JPH1016068A - Manufacture of tube body constituted of fiber-reinforced thermoplastic resin - Google Patents

Manufacture of tube body constituted of fiber-reinforced thermoplastic resin

Info

Publication number
JPH1016068A
JPH1016068A JP8174911A JP17491196A JPH1016068A JP H1016068 A JPH1016068 A JP H1016068A JP 8174911 A JP8174911 A JP 8174911A JP 17491196 A JP17491196 A JP 17491196A JP H1016068 A JPH1016068 A JP H1016068A
Authority
JP
Japan
Prior art keywords
preform
fiber
core
thermoplastic resin
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8174911A
Other languages
Japanese (ja)
Inventor
Hajime Sato
元 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP8174911A priority Critical patent/JPH1016068A/en
Publication of JPH1016068A publication Critical patent/JPH1016068A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain an improvement in the productivity of a preform and to provide a tube body being more inexpensive and having a higher quality. SOLUTION: A prepreg sheet 2 which is formed of a matrix 5 constituted of reinforcing fibers 4 disposed in a plurality of directions and of thermoplastic resin, which is made longitudinal in a direction wherein it has the maximum bending rigidity and of which the rigidity in the lateral direction is made 70% of that in the longitudinal direction is wound in two or more turns to be tubular so that the longitudinal direction thereof is the axial direction of a tube body 1. A preform 3 thus prepared is inserted between a core and an outer die and body is molded by heating and pressing by the force of expansion of the core. Thereby the tube body constituted of the fiber-reinforced thermoplastic resin is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、熱可塑性樹脂を
マトリックスとするプリプレグシートを用いた繊維強化
熱可塑性樹脂からなる筒体の製造方法に関するものであ
って、特にプリプレグシートの横方向の剛性を縦方向よ
り小にすることにより能率よく製造できるようにした繊
維強化熱可塑性樹脂からなる筒体の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tubular body made of a fiber-reinforced thermoplastic resin using a prepreg sheet containing a thermoplastic resin as a matrix. The present invention relates to a method for manufacturing a cylindrical body made of a fiber-reinforced thermoplastic resin, which can be manufactured efficiently by making the size smaller than the longitudinal direction.

【0002】[0002]

【従来の技術】 一般に、ポリエーテルエーテルケトン
等の所謂、エンジニアリング熱可塑性樹脂をマトリック
スとする複合材料は、エポキシ樹脂等の熱硬化性樹脂を
マトリックスとする複合材料に比して、靭性、耐熱性、
耐環境性が格段に優れている。そのため、これら熱可塑
性樹脂をマトリックスとするプリプレグシートで積層成
形品、例えば、筒体をつくり、この筒体をトルクーチュ
ーブ等の構造部材やクラッシュエレメント等の緩衝材に
用いる試みがなされている。
2. Description of the Related Art In general, a composite material using a so-called engineering thermoplastic resin such as polyetheretherketone as a matrix is more tough and heat-resistant than a composite material using a thermosetting resin such as an epoxy resin as a matrix. ,
Excellent environmental resistance. For this reason, an attempt has been made to form a laminated molded product, for example, a tubular body with a prepreg sheet using these thermoplastic resins as a matrix, and to use this tubular body as a structural member such as a torque tube or a cushioning material such as a crash element.

【0003】前記筒体の製造方法としては、複数本の連
続繊維を一方向に引き揃えた補強繊維層に熱可塑性樹脂
からなるマトリックスを含浸したプリプレグシートを渦
巻状に巻回し、積層して筒状のプリフォームとし、その
筒状のプリフォームに、ポリテトラフルオロエチレン等
の熱膨張性樹脂からなる中子、または、可撓性の筒状袋
体の中に流体を封入してなる中子を挿入し、その外側を
外型で覆い、次いで、プリフォームおよび中子を加熱し
て熱可塑性樹脂を軟化もしくは溶融し、中子の膨張力に
よって該プリフォームを加圧成形して筒体とする方法が
知られている(例えば、特開平6ー71654号公報及
び特開平5ー293908号公報)。
[0003] As a method of manufacturing the tubular body, a prepreg sheet in which a matrix made of a thermoplastic resin is impregnated into a reinforcing fiber layer in which a plurality of continuous fibers are aligned in one direction is spirally wound and laminated. Core made of a heat-expandable resin such as polytetrafluoroethylene, or a core formed by enclosing a fluid in a flexible cylindrical bag. Is inserted, and the outside is covered with an outer mold.Then, the preform and the core are heated to soften or melt the thermoplastic resin, and the preform is press-molded by the expansion force of the core to form a cylindrical body. There are known methods (for example, JP-A-6-71654 and JP-A-5-293908).

【0004】[0004]

【発明が解決しようとする課題】然しながら、上記のよ
うな方法は、ポリエーテルエーテルケトン(PEEK)
等の可塑化温度の高い熱可塑性樹脂をマトリックスとす
る繊維強化熱可塑性樹脂の筒体の製造方法としてフィラ
メントワインディング等のそれ以前よりおこなわれてい
た製造方法に比べれば有効な技術である。
However, the above-mentioned method involves the use of polyetheretherketone (PEEK).
This is an effective technique as compared with a manufacturing method that has been conventionally performed, such as filament winding, as a method of manufacturing a fiber-reinforced thermoplastic resin cylindrical body using a thermoplastic resin having a high plasticization temperature as a matrix.

【0005】しかし、上記熱可塑性樹脂をマトリックス
とするプリプレグシートは、常温ではタッキネスのほと
んどない硬いシートであるが、次のような問題があっ
た。即ち、複数本の連続繊維を引き揃えて補強繊維を一
方向に配列したプリプレグシートを渦巻状に巻回し、積
層して筒状のプリフォームを成形する工程は工数がかか
り、かなり複雑である。
[0005] However, the prepreg sheet using the above-mentioned thermoplastic resin as a matrix is a hard sheet having almost no tackiness at room temperature, but has the following problems. That is, the process of spirally winding a prepreg sheet in which a plurality of continuous fibers are aligned and reinforcing fibers arranged in one direction, and laminating and forming a cylindrical preform is time-consuming and considerably complicated.

