JP2001326117A - High-temperature superconducting coil - Google Patents

High-temperature superconducting coil

Info

Publication number
JP2001326117A
JP2001326117A JP2000143727A JP2000143727A JP2001326117A JP 2001326117 A JP2001326117 A JP 2001326117A JP 2000143727 A JP2000143727 A JP 2000143727A JP 2000143727 A JP2000143727 A JP 2000143727A JP 2001326117 A JP2001326117 A JP 2001326117A
Authority
JP
Japan
Prior art keywords
temperature superconducting
superconducting coil
thermal expansion
winding
bobbin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000143727A
Other languages
Japanese (ja)
Inventor
Atsuhiko Yamanaka
淳彦 山中
Toshihiro Kashima
俊弘 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000143727A priority Critical patent/JP2001326117A/en
Publication of JP2001326117A publication Critical patent/JP2001326117A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature superconducting coil which is protected against deterioration due to repeated cooling. SOLUTION: A filament winding pipe, on which filaments are wound, making an angle of 0 to 40 deg. with a cylindrical axis is used as a winding frame, having a thermal expansion coefficient of 17×10 -6 to 80×10-6 in its circumferential direction, and a high-temperature superconducting coil uses this winding frame.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は周方向の熱膨張係数
が17×10-6以上80×10-6以下である巻枠を用いる高温超
電導コイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature superconducting coil using a winding form having a coefficient of thermal expansion in the circumferential direction of 17 × 10 −6 or more and 80 × 10 −6 or less.

【0002】[0002]

【従来の技術】酸化物超電導体を巻枠に沿って巻回して
なる高温超電導コイルにはガラス繊維強化複合材料(GFR
P)等が使用されている。ところが高温超電導材料の熱膨
張係数は約27×10-6、 GFRP巻枠の熱膨張係数は6.9×10
-6であり、このようなコイルの場合、一度冷却すると巻
枠と超電導材料の熱膨張係数の違いから超電導特性が劣
化するため、繰り返し冷却を行えないという問題点があ
った。
2. Description of the Related Art A glass fiber reinforced composite material (GFR) is used for a high-temperature superconducting coil formed by winding an oxide superconductor along a bobbin.
P) etc. are used. However, the thermal expansion coefficient of high-temperature superconducting material is about 27 × 10 -6 , and the thermal expansion coefficient of GFRP reel is 6.9 × 10
In the case of such a coil, once cooled, the superconducting characteristics deteriorate due to the difference in the thermal expansion coefficient between the bobbin and the superconducting material.

【0003】[0003]

【発明が解決しようとする課題】高温超電導コイルの繰
返し冷却に伴う特性劣化は高温超電導材料の熱膨張係数
に比べて巻枠の周方向の熱膨張係数が小さいことに起因
する。本発明の目的とするところは巻枠の周方向の熱膨
張率を大きくし、繰返し冷却に対する劣化を起こさない
高温超電導コイルを提供することにある。
The characteristic deterioration of the high-temperature superconducting coil due to repeated cooling is caused by a smaller thermal expansion coefficient in the circumferential direction of the bobbin than that of the high-temperature superconducting material. An object of the present invention is to provide a high-temperature superconducting coil in which the coefficient of thermal expansion in the circumferential direction of a bobbin is increased so that deterioration due to repeated cooling does not occur.

【0004】[0004]

【課題を解決するための手段】即ち本発明は、周方向の
熱膨張係数が17×10-6以上80×10-6以下である巻枠を用
いてなる高温超電導コイルである。そして具体的には円
筒軸に対し繊維の巻角度が0〜40°であるフィラメント
ワインディングパイプを巻枠として用いる上記の高温超
電導コイルである。
That is, the present invention is a high-temperature superconducting coil using a winding form having a coefficient of thermal expansion in the circumferential direction of 17 × 10 −6 or more and 80 × 10 −6 or less. More specifically, the above high-temperature superconducting coil uses a filament winding pipe having a winding angle of the fiber of 0 to 40 ° with respect to a cylindrical axis as a winding frame.

