JP2020033475A - Heat-radiating material - Google Patents

Heat-radiating material Download PDF

Info

Publication number
JP2020033475A
JP2020033475A JP2018161904A JP2018161904A JP2020033475A JP 2020033475 A JP2020033475 A JP 2020033475A JP 2018161904 A JP2018161904 A JP 2018161904A JP 2018161904 A JP2018161904 A JP 2018161904A JP 2020033475 A JP2020033475 A JP 2020033475A
Authority
JP
Japan
Prior art keywords
fiber
heat
reinforced resin
resin
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018161904A
Other languages
Japanese (ja)
Other versions
JP7252530B2 (en
Inventor
智明 高尾
Tomoaki Takao
智明 高尾
片山 隆
Takashi Katayama
隆 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Sophia School Corp
Original Assignee
Kuraray Co Ltd
Sophia School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Sophia School Corp filed Critical Kuraray Co Ltd
Priority to JP2018161904A priority Critical patent/JP7252530B2/en
Publication of JP2020033475A publication Critical patent/JP2020033475A/en
Application granted granted Critical
Publication of JP7252530B2 publication Critical patent/JP7252530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

To provide a heat-radiating material exerting excellent cooling performance by having a high heat conductivity, and keeping contact of a superconductive wire with a coil-composing material or a member material around the superconductive wire except for the heat-radiating material good even when cooling.SOLUTION: The heat-radiating material comprises a fiber-reinforced resin containing 30-95 mass% of a fiber based on a total mass of a fiber-reinforced resin where the fiber has a tensile strength of 8 cN/dtex or more, the heat conductivity in a fiber direction at 77 K is 0.20-10 W/mK, and the heat strain in a fiber direction when the heat-radiating material is cooled to 77 K from 273 K is 2,500×10to 6,500×10.SELECTED DRAWING: None

Description

本発明は、放熱材に関する。   The present invention relates to a heat dissipating material.

超電導コイルの冷却方式は、伝導冷却と浸漬冷却とに大別される。浸漬冷却に対して伝導冷却では、冷媒が不要であり、任意の温度に冷却できるといった利点が存在する。その一方で、緩慢な冷却速度、または常電導領域が発生した際の不十分な冷却性能といった問題点が指摘されている。そのため、伝導冷却型HTS(酸化物高温超電導)コイルの冷却性能を向上させるために、巻枠若しくはコイル用ボビン等のコイル構成材料または超導電線周辺の絶縁材若しくは放熱材等の開発がなされており、例えば、特許文献1には、280K以上300K以下の温度領域にてステンレスとの動摩擦係数が0.04以上、0.14以下、厚みが0.01mm以上、10mm以下である繊維布帛を絶縁層間シートとして用いてなる樹脂非含浸超電導コイルが開示されている。   The superconducting coil cooling method is roughly classified into conduction cooling and immersion cooling. The conduction cooling has an advantage over the immersion cooling that a cooling medium is not required and the cooling can be performed at an arbitrary temperature. On the other hand, problems such as a slow cooling rate or insufficient cooling performance when a normal conduction region occurs are pointed out. Therefore, in order to improve the cooling performance of a conduction cooling type HTS (oxide high temperature superconducting) coil, materials for forming a coil such as a bobbin or a bobbin for a coil, or an insulating material or a heat radiating material around a superconductive wire have been developed. For example, Patent Document 1 insulates a fiber cloth having a dynamic friction coefficient with stainless steel of 0.04 or more and 0.14 or less and a thickness of 0.01 mm or more and 10 mm or less in a temperature range of 280 K or more and 300 K or less. A resin-impregnated superconducting coil used as an interlayer sheet is disclosed.

また、コイル構成材料若しくは超導電線周辺の部材材料として、エポキシ樹脂をマトリックス樹脂としたガラス繊維強化複合材料(以下、「GFRP」と略記する)が一般的に使用されている。例えば特許文献2には、無機繊維と樹脂とを一体成形してなる繊維強化プラスチックを切断してなる極低温スペーサーにおいて、初期の圧縮荷重が50MPaにおける20℃での48時間後の応力保持率が96%以上であり、且つ繊維軸方向の無荷重での熱膨張係数が15×10−6(1/℃)以下であることを特徴とする極低温スペーサーが開示されており、同文献には、無機繊維としてガラス繊維を使用し、樹脂としてエポキシ樹脂を使用した実施例が記載されている。 A glass fiber reinforced composite material (hereinafter, abbreviated as “GFRP”) using epoxy resin as a matrix resin is generally used as a coil constituent material or a member material around a superconductive wire. For example, in Patent Document 2, in a cryogenic spacer obtained by cutting a fiber-reinforced plastic obtained by integrally molding an inorganic fiber and a resin, the stress retention after 48 hours at 20 ° C. at an initial compression load of 50 MPa is shown. A cryogenic spacer characterized by being 96% or more and having a coefficient of thermal expansion of 15 × 10 −6 (1 / ° C.) or less under no load in the fiber axis direction is disclosed. An example is described in which glass fiber is used as the inorganic fiber and epoxy resin is used as the resin.

特開2012−151319号公報JP 2012-151319 A 特開平10−310649号公報JP-A-10-310649

GFRPは易加工性を有するが、電気絶縁物であるため熱伝導率が低く、冷却時に収縮するため超導電線と(GFRPで作られた)コイル構成材料若しくは超導電線周辺の部材材料との接触が緩み、その結果、熱伝達性が低下し、また、通電中に超電導コイルの全体若しくは一部が動きやすくなって摩擦熱が発生するといった問題がある。従って、本発明が解決しようとする課題は、高い熱伝導率を有し、冷却時でも超導電線とコイル構成材料または放熱材以外の超導電線周辺の部材材料との接触を良好に保持して優れた冷却性能を発現する放熱材を提供することである。   Although GFRP has easy workability, it has low thermal conductivity because it is an electrical insulator, and shrinks when cooled, so that the superconducting wire and the coil material (made of GFRP) or the material around the superconducting wire can be used. There is a problem that the contact is loosened, and as a result, the heat transferability is reduced, and the whole or a part of the superconducting coil is easily moved during energization to generate frictional heat. Therefore, the problem to be solved by the present invention is to have a high thermal conductivity and to maintain good contact between the superconducting wire and the material around the superconducting wire other than the coil constituting material or the heat radiating material even during cooling. The purpose of the present invention is to provide a heat dissipating material that exhibits excellent cooling performance.

