JP3989124B2 - Fiber-reinforced composite cross beam with cross-section rib and method of manufacturing the same - Google Patents

Fiber-reinforced composite cross beam with cross-section rib and method of manufacturing the same Download PDF

Info

Publication number
JP3989124B2
JP3989124B2 JP10174899A JP10174899A JP3989124B2 JP 3989124 B2 JP3989124 B2 JP 3989124B2 JP 10174899 A JP10174899 A JP 10174899A JP 10174899 A JP10174899 A JP 10174899A JP 3989124 B2 JP3989124 B2 JP 3989124B2
Authority
JP
Japan
Prior art keywords
fiber
cross
reinforced composite
rib
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10174899A
Other languages
Japanese (ja)
Other versions
JP2000291203A (en
Inventor
政紀 島田
浩峰 岩森
敏和 竹田
俊一 臼井
正公 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Nippon Steel Chemical and Materials Co Ltd
Central Japan Railway Co
Original Assignee
Nippon Sharyo Ltd
Nippon Steel Materials Co Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd, Nippon Steel Materials Co Ltd, Central Japan Railway Co filed Critical Nippon Sharyo Ltd
Priority to JP10174899A priority Critical patent/JP3989124B2/en
Publication of JP2000291203A publication Critical patent/JP2000291203A/en
Application granted granted Critical
Publication of JP3989124B2 publication Critical patent/JP3989124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軽量で高強度、高弾性の要求が高まりつつある建材構造材や高速鉄道車両等へ繊維強化複合材を適用するための梁の軸方向に垂直な中リブをもつことを特徴とする断面リブをもつ繊維強化複合材横梁を提供することにある。
【0002】
【従来の技術】
比強度、比剛性が優れた炭素繊維強化複合材は、航空、宇宙用素材からスポーツ素材へ適用され、現在では一般用産業部材への適用が加速されつつある。一般産業用では、炭素繊維と樹脂をマンドレル(金属、セラミックスなど)に巻き取り円筒状の成形体を製作するフィラメントワインディング法(以下、FW法とも称する)において、成形の容易性や成形時間の速さに優れるためロール分野を席捲しつつある。
【0003】
現在、炭素繊維強化複合材成形体は、比較的荷重を受け持つ割合の低い部材に用いられてきたが、炭素繊維の強度、弾性率と重量低減を生かした建築構造物や高速鉄道車両等への適用が望まれている。
【0004】
【発明が解決しようとする課題】
従来の繊維強化複合材では、連続繊維を有効に利用するマンドレルに巻き付ける成形方法をとるため丸パイプ形状などの中空成形体であり、横荷重が集中的に加わる横梁には、なかなか適用されていなかった。
【0005】
しかしながら、炭素繊維強化複合材の軽量メリットをより引き出すために、集中荷重部へリブを設けることは重要なポイントとなる。そこで、従来、内部にアルミ部材を持ちその上に繊維を巻き付ける方法や、特開平3−231063号公報のようにハニカム等の周りに炭素繊維複合材を配する方法が提案されているが、余分な重量も増やすことになり軽量化メリットが大きくそがれることになっていた。また、特開平7−80948号公報では、梁の軸方向にリブを配する発明は提案されていたが、梁の軸垂直方向のリブについてはみかけられない。
【0006】
本発明では、繊維強化複合材梁において、梁の軸方向に垂直な中リブをもつ事を特徴とする断面リブをもつ繊維強化複合材横梁を容易に提供することを目的としている。
【0007】
【課題を解決するための手段】
すなわち、本発明の目的は、(1) 金属マンドレルの軸方向に垂直な繊維強化複合材板を金属マンドレルに挟み込み、周囲を繊維に樹脂を含浸させ補強した後、その外周に樹脂を含浸した炭素繊維をフィラメントワインディング法で巻き付け硬化することを特徴とする断面リブをもつ繊維強化複合材横梁の製造方法により達成されるものである。
また、本発明の他の目的は、(2) 上記(1)と同様な方法で製作した、断面リブをもつ繊維強化複合材を繊維強化複合材梁内部に接着することにおいて複数の中リブを多数個もつことを特徴とする断面リブをもつ繊維強化複合材横梁の製造方法により達成されるものである。
【0008】
また、本発明の他の目的は、(3) 上記(1)または(2)の方法により製造された、継がなく断面が中空の繊維強化複合材梁において、梁の軸方向に垂直な中リブをもつことを特徴とする断面リブをもつ繊維強化複合材横梁により達成されるものである。
【0009】
さらに、本発明の他の目的は、(4) 中リブの両側にわたって補強用の繊維が連続していることを特徴とする、上記(3)に記載の断面リブをもつ繊維強化複合材横梁によっても達成されるものである。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0011】
本発明に用いられる補強用の繊維種は、炭素繊維、ガラス繊維、アラミド繊維などのいずれであってもよく、また母材の樹脂は、エポキシ樹脂、フェノール樹脂などの熱硬化性の樹脂のいずれであってもよい。
【0012】
また、本発明の梁の断面は、図3に示すように、円形、楕円形、角型のいずれの断面をもっていてもよい。特に楕円形や角型においては、横荷重を受ける部位にリブを配することは、応力集中に非常に有効である。
【0013】
まず、繊維強化複合材のリブ用の板を応力レベルにあわせ、繊維、積層角度、厚みを決め作製する。この繊維強化複合材板は、プレス、オートクレーブ法等のいずれで製作してもよく、製作品の断面にあわせ切断加工する。
【0014】
この繊維強化複合材板を金属マンドレルに挟み込み、仮固定する。リブ位置は、中央でも端でも応力の高い部位に金属マンドレル長さを変化させることにより任意に設置できる。挟み込んだマンドレルをFW法において繊維に樹脂を含浸させたものを巻き付け、外層の繊維強化複合材梁を図1のように、硬化製作する。
【0015】
硬化後、マンドレルを抜き、図2に示すような、横リブを1個もつ繊維強化複合材横梁を製作することができる。
【0016】
外径寸法を合わせ別個に上記方法で複数の横リブをもつ繊維強化複合材梁を作っておくと、図4に示すように、複数の横リブを持った繊維強化複合材横梁ができる。このとき、別に製作した横リブを持った繊維強化複合材横梁と本体は、接着により接合する。
【0017】
【実施例】
以下、本発明の横リブを1個持つ繊維強化複合材横梁の製造方法を実施例によって具体的に説明する。
【0018】
実施例
24tonf/mm2の弾性率を持つ炭素繊維を使用した繊維強化エポキシ樹脂複合材の等方性板4mmを製作、短辺140mm、長辺400mmの楕円に加工した。
【0019】
このリブを軸長さ500mmの金属製マンドレルで挟み込み、固定後50tonf/mm2の弾性率を持つ炭素繊維でマンドレル軸方向に垂直な方向に挟んだ面の溝部にエポキシ樹脂を含浸した炭素繊維を巻き付け、軸方向を0°としたとき、0°、45°、90°の繊維方向に順次2mmの肉厚にエポキシ樹脂を含浸した炭素繊維を巻き付けて、6mmにした。
【0020】
120℃で2時間の硬化、冷却後マンドレルを抜き試験体とした。
【0021】
比較例
リブがない状態でも同様の成形をして中空の楕円炭素繊維樹脂複合材を比較例として作製した。
【0022】
長辺側より供試体中央に荷重を負荷した時の強度比較を実施したが、リブがない比較例に対して実施例のリブありは、変形も少なく約3倍の強度まで破壊しなかった。
【0023】
【発明の効果】
本発明により、炭素繊維強化複合材梁において、梁の軸方向に垂直な中リブをもつことを特徴とする断面リブをもつ繊維強化複合材横梁を容易に提供することができるようになり、軽量で高強度、高弾性の要求が高まりつつある建材構造材や高速鉄道車両等へ炭素繊維強化複合材の適用が加速されることになる。
【図面の簡単な説明】
【図1】 図1は、金属マンドレルに炭素繊維複合材を積層したものを示す図である。
【図2】 図2は、マンドレルを脱芯後の完成した梁軸方向断面を示す図である。
【図3】 図3は、側横断面の種類を示す図である。
【図4】 図4は、複数の繊維強化複合材横梁を配した形状を示す図である。
【付号の説明】
11…金属マンドレル、
12…炭素繊維複合材製リブ、
13…炭素繊維複合材梁、
21…炭素繊維複合材製リブ、
22…炭素繊維複合材梁、
31…円形炭素繊維複合材梁断面、
32…楕円炭素繊維複合材梁断面、
33…角型炭素繊維複合材梁断面、
41…炭素繊維複合材製リブ、
42…炭素繊維複合材梁。
[0001]
BACKGROUND OF THE INVENTION