【0005】本発明に用いられる高温超電導コイル用巻
枠としては周方向の熱膨張係数が17×10-6以上80×10-6
以下、望ましくは22×10-6以上50×10-6以下である巻枠
がよい。巻枠の熱膨張係数が17×10-6以下では巻枠の冷
却時収縮が小さいため巻回された高温超電導体が引張劣
化を起こす。また80×10-6以上では巻枠の冷却収縮が大
きすぎるため高温超電導体の固定性が悪くなる。
The winding frame for a high-temperature superconducting coil used in the present invention has a thermal expansion coefficient in the circumferential direction of 17 × 10 -6 or more and 80 × 10 -6.
Hereinafter, a reel having a size of preferably 22 × 10 −6 or more and 50 × 10 −6 or less is preferable. When the thermal expansion coefficient of the bobbin is 17 × 10 −6 or less, the wound high-temperature superconductor undergoes tensile deterioration due to small shrinkage during cooling of the bobbin. On the other hand, if it is 80 × 10 −6 or more, the cooling shrinkage of the bobbin is too large, so that the fixability of the high-temperature superconductor deteriorates.

【0006】巻枠用繊維強化複合材料の強化繊維として
は、ポリエチレン、ポリパラフェニレンベンツビスオキ
サゾール(PBO)、アラミド、ポリアリレート、ガラス繊
維等の繊維が挙げられる。特にポリエチレン繊維、PBO
繊維、アラミド繊維は径方向に大きな正の熱膨張係数を
示すので望ましい。またこれらの繊維を混合強化して用
いても良い。
The reinforcing fibers of the fiber-reinforced composite material for the bobbin include fibers such as polyethylene, polyparaphenylenebenzbisoxazole (PBO), aramid, polyarylate, and glass fiber. Especially polyethylene fiber, PBO
Fibers and aramid fibers are desirable because they exhibit a large positive coefficient of thermal expansion in the radial direction. These fibers may be mixed and reinforced.

【0007】一方マトリクス樹脂はいずれも正膨張を示
す。ここで使用されるマトリクス樹脂としてはエポキシ
樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、
ウレタン樹脂、ウレタンアクリレート樹脂などが使用で
きるが、特に好ましいのはエポキシ樹脂である。
On the other hand, all matrix resins show positive expansion. As the matrix resin used here, epoxy resin, unsaturated polyester resin, vinyl ester resin,
Urethane resins and urethane acrylate resins can be used, but epoxy resins are particularly preferred.

【0008】複合材料の強化形態としてはフィラメント
ワインディング(FW)パイプがよい。巻角度は円筒軸に対
し0〜40°望ましくは10〜35°がよい。巻角度が40〜90
°では巻枠の周方向の熱膨張係数は小さく又は負になる
ため、高温超電導材料が冷却時に引張劣化を起こす。0
〜40°では巻枠の周方向の熱膨張率は17×10-6以上の大
きな正の値を示すため高温超電導体の劣化を防ぐことが
できる。
A preferred form of reinforcing the composite material is a filament winding (FW) pipe. The winding angle is preferably 0 to 40 °, preferably 10 to 35 ° with respect to the cylindrical axis. Winding angle 40 ~ 90
In °, the thermal expansion coefficient in the circumferential direction of the bobbin becomes small or negative, so that the high-temperature superconducting material undergoes tensile deterioration during cooling. 0
At 4040 °, the coefficient of thermal expansion in the circumferential direction of the bobbin exhibits a large positive value of 17 × 10 −6 or more, so that deterioration of the high-temperature superconductor can be prevented.

【0009】上記複合材料中の繊維とマトリクス樹脂の
混合比率は、繊維の体積率(Vf)として20〜85%が好まし
く、より好ましいのは30〜70%である。Vfが20%より少な
いと繊維の補強効果が発現しにくく、85%を越えるとマ
トリクス樹脂が含浸しにくく複合材料としての機械特性
が悪化するため好ましくない。以上のように複合材料か
らなるFWパイプの熱膨張係数はマトリクスの特性、 FW
巻角度、 Vf、繊維の種類等によって定められる。
The mixing ratio of the fibers and the matrix resin in the composite material is preferably 20 to 85%, more preferably 30 to 70%, as a fiber volume ratio (Vf). If Vf is less than 20%, the effect of reinforcing fibers is hardly exhibited, and if it exceeds 85%, the matrix resin is hardly impregnated and the mechanical properties as a composite material are undesirably deteriorated. As described above, the coefficient of thermal expansion of the FW pipe made of a composite material
It is determined by the winding angle, Vf, fiber type, etc.

