the crosshead interval was set to 5 in liquid He.
mm and apply a compressive stress of 30 MPa for 100 min.
Later stresses were measured. The stress relaxation rate (X) was measured as follows. X = σ / σ 0 × 100% σ 0 : initial stress 30 MPa σ: stress after 100 min (compressive stress) From each pipe, x (tangential direction as viewed from pipe cross section), y (pipe longitudinal direction), z (x, A rectangular parallelepiped having a length of 5, 10, 5 mm (in the direction of 90 ° with respect to the y-axis) was cut out, and the compression characteristics were measured at room temperature at a speed of 1 mm / min in the x-direction. From this, the compression strength and compression elastic modulus were calculated. (Initial Coil Characteristics) The training characteristics were examined by immersing the superconducting coil device in liquid He. 50H coil device
The current value when a voltage was generated by connecting to a z power supply and gradually increasing the current from 0 was defined as a quench current value (Iq). This operation was repeated to determine the maximum current value (Iq). (Coil durability) The coil characteristics after operation for 20,000 hours were examined by the above-described method.

【0017】[0017]

【発明の効果】本発明によれば初期のコイル特性のみな
らず長期間使用した後もトレーニング回数が少なく最大
電流値が高く安定且つ高性能な超電導コイル提供するこ
とを可能にした。
According to the present invention, it has become possible to provide a stable and high-performance superconducting coil which has a small number of times of training and a high maximum current value even after long-term use, as well as initial coil characteristics.

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 263:00 309:08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B29K 263: 00 309: 08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 筒又は柱状の巻枠に超電導線を巻回した
極低温用超電導コイルにおいて前記巻枠として300K
より4.2Kまでの平均の熱膨張率が3.8×10−6
(1/℃)以下の低熱変化ガラスまたはセラミックスよ
り成ることを特徴とする超電導コイル。
1. A cryogenic superconducting coil in which a superconducting wire is wound around a cylindrical or columnar winding frame, wherein the winding frame is 300K.
The average coefficient of thermal expansion up to 4.2K is 3.8 × 10 −6
A superconducting coil made of low heat change glass or ceramic having a temperature of (1 / ° C.) or less.
【請求項2】 300Kより4.2Kまでの平均の熱膨
張率が3.8×10−6(1/℃)以下の低熱変化ガラ
ス繊維又はセラミックス繊維とマトリックス樹脂を一体
成形した繊維強化プラスチックよりなる巻枠を用いるこ
とを特徴とする超電導コイル。
2. A fiber reinforced plastic obtained by integrally molding a low heat-change glass fiber or a ceramic fiber and a matrix resin having an average coefficient of thermal expansion of 3.8 × 10 −6 (1 / ° C.) or less from 300K to 4.2K. A superconducting coil characterized by using a winding frame.
【請求項3】 巻枠が該低熱変形ガラス又はセラミック
ス繊維のロービングをコイルの軸方向に対して±35〜
90度の角度で巻回しマトリックス樹脂と一体成形した
繊維強化プラスチックであることを特徴とする請求項2
記載の超電導コイル。
3. The winding frame is provided with a roving of the low heat-deformable glass or ceramics fiber of ± 35 to the axial direction of the coil.
3. A fiber reinforced plastic wound at an angle of 90 degrees and integrally formed with a matrix resin.
The superconducting coil as described.
【請求項4】 巻枠の表面にモリブデン化合物層を形成
したことを特徴とする請求項1,2,3のいずれか1項
記載の超電導コイル。
4. The superconducting coil according to claim 1, wherein a molybdenum compound layer is formed on the surface of the bobbin.
【請求項5】 巻枠の表面にフッ素化合物層を形成した
ことを特徴とする請求項1,2,3のいずれか1項記載
の超電導コイル。
5. The superconducting coil according to claim 1, wherein a fluorine compound layer is formed on a surface of the bobbin.
【請求項6】 巻枠の表面にパラフィン、又はオレフィ
ン化合物層を形成したことを特徴とする請求項1,2,
3のいずれか1項記載の超電導コイル。
6. A paraffin or olefin compound layer is formed on the surface of a bobbin.
4. The superconducting coil according to claim 3.
【請求項7】 巻枠の表面にポリオレフン又はその共重
合体層を形成したことを特徴とする請求項1,2,3の
いずれか1項記載の超電導コイル。
7. The superconducting coil according to claim 1, wherein a polyolefin or a copolymer layer thereof is formed on the surface of the bobbin.
【請求項8】 巻枠の表面に珪素化合物層を形成したこ
とを特徴とする請求項1,2,3のいずれか1項記載の
超電導コイル。
8. The superconducting coil according to claim 1, wherein a silicon compound layer is formed on the surface of the bobbin.
JP8359505A 1996-12-17 1996-12-17 Supeconductive coil Pending JPH10177913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8359505A JPH10177913A (en) 1996-12-17 1996-12-17 Supeconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8359505A JPH10177913A (en) 1996-12-17 1996-12-17 Supeconductive coil

Publications (1)

Publication Number Publication Date
JPH10177913A true JPH10177913A (en) 1998-06-30

Family

ID=18464850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8359505A Pending JPH10177913A (en) 1996-12-17 1996-12-17 Supeconductive coil

Country Status (1)

Country Link
JP (1) JPH10177913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178491A (en) * 2008-02-01 2009-08-13 Toshiba Corp Superconductive magnet for magnetic resonance imaging apparatus and method of manufacturing the same
JP2013539338A (en) * 2010-09-06 2013-10-17 シーメンス アクチエンゲゼルシヤフト High temperature superconductor (HTS) coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178491A (en) * 2008-02-01 2009-08-13 Toshiba Corp Superconductive magnet for magnetic resonance imaging apparatus and method of manufacturing the same
JP2013539338A (en) * 2010-09-06 2013-10-17 シーメンス アクチエンゲゼルシヤフト High temperature superconductor (HTS) coil
US9048015B2 (en) 2010-09-06 2015-06-02 Siemens Aktiengesellschaft High-temperature superconductor (HTS) coil

Similar Documents

Publication Publication Date Title
US6592979B1 (en) Hybrid matrix fiber composites
JP2888572B2 (en) Film-based structural component with controlled coefficient of thermal expansion
US5554430A (en) Low CTE boron/carbon fiber laminate
JP2888664B2 (en) Optical tube made of CFRP
CA1319801C (en) Molecularly oriented tubular components having a controlled coefficient of thermal expansion
EP0364811B1 (en) Composite coil forms for electrical systems
JPH10177913A (en) Supeconductive coil
WO2012082280A1 (en) Composites having distortional resin coated fibers
Schwartz et al. Characteristics of boron fibers and boron-fiber-reinforced plastic composites.
JP3218628B2 (en) Cryogenic fiber reinforced plastic composite
JP3582602B2 (en) Cryogenic container
JPH08195311A (en) Superconducting coil
JPH07335427A (en) Superconductive coil
JP2001060508A (en) Superconducting dipole magnet
JPH08115813A (en) Superconducting coil
JP3036170B2 (en) Mount for skid system
Rampini et al. CFRP solutions for the innovative telescopes design
JPH05320321A (en) Cryogenic material
JPH0792396A (en) Optical cylinder made of cfrp
JPH06318514A (en) Superconducting coil device
JPH02113170A (en) Piston pin
JPH06211993A (en) Fiber-reinforced plastic material for cryogenic temperature
JPH0469493A (en) Heat insulating support member for cryogenic temperature vessel
Martins et al. 4 Carbon nanotube-based materials for space applications
JPH05320369A (en) Material for cryogenic use

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060629