The present invention is characterized by having a medium rib perpendicular to the axial direction of a beam for applying a fiber reinforced composite material to a building material structure material, a high-speed railway vehicle, or the like that is demanding light weight, high strength, and high elasticity. It is an object of the present invention to provide a fiber-reinforced composite cross beam having cross-sectional ribs.
[0002]
[Prior art]
Carbon fiber reinforced composite materials with excellent specific strength and specific rigidity have been applied to sports materials from aviation and space materials, and are now being increasingly applied to general industrial members. In general industrial applications, in the filament winding method (hereinafter also referred to as the FW method) in which a carbon fiber and a resin are wound around a mandrel (metal, ceramics, etc.) to produce a cylindrical molded body, the molding is easy and the molding time is fast. Because of its superiority, it is sweeping the roll field.
[0003]
At present, carbon fiber reinforced composite molded bodies have been used for members with relatively low load bearing ratios. Application is desired.
[0004]
[Problems to be solved by the invention]
In conventional fiber reinforced composite materials, it is a hollow molded body such as a round pipe shape because it takes a molding method that wraps around a mandrel that makes effective use of continuous fibers, and is not easily applied to horizontal beams to which lateral loads are concentrated. It was.
[0005]
However, it is an important point to provide ribs in the concentrated load portion in order to draw out the light weight merit of the carbon fiber reinforced composite material. Therefore, conventionally, there have been proposed a method in which an aluminum member is provided inside and a fiber is wound thereon, and a method in which a carbon fiber composite material is disposed around a honeycomb or the like as disclosed in Japanese Patent Laid-Open No. 3-231063. As a result, the weight gain was greatly reduced. Japanese Patent Laid-Open No. 7-80948 has proposed an invention in which ribs are arranged in the axial direction of the beam, but no ribs in the axial direction of the beam are seen.
[0006]
It is an object of the present invention to easily provide a fiber reinforced composite material transverse beam having a cross-sectional rib characterized by having a middle rib perpendicular to the axial direction of the fiber reinforced composite beam.
[0007]
[Means for Solving the Problems]
That is, the object of the present invention is (1) a carbon reinforced composite material plate perpendicular to the axial direction of a metal mandrel is sandwiched between metal mandrels, the fiber is impregnated with resin and reinforced, and then the outer periphery of the carbon is impregnated with resin. This is achieved by a method for producing a fiber-reinforced composite material cross beam having a cross-sectional rib, characterized by winding and curing the fiber by a filament winding method .
In addition, another object of the present invention is to (2) bond a fiber reinforced composite material having a cross-sectional rib manufactured by the same method as in (1 ) above to the inside of a fiber reinforced composite material beam. This is achieved by a method of manufacturing a fiber-reinforced composite cross beam having cross-sectional ribs characterized by having a large number .
[0008]
Another object of the present invention is to provide (3) a medium rib manufactured by the above method (1) or (2) and having a hollow cross section and having a hollow cross section, which is perpendicular to the axial direction of the beam. It is achieved by a fiber-reinforced composite cross beam having a cross-sectional rib characterized by having
[0009]
Furthermore, another object of the present invention is (4) a fiber-reinforced composite material transverse beam having a cross-sectional rib according to (3) above, characterized in that reinforcing fibers are continuous on both sides of the middle rib . Is also achieved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0011]
The reinforcing fiber type used in the present invention may be any of carbon fiber, glass fiber, aramid fiber, etc., and the base resin may be any of thermosetting resins such as epoxy resin and phenol resin. It may be.
[0012]