【0006】必要な強度や剛性を発現するには、少なく
とも2種類の方向のプリプレグを重ねるなどして巻かな
くてはならないが、方向性のあるプリプレグシートを筒
体の軸に一致させずに巻く時には、材料の反り返りのた
めに竹の子状に変形し易い。また2方向のプリプレグの
層間を密着させることも、反り返りの方向が異なるの
で、ある限度以上は困難であり、プリフォームの肉厚が
計算より厚くなってしまう場合が多い。
In order to achieve the required strength and rigidity, the prepregs in at least two different directions must be wound, for example, by overlapping them, but the directional prepreg sheet must be aligned with the axis of the cylindrical body. When rolled, the material tends to be deformed into a bamboo shoot due to warping of the material. Also, it is difficult to bring the two layers of the prepreg into close contact with each other because the direction of the warpage is different, so that it is difficult to exceed a certain limit, and the thickness of the preform is often thicker than calculated.

【0007】例えば、炭素繊維とポリエーテルエーテル
ケトンからなり厚さ0.125mmのプリプレグシート
を軸に対して互いに反対方向に±30度となるように2
0層巻いたときに、計算では厚さは2.5mmとなる
が、隙間ができて3.75mmと1.5倍の厚さになる
ことさえあり、この場合、膨張性中子の膨張はより大き
くなければならず、それが不十分だと押圧不足になり、
層間の密着が十分得られないことがある。
[0007] For example, a prepreg sheet made of carbon fiber and polyetheretherketone and having a thickness of 0.125 mm is placed in a direction opposite to the axis by ± 30 degrees.
When 0 layers are wound, the thickness is calculated to be 2.5 mm, but a gap may be formed and the thickness may be even 1.5 times as large as 3.75 mm. In this case, the expansion of the expandable core is Must be bigger, and if it is not enough, it will be underpressed,
In some cases, sufficient adhesion between layers may not be obtained.

【0008】また、補強繊維を一方向に配列したプリプ
レグシートは、切り口において繊維方向にそって裂け易
いので、プリフォームの成形において注意が必要であ
る。また、従来の内圧成形法では、ポリエーテルエーテ
ルケトン(PEEK)等の成形温度が高く、高価な材料
には適用できたが、ナイロン樹脂等の比較的成形温度が
低い(300℃以下)の材料には、マンドレルの熱膨張
が不足し、間隙を完全になくすことができ得なかった。
In addition, a prepreg sheet in which reinforcing fibers are arranged in one direction is apt to be torn along the fiber direction at a cut end, so that care must be taken in molding the preform. Also, in the conventional internal pressure molding method, a molding temperature such as polyetheretherketone (PEEK) is high and can be applied to an expensive material, but a material having a relatively low molding temperature (300 ° C. or lower) such as a nylon resin. However, the thermal expansion of the mandrel was insufficient, and the gap could not be completely eliminated.

【0009】この発明は、かかる従来の課題に着目して
案出されたもので、プリフォームの生産性の向上、およ
び、品質の安定をはかり、より安価で高品質の繊維強化
熱可塑性樹脂からなる筒体の製造方法を提供することを
目的とするものである。
The present invention has been devised in view of such conventional problems, and is intended to improve the productivity of preforms and stabilize the quality, and to use a less expensive and higher quality fiber reinforced thermoplastic resin. It is an object of the present invention to provide a method for manufacturing a cylindrical body.

【0010】[0010]

【課題を解決するための手段】この発明は上記目的を達
成するため、先ず、複数方向に繊維を配置した補強繊維
と熱可塑性樹脂からなるマトリックスで構成され、最大
の曲げ剛性を有する方向を縦方向とし、横方向、即ち、
縦方向に対しほぼ90度の方向の剛性を縦方向の剛性の
70%以下にしたプリプレグシートを用意する。
In order to achieve the above object, the present invention firstly comprises a matrix composed of a thermoplastic resin and a reinforcing fiber in which fibers are arranged in a plurality of directions. Direction, and the horizontal direction, that is,
A prepreg sheet is prepared in which the rigidity in the direction substantially 90 degrees to the longitudinal direction is set to 70% or less of the rigidity in the longitudinal direction.

【0011】次に、そのプリプレグシートを前記の縦方
向が筒体の軸方向となるように筒状に2周以上巻いてプ
リフォームを製作する。そして、そのプリフォームに中
子を挿入し、その外側に外型を被せ、プリフォームと中
子をオーブン等の加熱手段で加熱してプリフォームのマ
トリックスを可塑化し、加熱された中子の膨張力と外型
でプレフォームを押圧して、巻き重られたプリプレグシ
ートの層間を融着して一体化し、筒体に成形する。そし
て水等の冷却手段で筒体のマトリックスを冷却して硬化
し、硬化した筒体を中子および外型から離型して繊維強
化熱可塑性樹脂からなる筒体を製造するものである。
Next, the prepreg sheet is rolled into a tubular shape two or more times so that the longitudinal direction is the axial direction of the tubular body, thereby producing a preform. Then, insert the core into the preform, cover the outer mold with the outside, heat the preform and the core with a heating means such as an oven, plasticize the matrix of the preform, and expand the heated core. The preform is pressed with a force and an outer mold, and the layers of the wound prepreg sheet are fused and integrated to form a cylindrical body. The matrix of the cylindrical body is cooled and cooled by cooling means such as water, and the hardened cylindrical body is released from the core and the outer mold to produce a cylindrical body made of a fiber-reinforced thermoplastic resin.