本発明者らは、前記課題を解決するため詳細に検討を重ね、本発明の完成に至った。即ち、本発明は、以下の好適な態様を包含する。
[1]繊維強化樹脂の総質量に基づいて30〜95質量%の繊維を含有する繊維強化樹脂からなる放熱材であって、前記繊維は8cN/dtex以上の引張強度を有し、77Kにおける繊維方向での熱伝導率は0.20〜10W/mKであり、放熱材を273Kから77Kに冷却した際の繊維方向での熱歪みは2500×10−6〜6500×10−6である、放熱材。
[2]前記繊維は40℃における破断荷重の40%の荷重下での100時間後のクリープ伸びが10%以下である、前記[1]に記載の放熱材。
[3]前記繊維は液晶性ポリエステル繊維である、前記[1]または[2]に記載の放熱材。
[4]前記繊維強化樹脂は、繊維強化樹脂の総質量に基づいて5〜70質量%のエポキシ樹脂を含有する、前記[1]〜[3]のいずれかに記載の放熱材。
[5]前記繊維強化樹脂において前記繊維は一方向に引き揃えられている、前記[1]〜[4]のいずれかに記載の放熱材。
[6]前記繊維は放熱材の吸熱面と放熱面との間に延在している、前記[1]〜[5]のいずれかに記載の放熱材。
[7]前記[1]〜[6]のいずれかに記載の放熱材を含む超電導コイル用ボビン。
[8]前記[1]〜[6]のいずれかに記載の放熱材を含む超電導コイル。
The present inventors have studied in detail in order to solve the above problems, and have completed the present invention. That is, the present invention includes the following preferred embodiments.
[1] A heat radiator made of a fiber reinforced resin containing 30 to 95% by mass of a fiber based on the total mass of the fiber reinforced resin, wherein the fiber has a tensile strength of 8 cN / dtex or more, and a fiber at 77K. The thermal conductivity in the direction is 0.20 to 10 W / mK, and the thermal strain in the fiber direction when the heat dissipating material is cooled from 273 K to 77 K is 2500 × 10 −6 to 6500 × 10 −6. Wood.
[2] The heat-dissipating material according to [1], wherein the fiber has a creep elongation of 10% or less after 100 hours under a load of 40% of a breaking load at 40 ° C.
[3] The heat dissipating material according to [1] or [2], wherein the fiber is a liquid crystalline polyester fiber.
[4] The heat radiating material according to any one of [1] to [3], wherein the fiber reinforced resin contains 5 to 70% by mass of an epoxy resin based on the total mass of the fiber reinforced resin.
[5] The heat dissipating material according to any one of [1] to [4], wherein the fibers in the fiber reinforced resin are aligned in one direction.
[6] The heat dissipating material according to any of [1] to [5], wherein the fibers extend between a heat absorbing surface and a heat dissipating surface of the heat dissipating material.
[7] A bobbin for a superconducting coil including the heat radiating material according to any one of [1] to [6].
[8] A superconducting coil including the heat radiating material according to any one of [1] to [6].

本発明によって、高い熱伝導率を有し、冷却時でも超導電線とコイル構成材料または放熱材以外の超導電線周辺の部材材料との接触を良好に保持して優れた冷却性能を発現する放熱材を提供できる。   Advantageous Effects of Invention According to the present invention, it has a high thermal conductivity, and maintains excellent contact between superconducting wires and member materials around the superconducting wires other than the coil constituent material or heat radiating material even during cooling, and exhibits excellent cooling performance. A heat dissipating material can be provided.

熱伝導率の測定装置の概略図である。It is the schematic of the measuring apparatus of a thermal conductivity.

本発明の放熱材は、繊維強化樹脂の総質量に基づいて30〜95質量%の繊維を含有する繊維強化樹脂からなる。前記繊維は8cN/dtex以上の引張強度を有し、77Kにおける繊維方向での熱伝導率は0.20〜10W/mKであり、放熱材を273Kから77Kに冷却した際の繊維方向での熱歪みは2500×10−6〜6500×10−6である。 The heat dissipating material of the present invention is made of a fiber reinforced resin containing 30 to 95% by mass of fibers based on the total mass of the fiber reinforced resin. The fiber has a tensile strength of 8 cN / dtex or more, a thermal conductivity in the fiber direction at 77 K of 0.20 to 10 W / mK, and a heat in the fiber direction when the radiator is cooled from 273 K to 77 K. The distortion is 2500 × 10 −6 to 6500 × 10 −6 .

[繊維]
繊維の引張強度が8cN/dtex未満であると、前記した特定の熱歪みを得ることはできない。繊維の引張強度は、好ましくは10cN/dtex以上、より好ましくは15cN/dtex以上、特に好ましくは18cN/dtex以上である。繊維の引張強度の上限値は特に限定されない。繊維の引張強度は、通常は35cN/dtex以下である。前記引張強度は、JIS L1013に準拠して測定される引張強度である。
[fiber]
If the tensile strength of the fiber is less than 8 cN / dtex, the above specific thermal strain cannot be obtained. The tensile strength of the fiber is preferably 10 cN / dtex or more, more preferably 15 cN / dtex or more, and particularly preferably 18 cN / dtex or more. The upper limit of the tensile strength of the fiber is not particularly limited. The tensile strength of the fiber is usually 35 cN / dtex or less. The tensile strength is a tensile strength measured according to JIS L1013.

繊維の含有量が繊維強化樹脂の総質量に基づいて30質量%未満であると、前記した特定の熱伝導率および熱歪みを得ることはできない。繊維の含有量が繊維強化樹脂の総質量に基づいて95質量%より大きいと、繊維と繊維強化樹脂に含まれる樹脂(以下、「マトリックス樹脂」とも称する)とが良好に一体化された放熱材を得ることは困難である。繊維の含有量は、好ましくは35〜95質量%、より好ましくは45〜85質量%である。繊維の含有量が前記範囲内であると、所望の熱伝導率および熱歪みを得やすく、繊維とマトリックス樹脂とが良好に一体化された放熱材を得やすい。繊維の含有量は、後述の実施例に記載の方法により求めることができる。   When the content of the fiber is less than 30% by mass based on the total mass of the fiber-reinforced resin, the above-described specific thermal conductivity and thermal strain cannot be obtained. When the content of the fiber is more than 95% by mass based on the total mass of the fiber reinforced resin, the heat radiating material in which the fiber and the resin contained in the fiber reinforced resin (hereinafter, also referred to as “matrix resin”) are well integrated. It is difficult to get. The fiber content is preferably 35 to 95% by mass, more preferably 45 to 85% by mass. When the content of the fiber is within the above range, desired heat conductivity and thermal strain are easily obtained, and a heat radiating material in which the fiber and the matrix resin are well integrated is easily obtained. The content of the fiber can be determined by the method described in Examples described later.

前記繊維は40℃における破断荷重の40%の荷重下での100時間後のクリープ伸びが、好ましくは10%以下、より好ましくは8%以下、特に好ましくは5%以下である。クリープ伸びが前記上限値以下であると、耐久性を有する放熱材を得やすい。繊維として液晶性ポリエステル繊維を選択すること等により、クリープ伸びを前記上限値以下に調整できる。クリープ伸びは、通常は1%以上である。クリープ伸びは、後述の実施例に記載の方法に従って測定できる。   The fiber has a creep elongation after 100 hours under a load of 40% of the breaking load at 40 ° C. of preferably 10% or less, more preferably 8% or less, particularly preferably 5% or less. When the creep elongation is equal to or less than the upper limit, a heat radiating material having durability can be easily obtained. The creep elongation can be adjusted to the upper limit or less by selecting a liquid crystalline polyester fiber as the fiber. Creep elongation is usually 1% or more. Creep elongation can be measured according to the method described in Examples described later.

8cN/dtex以上の引張強度を有する繊維としては、例えば、高強度ポリエチレン繊維、アラミド繊維、液晶性ポリエステル繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ポリパラフェニレンベンゾビスイミダゾール繊維およびポリパラフェニレンベンゾビスチアゾール繊維が挙げられる。これらの中でも、前記した特定の熱伝導率および熱歪みを得やすい観点、または所望のクリープ伸びを得やすい観点からは、液晶性ポリエステル繊維が好ましい。   Examples of the fiber having a tensile strength of 8 cN / dtex or more include high-strength polyethylene fiber, aramid fiber, liquid crystalline polyester fiber, polyparaphenylene benzobisoxazole fiber, polyparaphenylene benzobisimidazole fiber, and polyparaphenylene benzobisthiazole. Fiber. Among these, liquid crystalline polyester fibers are preferred from the viewpoint of easily obtaining the specific thermal conductivity and thermal strain described above, or from the viewpoint of easily obtaining desired creep elongation.