Moreover, the cross section of the beam of the present invention may have any cross section of a circle, an ellipse or a square as shown in FIG. In particular, in the case of an ellipse or a square, it is very effective for stress concentration to arrange a rib in a portion that receives a lateral load.
[0013]
First, a fiber reinforced composite rib plate is prepared according to the stress level, and the fiber, lamination angle and thickness are determined. This fiber reinforced composite material plate may be manufactured by any method such as pressing or autoclave, and is cut according to the cross section of the product.
[0014]
This fiber-reinforced composite material plate is sandwiched between metal mandrels and temporarily fixed. The rib position can be arbitrarily set by changing the length of the metal mandrel at a portion where stress is high at the center or at the end. The mandrel sandwiched is wrapped with a fiber impregnated with resin in the FW method, and the outer fiber-reinforced composite beam is cured as shown in FIG.
[0015]
After curing, the mandrel can be withdrawn to produce a fiber reinforced composite transverse beam with one transverse rib as shown in FIG.
[0016]
If a fiber-reinforced composite material beam having a plurality of lateral ribs is separately prepared by adjusting the outer diameter size by the above method, a fiber-reinforced composite material beam having a plurality of lateral ribs can be obtained as shown in FIG. At this time, the fiber reinforced composite material horizontal beam having a lateral rib and a main body, which are separately manufactured, and the main body are bonded together.
[0017]
【Example】
EXAMPLES Hereinafter, the manufacturing method of the fiber reinforced composite material cross beam which has one side rib of this invention is demonstrated concretely by an Example.
[0018]
Example 24 An isotropic plate 4 mm of a fiber reinforced epoxy resin composite material using carbon fibers having an elastic modulus of tonf / mm 2 was manufactured and processed into an ellipse having a short side of 140 mm and a long side of 400 mm.
[0019]
This rib is sandwiched between metal mandrels with an axial length of 500 mm, and after fixing, carbon fibers having an elastic modulus of 50 tonf / mm 2 and a carbon fiber impregnated with epoxy resin in a groove portion sandwiched in a direction perpendicular to the mandrel axial direction. Winding, when the axial direction was 0 °, carbon fibers impregnated with epoxy resin with a thickness of 2 mm were sequentially wound in the fiber directions of 0 °, 45 °, and 90 ° to make 6 mm.
[0020]
After curing for 2 hours at 120 ° C. and cooling, the mandrel was pulled out to give a test specimen.
[0021]
Comparative Example A hollow elliptic carbon fiber resin composite material was produced as a comparative example by molding in the same manner without ribs.
[0022]
The strength comparison was performed when a load was applied to the center of the specimen from the long side. However, the ribs of the example had little deformation and did not break to about three times the strength of the comparative example having no rib.
[0023]
【The invention's effect】
According to the present invention, it becomes possible to easily provide a fiber-reinforced composite transverse beam having a cross-sectional rib characterized by having a middle rib perpendicular to the axial direction of the beam in the carbon fiber-reinforced composite beam. Therefore, the application of carbon fiber reinforced composite materials will be accelerated to building material structural materials and high-speed railway vehicles, for which demands for high strength and high elasticity are increasing.
[Brief description of the drawings]
FIG. 1 is a diagram showing a carbon mandrel laminated with a carbon fiber composite material.
FIG. 2 is a diagram showing a cross section in the beam axis direction after the mandrel is decentered.
FIG. 3 is a diagram showing types of side cross-sections.
FIG. 4 is a diagram showing a shape in which a plurality of fiber reinforced composite material cross beams are arranged.
[Explanation of number]
11 ... Metal mandrel,
12 ... ribs made of carbon fiber composite material,
13. Carbon fiber composite beam,
21 ... ribs made of carbon fiber composite material,
22 ... Carbon fiber composite beam,
31: Circular carbon fiber composite beam cross section,
32 ... elliptical carbon fiber composite beam cross section,
33 ... Square carbon fiber composite beam cross section,
41 ... ribs made of carbon fiber composite material,
42: Carbon fiber composite beam.