【0012】そして、プリプレグシートの補強繊維に
は、プリプレグシートの縦方向、および、縦方向におお
むね直行する横方向にそれぞれ繊維束を配列し、プリプ
レグシートの横方向の曲げ剛性が縦方向の曲げ剛性の7
0%以下になるようにした補強繊維を使用するのが成形
が更に容易になるので好ましい選択の一つである。上
記、70%以下にすることにより、プリプレグシートを
巻き易くなり、緊密に巻くことが可能となる。また、前
記の補強繊維には、縦方向繊維と無方向性の不織布を合
わせた補強繊維を使用するのも好ましい選択の一つであ
る。
The reinforcing fibers of the prepreg sheet are arranged such that fiber bundles are arranged in the longitudinal direction of the prepreg sheet and in the transverse direction which is substantially perpendicular to the longitudinal direction, and the bending stiffness of the prepreg sheet in the transverse direction is increased in the longitudinal direction. Rigid 7
The use of reinforcing fibers having a concentration of 0% or less is one of the preferable choices because molding becomes easier. By setting the content to 70% or less, the prepreg sheet can be easily wound and can be tightly wound. It is also one of the preferable choices to use, as the reinforcing fiber, a reinforcing fiber obtained by combining a longitudinal fiber and a nondirectional nonwoven fabric.

【0013】また、前記の補強繊維には、縦方向繊維と
ニットを合わせた補強繊維を使用するのも好ましい選択
の一つである。中子については、ポリテトラフルオロエ
チレン等の熱膨張性の樹脂でできたものを使用し、加熱
によりその中子を膨張させてプリフォームを押圧するよ
うにする方法が好ましい。
It is also a preferable choice to use a reinforcing fiber obtained by combining a longitudinal fiber and a knit as the reinforcing fiber. As the core, it is preferable to use a material made of a thermally expandable resin such as polytetrafluoroethylene, and to expand the core by heating to press the preform.

【0014】また、中子については、可撓性の筒状の袋
体の中に空気や水等の流体を封入したものを使用し、流
体の加圧および加熱による圧力上昇によってプリフォー
ムを押圧する方法も好ましい。上記方法で製造される筒
体は、航空機や自動車等に使用し、筒体の軸方向に衝撃
を受け、その衝撃力によって筒体を破壊して衝撃エネル
ギーを吸収するいわゆるクラッシュエレメントとして使
用することができ、上記製造方法はクラッシュエレメン
トの製造方法としても好ましい方法である。
As the core, a flexible tubular bag in which a fluid such as air or water is sealed is used, and the preform is pressed by increasing the pressure by pressurizing and heating the fluid. Is also preferable. The cylinder manufactured by the above method is used as a so-called crash element that is used for aircraft, automobiles, etc., receives an impact in the axial direction of the cylinder, breaks the cylinder by the impact force, and absorbs impact energy. The above manufacturing method is also a preferable method for manufacturing a crush element.

【0015】また、上記方法で製造される筒体は、種々
の機器においてトルクの伝達に使用されるいわゆるトル
クチューブとして使用することができ、上記製造方法は
トルクチューブの製造方法としても好ましい方法であ
る。
Further, the cylinder manufactured by the above method can be used as a so-called torque tube used for transmitting torque in various devices, and the above manufacturing method is a preferable method as a method of manufacturing a torque tube. is there.

【0016】[0016]

【発明の実施の形態】以下、添付図面に基づき、この発
明の実施形態を説明する。図1は、この発明の製造工程
を示し、袋体1はプリプレグシート2、プリフォーム3
の工程を経て製造される。図1(a)において、プリプ
レグシート2は、補強繊維4と熱可塑性樹脂からなるマ
トリックス5で構成され、補強繊維4は、プリプレグシ
ート2の縦方向に縦繊維束6を引き揃え、横方向、即
ち、縦繊維束と直行する方向に横繊維束7を引き揃えて
なり、マトリックス5を媒体としてシート状に形成され
ている。そして、補強繊維4は、プリプレグシート2の
横方向の剛性が縦方向の剛性の70%以下となるよう
に、縦繊維束6および横繊維束7を構成している。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a manufacturing process of the present invention, wherein a bag 1 is a prepreg sheet 2 and a preform 3.
It is manufactured through the steps of In FIG. 1A, a prepreg sheet 2 is composed of a matrix 5 made of reinforcing fibers 4 and a thermoplastic resin, and the reinforcing fibers 4 align a longitudinal fiber bundle 6 in the longitudinal direction of the prepreg sheet 2, and That is, the horizontal fiber bundles 7 are aligned in a direction perpendicular to the vertical fiber bundles, and are formed in a sheet shape using the matrix 5 as a medium. The reinforcing fibers 4 constitute the vertical fiber bundle 6 and the horizontal fiber bundle 7 such that the rigidity in the horizontal direction of the prepreg sheet 2 is 70% or less of the rigidity in the vertical direction.

【0017】例えば、縦繊維束6および横繊維束7に同
一の剛性を有する繊維束を使用する場合は、横繊維束7
の引き揃え密度を、縦繊維束6の引き揃え密度の70%
以下とし、また、縦繊維束6および横繊維束7を同じ引
き揃え密度とする場合は、横繊維束の剛性を、70%以
下とするなどして、プリプレグシート1の横方向の剛性
が縦方向の剛性の70%以下となるようにしている。な
お、この場合の補強繊維は、縦繊維と横繊維で織られて
いてもよい。
For example, when fiber bundles having the same rigidity are used for the vertical fiber bundle 6 and the horizontal fiber bundle 7, the horizontal fiber bundle 7
70% of the drawing density of the longitudinal fiber bundle 6
When the vertical fiber bundle 6 and the horizontal fiber bundle 7 have the same drawing density, the rigidity of the horizontal fiber bundle is set to 70% or less, and the rigidity of the prepreg sheet 1 in the horizontal direction is reduced. The rigidity in the direction is 70% or less. In this case, the reinforcing fibers may be woven with longitudinal fibers and weft fibers.