<液晶性ポリエステル繊維>
本発明における「液晶性ポリエステル繊維」は、液晶性ポリエステルを溶融紡糸することにより製造できる。液晶性ポリエステルは、溶融相において光学的異方性(液晶性)を示すポリエステルであり、例えば試料をホットステージに載せ窒素雰囲気下で加熱し、試料の透過光を偏光顕微鏡で観察することにより認定できる。また、液晶性ポリエステルは、例えば芳香族ジオール、芳香族ジカルボン酸または芳香族ヒドロキシカルボン酸等に由来する反復構成単位からなり、本発明の効果を損なわない限り、前記構成単位は、その化学的構成について特に限定されない。さらに、また、本発明の効果を阻害しない範囲で、液晶性ポリエステルは、芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸に由来する構成単位を含んでもよい。
<Liquid crystal polyester fiber>
The “liquid crystalline polyester fiber” in the present invention can be produced by melt-spinning a liquid crystalline polyester. Liquid crystalline polyester is a polyester that exhibits optical anisotropy (liquid crystalline properties) in the molten phase. For example, a sample is placed on a hot stage, heated under a nitrogen atmosphere, and the transmitted light of the sample is observed with a polarizing microscope. it can. In addition, the liquid crystalline polyester is composed of, for example, a repeating structural unit derived from an aromatic diol, an aromatic dicarboxylic acid, an aromatic hydroxycarboxylic acid, or the like, and as long as the effects of the present invention are not impaired, the structural unit has a chemical structure. Is not particularly limited. Further, the liquid crystalline polyester may contain a structural unit derived from an aromatic diamine, an aromatic hydroxyamine or an aromatic aminocarboxylic acid, as long as the effects of the present invention are not impaired.

例えば、好ましい構成単位としては、表1に示す例が挙げられる。
For example, examples shown in Table 1 are preferable examples of the structural unit.

ここで、Yは、1〜芳香族環において置換可能な最大数の範囲の個数存在し、それぞれ独立して、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(例えば、メチル基、エチル基、イソプロピル基、t−ブチル基等の炭素数1〜4のアルキル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基等)、アリール基(例えば、フェニル基、ナフチル基等)、アラルキル基[ベンジル基(フェニルメチル基)、フェネチル基(フェニルエチル基)等]、アリールオキシ基(例えば、フェノキシ基等)およびアラルキルオキシ基(例えば、ベンジルオキシ基等)等からなる群から選択される。   Here, Y exists in the range of 1 to the maximum number that can be substituted in the aromatic ring, and each independently represents a hydrogen atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like). An alkyl group (for example, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, and a t-butyl group); an alkoxy group (for example, a methoxy group, an ethoxy group, an isopropoxy group, and an n-butoxy group). Group), an aryl group (eg, phenyl group, naphthyl group, etc.), an aralkyl group [benzyl group (phenylmethyl group), a phenethyl group (phenylethyl group), etc.], an aryloxy group (eg, phenoxy group, etc.) and aralkyl It is selected from the group consisting of oxy groups (for example, benzyloxy groups and the like).

より好ましい構成単位としては、下記表2、表3および表4に示す例(1)〜(18)に記載される構成単位が挙げられる。なお、式中の構成単位が、複数の構造を示し得る構成単位である場合、そのような構成単位を二種以上組み合わせて、ポリマーを構成する構成単位として使用してもよい。   More preferred structural units include the structural units described in Examples (1) to (18) shown in Tables 2, 3 and 4 below. When the structural unit in the formula is a structural unit capable of showing a plurality of structures, two or more such structural units may be combined and used as a structural unit constituting a polymer.

表2、3および4の構成単位において、nは1または2の整数で、それぞれの構成単位n=1、n=2は、単独でまたは組み合わせて存在してもよく、;YおよびYは、それぞれ独立して、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(例えば、メチル基、エチル基、イソプロピル基、t−ブチル基等の炭素数1〜4のアルキル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基等)、アリール基(例えば、フェニル基、ナフチル基等)、アラルキル基[ベンジル基(フェニルメチル基)、フェネチル基(フェニルエチル基)等]、アリールオキシ基(例えば、フェノキシ基等)、アラルキルオキシ基(例えば、ベンジルオキシ基等)等であってよい。これらのうち、好ましいYとしては、水素原子、塩素原子、臭素原子またはメチル基が挙げられる。 In the structural units in Tables 2, 3 and 4, n is an integer of 1 or 2, and each structural unit n = 1, n = 2 may be present alone or in combination; Y 1 and Y 2 Are each independently a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), an alkyl group (eg, a methyl group, an ethyl group, an isopropyl group, a t-butyl group, etc.) Alkyl groups of formulas 1 to 4, etc.), alkoxy groups (eg, methoxy group, ethoxy group, isopropoxy group, n-butoxy group, etc.), aryl groups (eg, phenyl group, naphthyl group, etc.), aralkyl groups [benzyl group (Phenylmethyl group), phenethyl group (phenylethyl group), etc.], aryloxy group (eg, phenoxy group, etc.), aralkyloxy group (eg, benzyloxy group, etc.) It may be at. Among these, preferable Y includes a hydrogen atom, a chlorine atom, a bromine atom and a methyl group.

また、Zとしては、下記式で表される置換基が挙げられる。
In addition, Z includes a substituent represented by the following formula.

好ましい液晶性ポリエステルは、好ましくは、二種以上のナフタレン骨格を構成単位として有する。特に好ましくは、液晶性ポリエステルは、ヒドロキシ安息香酸由来の構成単位(A)およびヒドロキシナフトエ酸由来の構成単位(B)の両方を含む。例えば、構成単位(A)としては下記式(A)が挙げられ、構成単位(B)としては下記式(B)が挙げられ、溶融成形性を向上しやすい観点から、構成単位(A)と構成単位(B)の比率は、好ましくは9/1〜1/1、より好ましくは7/1〜1/1、さらに好ましくは5/1〜1/1の範囲であってよい。   Preferred liquid crystalline polyesters preferably have two or more naphthalene skeletons as constituent units. Particularly preferably, the liquid crystalline polyester contains both the structural unit (A) derived from hydroxybenzoic acid and the structural unit (B) derived from hydroxynaphthoic acid. For example, the structural unit (A) includes the following formula (A), and the structural unit (B) includes the following formula (B). From the viewpoint of easily improving melt moldability, the structural unit (A) The ratio of the structural unit (B) may be in the range of preferably 9/1 to 1/1, more preferably 7/1 to 1/1, and still more preferably 5/1 to 1/1.

また、(A)の構成単位と(B)の構成単位の合計は、例えば、全構成単位に対して65モル%以上であってよく、より好ましくは70モル%以上、さらに好ましくは80モル%以上であってよい。ポリマー中、特に(B)の構成単位が4〜45モル%である液晶性ポリエステルが好ましい。   Further, the total of the constitutional units of (A) and (B) may be, for example, 65 mol% or more, more preferably 70 mol% or more, and still more preferably 80 mol%, based on all the constitutional units. That is all. Among the polymers, a liquid crystalline polyester in which the structural unit (B) is 4 to 45 mol% is particularly preferable.

本発明で好適に用いられる液晶性ポリエステルの融点は、好ましくは250〜360℃、より好ましくは260〜320℃である。ここで、融点とは、JIS K7121試験法に準拠し、示差走差熱量計(DSC;メトラー社製「TA3000」)で測定し、観察される主吸収ピーク温度である。具体的には、前記DSC装置に、サンプルを10〜20mgとりアルミ製パンへ封入した後、キャリヤーガスとしての窒素を100cc/分で流通させ、20℃/分で昇温したときの吸熱ピークを測定する。ポリマーの種類によってDSC測定において1st runで明確なピークが現れない場合は、50℃/分の昇温速度で予想される流れ温度よりも50℃高い温度まで昇温し、その温度で3分間保持し、完全に溶融した後、−80℃/分の降温速度で50℃まで冷却し、しかる後に20℃/分の昇温速度で吸熱ピークを測定するとよい。   The melting point of the liquid crystalline polyester suitably used in the present invention is preferably from 250 to 360 ° C, more preferably from 260 to 320 ° C. Here, the melting point is a main absorption peak temperature that is measured and observed with a differential scanning calorimeter (DSC; “TA3000” manufactured by METTLER CORPORATION) according to JIS K7121 test method. Specifically, after taking 10 to 20 mg of the sample in the DSC device and sealing the sample in an aluminum pan, nitrogen as a carrier gas was passed at 100 cc / min, and the endothermic peak when the temperature was increased at 20 ° C./min. Measure. If a clear peak does not appear at 1st run in the DSC measurement depending on the type of polymer, the temperature is raised to a temperature 50 ° C. higher than the expected flow temperature at a heating rate of 50 ° C./min and held at that temperature for 3 minutes. Then, after completely melting, it is preferable to cool to 50 ° C. at a temperature lowering rate of −80 ° C./min, and then measure the endothermic peak at a temperature increasing rate of 20 ° C./min.

なお、前記液晶性ポリエステルには、本発明の効果を損なわない範囲で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、およびフッ素樹脂等の熱可塑性ポリマーを添加してもよい。また、酸化チタン、カオリン、シリカ、酸化バリウム等の無機物、カーボンブラック、染料、顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤等の各種添加剤を添加してもよい。   To the liquid crystalline polyester, thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyamide, polyphenylene sulfide, polyether ether ketone, and fluororesin are added as long as the effects of the present invention are not impaired. May be. Further, various additives such as inorganic substances such as titanium oxide, kaolin, silica and barium oxide, coloring agents such as carbon black, dyes and pigments, antioxidants, ultraviolet absorbers and light stabilizers may be added.

本発明の放熱材に含まれる液晶性ポリエステル繊維は、常法により前記液晶性ポリエステルを溶融紡糸して製造できる。通常は、液晶性ポリエステルの融点より10〜50℃高い温度で紡糸する。紡糸後の繊維は熱処理を行ってもよい。熱処理により固相重合(一部架橋反応も伴うこともある)が起こり、強度および弾性率が向上し、さらに融点が上昇する。   The liquid crystalline polyester fiber contained in the heat radiating material of the present invention can be produced by melt-spinning the liquid crystalline polyester by a conventional method. Usually, spinning is performed at a temperature 10 to 50 ° C. higher than the melting point of the liquid crystalline polyester. The fiber after spinning may be subjected to a heat treatment. The heat treatment causes solid-phase polymerization (sometimes accompanied by a cross-linking reaction), improving strength and elastic modulus, and further increasing the melting point.

熱処理は、窒素等の不活性雰囲気中または空気のような酸素含有活性雰囲気中または減圧下で行うことが可能である。露点が−40℃以下の気体の雰囲気中で熱処理することが好ましい。好ましい温度条件としては、液晶性ポリエステル繊維の融点以下から順次昇温していく温度条件が挙げられる。熱処理は、目的とする性能に応じて、数秒から数十時間行うことができる。通常熱処理は繊維の状態で行われるが、必要に応じてUD(Unidirectional)、不織布、織物または編物の状態で行ってもよい。   The heat treatment can be performed in an inert atmosphere such as nitrogen or an oxygen-containing active atmosphere such as air or under reduced pressure. The heat treatment is preferably performed in a gas atmosphere having a dew point of −40 ° C. or less. Preferred temperature conditions include a temperature condition in which the temperature is sequentially increased from the melting point of the liquid crystalline polyester fiber or lower. The heat treatment can be performed for several seconds to several tens of hours, depending on the desired performance. Usually, the heat treatment is performed in the state of fibers, but may be performed in the state of UD (Unidirectional), non-woven fabric, woven fabric or knitted fabric, if necessary.

本発明における液晶性ポリエステル繊維は、モノフィラメント、マルチフィラメント、短繊維またはトウのいずれであってもよい。後述するマトリックス樹脂の含浸または付着は、繊維が一方向に引き揃えられ、集束された状態で行われることが多いため、生産性の観点から、液晶性ポリエステル繊維はマルチフィラメントであることが好ましい。   The liquid crystalline polyester fiber in the present invention may be any of monofilament, multifilament, short fiber and tow. Since the impregnation or adhesion of the matrix resin described later is often performed in a state where the fibers are aligned and bundled in one direction, the liquid crystalline polyester fiber is preferably a multifilament from the viewpoint of productivity.

液晶性ポリエステル繊維の単糸繊度は、好ましくは0.1〜50dtex、より好ましくは1〜20dtex、特に好ましくは1〜10dtexである。単糸繊度が前記範囲内であると、マトリックス樹脂との十分な接着性を得やすい。   The single fiber fineness of the liquid crystalline polyester fiber is preferably 0.1 to 50 dtex, more preferably 1 to 20 dtex, and particularly preferably 1 to 10 dtex. When the single-fiber fineness is within the above range, it is easy to obtain sufficient adhesiveness with the matrix resin.

マルチフィラメントまたはトウには甘撚りがかけられていてもよいが、実質的に無撚であることが好ましい。さらに、マルチフィラメントを開繊処理および/または平滑化処理に付してもよい。このような開繊処理および/または平滑化処理を行ったマルチフィラメント、またはトウを用いて、UD、織物または編物を作製することにより、引き揃えられた繊維による繊維強化樹脂を得やすくなる。   The multifilament or tow may be twisted, but is preferably substantially untwisted. Further, the multifilament may be subjected to an opening process and / or a smoothing process. By producing a UD, a woven fabric, or a knitted fabric using the multifilament or the tow that has been subjected to such opening processing and / or smoothing treatment, it becomes easy to obtain a fiber-reinforced resin with aligned fibers.

「液晶性ポリエステル繊維」として、市販品を使用することもできる。そのような市販品として、例えば、株式会社クラレ製ベクトランUM(商品名)、株式会社クラレ製ベクトランHT(商品名)、株式会社クラレ製ベクトランNT(商品名)、株式会社クラレ製ベクトランEX(商品名)、東レ株式会社製シベラス(商品名)、およびKBセーレン株式会社製ゼクシオン(商品名)等を挙げることができる。   As the "liquid crystalline polyester fiber", a commercially available product can also be used. As such commercially available products, for example, Kuraray Co., Ltd. Vectran UM (trade name), Kuraray Co., Ltd. Vectran HT (trade name), Kuraray Co., Ltd. Vectran NT (trade name), Kuraray Co., Ltd. Vectran EX (product name) Name), Siveras (trade name) manufactured by Toray Industries, Inc., and XXION (trade name) manufactured by KB Seiren Co., Ltd.

液晶性ポリエステル繊維は、単独でまたは組み合わせて使用できる。   Liquid crystalline polyester fibers can be used alone or in combination.

本発明における繊維強化樹脂には、繊維は一方向に引き揃えられている形態(UD)で、または不織布、織物(例えばカットパイル)若しくは編物として含まれていてよい。中でも、繊維が一方向に引き揃えられている態様は、一方向に引き揃えられている繊維にマトリックス樹脂を含浸または付着させる製造工程を、繊維含有量を高める場合でも容易に実施しやすいため好ましい。また、本発明者らにより、繊維強化樹脂について、繊維方向の熱伝導率は、繊維方向以外の方向の熱伝導率より高いことが見出された。従って、この態様はまた、より高い繊維方向での熱伝導率を得やすい観点からも好ましい。   In the fiber reinforced resin of the present invention, the fibers may be included in a unidirectionally aligned form (UD) or as a nonwoven fabric, a woven fabric (for example, cut pile) or a knitted fabric. Above all, the aspect in which the fibers are aligned in one direction is preferable because the manufacturing process of impregnating or adhering the matrix resin to the fibers aligned in one direction can be easily performed even when the fiber content is increased. . Further, the present inventors have found that the thermal conductivity in the fiber direction of the fiber reinforced resin is higher than the thermal conductivity in directions other than the fiber direction. Therefore, this embodiment is also preferable from the viewpoint of easily obtaining a higher thermal conductivity in the fiber direction.

好ましい一態様において、前記繊維は放熱材の吸熱面と放熱面との間に延在している。ここで、吸熱面とは、吸熱すべき対象の部材と接触させる面を意味し、放熱面とは、吸熱面と反対の面を意味する。より具体的には、例えば放熱材がシート状である場合、吸熱面とは、吸熱すべき対象の部材と接触させるシートの一面(表面)を意味し、放熱面とは、シートの他面(裏面)を意味する。本発明者らにより、繊維強化樹脂について、繊維中をまたは繊維に沿って熱が伝導しやすい傾向にあることが見出された。従って、この態様では、吸熱面から吸収された熱が繊維中をまたは繊維に沿って伝導し、放熱面から放熱されることから、より高い熱伝導率を得ることができる。   In a preferred embodiment, the fibers extend between the heat absorbing surface and the heat dissipating surface of the heat dissipating material. Here, the heat-absorbing surface means a surface to be brought into contact with a member to be absorbed, and the heat-radiating surface means a surface opposite to the heat-absorbing surface. More specifically, for example, when the heat dissipating material is in a sheet shape, the heat absorbing surface means one surface (surface) of the sheet to be brought into contact with the member to be absorbed, and the heat dissipating surface is the other surface ( Back). The present inventors have found that fiber reinforced resins tend to conduct heat easily through or along the fibers. Therefore, in this embodiment, the heat absorbed from the heat absorbing surface is conducted in or along the fiber and is radiated from the heat radiating surface, so that a higher thermal conductivity can be obtained.

[マトリックス樹脂]
本発明における繊維強化樹脂は、前記繊維に加えてマトリックス樹脂を含む。樹脂を含むことにより、樹脂を含まず繊維布帛からなるコイル構成材料または超導電線周辺の部材材料と比べて超導電線を良好に固定できる。また、その固定は、本発明における繊維強化樹脂の特定の熱歪みに起因して、冷却時も良好に保持され得る。そして、本発明における繊維強化樹脂は高い熱伝導率を有するので、超電導線または繊維強化樹脂内部に蓄熱が起こり難い。従って、特定の繊維とマトリックス樹脂とを含む本発明における構成により、通電中に超電導コイルの全体若しくは一部が動きやすくなるといった問題を排除することができる。
[Matrix resin]
The fiber reinforced resin in the present invention contains a matrix resin in addition to the fibers. By including the resin, the superconducting wire can be fixed more favorably than the coil constituting material made of fiber cloth without containing the resin or the member material around the superconducting wire. In addition, the fixing can be favorably maintained during cooling due to the specific thermal strain of the fiber reinforced resin in the present invention. And since the fiber reinforced resin in the present invention has high thermal conductivity, heat storage hardly occurs inside the superconducting wire or the fiber reinforced resin. Therefore, with the configuration according to the present invention including the specific fiber and the matrix resin, it is possible to eliminate the problem that the whole or a part of the superconducting coil easily moves during energization.

マトリックス樹脂としては、エポキシ樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂またはウレタンアセテート樹脂を使用できる。これらの中で、強度の観点からは、好ましいマトリックス樹脂はエポキシ樹脂である。   As the matrix resin, an epoxy resin, a urethane resin, an unsaturated polyester resin, a vinyl ester resin or a urethane acetate resin can be used. Among them, a preferable matrix resin is an epoxy resin from the viewpoint of strength.

本発明における繊維強化樹脂は、繊維強化樹脂の総質量に基づいて、好ましくは5〜70質量%、より好ましくは5〜65質量%、さらに好ましくは10〜65質量%、特に好ましくは15〜55質量%のエポキシ樹脂を含有する。エポキシ樹脂の含有量が前記範囲内であると、所望の熱伝導率および熱歪みを得やすく、繊維とマトリックス樹脂とが良好に一体化された放熱材を得やすい。エポキシ樹脂の含有量は、後述の実施例に記載の方法により求めることができる。   The fiber reinforced resin in the present invention is preferably 5 to 70% by mass, more preferably 5 to 65% by mass, still more preferably 10 to 65% by mass, and particularly preferably 15 to 55% by mass, based on the total mass of the fiber reinforced resin. Contains epoxy resin by weight. When the content of the epoxy resin is within the above range, desired thermal conductivity and thermal strain are easily obtained, and a heat radiating material in which the fiber and the matrix resin are well integrated is easily obtained. The content of the epoxy resin can be determined by the method described in Examples described later.

[放熱材]
本発明の放熱材の77Kにおける繊維方向での熱伝導率は0.20〜10W/mKである。熱伝導率が0.20W/mK未満であると、放熱材としての性能が十分に発現されない。熱伝導率は好ましくは0.25〜5.0W/mK、より好ましくは0.30〜3.0W/mK、特に好ましくは0.35〜2.0W/mKである。熱伝導率が前記範囲内であると、放熱材としての性能が十分に発現されやすい。繊維含有量の調整、繊維種の選択、または繊維の配向の調製等により、熱伝導率を前記範囲内に調整できる。熱伝導率は後述の実施例に記載の方法に従って測定できる。
[Heat dissipation material]
The thermal conductivity of the heat radiating material of the present invention in the fiber direction at 77K is 0.20 to 10 W / mK. When the thermal conductivity is less than 0.20 W / mK, the performance as a heat radiating material is not sufficiently exhibited. The thermal conductivity is preferably 0.25 to 5.0 W / mK, more preferably 0.30 to 3.0 W / mK, and particularly preferably 0.35 to 2.0 W / mK. When the thermal conductivity is within the above range, the performance as a heat radiating material is likely to be sufficiently exhibited. By adjusting the fiber content, selecting the fiber type, or adjusting the fiber orientation, the thermal conductivity can be adjusted within the above range. The thermal conductivity can be measured according to the method described in Examples described later.

放熱材を273Kから77Kに冷却した際の繊維方向での熱歪みは、2500×10−6〜6500×10−6である。本明細書において熱歪みとは、放熱材が温度低下につれて膨張または収縮する現象を意味する。上述のように熱歪みが正の値をとる場合は、放熱材が温度低下につれて繊維方向に膨張する負膨張特性を示し、冷却時でも超電導線とコイル構成材料または放熱材以外の超電導線周辺の部材材料との接触を良好に保持して優れた冷却性能を発現できる。熱歪みが2500×10−6未満であると、冷却時の繊維方向での熱膨張が不十分であるため放熱材としての性能が十分に発現されない。熱歪みは好ましくは3000×10−6〜6000×10−6、より好ましくは3500×10−6〜5500×10−6である。熱歪みが前記範囲内であると、熱歪みと良好な熱伝導率との両立が達成されやすいため放熱材としての性能が発現されやすい。繊維含有量の調整、繊維種の選択、または繊維の配向の調製等により、熱歪みを前記範囲内に調整できる。熱歪みは後述の実施例に記載の方法に従って測定できる。 The thermal strain in the fiber direction when the radiator is cooled from 273K to 77K is 2500 × 10 −6 to 6500 × 10 −6 . As used herein, the term “thermal strain” means a phenomenon in which a heat radiating material expands or contracts as the temperature decreases. When the thermal strain has a positive value as described above, the heat-dissipating material exhibits a negative expansion characteristic in which the heat-dissipating material expands in the fiber direction as the temperature decreases. Excellent cooling performance can be exhibited by maintaining good contact with the member material. When the thermal strain is less than 2500 × 10 −6 , the thermal expansion in the fiber direction at the time of cooling is insufficient, so that the performance as a heat radiating material is not sufficiently exhibited. The thermal strain is preferably from 3000 × 10 −6 to 6000 × 10 −6 , more preferably from 3500 × 10 −6 to 5500 × 10 −6 . When the thermal strain is within the above range, it is easy to achieve both thermal strain and good thermal conductivity, so that the performance as a heat radiating material is easily exhibited. By adjusting the fiber content, selecting the fiber type, or adjusting the fiber orientation, the thermal strain can be adjusted within the above range. The thermal strain can be measured according to the method described in Examples described later.

[放熱材の製造方法]
本発明の放熱材は、繊維、UD、不織布、織物または編物(以下において、まとめて「繊維製品」と称する)を準備し、繊維強化樹脂を形成するための樹脂組成物を前記繊維製品に含浸または付着させることにより製造できる。
[Production method of heat dissipation material]
The heat dissipating material of the present invention prepares fibers, UD, nonwoven fabric, woven fabric or knitted fabric (hereinafter collectively referred to as “fiber products”), and impregnates the fiber products with a resin composition for forming a fiber reinforced resin. Alternatively, it can be produced by attaching.

繊維製品を準備する準備工程では、含浸または付着させる樹脂組成物との接着性を向上させるために、必要に応じて繊維製品に対して物理的および/または化学的処理を行ってもよい。   In the preparation step of preparing the fiber product, a physical and / or chemical treatment may be performed on the fiber product as needed in order to improve the adhesiveness with the resin composition to be impregnated or adhered.

物理的処理としては、例えば、コロナ放電処理、グロー放電処理、プラズマ処理、電子線処理、紫外線処理、酸素含有雰囲気下での熱処理、および水分含有雰囲気下での熱処理等が挙げられる。化学的処理としては、例えば、酸処理、アルカリ処理、および酸化剤を用いた処理等が挙げられる。化学的処理は、常温下で行ってもよいし、加熱下で行ってもよいが、加熱下で行うことが好ましい。これらの処理は、単独で、または二種以上を組み合わせて行ってもよい。   Examples of the physical treatment include corona discharge treatment, glow discharge treatment, plasma treatment, electron beam treatment, ultraviolet treatment, heat treatment in an oxygen-containing atmosphere, and heat treatment in a moisture-containing atmosphere. Examples of the chemical treatment include an acid treatment, an alkali treatment, and a treatment using an oxidizing agent. The chemical treatment may be performed at room temperature or under heating, but is preferably performed under heating. These processes may be performed alone or in combination of two or more.

樹脂組成物を繊維製品に含浸または付着する方法は、特に限定されず、従来公知の方法、例えば、繊維製品に樹脂組成物を含浸または付着させて、所望の形状に成形した後、乾燥および/または硬化させる方法、離型性を有するフィルムまたはシートに樹脂組成物の層を形成した後、それを繊維製品に転写し、所望の形状に成形した後、乾燥および/または硬化させる方法等を採用できる。これらの方法において、繊維は、樹脂組成物の含浸、付着または転写前に一方向に引き揃えられていることが好ましい。シート状に繊維をシート面内の一方向に引き揃える方法としては、通常のUDの製造方法に準じた方法を採用できる。また、シート面に対して垂直方向に繊維を引き揃える方法としては、例えば、不織布のニードルパンチ処理、水流絡合処置、または短繊維のフロック加工等を用いる方法を採用できる。   The method of impregnating or adhering the resin composition to the fiber product is not particularly limited, and a conventionally known method, for example, impregnating or adhering the resin composition to the fiber product, forming the resin product into a desired shape, drying and / or Or a method of curing, a method of forming a layer of the resin composition on a film or sheet having releasability, transferring the layer to a fiber product, forming it into a desired shape, and then drying and / or curing. it can. In these methods, the fibers are preferably aligned in one direction before impregnation, adhesion or transfer of the resin composition. As a method of drawing the fibers in a sheet shape in one direction within the sheet surface, a method according to a normal UD manufacturing method can be adopted. Further, as a method of aligning the fibers in the direction perpendicular to the sheet surface, for example, a method using needle punching treatment of a nonwoven fabric, hydroentanglement treatment, flocking of short fibers, or the like can be adopted.

樹脂組成物には、樹脂以外に、任意に添加剤が含まれてよい。そのような添加剤は、本発明の効果を損なわない限り特に限定されず、例えば硬化剤、硬化促進剤、溶剤、無機フィラー、難燃剤または耐候剤等を使用できる。樹脂組成物がこれらの添加剤を含む場合、その量は添加の目的等に応じて適宜変更されてよい。   The resin composition may optionally contain additives other than the resin. Such additives are not particularly limited as long as the effects of the present invention are not impaired, and for example, a curing agent, a curing accelerator, a solvent, an inorganic filler, a flame retardant, a weathering agent, or the like can be used. When the resin composition contains these additives, the amount thereof may be appropriately changed according to the purpose of the addition.

本発明の放熱材は、77Kにおいて高い熱伝導率を有し、低温になるにつれ収縮せずに特定の熱歪みを有するため、超電導線周辺の部材として良好に使用できる。従って、本発明はまた、前記放熱材を含む超電導コイル用ボビン、または前記放熱材を含む超電導コイルに関する。   The heat dissipating material of the present invention has a high thermal conductivity at 77K and does not shrink as the temperature decreases, and has a specific thermal strain, so that it can be used favorably as a member around a superconducting wire. Therefore, the present invention also relates to a superconducting coil bobbin including the heat dissipating material or a superconducting coil including the heat dissipating material.

以下、実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例により何ら限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.

[測定方法または評価方法]
<繊維強化樹脂中の繊維含有量および樹脂含有量>
後述の実施例1に記載の通り、繊維を一方向に束ねて秤量した。繊維束にマトリックス樹脂を塗り込んだ後に熱収縮性チューブに挿入し、マトリックス樹脂を熱硬化させた後に熱収縮性チューブを除去して秤量した。これらの秤量値から、繊維強化樹脂中の繊維含有量を求めた。また、これらの秤量値の差を、繊維強化樹脂中の樹脂含有量とした。
[Measurement method or evaluation method]
<Fiber content and resin content in fiber reinforced resin>
As described in Example 1 below, the fibers were bundled in one direction and weighed. After the matrix resin was applied to the fiber bundle, it was inserted into a heat-shrinkable tube, and after the matrix resin was thermally cured, the heat-shrinkable tube was removed and weighed. From these weighed values, the fiber content in the fiber reinforced resin was determined. The difference between these weighed values was defined as the resin content in the fiber reinforced resin.

<繊維の引張強度>
JIS L1013に準拠して測定した。
<Tensile strength of fiber>
It was measured in accordance with JIS L1013.

<繊維のクリープ伸び>
繊維をクリープ試験機(株式会社マイズ社製のNo.525−R)にセットし、40℃における繊維の破断荷重の40%の荷重を雰囲気温度40℃にて載荷し、100時間後の繊維の伸びを測定した。試験前の繊維長に対する測定された伸びの割合を、クリープ伸び(%)とした。
<Fiber creep elongation>
The fiber was set on a creep tester (No. 525-R manufactured by Mize Co., Ltd.), and a load of 40% of the fiber breaking load at 40 ° C. was loaded at an ambient temperature of 40 ° C. The elongation was measured. The ratio of the measured elongation to the fiber length before the test was defined as creep elongation (%).

<繊維強化樹脂の熱伝導率>
定常熱流法を採用し、図1に示す測定装置を用いて、下記手順に従い熱伝導率を測定した。
(1)試料の一部を銅製の試料台に挿入し、冷凍機のコールドヘッドに固定した。
(2)真空断熱の条件下、冷凍機で77Kに試料を冷却した。
(3)試料の上端に取り付けたヒーターを用いて試料を一定の電力(0.03W)で連続的に加熱し、試料に定常状態の温度勾配を形成した。
(4)試料の温度勾配を、2つの熱電対を用いて測定した。
(5)測定した温度から、下記式により熱伝導率λを算出した。
式中、Lは熱電対の間隔(単位:m)、Qはヒーターの加熱量(単位:W)、Sは試料断面積(単位:m)、TおよびTは各熱電対により測定された温度(単位:K)を示す。
<Thermal conductivity of fiber reinforced resin>
The steady-state heat flow method was employed, and the thermal conductivity was measured using the measuring apparatus shown in FIG. 1 according to the following procedure.
(1) A part of the sample was inserted into a copper sample table and fixed to a cold head of a refrigerator.
(2) The sample was cooled to 77K by a refrigerator under the condition of vacuum insulation.
(3) The sample was continuously heated with a constant power (0.03 W) using a heater attached to the upper end of the sample to form a steady-state temperature gradient in the sample.
(4) The temperature gradient of the sample was measured using two thermocouples.
(5) From the measured temperature, the thermal conductivity λ was calculated by the following equation.
In the formula, L is the distance between thermocouples (unit: m), Q is the heating amount of the heater (unit: W), S is the sample cross-sectional area (unit: m 2 ), and T 1 and T 2 are measured by each thermocouple. Temperature (unit: K).

<繊維強化樹脂の熱歪み>
試料の繊維方向での熱歪みを測定するよう歪みゲージを貼った。次いで、試料を氷水に浸漬し、273Kの基準温度を明確にした。その後、試料を液体窒素に浸漬し、273Kから77Kに冷却した際の膨張または収縮を測定した。測定を3回行い、その平均値を繊維強化樹脂の熱歪みとした。
<Thermal distortion of fiber reinforced resin>
A strain gauge was attached to measure the thermal strain in the fiber direction of the sample. Next, the sample was immersed in ice water to clarify the reference temperature of 273K. Thereafter, the sample was immersed in liquid nitrogen and the expansion or contraction when cooled from 273K to 77K was measured. The measurement was performed three times, and the average value was defined as the thermal strain of the fiber reinforced resin.

実施例1
液晶性ポリエステル繊維1(株式会社クラレ製「ベクトラン」、総繊度:1670dtex、引張強度:22.9cN/dtex、クリープ伸び:2.1%)を一方向に200本束ねて秤量した。繊維束にエポキシ樹脂(主剤:三菱ケミカル株式会社製のグレード827、硬化剤:日立化成株式会社製のHN-5500)を塗り込み、直径約10mmの熱収縮性チューブに挿入した。120℃に設定したドライオーブンにて2時間加熱することによりエポキシ樹脂を硬化させた後、熱収縮性チューブを除去して秤量した。約60mmの長さとなるように繊維強化樹脂の両端をカットして端面を整え、繊維強化樹脂試験片を得た。繊維強化樹脂試験片において、繊維は、一方向に引き揃えられており、カットした一方の端部面と他方の端部面との間に延在していた。
得られた繊維強化樹脂試験片について、上述した測定および評価を行った。結果を表5に示す。
Example 1
200 liquid crystalline polyester fibers 1 ("Vectran" manufactured by Kuraray Co., Ltd., total fineness: 1670 dtex, tensile strength: 22.9 cN / dtex, creep elongation: 2.1%) were bundled and weighed in one direction. An epoxy resin (main agent: grade 827 manufactured by Mitsubishi Chemical Corporation, curing agent: HN-5500 manufactured by Hitachi Chemical Co., Ltd.) was applied to the fiber bundle, and inserted into a heat-shrinkable tube having a diameter of about 10 mm. After the epoxy resin was cured by heating in a dry oven set at 120 ° C. for 2 hours, the heat-shrinkable tube was removed and weighed. Both ends of the fiber-reinforced resin were cut so as to have a length of about 60 mm, and the end faces were trimmed to obtain a fiber-reinforced resin test piece. In the fiber-reinforced resin test piece, the fibers were aligned in one direction and extended between one cut end face and the other cut end face.
The measurements and evaluations described above were performed on the obtained fiber-reinforced resin test pieces. Table 5 shows the results.

実施例2
液晶性ポリエステル繊維2(株式会社クラレ製「ベクトラン」、総繊度:1680dtex、引張強度:8.8cN/dtex、クリープ伸び:1.8%)を用いたこと以外は実施例1と同様にして、繊維が一方向に引き揃えられており、カットした一方の端部面と他方の端部面との間に延在している繊維強化樹脂試験片を得、上述した測定および評価を行った。結果を表5に示す。
Example 2
A liquid crystal polyester fiber 2 (“Vectran” manufactured by Kuraray Co., Ltd., total fineness: 1680 dtex, tensile strength: 8.8 cN / dtex, creep elongation: 1.8%) was used in the same manner as in Example 1, except that Fibers were aligned in one direction, and a fiber-reinforced resin test piece extending between one cut end face and the other cut end face was obtained, and the above-described measurement and evaluation were performed. Table 5 shows the results.

実施例3
液晶性ポリエステル繊維3(株式会社クラレ製「ベクトラン」、総繊度:1670dtex、引張強度:20.3cN/dtex、クリープ伸び:1.5%)を用いたこと以外は実施例1と同様にして、繊維が一方向に引き揃えられており、カットした一方の端部面と他方の端部面との間に延在している繊維強化樹脂試験片を得、上述した測定および評価を行った。結果を表5に示す。
Example 3
A liquid crystal polyester fiber 3 ("Vectran" manufactured by Kuraray Co., Ltd., total fineness: 1670 dtex, tensile strength: 20.3 cN / dtex, creep elongation: 1.5%) was used in the same manner as in Example 1 except that Fibers were aligned in one direction, and a fiber-reinforced resin test piece extending between one cut end face and the other cut end face was obtained, and the above-described measurement and evaluation were performed. Table 5 shows the results.

実施例4
繊維含有量を72.4質量%に変更したこと以外は実施例1と同様にして、繊維が一方向に引き揃えられており、カットした一方の端部面と他方の端部面との間に延在している繊維強化樹脂試験片を得、上述した測定および評価を行った。結果を表5に示す。
Example 4
Except that the fiber content was changed to 72.4% by mass, the fibers were aligned in one direction in the same manner as in Example 1, and between the cut one end surface and the other end surface. Was obtained, and the above-described measurement and evaluation were performed. Table 5 shows the results.

比較例1
表5に記載の繊維含有量を有し、繊維が一方向に引き揃えられており、カットした一方の端部面と他方の端部面との間に延在しているGFRP試験片について、熱伝導率および熱歪みを測定した。結果を表5に示す。
Comparative Example 1
The GFRP test piece having the fiber content described in Table 5, the fibers being aligned in one direction, and extending between one cut end surface and the other end surface, Thermal conductivity and thermal strain were measured. Table 5 shows the results.

表5から分かるように、本発明に従った繊維強化樹脂試験片はいずれも、高い熱伝導率を有し、冷却時に繊維方向に膨張したことから、冷却時でも優れた冷却性能を発現できる、放熱材に適したものであった。一方、比較例であるGFRP試験片は熱伝導率が低く、冷却時に繊維方向に大きく収縮したことから、その冷却性能は低いものであった。従って、コイル構成材料として一般的に使用されているGFRPに代えて本発明に従った繊維強化樹脂からなる放熱材を用いることにより、超電導コイルの冷却特性または熱安定性を向上させることができる。   As can be seen from Table 5, all of the fiber-reinforced resin test pieces according to the present invention have high thermal conductivity and can expand in the fiber direction during cooling, so that excellent cooling performance can be exhibited even during cooling. It was suitable for a heat dissipating material. On the other hand, the GFRP test piece as the comparative example had a low thermal conductivity, and shrunk greatly in the fiber direction during cooling, so that the cooling performance was low. Therefore, by using a radiator made of the fiber-reinforced resin according to the present invention instead of GFRP generally used as a coil constituent material, the cooling characteristics or thermal stability of the superconducting coil can be improved.

本発明に従った繊維強化樹脂は高い熱伝導率を有し、冷却時でも優れた冷却性能を発現することから、放熱材として好適に利用することができる。   The fiber reinforced resin according to the present invention has a high thermal conductivity and exhibits excellent cooling performance even during cooling, and thus can be suitably used as a heat radiating material.

1 ヒーター
2 熱電対1
3 熱電対2
4 試料(繊維強化樹脂試験片)
5 試料台
6 コールドヘッド
1 heater 2 thermocouple 1
3 Thermocouple 2
4 samples (fibre-reinforced resin test pieces)
5 Sample table 6 Cold head

Claims (8)

繊維強化樹脂の総質量に基づいて30〜95質量%の繊維を含有する繊維強化樹脂からなる放熱材であって、前記繊維は8cN/dtex以上の引張強度を有し、77Kにおける繊維方向での熱伝導率は0.20〜10W/mKであり、放熱材を273Kから77Kに冷却した際の繊維方向での熱歪みは2500×10−6〜6500×10−6である、放熱材。 A heat radiating material comprising a fiber reinforced resin containing 30 to 95% by mass of a fiber based on the total mass of the fiber reinforced resin, wherein the fiber has a tensile strength of 8 cN / dtex or more, and has a tensile strength in a fiber direction at 77K. A heat dissipating material having a thermal conductivity of 0.20 to 10 W / mK and a thermal strain in the fiber direction of 2500 × 10 −6 to 6500 × 10 −6 when the heat dissipating material is cooled from 273K to 77K. 前記繊維は40℃における破断荷重の40%の荷重下での100時間後のクリープ伸びが10%以下である、請求項1に記載の放熱材。   The heat radiating material according to claim 1, wherein the fiber has a creep elongation of 10% or less after 100 hours under a load of 40% of a breaking load at 40 ° C. 前記繊維は液晶性ポリエステル繊維である、請求項1または2に記載の放熱材。   The heat dissipation material according to claim 1, wherein the fiber is a liquid crystalline polyester fiber. 前記繊維強化樹脂は、繊維強化樹脂の総質量に基づいて5〜70質量%のエポキシ樹脂を含有する、請求項1〜3のいずれかに記載の放熱材。   The heat dissipation material according to any one of claims 1 to 3, wherein the fiber reinforced resin contains 5 to 70% by mass of an epoxy resin based on the total mass of the fiber reinforced resin. 前記繊維強化樹脂において前記繊維は一方向に引き揃えられている、請求項1〜4のいずれかに記載の放熱材。   The heat dissipation material according to any one of claims 1 to 4, wherein the fibers in the fiber reinforced resin are aligned in one direction. 前記繊維は放熱材の吸熱面と放熱面との間に延在している、請求項1〜5のいずれかに記載の放熱材。   The heat radiating material according to any one of claims 1 to 5, wherein the fibers extend between a heat absorbing surface and a heat radiating surface of the heat radiating material. 請求項1〜6のいずれかに記載の放熱材を含む超電導コイル用ボビン。   A bobbin for a superconducting coil, comprising the heat dissipating material according to claim 1. 請求項1〜6のいずれかに記載の放熱材を含む超電導コイル。   A superconducting coil comprising the heat radiating material according to claim 1.
JP2018161904A 2018-08-30 2018-08-30 Heat dissipation material Active JP7252530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018161904A JP7252530B2 (en) 2018-08-30 2018-08-30 Heat dissipation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161904A JP7252530B2 (en) 2018-08-30 2018-08-30 Heat dissipation material

Publications (2)

Publication Number Publication Date
JP2020033475A true JP2020033475A (en) 2020-03-05
JP7252530B2 JP7252530B2 (en) 2023-04-05

Family

ID=69667127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161904A Active JP7252530B2 (en) 2018-08-30 2018-08-30 Heat dissipation material

Country Status (1)

Country Link
JP (1) JP7252530B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195311A (en) * 1995-01-13 1996-07-30 Toyobo Co Ltd Superconducting coil
JP2000273196A (en) * 1999-03-24 2000-10-03 Polymatech Co Ltd Heat-conductive resin substrate and semiconductor package
JP2001081202A (en) * 1999-09-09 2001-03-27 Polymatech Co Ltd Heat conductive molded article and its preparation and resin substrate for conductive circuit
JP2001326117A (en) * 2000-05-16 2001-11-22 Toyobo Co Ltd High-temperature superconducting coil
JP2003166178A (en) * 2001-11-29 2003-06-13 Toyobo Co Ltd Heat-releasing sheet
JP2004060111A (en) * 2002-07-30 2004-02-26 Toyobo Co Ltd Cloth having excellent heat-conductivity
JP2008306092A (en) * 2007-06-11 2008-12-18 Toyobo Co Ltd Superconducting coil
JP2010121239A (en) * 2008-11-20 2010-06-03 Kuraray Co Ltd Rope

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195311A (en) * 1995-01-13 1996-07-30 Toyobo Co Ltd Superconducting coil
JP2000273196A (en) * 1999-03-24 2000-10-03 Polymatech Co Ltd Heat-conductive resin substrate and semiconductor package
JP2001081202A (en) * 1999-09-09 2001-03-27 Polymatech Co Ltd Heat conductive molded article and its preparation and resin substrate for conductive circuit
JP2001326117A (en) * 2000-05-16 2001-11-22 Toyobo Co Ltd High-temperature superconducting coil
JP2003166178A (en) * 2001-11-29 2003-06-13 Toyobo Co Ltd Heat-releasing sheet
JP2004060111A (en) * 2002-07-30 2004-02-26 Toyobo Co Ltd Cloth having excellent heat-conductivity
JP2008306092A (en) * 2007-06-11 2008-12-18 Toyobo Co Ltd Superconducting coil
JP2010121239A (en) * 2008-11-20 2010-06-03 Kuraray Co Ltd Rope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
上利泰幸、岡田哲周: "サーマルマネージメント分野で特異な熱伝導などの機能を発揮し、注目される液晶性樹脂", 液晶, vol. 第20巻・第3号, JPN6022017340, 2016, JP, pages 148 - 156, ISSN: 0004876468 *

Also Published As

Publication number Publication date
JP7252530B2 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
Hine et al. Hot compaction of woven poly (ethylene terephthalate) multifilaments
Han et al. Increasing the through-thickness thermal conductivity of carbon fiber polymer–matrix composite by curing pressure increase and filler incorporation
Diefendorf et al. High‐performance carbon fibers
Liu et al. Preliminary test and analysis of an ultralight lenticular tube based on shape memory polymer composites
Hine et al. A comparison of the hot-compaction behavior of oriented, high-modulus, polyethylene fibers and tapes
CN108995316B (en) Graphene paper composite material
US20200307153A1 (en) Fiber reinforced composite structure comprising stitch-member and the method for producing the same
Fejős Shape memory performance of asymmetrically reinforced epoxy/carbon fibre fabric composites in flexure
Nairn et al. The development of residual thermal stresses in amorphous and semicrystalline thermoplastic matrix composites
Wang et al. Multilayered ultrahigh molecular weight polyethylene/natural graphite/boron nitride composites with enhanced thermal conductivity and electrical insulation by hot compression
JP2020033475A (en) Heat-radiating material
KR102214307B1 (en) Battery cell module
Liu et al. Polymer Films with Metal‐Like Thermal Conductivity, Excellent Stability, and Flame Retardancy
Deng et al. Unidirectional Carbon Fiber Reinforced Cyanate‐Based Shape Polymer Composite with Variable Stiffness
Li et al. Dynamic mechanical analysis of continuous carbon fiber‐reinforced polyetheretherketones under multi‐consecutive temperature scans
Detassis et al. Experimental evaluation of residual stresses in single fibre composites by means of the fragmentation test
Huang et al. Filament winding of bicomponent fibers consisting of polypropylene and a liquid crystalline polymer
JPWO2003102256A1 (en) Ultrafine shape memory alloy wire, composite material using the same, and manufacturing method thereof
Lebrun et al. Effect of annealing on the thermal expansion and residual stresses of bidirectional thermoplastic composite laminates
Vanaja et al. Fibre fraction effects on thermal degradation behaviour of GFRP, CFRP and hybrid composites
JP2023067070A (en) Heat dissipation material
Orench et al. A microindentation study of polyethylene composites produced by hot compaction
CN110712409A (en) Light high-temperature-resistant heat-insulating carbon fiber composite material
Kadotani Mechanical properties of plastic composites under low temperature conditions
Adams Transverse tensile and longitudinal shear behavior of unidirectional carbon-carbon composites

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R150 Certificate of patent or registration of utility model

Ref document number: 7252530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150