Claims (4)

金属マンドレルの軸方向に垂直な繊維強化複合材板を金属マンドレルに挟み込み、周囲を繊維に樹脂を含浸させ補強した後、その外周に樹脂を含浸した炭素繊維をフィラメントワインディング法で巻き付け硬化することを特徴とする断面リブをもつ繊維強化複合材横梁の製造方法。The fiber reinforced composite plate perpendicular to the axial direction of the metal mandrel is sandwiched between the metal mandrels, the fiber is impregnated with resin and reinforced. A method for manufacturing a fiber-reinforced composite cross beam having a cross-sectional rib . 請求項と同様な方法で製作した、断面リブをもつ繊維強化複合材を繊維強化複合材梁内部に接着することにおいて複数の中リブを多数個もつことを特徴とする断面リブをもつ繊維強化複合材横梁の製造方法。A fiber reinforcement having a cross-sectional rib, characterized in that a plurality of medium ribs are produced by adhering a fiber-reinforced composite material having a cross-section rib manufactured in the same manner as in claim 1 to the inside of the fiber-reinforced composite beam. A method of manufacturing composite transverse beams. 請求項1または2の方法により製造された、継がなく断面が中空の繊維強化複合材梁において、梁の軸方向に垂直な中リブをもつことを特徴とする断面リブをもつ繊維強化複合材横梁。 A fiber-reinforced composite transverse beam having a cross-sectional rib manufactured by the method according to claim 1 or 2, characterized in that it has a middle rib perpendicular to the axial direction of the beam. . 中リブの両側にわたって補強用の繊維が連続していることを特徴とする、請求項に記載の断面リブをもつ繊維強化複合材横梁。The fiber-reinforced composite material transverse beam having a cross-sectional rib according to claim 3 , wherein reinforcing fibers are continuous over both sides of the middle rib.
JP10174899A 1999-04-08 1999-04-08 Fiber-reinforced composite cross beam with cross-section rib and method of manufacturing the same Expired - Fee Related JP3989124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10174899A JP3989124B2 (en) 1999-04-08 1999-04-08 Fiber-reinforced composite cross beam with cross-section rib and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10174899A JP3989124B2 (en) 1999-04-08 1999-04-08 Fiber-reinforced composite cross beam with cross-section rib and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000291203A JP2000291203A (en) 2000-10-17
JP3989124B2 true JP3989124B2 (en) 2007-10-10