【0018】また図1(b)に示すように、補強繊維
6’を1枚のプリプレグシート1の中に縦方向に対して
一定の角度θとなるように互いにバイアス状に2方向に
配設しても良い。この交差角度2θを変えることによっ
て、上記の縦方向及び横方向お剛性比を適宜調節するこ
とが出来る。次に、図1(c),図1(d)において、
プリフォーム3は、縦繊維束6が筒体1の軸方向を形成
するようにして2周以上巻かれたプリプレグシート2に
より形成されている。
Further, as shown in FIG. 1 (b), reinforcing fibers 6 'are arranged in one direction in a single prepreg sheet 1 in a biased manner so as to have a constant angle θ with respect to the longitudinal direction. You may. By changing the intersection angle 2θ, the above-described rigidity ratio in the vertical direction and the horizontal direction can be appropriately adjusted. Next, in FIGS. 1 (c) and 1 (d),
The preform 3 is formed by a prepreg sheet 2 in which the longitudinal fiber bundle 6 is wound two or more times so as to form the axial direction of the cylindrical body 1.

【0019】図2に示すように、円筒状の外型8と円筒
状の中子9との間にプリフォーム3を挿入する。外型8
は金属等で構成され、また中子9は熱膨張性の高いポリ
テトラフルオロエチレン等の樹脂で構成されている。前
記中子9とプリフォーム3をオーブン等の加熱手段で加
熱し、マトリックス5を可塑化し、その状態で中子の膨
張力と外型によってプリフォーム3を押圧し筒体に成形
する。そして、それらを水中に入れる等の手段で冷却
し、冷却によって硬化したプリフォーム、即ち、筒体を
中子と外型から離型し、完成した筒体を得る。
As shown in FIG. 2, the preform 3 is inserted between a cylindrical outer die 8 and a cylindrical core 9. Outer die 8
Is made of a metal or the like, and the core 9 is made of a resin such as polytetrafluoroethylene having a high thermal expansion property. The core 9 and the preform 3 are heated by a heating means such as an oven, and the matrix 5 is plasticized. In this state, the preform 3 is pressed by the expansion force of the core and the outer mold to form a cylinder. Then, they are cooled by means such as placing them in water, and the preform hardened by cooling, that is, the cylindrical body is released from the core and the outer mold to obtain a completed cylindrical body.

【0020】前記マトリックスは熱可塑性樹脂であり、
ポリカーボネート、ポリアミド、ポリプロピレン、ポリ
エステル、ポリマーアロイ等が適している。また、補強
繊維は、炭素繊維、ガラス繊維、アラミド繊維、炭化珪
素繊維、ボロン繊維、アルミナ繊維等の耐熱性を備え
た、強度の大きい繊維が好ましい。プリプレグの樹脂含
浸状態や平滑性は、できるだけ完全な含浸が達成され、
平滑性の高いものが好ましい。
The matrix is a thermoplastic resin,
Polycarbonate, polyamide, polypropylene, polyester, polymer alloy and the like are suitable. Further, as the reinforcing fiber, a fiber having high heat resistance and high strength such as carbon fiber, glass fiber, aramid fiber, silicon carbide fiber, boron fiber, and alumina fiber is preferable. The resin impregnation state and smoothness of the prepreg are as complete as possible.
Those having high smoothness are preferred.

【0021】中子には、耐熱性と熱膨張性の大きい材質
が望ましく、ポリテトラフルオロエチレン樹脂等が好ま
しい。また、中子9には、可撓性の筒状袋体の中に流体
を封入した膨張性の中子も使用できる。この場合は、プ
リフォームに、流体を封入していないかあるいは十分に
は封入していない筒状袋体を挿入し、外型に組入れ、そ
の後に空気、水等の流体を封入加圧してプリフォームを
押圧し、加熱によってさらに一層押圧することができ
る。このようにするとプリフォームの内径が小さめにで
きていても、中子はプリフォームに容易に挿入される。
The core is desirably made of a material having high heat resistance and thermal expansion properties, such as polytetrafluoroethylene resin. The core 9 may be an inflatable core in which a fluid is sealed in a flexible tubular bag. In this case, insert a tubular bag that does not or does not sufficiently seal the fluid into the preform, assembles it into the outer mold, and then seals and pressurizes fluid such as air, water, etc. The reform can be pressed and further pressed by heating. In this way, the core is easily inserted into the preform even if the inner diameter of the preform is made smaller.

【0022】図3は、プリプレグシート2の他の実施形
態であり、補強繊維4は、縦方向に引き揃えられた縦繊
維束6と無方向性の不織布10を重合わせてなってい
る。この場合も横方向の剛性は縦方向の剛性の70%以
下に調整されている。図4は、プリプレグシート2のさ
らに他の実施形態であり、補強繊維4は、縦方向に引き
揃えられた縦繊維束6とニット11を重合わせてなって
いる。この場合も横方向の剛性は縦方向の剛性の70%
以下に調整されている。
FIG. 3 shows another embodiment of the prepreg sheet 2 in which the reinforcing fibers 4 are formed by overlapping a longitudinal fiber bundle 6 aligned in the longitudinal direction and a non-directional nonwoven fabric 10. Also in this case, the rigidity in the horizontal direction is adjusted to 70% or less of the rigidity in the vertical direction. FIG. 4 shows still another embodiment of the prepreg sheet 2, in which the reinforcing fibers 4 are formed by overlapping the vertical fiber bundle 6 and the knit 11 that are aligned in the vertical direction. In this case, the rigidity in the horizontal direction is 70% of the rigidity in the vertical direction.
It has been adjusted below.

【0023】この発明では、プリプレグシートの横方向
の剛性が縦方向の剛性の70%以下で小さい。したがっ
て、プリプレグシートを巻いてプリフォームとする時に
プリプレグシートが巻き易い。特に上記の熱可塑性樹脂
はタッキネスがほとんどない場合が多いので層間が密着
しにくく、そのために、横方向の剛性が大きいと層間の
隙間が大きくなり、プリフォームが径方向に嵩張り、そ
の外径が大きくなる。
According to the present invention, the stiffness in the horizontal direction of the prepreg sheet is 70% or less of the stiffness in the vertical direction and is small. Therefore, when the prepreg sheet is wound into a preform, the prepreg sheet is easily wound. In particular, the thermoplastic resin described above often has little tackiness, so that it is difficult for the interlayers to adhere to each other. For this reason, when the rigidity in the lateral direction is large, the gap between the layers becomes large, and the preform becomes bulky in the radial direction, and its outer diameter is increased. Becomes larger.

【0024】そのような時にプリフォームを中子と外型
の間に挿入するには、熱膨張の大きな中子を使って中子
の外径を小さくしなければならないが、それに適応でき
る耐熱性の中子の材料は乏しい。即ち、この発明は、横
方向の剛性の小さいプリプレグシートを使用するので、
たとえマトリックスにタッキネスの少ない樹脂を使用し
てても、プリプレグシートは巻き易く、層間の隙間がほ
とんどなく、肉厚の薄く嵩張らないプリフォームを作る
ことができる。
In such a case, in order to insert the preform between the core and the outer mold, the outer diameter of the core must be reduced by using a core having a large thermal expansion. The core material is scarce. That is, since the present invention uses a prepreg sheet having a small lateral rigidity,
Even if a resin having low tackiness is used for the matrix, the prepreg sheet is easy to wind, there is almost no gap between the layers, and a preform having a small thickness and no bulk can be produced.

【0025】また、横方向の剛性が小さいために、巻き
崩れが起こらず、シート端縁の跳ね返りも小さいので端
縁を簡単に溶接するだけでプリフォームの形は維持で
き、中子と外型の装着も容易である。また、プリフォー
ムがこのように理想的に作られるので、仕上がった袋体
にも、偏肉や層間剥離がおこらない。なお、横方向の剛
性が縦方向の剛性の70%を越えると、プリフォームの
層間の隙間が大きくなってきて、製造し難くなってく
る。
Also, since the rigidity in the lateral direction is small, the roll does not collapse and the rebound of the sheet edge is small, so that the shape of the preform can be maintained by simply welding the edge, and the core and the outer mold can be maintained. Is easy to mount. In addition, since the preform is made ideally in this way, the finished bag does not undergo uneven thickness or delamination. If the stiffness in the horizontal direction exceeds 70% of the stiffness in the vertical direction, the gap between the layers of the preform becomes large, and it becomes difficult to manufacture the preform.

【0026】また、プリフォームがプリプレグを1層巻
いてなる場合にもこの発明の製造方法で製造できるが、
この場合はプリフォームが嵩張ることがないので、この
発明による効果は少ない。以上のように、この発明によ
れば、高機能の材料を使って品質の高い袋体を製造する
ことができるので、高機能と信頼性が要求されるクラッ
シュエレメントやトルクチューブ等を容易に製造でき
る。
[0026] Further, when the preform is formed by winding the prepreg by one layer, the preform can be produced by the production method of the present invention.
In this case, since the preform does not become bulky, the effect of the present invention is small. As described above, according to the present invention, a high-quality bag can be manufactured using a high-performance material, so that a crash element, a torque tube, and the like, which require high performance and reliability, can be easily manufactured. it can.

【0027】[0027]

【実施例】外径および長さが同一の袋体をこの発明の製
造方法(実施例1、実施例2)、および、他の製造方法
(比較例1、比較例2)により製造し、その優劣を評価
した。 (実施例1)繊維を縦方向と横方向の割合が7:3にな
るように配した方向性ガラス平織布2枚を合わせて補強
繊維とし、ナイロン6をマトリックスとするプリプレグ
シートを用意した。この場合プリプレグシートの剛性の
実測値は横方向剛性が縦方向剛性の54%であり、プリ
プレグシートの厚さは0.33mmであった。また、繊
維体積含有率は50%であった。
EXAMPLES Bags having the same outer diameter and length were manufactured by the manufacturing method of the present invention (Examples 1 and 2) and other manufacturing methods (Comparative Examples 1 and 2). The superiority was evaluated. (Example 1) A prepreg sheet was prepared in which two directional glass plain woven fabrics in which fibers were arranged so that the ratio of the longitudinal direction to the lateral direction was 7: 3 were used as reinforcing fibers, and nylon 6 was used as a matrix. . In this case, the measured values of the stiffness of the prepreg sheet were that the stiffness in the transverse direction was 54% of the stiffness in the longitudinal direction, and the thickness of the prepreg sheet was 0.33 mm. The fiber volume content was 50%.

【0028】次いで、プリプレグシートの縦方向を筒体
の軸方向とし、内径を46.5mmとして、プリプレグ
シートを層間がよく密着するように巻き、巻き終わり部
を超音波スポット溶接してプリフォームを製作した。次
いで、このプリフォームに、ポリテトラフルオロエチレ
ンからなり、外径46mm、内径19mmの中子を挿入
し、プリフォームの上に離型処理したポリイミドフィル
ムを一周巻き、内径が55.0mmの銅製の外型に挿入
した。
Next, the prepreg sheet is wound so that the longitudinal direction of the prepreg sheet is the axial direction of the cylinder, the inner diameter is 46.5 mm, and the prepreg sheet is wound so that the layers are in close contact with each other. Made. Next, a core made of polytetrafluoroethylene, having an outer diameter of 46 mm and an inner diameter of 19 mm was inserted into the preform, and a release-treated polyimide film was wound around the preform one round, and the inner diameter was 55.0 mm. It was inserted into the outer mold.

【0029】次いで、これを250℃のオーブンに入
れ、水平に保ちながら60分間放置し、オーブンから出
し、水中に入れて冷却してから、硬化した筒体を離型し
取り出した。 (実施例2)縦方向にガラス繊維からなる繊維束を引き
揃え、それにガラス繊維からなる無方向性の不織布を合
わせて補強繊維とし、ポリプロピレンをマトリックスと
するプリプレグシートを用意した。この場合プリプレグ
シートの剛性の実測値は横方向剛性が縦方向剛性の25
%でり、プリプレグシートの厚さは0.33mmであっ
た。また繊維体積含有率は45%であった。
Then, it was placed in an oven at 250 ° C., left standing for 60 minutes while keeping it horizontal, taken out of the oven, cooled in water, and then released from the cured cylinder. (Example 2) A prepreg sheet having a polypropylene matrix as a reinforcing fiber was prepared by aligning fiber bundles made of glass fibers in the longitudinal direction, combining the nonwoven fabric made of glass fibers with a non-woven fabric. In this case, the measured value of the stiffness of the prepreg sheet is that the stiffness in the transverse direction is 25 times the stiffness in the longitudinal direction.
%, And the thickness of the prepreg sheet was 0.33 mm. The fiber volume content was 45%.

【0030】次いで、実施例1と同じ方法でプリフォー
ムを製作した。この場合プリフォームは、以下の表ー1
に示すサイズとなった。次いで、筒体1と同じ中子と外
型に、同じ方法でプリオームを挿入し、同じ条件で加熱
し、冷却し、硬化した筒体を離型し取り出した。 (比較例1)ガラス繊維からなる繊維束を一方向のみに
引き揃えて補強繊維とし、ナイロン6をマトリックスと
するプリプレグシートを用意した。この場合プリプレグ
シートの厚さは0.15mmであった。
Next, a preform was manufactured in the same manner as in Example 1. In this case, the preform is shown in Table 1 below.
It became the size shown in. Next, a pre-ohm was inserted into the same core and outer mold as the cylinder 1 by the same method, heated and cooled under the same conditions, and the cured cylinder was released and taken out. (Comparative Example 1) A prepreg sheet using nylon 6 as a matrix was prepared by reinforcing a fiber bundle made of glass fibers in only one direction to form reinforcing fibers. In this case, the thickness of the prepreg sheet was 0.15 mm.

【0031】次いで、2葉のプリプレグシートを筒体の
軸方向に対して繊維束が±30度となるように、互いに
反対の方向に巻いた。ただし、2葉のプリプレグシート
は巻き崩れが起こり、緊密に巻かれたプリフォームを形
成することは困難であったので、プリフォームの内側か
ら溶接により数箇所固定する必要があった。
Next, the two-leaf prepreg sheets were wound in directions opposite to each other so that the fiber bundle was ± 30 degrees with respect to the axial direction of the cylinder. However, since the two-leaf prepreg sheet collapsed and it was difficult to form a tightly wound preform, it was necessary to fix several places by welding from the inside of the preform.

【0032】また、プリフォームの嵩張りが大きく、完
成した筒体の厚さに対しプリフォームの厚さが280%
になったので、熱膨張性中子は使えず、流体封入可撓性
袋体の中子を使用して、実施例1と同じ条件で加熱成形
をおこなった。製造された袋体は多少偏肉し、プリフォ
ームの巻き崩れのため両端部がラフであり、巻き崩れに
より加熱成形時に端部が型よりはみ出し中子の取り外し
が困難であった。
The bulk of the preform is large, and the thickness of the preform is 280% of the thickness of the completed cylinder.
Therefore, a heat-expandable core was not used, and a heat-molding was performed under the same conditions as in Example 1 using a fluid-filled flexible bag core. The produced bag body was slightly uneven in thickness, and the ends were rough due to the collapse of the preform. The ends of the bag protruded from the mold during the heat molding, making it difficult to remove the core.

【0033】(比較例2)繊維を縦方向と横方向が1:
1の割合に配し、両方向の剛性が等しいガラス平織布を
2枚合わせて補強繊維とし、ナイロン6をマトリックス
とするプリプレグシートを用意し、その他は実施例1と
同じ方法で製造した。この場合横方向の剛性は実施例1
の1.7倍であった。
(Comparative Example 2) The fibers were arranged in the longitudinal direction and the lateral direction:
The prepreg sheet was prepared in the same manner as in Example 1 except that two glass plain woven fabrics having the same rigidity in both directions were combined to form reinforcing fibers, and a nylon 6 matrix was prepared. In this case, the rigidity in the lateral direction is the same as in the first embodiment.
It was 1.7 times.

【0034】プリプレグシートを、プリフォームが内径
55mmの外型に挿入できるように巻くことは、プリプ
レグシートの横方向の剛性が高かったために、層間の隙
間が大きくなり困難であった。したがって、予定の10
周を巻くことができず、9周巻きとした。この場合層間
の隙間は平均0.126mmであった。また、出来上が
った筒体の外観は良好であったが、周方向に偏肉があ
り、厚い部分の一部に層間剥離があった。表−1に上記
実施例、比較例の要点を示す。
It was difficult to wind the prepreg sheet so that the preform could be inserted into an outer mold having an inner diameter of 55 mm, because the rigidity of the prepreg sheet in the lateral direction was high and the gap between the layers was large. Therefore, the expected 10
The circumference could not be wound, and it was wound 9 times. In this case, the gap between the layers was 0.126 mm on average. The appearance of the completed cylinder was good, but there was uneven thickness in the circumferential direction and delamination occurred in a part of the thick part. Table 1 shows the main points of the above examples and comparative examples.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載されるような効果を奏する。
横方向の剛性が縦方向の剛性の70%以下で、横方向の
剛性の小さいプリプレグシートを使用するので、たとえ
マトリックスにタッキネスの少ない樹脂を使用してて
も、プリプレグシートは巻きやすく、層間の隙間がほと
んどなく、肉厚の薄く嵩張らないプリホームを作ること
ができる。
Since the present invention is configured as described above, it has the following effects.
Since the stiffness in the transverse direction is 70% or less of the stiffness in the longitudinal direction and the prepreg sheet having a small stiffness in the transverse direction is used, the prepreg sheet is easy to wind even if a resin having low tackiness is used for the matrix, It is possible to make a thin, non-bulky preform with almost no gap.

【0037】また、プリフォームは巻き崩れが起こら
ず、シート端縁の跳ね返りも小さいので、プリフォーム
の形は容易に維持でき、中子と外型の装着も容易であ
り、膨張性樹脂の中子の使用が容易である。また、プリ
フォームが理想的に作られるので、特に、比較的成形温
度の低い安価な材料でも、偏肉や層間剥離のない、均質
で高品質の筒体を製造できる。従って、高機能と信頼性
が要求されるクラッシュエレメントやトルクチューブを
容易に製造できる。
Further, since the preform does not collapse and the rebound of the edge of the sheet is small, the shape of the preform can be easily maintained, the core and the outer mold can be easily mounted, and the expansion resin can be used. The child is easy to use. In addition, since the preform is ideally manufactured, a homogeneous and high-quality cylindrical body free from uneven thickness and delamination can be manufactured even with an inexpensive material having a relatively low molding temperature. Therefore, it is possible to easily manufacture a crash element or a torque tube that requires high performance and reliability.

【0038】即ち、この発明によれば、以上のような高
生産性および高品質の繊維強化熱可塑性樹脂からなる、
クラッシュエレメント、トルクチューブ等の筒体を製造
することができる。
That is, according to the present invention, the high productivity and high quality fiber-reinforced thermoplastic resin described above is used.
A cylinder such as a crash element or a torque tube can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(d)は、この発明の製造工程を示す
一部切欠した平面図と、斜視図である。
1A to 1D are a partially cutaway plan view and a perspective view showing a manufacturing process of the present invention.

【図2】この発明の成形工程を示す断面図である。FIG. 2 is a cross-sectional view showing a molding step of the present invention.

【図3】この発明のプリプレグシートの一例を示す一部
切欠した平面図である。
FIG. 3 is a partially cutaway plan view showing an example of the prepreg sheet of the present invention.

【図4】この発明のプリプレグシートの一例を示す一部
切欠した平面図である。
FIG. 4 is a partially cutaway plan view showing an example of the prepreg sheet of the present invention.

【符号の説明】[Explanation of symbols]

1 筒体 6 縦繊維束 2 プリプレグシート 7 横繊維束 3 プリフォーム 8 外型 4 補強繊維 9 中子 5 マトリックス DESCRIPTION OF SYMBOLS 1 Cylindrical body 6 Vertical fiber bundle 2 Prepreg sheet 7 Horizontal fiber bundle 3 Preform 8 Outer type 4 Reinforcement fiber 9 Core 5 Matrix

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数方向に繊維を配置した補強繊維と熱
可塑性樹脂からなるマトリックスで構成され、最大の曲
げ剛性を有する方向を縦方向とし、横方向の剛性を縦方
向の剛性の70%以下に設定したプリプレグシートを、
前記縦方向が筒体の軸方向となるように筒状に2周以上
巻いてプリフォームを構成し、このプリフォームに中子
を挿入し、その外側に外型を被せ、プリフォームと中子
とを加熱手段で加熱してプレフォームのマトリックスを
可塑化し、前記中子の膨張力と外型でプレフォームを押
圧することにより層間を融着して筒体に成形し、冷却手
段で筒体のマトリックスを冷却して硬化し、硬化した筒
体を中子および外型から離型することを特徴とする繊維
強化熱可塑性樹脂からなる筒体の製造方法。
1. A matrix made of a thermoplastic resin and reinforcing fibers in which fibers are arranged in a plurality of directions, wherein the direction having the maximum bending rigidity is defined as the longitudinal direction, and the lateral rigidity is 70% or less of the longitudinal rigidity. The prepreg sheet set to
A preform is formed by winding two or more turns in a cylindrical shape so that the longitudinal direction is the axial direction of the cylindrical body, a core is inserted into the preform, and an outer mold is put on the outside thereof, and the preform and the core are formed. Is heated by a heating means to plasticize the matrix of the preform, and by pressing the preform with the expansion force of the core and the outer mold, the layers are fused to form a cylinder, and the cylinder is cooled by the cooling means. A method of manufacturing a cylinder made of a fiber-reinforced thermoplastic resin, wherein the matrix is cooled and cured, and the cured cylinder is released from the core and the outer mold.
【請求項2】 前記補強繊維が、縦方向繊維束、およ
び、縦方向に略直行する横方向繊維束からなる請求項1
に記載の繊維強化熱可塑性樹脂からなる筒体の製造方
法。
2. The fiber according to claim 1, wherein the reinforcing fibers comprise a longitudinal fiber bundle and a lateral fiber bundle substantially perpendicular to the longitudinal direction.
A method for producing a tubular body comprising the fiber-reinforced thermoplastic resin described in the above item.
【請求項3】 前記補強繊維が、縦方向繊維と無方向性
の不織布を合わせてなる請求項1に記載の繊維強化熱可
塑性樹脂からなる請求項1に記載の筒体の製造方法。
3. The method for producing a tubular body according to claim 1, wherein the reinforcing fibers are made of the fiber-reinforced thermoplastic resin according to claim 1, which is a combination of longitudinal fibers and non-directional nonwoven fabric.
【請求項4】 前記補強繊維が、縦方向繊維とニットを
合わせてなる請求項1に記載の繊維強化熱可塑性樹脂か
らなる請求項1に記載の筒体の製造方法。
4. The method for producing a tubular body according to claim 1, wherein the reinforcing fibers are made of the fiber-reinforced thermoplastic resin according to claim 1, wherein the longitudinal fibers and the knit are combined.
【請求項5】 中子が熱膨張性の樹脂からなり、加熱に
より該中子を膨張させてプリフォームを押圧するように
した請求項1, 請求項2,請求項3または請求項4に記
載の繊維強化熱可塑性樹脂からなる筒体の製造方法。
5. The preform according to claim 1, wherein the core is made of a heat-expandable resin, and the core is expanded by heating to press the preform. A method for producing a cylindrical body made of a fiber-reinforced thermoplastic resin.
【請求項6】 中子が可撓性の筒状袋体の中に流体を封
入したものであり、流体の圧力上昇によりプリフォーム
を押圧するようになした請求項1,請求項2,請求項3
または請求項4に記載の繊維強化熱可塑性樹脂からなる
筒体の製造方法。
6. The preform according to claim 1, wherein the core has a fluid sealed in a flexible tubular bag, and the preform is pressed by an increase in the pressure of the fluid. Item 3
A method for producing a tubular body comprising the fiber-reinforced thermoplastic resin according to claim 4.
JP8174911A 1996-07-04 1996-07-04 Manufacture of tube body constituted of fiber-reinforced thermoplastic resin Pending JPH1016068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8174911A JPH1016068A (en) 1996-07-04 1996-07-04 Manufacture of tube body constituted of fiber-reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8174911A JPH1016068A (en) 1996-07-04 1996-07-04 Manufacture of tube body constituted of fiber-reinforced thermoplastic resin

Publications (1)

Publication Number Publication Date
JPH1016068A true JPH1016068A (en) 1998-01-20

Family

ID=15986861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8174911A Pending JPH1016068A (en) 1996-07-04 1996-07-04 Manufacture of tube body constituted of fiber-reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH1016068A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297452A (en) * 2004-04-14 2005-10-27 Toho Tenax Co Ltd Cantilevered beam manufacturing method
US7553388B2 (en) 2002-08-09 2009-06-30 The Boeing Company Consolidation joining of thermoplastic laminate ducts
US7608213B2 (en) 2002-08-09 2009-10-27 The Boeing Company Thermoplastic sheet forming apparatus and method
CN103481527A (en) * 2013-04-26 2014-01-01 徐建昇 Manufacturing method for fiber tubes
JP2018529560A (en) * 2015-09-23 2018-10-11 デイ インターナショナル インコーポレーテッド Cutting mat and manufacturing method thereof
JP2018165553A (en) * 2017-03-28 2018-10-25 三菱重工業株式会社 Buffer, cask and manufacturing method of buffer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553388B2 (en) 2002-08-09 2009-06-30 The Boeing Company Consolidation joining of thermoplastic laminate ducts
US7608213B2 (en) 2002-08-09 2009-10-27 The Boeing Company Thermoplastic sheet forming apparatus and method
US7846287B2 (en) 2002-08-09 2010-12-07 The Boeing Company Preforming thermoplastic ducts
JP2005297452A (en) * 2004-04-14 2005-10-27 Toho Tenax Co Ltd Cantilevered beam manufacturing method
CN103481527A (en) * 2013-04-26 2014-01-01 徐建昇 Manufacturing method for fiber tubes
JP2018529560A (en) * 2015-09-23 2018-10-11 デイ インターナショナル インコーポレーテッド Cutting mat and manufacturing method thereof
JP2018165553A (en) * 2017-03-28 2018-10-25 三菱重工業株式会社 Buffer, cask and manufacturing method of buffer

Similar Documents

Publication Publication Date Title
CA2412683C (en) High performance composite tubular structures
EP0541795B1 (en) New prepreg and composite molding, and production of composite molding
US6949282B2 (en) Contoured crushable composite structural members and methods for making the same
US4968545A (en) Composite tube and method of manufacture
AU2001266906A1 (en) High performance composite tubular structures
JP2004502577A (en) Shaped composite structural member and method of manufacturing the same
JPH06336B2 (en) Preform for molding fiber-reinforced plastic and method for producing the same
EP0185460A2 (en) Reformable composites and methods of making same
JPH1016068A (en) Manufacture of tube body constituted of fiber-reinforced thermoplastic resin
US5124196A (en) Prestressed article and method
TWI849269B (en) Fiber-reinforced resin hollow molded body and manufacturing method thereof
US7695662B2 (en) Method for producing resin structure
US20220143879A1 (en) Dual expanding foam for closed mold composite manufacturing
US5122213A (en) Prestressed article and method
US20110297308A1 (en) Method of making automotive body parts
WO2002004201A1 (en) Cored contoured composite structural members and methods for making the same
JP3152478B2 (en) Wing-shaped structure having multilayer honeycomb core and method of manufacturing the same
JPH05177014A (en) Racket frame for badminton and its manufacture
CN114055804A (en) Method for manufacturing structure and structure
CN116997458A (en) Cylindrical body and method for manufacturing cylindrical body
JP3118968B2 (en) Method for producing tubular FRP molded article
JPH06254986A (en) Cylindrical intermediate member for molding fiber reinforced thermoplastic resin pipe, production of fiber reinforced thermoplastic resin pipe and producing apparatus for cylindrical intermediate member
KR20190074106A (en) Fiber reinforced composite material and methode for manufacturing the same
JP2005231132A (en) Hermetically closed molded product manufacturing method
JPH07108615A (en) Fiber-reinforced resin tubular body and manufacture thereof