【0010】この様にして周方向の熱膨張係数が17×10
-6以上80×10-6以下であり、高温超電導体に冷却時劣化
を与えない巻枠が得られる。
In this manner, the coefficient of thermal expansion in the circumferential direction is 17 × 10
-6 or more and 80 × 10 -6 or less, so that a bobbin that does not deteriorate the high-temperature superconductor during cooling can be obtained.

【0011】本発明に使用する高温超電導体としてはビ
スマス系酸化物超電導体、例えばBi2212、 Bi2223でも
イットリウム系酸化物超電導体、例えばYBCOでもよい。
また超電導体の形状は線材でもテープ状でもよい。
The high-temperature superconductor used in the present invention may be a bismuth-based oxide superconductor such as Bi2212, Bi2223 or an yttrium-based oxide superconductor such as YBCO.
The shape of the superconductor may be a wire or a tape.

【0012】このようにして繰返し冷却に対し劣化を起
こさない高温超電導コイルが作製できる。
In this way, a high-temperature superconducting coil that does not deteriorate due to repeated cooling can be manufactured.

【0013】[0013]

【実施例】(実施例1〜6)本発明に用いられる高温超
電導コイルは以下の様に作製した。巻枠は外55mm/内径5
0mm、長さ40mmのパイプとした。これはFW法によって成
形し、強化繊維としては高強度ポリエチレン(東洋紡、
登録商標:ダイニーマ)、PBO(東洋紡、登録商標:ザイ
ロン)繊維、アラミド(Kevlar 49)、ガラス繊維(日東
紡、E-ガラス)を用いる。マトリクスとしてはエポキシ
樹脂を以下の割合にて使用した。 エピコート827(油化シェル) 100部 エピキュアーYH300(油化シェル) 80部 EMI-24(油化シェル) 1部 これを用いてフィラメントワインディング法によりパイ
プを成形し、これを研磨して巻枠とした。巻角度は0°
〜40°の物を作製し、これを実施例1〜6とした。高温超
電導材料としてはBi2223銀シース丸線、及びテープ線材
を使用した。
EXAMPLES (Examples 1 to 6) A high-temperature superconducting coil used in the present invention was produced as follows. Winding frame is outer 55mm / inner diameter 5
The pipe was 0 mm in length and 40 mm in length. This is molded by the FW method, and high-strength polyethylene (Toyobo,
Registered trademark: Dyneema), PBO (Toyobo, registered trademark: Zylon) fiber, aramid (Kevlar 49), and glass fiber (Nittobo, E-glass) are used. Epoxy resin was used in the following ratio as a matrix. Epicoat 827 (oiled shell) 100 parts Epicure YH300 (oiled shell) 80 parts EMI-24 (oiled shell) 1 part . The winding angle is 0 °
A product having an angle of 4040 ° was prepared, and this was designated as Examples 1 to 6. As the high-temperature superconducting material, a Bi2223 silver sheathed round wire and a tape wire were used.

【0014】(比較例1〜5)巻枠のFW巻角度を45〜90
°としたものを使用した。これを比較例1〜5とする。
(Comparative Examples 1 to 5) The FW winding angle of the winding frame is 45 to 90.
° was used. This is referred to as Comparative Examples 1 to 5.

【0015】[0015]

【表1】 [Table 1]

【0016】巻枠の周方向の熱膨張係数は巻枠外周に歪
ゲージを貼り付けて77〜300Kの温度領域にて測定した。
The coefficient of thermal expansion in the circumferential direction of the bobbin was measured in a temperature range of 77 to 300 K with a strain gauge attached to the outer periphery of the bobbin.

【0017】高温超電導コイルの冷却による劣化は作製
したコイル液体窒素に浸漬した状態で通電試験を行い、
そのクエンチ電流密度の変化によって観測した。
Deterioration of the high-temperature superconducting coil due to cooling is performed by conducting an electric current test in a state where the coil is immersed in liquid nitrogen.
Observed by the change in the quench current density.

【0018】[0018]

【発明の効果】本発明によると繰返し冷却による劣化を
起こさない高温超電導コイルの作製が可能になった。
According to the present invention, it has become possible to manufacture a high-temperature superconducting coil which does not deteriorate due to repeated cooling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Bi2223銀シース丸線を用いた各種高温超電導コ
イルの繰返し冷却特性。
[Figure 1] Repetitive cooling characteristics of various high-temperature superconducting coils using Bi2223 silver sheathed round wire.

【図2】 Bi2223銀シーステープ線を用いた各種高温超電
導コイルの繰返し冷却特性。
FIG. 2 shows the repetitive cooling characteristics of various high-temperature superconducting coils using Bi2223 silver sheathed tape wires.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】周方向の熱膨張係数が17×10-6以上80×10
-6以下である巻枠を用いてなることを特徴とする高温超
電導コイル。
1. A thermal expansion coefficient in a circumferential direction of 17 × 10 −6 or more and 80 × 10 or more.
A high-temperature superconducting coil characterized by using a winding frame having a diameter of -6 or less.
【請求項2】円筒軸に対し繊維の巻角度が0〜40°であ
るフィラメントワインディングパイプを巻枠として用い
ることを特徴とする請求項1記載の高温超電導コイル。
2. The high-temperature superconducting coil according to claim 1, wherein a filament winding pipe having a fiber winding angle of 0 to 40 ° with respect to a cylindrical axis is used as a winding frame.
JP2000143727A 2000-05-16 2000-05-16 High-temperature superconducting coil Withdrawn JP2001326117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143727A JP2001326117A (en) 2000-05-16 2000-05-16 High-temperature superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143727A JP2001326117A (en) 2000-05-16 2000-05-16 High-temperature superconducting coil

Publications (1)

Publication Number Publication Date
JP2001326117A true JP2001326117A (en) 2001-11-22

Family

ID=18650502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143727A Withdrawn JP2001326117A (en) 2000-05-16 2000-05-16 High-temperature superconducting coil

Country Status (1)

Country Link
JP (1) JP2001326117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319798A (en) * 2003-04-16 2004-11-11 Japan Science & Technology Agency Method for pulse magnetizing bulk superconductor
JP2020033475A (en) * 2018-08-30 2020-03-05 株式会社クラレ Heat-radiating material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319798A (en) * 2003-04-16 2004-11-11 Japan Science & Technology Agency Method for pulse magnetizing bulk superconductor
JP2020033475A (en) * 2018-08-30 2020-03-05 株式会社クラレ Heat-radiating material
JP7252530B2 (en) 2018-08-30 2023-04-05 株式会社クラレ Heat dissipation material

Similar Documents

Publication Publication Date Title
JP5866300B2 (en) Twisted thermoplastic polymer composite cable, method for making and using the same
US6509819B2 (en) Rotor assembly including superconducting magnetic coil
JP2001326117A (en) High-temperature superconducting coil
US5001020A (en) Multifilament superconducting wire of NB3 AL
JPH08115813A (en) Superconducting coil
JP3362874B2 (en) Permanent current switch
JPH08195311A (en) Superconducting coil
Banno et al. Minimization of the hysteresis loss and low-field instability in technical Nb3Al conductors
JP2001307915A (en) Composite material reinforced fiber for conduction- cooled superconducting magnet
JP3218628B2 (en) Cryogenic fiber reinforced plastic composite
Fietz et al. Multifilamentary Nb 3 Sn conductor for fusion research magnets
Byeon et al. Bi-2212 structured cable for high-field solenoid inserts
JP2003045247A (en) Superconductive cable
JPH0447443B2 (en)
JPH07335427A (en) Superconductive coil
GB2620596A (en) Improved superconducting magnet reinforcement
Pan et al. Fabrication and Electromagnetic Properties of 24-Filament Jelly-Roll Nb 3 Al Superconducting Long Wire with Reel-to-Reel Rapid Heating and Quenching Heat Treatment
JP4006607B2 (en) Superconducting coil
JPH06318514A (en) Superconducting coil device
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPH06224026A (en) Superconducting coil device
Miyoshi et al. Ic Enhancement Effect in Nb3Sn Coils Fabricated by the React‐and‐Wind Method
Ohmatsu et al. Multifilament superconducting wire of NB 3 AL
JPH0963366A (en) Insulation-covered superconducting wire rod and its manufacture
JP2003016839A (en) Thread for insulating coating, and oxide superconductive wire rod and oxide superconductive coil using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100126