Family

ID=14308873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10174899A Expired - Fee Related JP3989124B2 (en) 1999-04-08 1999-04-08 Fiber-reinforced composite cross beam with cross-section rib and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3989124B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242267B1 (en) * 2006-12-06 2013-03-12 (주)엘지하우시스 Constructing member by composite material
CN115387613A (en) * 2021-05-24 2022-11-25 中联重科股份有限公司 Fiber composite beam structure and preparation method thereof, arm section, arm support and mechanical equipment

Also Published As

Publication number Publication date
JP2000291203A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
JP3009311B2 (en) Fiber-reinforced resin coil spring and method of manufacturing the same
JPS58118401A (en) Production method of rim made of continuous fiber reinforced plastic
US4789577A (en) Multichannel structures made of composites, processes and semifinished products for the manufacture thereof
US20020158392A1 (en) Multihelical composite spring
US7018578B2 (en) Method of producing a hybrid matrix fiber composite
KR20130090795A (en) Solenoidal magnets made up of several axially aligned coils
JPS6112781B2 (en)
DK2361752T3 (en) Component-component fiber and process for producing same
JP2013523509A (en) Continuous production method for composite parts
US11440363B2 (en) Three-point suspension link and production method for a three-point suspension link
JP2002137307A (en) Blade structure of windmill made of fiber-reinforced resin
EP3081373B1 (en) Composite material structure
JP3989124B2 (en) Fiber-reinforced composite cross beam with cross-section rib and method of manufacturing the same
JPS6143579B2 (en)
US4749422A (en) Process for preparing a fiber-reinforced plastic structure having branching points
JP3193082B2 (en) Load transmission shaft made of fiber reinforced plastic
US6793183B1 (en) Integral node tubular spaceframe
JPH0780948A (en) Production of fiber reinforced composite beam having square cross section
JP2000280365A (en) Manufacture of fiber-reinforced composite material side beam having square cross-section
JPS6138021B2 (en)
AU2020291159A1 (en) Modular tube and method of manufacturing
JPH03161326A (en) Pipe fitted with flange made of fiber reinforced composite material and preparation thereof
JP2904251B2 (en) Fiber reinforced resin pipe and method for producing the same
JP2000198154A (en) Tubular body
JPH0781566A (en) Curve hat type tube made of fiber reinforced resin composite material and manufacture of tank

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees