JPH0760150A - Impact type pneumatic pulverizer - Google Patents

Impact type pneumatic pulverizer

Info

Publication number
JPH0760150A
JPH0760150A JP5232269A JP23226993A JPH0760150A JP H0760150 A JPH0760150 A JP H0760150A JP 5232269 A JP5232269 A JP 5232269A JP 23226993 A JP23226993 A JP 23226993A JP H0760150 A JPH0760150 A JP H0760150A
Authority
JP
Japan
Prior art keywords
collision
pressure gas
crushed
crushing
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5232269A
Other languages
Japanese (ja)
Other versions
JP3114040B2 (en
Inventor
Satoshi Mitsumura
聡 三ッ村
Hitoshi Kanda
仁志 神田
Youko Goka
洋子 五箇
Masakichi Kato
政吉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP05232269A priority Critical patent/JP3114040B2/en
Publication of JPH0760150A publication Critical patent/JPH0760150A/en
Application granted granted Critical
Publication of JP3114040B2 publication Critical patent/JP3114040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To effectively pulverize a powder raw material by making the relationship between the nozzle length of a nozzle for feeding high pressure gas, the length of an accelerating pipe and the utmost adjacent distance between the projecting central part of an impact member and an outer peripheral impact surface and the widening angle of a high pressure gas feeding nozzle satisfy prescribed conditions. CONSTITUTION:An accelerating pipe 1 has a feeding port 5 for a material to be crushed at the rear end part. An impact surface has a projecting central part 16 and an outer peripheral impact surface 17 has the form of a pyramid. A pulverizing chamber 13 has a side wall 15 for further pulverizing the material to be pulverized which has been pulverized by an impact member 11. And the nozzle length L1 (>=0) of a high pressure gas feeding nozzle 3 having a high pressure gas feeding nozzle throat diameter (a) (>0), the length L2 (>0) of the accelerating pipe 1, and the utmost adjacent distance L3 (>0) between the apex of the projecting central part 16 and the outer peripheral impact surface 17 in the impact member 11 satisfy the formula 1. Further, the widening angle theta1 of the high pressure gas feeding nozzle satisfies the conditions of the formula II in the range of 0 deg.<=theta1<=20 deg., provided that in the formula II, (b) and (c) represent the diameter of the throat of the accelerating pipe 1 and the diameter of the bottom surface of the projecting part having the form of a pyramid of the impact member 11 respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジェット気流(高圧気
体)を用いて粉体原料を粉砕する衝突式気流粉砕機に関
し、特に、電子写真法による画像形成方法に用いられる
トナーまたはトナー用着色樹脂粉体を効率良く生成する
ための衝突式気流粉砕機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a collision type air flow pulverizer for pulverizing a powder raw material by using a jet air flow (high pressure gas), and more particularly to a toner or a toner coloring used in an image forming method by electrophotography. The present invention relates to a collision type airflow pulverizer for efficiently producing resin powder.

【0002】[0002]

【従来の技術】ジェット気流を用いて粉体原料粉砕する
衝突式気流粉砕機は、ジェット気流で粉体原料を搬送
し、加速管出口より噴出させ、この粉体原料を加速管出
口前方に設けた衝突部材に衝突させ、その衝撃力により
前記粉体原料を粉砕するものである。
2. Description of the Related Art A collision type air flow pulverizer for pulverizing a powder raw material by using a jet airflow conveys the powder raw material by a jet airflow and ejects the powder raw material from an accelerating pipe outlet, which is provided in front of the accelerating pipe outlet. The powder material is crushed by the collision force, and the impact force is crushed.

【0003】以下に、その詳細を図11に示す従来の衝
突式気流粉砕機に基づいて説明する。
The details will be described below with reference to a conventional collision type airflow crusher shown in FIG.

【0004】従来の衝突式気流粉砕機は、高圧気体供給
ノズル22を接続した加速管23の出口24に対向して
衝突部材25を設け、前記加速管23に供給した高圧気
体の流動により、加速管23の中途に連通させた被粉砕
物供給口21から加速管23の内部に粉体原料を吸引
し、これを高圧気体とともに噴射して衝突部材25の衝
突面に衝突させ、その衝撃力によって粉砕するようにし
たものである。
In the conventional collision type air flow crusher, a collision member 25 is provided so as to face the outlet 24 of the acceleration tube 23 connected to the high pressure gas supply nozzle 22, and the high pressure gas supplied to the acceleration tube 23 accelerates the acceleration. The powder material is sucked into the accelerating pipe 23 from the pulverized material supply port 21 communicated with the middle of the pipe 23, and the powder raw material is jetted together with the high pressure gas to collide with the colliding surface of the colliding member 25. It was made to be crushed.

【0005】しかしながら、上記従来例では、被粉砕物
供給口21が加速管23の中途に連通されており、加速
管内に吸引導入された粉体原料は、被粉砕物供給口21
通過直後に、高圧気体供給ノズルより噴出する高圧気流
により、加速管出口方向に向かって流路を急激に変更し
ながら分散急加速される。この状態において、粉体原料
中比較的粗粒子のものは、その慣性力の影響から加速管
低流部を、また、比較的微粒子のものは、加速管高流部
を通過しており、高圧気流中に十分均一に分散されず
に、粉体原料濃度の高い流れと低い流れに分離したまま
粉体原料が対向する衝突部材に部分的に集中して衝突す
ることになり、粉砕効率が低下し処理能力の低下を引き
起こしている。更に、上記従来例では、衝突面に衝突し
粉砕された粉砕物は、粉砕室内壁に二次(あるいは三
次)衝突して更に粉砕されるが、粉砕室形状が箱型であ
るため、効率的な二次衝突が行なわれず、微粉砕処理能
力の向上が図れないという欠点があった。
However, in the above-mentioned conventional example, the pulverized material supply port 21 is connected to the middle of the acceleration tube 23, and the powder material sucked and introduced into the acceleration tube is the pulverized material supply port 21.
Immediately after the passage, the high-pressure gas jetted from the high-pressure gas supply nozzle rapidly disperses and accelerates while rapidly changing the flow path toward the exit of the accelerating pipe. In this state, relatively coarse particles in the powder raw material have passed through the low flow part of the acceleration tube due to the influence of the inertial force, and those with relatively fine particles have passed through the high flow part of the acceleration tube, resulting in high pressure. The powder raw material is not sufficiently uniformly dispersed in the air stream, and the powder raw material separates into a flow having a high concentration of the powder raw material and a flow having a low concentration of the powder raw material, and the powder raw material partially concentrates and collides with the facing collision member, which reduces the pulverization efficiency. This causes a decrease in processing capacity. Further, in the above-mentioned conventional example, the pulverized product which collides against the collision surface and is pulverized is secondary (or tertiary) collided with the inner wall of the pulverization chamber and further pulverized. However, there is a drawback that secondary crushing does not occur and the fine pulverization processing capacity cannot be improved.

【0006】一方、従来かかる粉砕機における衝突部材
の衝突面は図11及び図12に示すように、被粉砕物を
乗せた粒子混合気流方向、つまり加速管に対し直角ある
いは傾斜(例えば45度)している平板状のもの(特開
昭57−50554号公報及び特開昭58−14385
3号公報参照)が用いられており、次のような欠点があ
った。
On the other hand, the collision surface of the collision member in the conventional crusher is, as shown in FIGS. 11 and 12, the direction of the particle mixed air flow on which the object to be crushed is placed, that is, the right angle or the inclination (for example, 45 degrees) with respect to the acceleration tube. Flat plate (Japanese Patent Laid-Open No. 57-50554 and Japanese Patent Laid-Open No. 58-14385)
No. 3 gazette) is used, and has the following drawbacks.

【0007】図11のように加速管23の軸方向と垂直
な衝突面26の場合、加速管出口24から吹き出される
被粉砕物と衝突面26で反射される粉砕物とが衝突面2
6の近傍で共存する割合が高く、そのため、衝突面26
近傍での粉体(被粉砕物及び粉砕物)濃度が高くなり、
粉砕効率が良くない。
In the case of the collision surface 26 perpendicular to the axial direction of the accelerating tube 23 as shown in FIG. 11, the crushed material blown out from the accelerating tube outlet 24 and the crushed material reflected by the collision surface 26 collide with each other.
The coexistence ratio is high in the vicinity of 6, and therefore the collision surface 26
The concentration of powder (ground material and ground material) in the vicinity increases,
The crushing efficiency is not good.

【0008】また、図12の粉砕機においては、衝突面
26が加速管23の軸方向に対して傾斜しているため
に、衝突面26近傍の粉体濃度は図11の粉砕機と比較
して低くなるが、高圧気流による衝突力が分散されて低
下する。更に粉砕室側壁28との二次衝突を有効に利用
しているとはいえない。例えば、図12に示すごとく、
衝突面26の角度が加速管に対し45度傾斜のもので
は、熱可塑性樹脂を粉砕するときに上記のような問題点
は少ない。しかしながら、衝突する際に粉砕に使われる
衝撃力が小さく、更に粉砕室壁28との二次衝突による
粉砕が少ないので、粉砕能力は図11の粉砕機と比較し
て1/2〜1/1.5に粉砕能力が落ちる。
Further, in the crusher of FIG. 12, since the collision surface 26 is inclined with respect to the axial direction of the acceleration tube 23, the powder concentration near the collision surface 26 is smaller than that of the crusher of FIG. However, the collision force due to the high pressure air flow is dispersed and decreases. Further, it cannot be said that the secondary collision with the side wall 28 of the crushing chamber is effectively used. For example, as shown in FIG.
When the angle of the collision surface 26 is inclined by 45 degrees with respect to the accelerating tube, the above problems are less likely to occur when the thermoplastic resin is crushed. However, since the impact force used for crushing at the time of collision is small and the crushing due to the secondary collision with the crushing chamber wall 28 is small, the crushing capacity is 1/2 to 1/1 as compared with the crusher of FIG. The crushing ability drops to 0.5.

【0009】次に、上記問題点が解消された衝突式気流
粉砕機として実開平1−148740号公報及び特開平
1−254266号公報が提案されている。前者では、
図14及び図15に示すように、衝突部材の原料衝突面
26を加速管の軸芯に対して直角に配置し、その原料衝
突面に円錐形の突起部31を設けることにより、衝突面
での反射流を防止することが提案されている。
Next, Japanese Utility Model Laid-Open No. 1-148740 and Japanese Unexamined Patent Publication No. 1-254266 have been proposed as collision type airflow crushers in which the above problems are solved. In the former,
As shown in FIGS. 14 and 15, by arranging the raw material collision surface 26 of the collision member at a right angle to the axis of the accelerating tube, and providing a conical projection 31 on the raw material collision surface, It has been proposed to prevent the reflected flow of the.

【0010】また、後者では、図13に示すように衝突
部材の衝突面の先端部分を特定の円錐形状とすることに
より、衝突面近傍の粉体濃度を低くし、粉砕室側壁28
と効率良く二次衝突するようにした衝突式気流粉砕機が
提案されている。
In the latter case, as shown in FIG. 13, the tip portion of the collision surface of the collision member has a specific conical shape to reduce the powder concentration in the vicinity of the collision surface, and the crushing chamber side wall 28.
A collision-type airflow crusher has been proposed in which secondary collision is efficiently performed.

【0011】上記のように粉砕機を構成することで、従
来の問題点はかなり改善されるがまだ充分ではなく、ま
た、最近のニーズとして、より微細な粉砕処理物が望ま
れており、更に粉砕効率及び品質の良好な粉砕方法が待
望されている。
By constructing the crusher as described above, the conventional problems are considerably improved, but they are still not sufficient, and as a recent need, finer pulverized products are desired. A crushing method with good crushing efficiency and quality is desired.

【0012】一方、電子写真法による画像形成方法に用
いられるトナー又はトナー用着色樹脂粉体は、通常結着
樹脂及び着色剤または磁性粉を少なくとも合有してい
る。トナーは、潜像担持体に形成された静電荷像を現像
し、形成されたトナー像は普通紙またはプラスチックフ
ィルムのごとき転写材へ転写され、加熱定着手段、圧力
ローラ定着手段または加熱加圧ローラ定着手段のごとき
定着装置によって転写材上のトナー像は転写材に定着さ
れる。従って、トナーに使用される結着樹脂は、熱及び
/または圧力が付加されると塑性変形する特性を有す
る。
On the other hand, the toner or the colored resin powder for toner used in the image forming method by the electrophotographic method usually contains at least a binder resin and a colorant or magnetic powder. The toner develops the electrostatic charge image formed on the latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or a plastic film, and then heated fixing means, pressure roller fixing means or heating pressure roller. The toner image on the transfer material is fixed to the transfer material by a fixing device such as fixing means. Therefore, the binder resin used for the toner has a characteristic of being plastically deformed when heat and / or pressure is applied.

【0013】現在、トナーまたはトナー用結着樹脂粉体
は、結着樹脂及び着色剤または磁性粉(必要により、さ
らに第三成分を含有)を少なくとも含有する混合物を溶
融混練し、溶融混練物を冷却し、冷却物を粉砕し、粉砕
物を分級して調製される。冷却物の粉砕は、通常、機械
式衝撃式粉砕機により粗粉砕(又は中粉砕)され、次い
で粉砕粗粉をジェット気流を用いた衝突式気流粉砕機で
微粉砕しているのが一般的である。
At present, a toner or a binder resin powder for a toner is obtained by melt-kneading a mixture containing at least a binder resin and a colorant or a magnetic powder (and optionally a third component) to obtain a melt-kneaded product. It is prepared by cooling, crushing the cooled product, and classifying the crushed product. Generally, the cooled product is crushed (or medium crushed) by a mechanical impact crusher, and then the crushed coarse powder is finely crushed by a collision type air flow crusher using a jet stream. is there.

【0014】かかる場合、従来の図11に示すような衝
突式気流粉砕機および粉砕方式では、処理能力を更に向
上させようとすれば、加速管23に設けられる粉体原料
供給口に吸引不足が起こり、又は、衝突面26上で融着
物が発生し、安定生産が行なえない。そのため、電子写
真法による画像形成方法に用いられるトナーまたはトナ
ー用着色樹脂粉体を更に効率良く生成するため、上記問
題点を解決した、効率の良い粉砕方法が望まれている。
In such a case, in the conventional collision type air flow crusher and crushing method as shown in FIG. 11, if it is attempted to further improve the processing capacity, the powder raw material supply port provided in the accelerating tube 23 is insufficiently sucked. Occurrence or a fusion substance is generated on the collision surface 26, and stable production cannot be performed. Therefore, in order to more efficiently generate the toner or the colored resin powder for the toner used in the image forming method by the electrophotographic method, an efficient pulverization method that solves the above problems is desired.

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解消し、粉体原料を効率良く粉砕できる衝突式
気流粉砕機を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide a collision type air flow crusher capable of efficiently crushing powder raw materials.

【0016】すなわち、本発明の目的は、加速管出口か
ら分散良く粉体を噴出させ、加速管内での凝集粉を防ぐ
ことにより、粉体原料を効率良く粉砕できる衝突式気流
粉砕機を提供することにある。
That is, an object of the present invention is to provide a collision type air flow pulverizer which can efficiently pulverize a powder raw material by ejecting powder from an accelerating tube outlet with good dispersion to prevent agglomerated powder in the accelerating tube. Especially.

【0017】また、本発明の目的は、加速管出口から噴
出された粉体を衝突部材の衝突面に衝突させる際に、衝
撃力を低下させることなく衝突面の局部的磨耗の発生を
防ぐことにより、粉体原料を効率良く粉砕できる衝突式
気流粉砕機を提供することにある。
Another object of the present invention is to prevent the occurrence of local abrasion of the collision surface without reducing the impact force when the powder ejected from the acceleration tube outlet collides with the collision surface of the collision member. Accordingly, it is an object of the present invention to provide a collision type airflow crusher capable of efficiently crushing powder raw materials.

【0018】更に、本発明の目的は、加速管出口から噴
出されて衝突部材の衝突面に衝突した粉体原料がさらに
粉砕室内壁に衝突する多次衝突を効果的に行なうことの
できる衝突式気流粉砕機を提供することにある。
Further, an object of the present invention is to provide a collision type in which the powder raw material ejected from the accelerating pipe outlet and colliding with the collision surface of the collision member further collides with the inner wall of the crushing chamber to effectively carry out a multiple collision. It is to provide an airflow crusher.

【0019】また、本発明の目的は、熱可塑性樹脂を主
体とする粉体を効率良く粉砕できる衝突式気流粉砕機を
提供することにある。
Another object of the present invention is to provide a collision type airflow crusher capable of efficiently crushing powder mainly composed of a thermoplastic resin.

【0020】更に、本発明の目的は、加熱加圧ローラー
定着手段を有する複写機及びプリンターに使用されるト
ナーまたはトナー用着色樹脂粒子を効率良く生成し得る
衝突式気流粉砕機を提供することにある。
Further, it is an object of the present invention to provide a collision type airflow crusher capable of efficiently producing toner or colored resin particles for toner used in a copying machine and a printer having a heating and pressure roller fixing means. is there.

【0021】更に、本発明の目的は、平均粒径20〜2
000μmを有する樹脂粒子を平均粒径3〜15μmに
効率良く微粉砕し得る衝突式気流粉砕機を提供すること
にある。
Further, the object of the present invention is to obtain an average particle size of 20-2.
An object of the present invention is to provide a collision type airflow pulverizer capable of efficiently pulverizing resin particles having a particle diameter of 000 μm to an average particle size of 3 to 15 μm.

【0022】[0022]

【課題を解決するための手段及び作用】本発明は、高圧
気体により被粉砕物を搬送加速するための加速管と被粉
砕物を微粉砕するための粉砕室とを有し、該粉砕室内に
は、該加速管の出口の開口面に対向して設けた衝突面を
有する衝突部材が具備されている衝突式気流粉砕機にお
いて、加速管の後端部には被粉砕物を加速管内に供給す
るための被粉砕物供給口を有し、衝突面は、突出してい
る突出中央部を有し、かつ、外周衝突面は錐体形状を有
しており、粉砕室は、衝突部材で粉砕された被粉砕物を
衝突によりさらに粉砕するための側壁を有しており、高
圧気体供給ノズルスロート径a(>0)を有する高圧気
体供給ノズルのノズル長L1 (≧0)、加速管長L
2 (>0)及び衝突部材における突出中央部の頂点と外
周衝突面との最近接距離L3 (>0)の関係式が 2(L1 +L3 )/3<L2 <3・L3 であり、 さらに高圧気体供給ノズルの拡がり角度θ1 が0゜≦θ
1 ≦20゜の範囲で a+2・L1 tan(θ1 /2)<b<c/2 (b:加速管スロート径、c:衝突部材の錐体形状を有
する突起部底面径)である条件を満足することを特徴と
する衝突式気流粉砕機に関する。
The present invention has an accelerating tube for accelerating the conveyance of an object to be pulverized by a high-pressure gas and a pulverizing chamber for finely pulverizing the object to be pulverized. Is a collision type airflow crusher equipped with a collision member having a collision surface provided facing the opening surface of the outlet of the acceleration tube, and the object to be crushed is supplied into the acceleration tube at the rear end of the acceleration tube. The collision surface has a protruding central portion, and the outer peripheral collision surface has a cone shape, and the crushing chamber is crushed by the collision member. Has a side wall for further crushing the object to be crushed by collision, the nozzle length L 1 (≧ 0) of the high pressure gas supply nozzle having the throat diameter a (> 0) of the high pressure gas supply nozzle, and the acceleration pipe length L
2 (> 0) and the closest distance L 3 (> 0) between the apex of the protruding central portion of the collision member and the outer peripheral collision surface is 2 (L 1 + L 3 ) / 3 <L 2 <3 · L 3 And the divergence angle θ 1 of the high pressure gas supply nozzle is 0 ° ≦ θ
1 ≦ 20 ° range a + 2 · L 1 tan ( θ 1/2) <b <c / 2 condition is (b:: accelerating tube throat diameter, c protrusion bottom diameter having a cone-shaped collision member) The present invention relates to a collision type airflow crusher characterized by satisfying the following.

【0023】加えて、該衝突式気流粉砕機は、加速管の
拡がり角度θ2 が 0゜≦θ2 ≦20゜の範囲で b+2・L2 tan(θ2 /2)<c<d (d:外周衝突面径) である条件を満足するのと同時に、該衝突式気流粉砕機
は、衝突部材の突出中央部の頂角θ3 と外周衝突面の頂
角θ4 が 0゜<θ3 <90゜の範囲で 0゜<θ3 <θ4 <180゜ であり、 d+2・L3 tan(θ3 /2)>e>d (e:粉砕室径、c=2・L3 tan(θ3 /2)) である条件を満足することを特徴とする衝突式気流粉砕
機に関する。
[0023] In addition, the collision type air pulverizer, spreading angle theta 2 is 0 ° ≦ θ 2 ≦ 20 ° range b + 2 · L 2 tan acceleration tube (θ 2/2) <c <d (d The outer peripheral collision surface diameter) is satisfied, and at the same time, in the collision type airflow crusher, the apex angle θ 3 of the protruding central portion of the collision member and the apex angle θ 4 of the outer peripheral collision surface are 0 ° <θ 3 <0 ° <θ 34 <180 ° at 90 DEG, d + 2 · L 3 tan (θ 3/2)>e> d (e: grinding chamber diameter, c = 2 · L 3 tan ( about θ 3/2)) collision type air pulverizer, characterized by satisfying the condition is.

【0024】本発明の粉砕機によれば、被粉体原料であ
る粉体を効率良く高速気流を利用して数μmのオーダー
まで粉砕することができる。
According to the crusher of the present invention, it is possible to efficiently pulverize the powder, which is the raw material to be powdered, to the order of several μm by utilizing the high-speed air stream.

【0025】特に、熱可塑性樹脂の粉体または熱可塑性
樹脂を主成分とする粉体を効率良く、高速気流を利用し
て数μmのオーダーまで粉砕することができる。
In particular, the powder of the thermoplastic resin or the powder containing the thermoplastic resin as the main component can be efficiently pulverized to the order of several μm using a high-speed air stream.

【0026】[0026]

【実施例】ここで、本発明を添付図面に基づいて詳細に
説明する。
The present invention will now be described in detail with reference to the accompanying drawings.

【0027】図1は、本発明の衝突式気流粉砕機の概略
的断面図及び該粉砕機を使用した粉砕工程及び分級機に
よる分級工程を組み合わせたフローチャートにより粉砕
方法を示した図である。図2は図1の衝突式気流粉砕機
の拡大断面図を示し、図3は図1のA−A線における加
速管スロート部と高圧気体噴出ノズルを示す拡大断面
図、図4は図1のB−B線における粉砕室と衝突部材を
示す断面図、図5は図1のC−C線における高圧気体供
給口と高圧気体チャンバーを示す断面図である。
FIG. 1 is a schematic cross-sectional view of a collision type air flow crusher of the present invention and a diagram showing a crushing method by a flow chart combining a crushing process using the crusher and a classifying process by a classifier. 2 is an enlarged cross-sectional view of the collision type airflow crusher of FIG. 1, FIG. 3 is an enlarged cross-sectional view of the accelerating pipe throat portion and the high-pressure gas jet nozzle taken along the line AA of FIG. 1, and FIG. FIG. 5 is a cross-sectional view showing the crushing chamber and the collision member along the line BB, and FIG. 5 is a cross-sectional view showing the high pressure gas supply port and the high pressure gas chamber along the line C-C in FIG.

【0028】先ず、本発明の衝突式気流粉砕機による粉
体原料の粉砕方法について、図1に基づいて説明する。
被粉砕物供給筒6より供給された被粉砕物は、中心軸を
鉛直方向に配設した加速管1の加速管スロート部2の内
壁と中心が加速管1の中心軸と同軸上にある高圧気体噴
出ノズル3の外壁との間で形成された被粉砕物供給口5
へ到達する。一方、高圧気体は高圧気体供給口7より導
入され高圧気体チャンバー7を経て、一本好ましくは複
数本の高圧気体導入管9を通り高圧気体噴出ノズル3よ
り加速管出口10方向に向かって急激に膨張しながら噴
出する。この時、加速管スロート部2の近傍で発生する
エゼクター効果により、被粉砕物はこれと共存している
気体に同伴されながら、被粉砕物供給口5より加速管出
口10方向に向けて吸引され、加速管スロート部2にお
いて高圧気流と均一に混合されながら急加速し、加速管
出口10に対向配置された衝突部材11の衝突面に、粉
塵濃度の偏りなく均一な固気混合気流の状態で衝突して
粉砕される。図1の粉砕機において、衝突部材の衝突面
には、錐体状の突出している突出中央部16と、該突出
中央部の周囲に突出中央部で粉砕された被粉砕物の一次
粉砕物をさらに衝突により粉砕するための外周衝突面1
7を有している。また、粉砕室13には外周衝突面で二
次粉砕された二次粉砕物を衝突により三次粉砕するため
の粉砕室壁15を有している。
First, the method of pulverizing the powder raw material by the collision type air flow pulverizer of the present invention will be described with reference to FIG.
The crushed material supplied from the crushed material supply cylinder 6 has a high pressure in which the center and the inner wall of the accelerating tube throat portion 2 of the accelerating tube 1 whose central axis is vertically arranged are coaxial with the central axis of the accelerating tube 1. Object to be crushed supply port 5 formed between the outer wall of the gas ejection nozzle 3
To reach. On the other hand, the high-pressure gas is introduced from the high-pressure gas supply port 7, passes through the high-pressure gas chamber 7, passes through one, preferably a plurality of high-pressure gas introduction pipes 9, and rapidly from the high-pressure gas ejection nozzle 3 toward the acceleration pipe outlet 10. Gush while expanding. At this time, due to the ejector effect generated in the vicinity of the accelerating pipe throat portion 2, the crushed substance is sucked toward the accelerating pipe outlet 10 from the crushed substance supply port 5 while being entrained in the gas coexisting with the crushed substance. In the accelerating tube throat portion 2, the high-velocity airflow is uniformly mixed and suddenly accelerated, and the collision surface of the collision member 11 facing the accelerating tube outlet 10 is in a state of a uniform solid-gas mixture airflow with no uneven dust concentration. It collides and is crushed. In the crusher shown in FIG. 1, the collision surface of the collision member has a protrusion-shaped central portion 16 protruding in the shape of a cone, and a primary crushed substance crushed around the protrusion central portion at the protrusion central portion. Outer peripheral collision surface 1 for further crushing by collision
Have 7. Further, the crushing chamber 13 has a crushing chamber wall 15 for tertiaryly crushing the secondary crushed material that has been crushed secondarily on the outer peripheral collision surface by collision.

【0029】衝突時に発生する衝撃力は、十分分散した
個々の粒子(被粉砕物)に与えられるため、非常に効率
の良い粉砕ができる。衝突部材11の衝突面にて粉砕さ
れた粉砕物は、更に断面形状が円形もしくは楕円形状の
粉砕室壁15の内壁面と衝突部材11表面の間で三次衝
突を繰り返し、より粉砕効率を上昇させ、衝突部材11
後方に配設された粉砕物排出口14より排出される。
Since the impact force generated at the time of collision is applied to the sufficiently dispersed individual particles (objects to be crushed), crushing can be performed very efficiently. The crushed material crushed on the collision surface of the collision member 11 further repeats a tertiary collision between the inner wall surface of the crushing chamber wall 15 having a circular or elliptical cross section and the surface of the collision member 11 to further increase the pulverization efficiency. , Collision member 11
The crushed material is discharged from the crushed material discharge port 14 arranged at the rear.

【0030】更には、衝突部材11の衝突面が、錐体状
の突出している突出中央部16と該突出中央部の周囲に
外周衝突面17を有しているため、樹脂や粘着性のある
ものを粉砕した場合において、融着、凝集、粗粒化が発
生せず、粉塵濃度が上昇した状態での粉砕が可能であ
り、また、磨耗性のある被粉砕物においては、加速管内
壁や衝突部材の衝突面に発生する磨耗が局部的に集中す
ることがなく長寿命化が図れ、安定的な稼動が可能にな
る。
Further, since the collision surface of the collision member 11 has the protruding central portion 16 protruding in the shape of a cone and the outer peripheral collision surface 17 around the protruding central portion, the collision surface is resinous or adhesive. In the case of crushing things, fusion, aggregation, coarsening does not occur, it is possible to crush in a state where the dust concentration is increased, and in the case of abradable objects to be crushed, the inner wall of the acceleration tube or The wear generated on the collision surface of the collision member is not locally concentrated, the life is extended, and stable operation is possible.

【0031】図2に、図1の拡大断面図を示し、更に詳
しく説明する。
FIG. 2 shows an enlarged sectional view of FIG. 1, which will be described in more detail.

【0032】上記のように、衝突部材11の衝突面に中
央部16が突出している錐体形状の突起を設けることに
より、加速管1から噴出された粉砕原料と庄縮空気の固
気混合流は、突出中央部16の表面で一次粉砕され、更
に外周衝突面17で二次粉砕された後、粉砕室壁15で
三次粉砕される。この時、高圧気体は粉砕機内に導入す
る高圧気体の供給ノズルスロート4径a(>0)から粉
体原料と共に加速管1内で急加速させて加速管出口10
より噴出して衝突部材11の表面に衝突する経路で、高
圧気体供給ノズル長L1 (≧0)と加速管長L2 (>
0)及び加速管出口から外周衝突面との最近接距離L3
(>0)が、 2(L1 +L3 )/3<L2 <3・L3 の関係式を持ち、加速管スロート2径bと衝突部材11
の錐体形状を有する突出中央部16底面径c及び高圧気
体供給ノズルの拡がり角度θ1 (0゜≦θ1 ≦20゜の
範囲)が、 a+2・L1 tan(θ1 /2)<b<c/2 の関係式を持ち、衝突部材11の外周衝突面17径d及
び加速管1の拡がり角度θ2 (0゜≦θ2 ≦20゜の範
囲)が、 b+2・L2 tan(θ2 /2)<c<d の関係式を持ち、衝突部材の突出中央部の頂角θ3 (0
゜<θ3 <90゜の範囲)と外周衝突面の頂角θ4 が0
゜<θ3 <θ4 <180゜であり、粉砕室13径eは、 d+2・L3 tan(θ3 /2)>e>d の関係式を満足するときに非常に効率良く粉砕が行なわ
れる。
As described above, the conical surface of the collision member 11 is provided with the cone-shaped projection having the central portion 16 projecting, so that the solid-gas mixture flow of the pulverized raw material and the compressed air ejected from the acceleration tube 1 is formed. Is first pulverized on the surface of the protruding central portion 16, further secondary pulverized on the outer peripheral collision surface 17, and then tertiary pulverized on the pulverization chamber wall 15. At this time, the high-pressure gas is rapidly accelerated in the accelerating pipe 1 together with the powder material from the high-pressure gas supply nozzle throat 4 diameter a (> 0) to be introduced into the crusher, and the accelerating pipe outlet 10
The high-pressure gas supply nozzle length L 1 (≧ 0) and the acceleration pipe length L 2 (>
0) and the closest distance L 3 from the acceleration tube outlet to the outer collision surface
(> 0) has a relational expression of 2 (L 1 + L 3 ) / 3 <L 2 <3 · L 3 , and the acceleration tube throat 2 diameter b and the collision member 11
The spreading angle theta 1 (0 ° ≦ θ 1 ≦ 20 ° range) of the projecting central portion 16 bottom diameter c and a high-pressure gas supply nozzle having a cone shape, a + 2 · L 1 tan (θ 1/2) <b It has a relational expression of <c / 2, and the outer peripheral collision surface 17 diameter d of the collision member 11 and the divergence angle θ 2 (range of 0 ° ≦ θ 2 ≦ 20 °) of the acceleration tube 1 are b + 2 · L 2 tan (θ 2/2) <c <has d relationship, the apex angle theta 3 of the projecting central portion of the collision member (0
° <θ 3 <90 DEG) and the outer peripheral colliding surface apex angle theta 4 of 0
° <There ° θ 34 <180, the grinding chamber 13 diameter e is very efficient pulverization carried out when satisfying the d + 2 · L 3 tan ( θ 3/2)>e> d relations Be done.

【0033】2(L1 +L3 )/3≧L2 のときは、加
速管内で高圧気体が不足膨張のうちに加速管出口から噴
射するために粉体原料の吸い込み処理量が低下し、粉体
原料の加速が不足することから衝突部材の衝突表面での
衝撃力が弱まり粉砕効率が低下するために好ましくな
い。
When 2 (L 1 + L 3 ) / 3 ≧ L 2 , high-pressure gas in the accelerating tube is injected from the outlet of the accelerating tube during underexpansion, so that the suction processing amount of the powder raw material decreases and Since the acceleration of the body material is insufficient, the impact force on the collision surface of the collision member is weakened and the pulverization efficiency is reduced, which is not preferable.

【0034】L2 ≧3・L3 のときは、加速管内で高圧
気体が過膨張となって加速管出口から噴出するために衝
突部材の衝突表面近傍では被粉砕物の飛翔速度が低下し
衝撃力が弱まり粉砕効率が低下するために好ましくな
い。
When L 2 ≧ 3 · L 3 , the high-pressure gas in the accelerating tube is overexpanded and ejected from the accelerating tube outlet, so that the flying speed of the crushed object is reduced near the collision surface of the collision member and the impact is reduced. This is not preferable because the force is weakened and the grinding efficiency is reduced.

【0035】また、a+2・L1 tan(θ1 /2)≧
bのときは加速管スロート径が高圧気体供給ノズル出口
径以下になってしまうために高圧気体供給ノズルから加
速管への気流の送りが妨げられ、加速管スロート付近で
の渦流が生じてしまい、粉体原料の吸い込み処理量が不
足に陥ってしまうことから粉砕効率の低下を招くために
好ましくない。
[0035] In addition, a + 2 · L 1 tan (θ 1/2) ≧
In the case of b, the diameter of the accelerating tube throat becomes equal to or smaller than the outlet diameter of the high-pressure gas supply nozzle, so that the sending of the air flow from the high-pressure gas supply nozzle to the accelerating tube is hindered, and a vortex flow occurs near the accelerating tube throat. This is not preferable because the amount of suction processing of the powder raw material falls into a shortage, resulting in a decrease in pulverization efficiency.

【0036】b≧c/2のときは、加速管スロート径が
拡大することにより被粉砕物供給口の断面積が増加し、
吸い込み速度が低下するのと同時に処理量も低下してし
まい好ましくない。
When b ≧ c / 2, the diameter of the accelerating tube throat increases and the cross-sectional area of the crushed material supply port increases,
It is not preferable because the sucking speed is reduced and the throughput is also reduced.

【0037】さらに、b+2・L2 tan(θ2 /2)
≧cのときは、衝突部材の錐体形状を有する突起部底面
径が加速管出口径以下になってしまい、衝突部材の衝突
表面における衝突断面積が減ることにより一次粉砕、二
次粉砕の効果が軽減されるため好ましくない。
[0037] In addition, b + 2 · L 2 tan (θ 2/2)
When ≧ c, the diameter of the bottom surface of the projection having the cone shape of the collision member becomes equal to or smaller than the exit diameter of the accelerating pipe, and the collision cross-sectional area on the collision surface of the collision member decreases, so that the effects of primary crushing and secondary crushing are obtained. Is reduced, which is not preferable.

【0038】c≧dのときは、衝突部材の外周衝突面が
存在しなくなってしまい、この関係式は成立しない。
When c ≧ d, the outer peripheral collision surface of the collision member does not exist, and this relational expression does not hold.

【0039】さらに、d+2・L3 tan(θ3 /2)
≦eのときは、粉砕室壁と衝突部材の外周端との距離が
ありすぎて有効な三次粉砕が得られないために好ましく
ない。
[0039] In addition, d + 2 · L 3 tan (θ 3/2)
When ≦ e, it is not preferable because the distance between the crushing chamber wall and the outer peripheral end of the collision member is too large to obtain effective tertiary crushing.

【0040】e≦dのときは、粉砕室壁が存在しなくな
ってしまい、この関係式は成立しない。
When e ≦ d, the crushing chamber wall does not exist, and this relational expression does not hold.

【0041】以上のように、L1 、L2 、L3 、a、
b、c、d、e、θ1 、θ2 、θ3 、θ4 が 2(L1 +L3 )/3<L2 <3・L3 0゜<θ3 <θ4 <180゜ a+2・L1 tan(θ1 /2)<b<c/2 b+2・L2 tan(θ2 /2)<c<d d+2・L3 tan(θ3 /2)>e>d の条件を満足するときに、図2に示すごとく、粉砕効率
を向上させることができる。即ち、加速管スロート部の
近傍で発生するエゼクター効果が十分に発揮され、被粉
砕物供給口での空気の吸い込み能力が向上し、粉体原料
の加速管内での搬送能力が向上するため粉砕処理量を増
加させ、急加速し加速管出口から噴出した被粉砕物は衝
突部材により一次、二次、三次粉砕と粉砕効率を向上さ
せることができる。
As described above, L 1 , L 2 , L 3 , a,
b, c, d, e, θ 1 , θ 2 , θ 3 , and θ 4 are 2 (L 1 + L 3 ) / 3 <L 2 <3 · L 3 0 ° <θ 34 <180 ° a + 2 · L 1 tan (θ 1/2 ) to satisfy the <b <c / 2 b + 2 · L 2 tan (θ 2/2) <c <d d + 2 · L 3 tan (θ 3/2)>e> d conditions At times, as shown in FIG. 2, the grinding efficiency can be improved. That is, the ejector effect generated near the throat part of the accelerating tube is sufficiently exerted, the air suction capacity at the object to be pulverized supply port is improved, and the conveying ability of the powder raw material in the accelerating tube is improved, so that the pulverizing process is performed. The object to be crushed by increasing the amount and rapidly accelerating and jetting from the accelerating tube outlet can improve primary, secondary, and tertiary crushing and crushing efficiency by the collision member.

【0042】更に、6゜≦θ1 ≦12゜、6゜≦θ2
12゜、10゜<θ3 <80゜、100゜<θ4 <17
0゜ の範囲で上記の関係式を満足するとき、加速管内への吸
い込み処理能力が向上し、加速管から噴出した後、一
次、二次、三次粉砕が効率良く行なわれ、より粉砕効率
を向上させることができるため好ましい。
Further, 6 ° ≦ θ 1 ≦ 12 °, 6 ° ≦ θ 2
12 °, 10 ° <θ 3 <80 °, 100 ° <θ 4 <17
When the above relational expression is satisfied in the range of 0 °, the suction processing capacity into the acceleration tube is improved, and after ejecting from the acceleration tube, primary, secondary and tertiary pulverization is efficiently performed, further improving the pulverization efficiency. It is preferable because it can be caused.

【0043】本発明の粉体原料の粉砕方法による衝突式
気流粉砕機の構成は図1に限定されるものではない。図
6は本発明の他の好ましい実施例の概略断面図及び該衝
突式気流粉砕機を使用した粉砕工程及び分級機による分
級工程を組み合わせた粉砕装置のフローチャート図であ
り、図7は図6の衝突式気流粉砕機の拡大断面図であ
り、図8はA’−A’線における断面図である。
The structure of the collision type airflow pulverizer according to the pulverizing method of the powder raw material of the present invention is not limited to that shown in FIG. FIG. 6 is a schematic cross-sectional view of another preferred embodiment of the present invention and a flow chart of a crushing apparatus which combines a crushing process using the collision type air flow crusher and a classifying process by a classifier, and FIG. 7 is shown in FIG. It is an expanded sectional view of a collision type airflow pulverizer, and FIG. 8 is a sectional view taken along the line A′-A ′.

【0044】図6の衝突式気流粉砕機について説明する
と、高圧気体供給ノズルに導入する高圧気体により粉体
原料を搬送加速するための加速管51と、該加速管51
から噴出する粉体を衝突力により粉砕するための衝突面
を具備する粉砕室63とを有し、かつ該衝突部材61が
加速管出口に対向して設けられている衝突式気流粉砕機
であって、該高圧気体供給ノズル53のスロート部54
と加速管出口60との間に加速管への全円周方向の粉体
原料供給口56が設けられており、かつ、該粉砕室断面
形状が実質円形状を有し、かつ、該衝突部材61後方に
粉砕物排出口64を設けた衝突式気流粉砕機である。
Explaining the collision type air flow pulverizer of FIG. 6, an accelerating pipe 51 for accelerating the powder raw material by the high pressure gas introduced into the high pressure gas supply nozzle, and the accelerating pipe 51.
And a crushing chamber 63 having a collision surface for crushing the powder ejected from the crushing member by a collision force, and the collision member 61 is provided so as to face the accelerating pipe outlet. And the throat portion 54 of the high pressure gas supply nozzle 53
A powder raw material supply port 56 in the entire circumferential direction to the accelerating pipe is provided between the crushing chamber outlet 60 and the accelerating pipe outlet 60, and the crushing chamber has a substantially circular cross-sectional shape and the collision member. 61 is a collision type airflow crusher having a crushed material discharge port 64 at the rear.

【0045】また、該加速管51の中心軸が鉛直方向を
有し、該衝突部材61の衝突面には、突出している突出
中央部66と該突出中央部の周囲に突出中央部で粉砕さ
れた被粉砕物の一次粉砕物をさらに衝突により粉砕する
ための外周衝突面67を有している。また、粉砕室63
には、外周衝突面で二次粉砕された二次粉砕物を衝突に
より三次粉砕するための粉砕室側壁65を有している。
Further, the central axis of the accelerating tube 51 has a vertical direction, and the collision surface of the collision member 61 has a projecting central portion 66 and a crushing central portion around the projecting central portion. It has an outer peripheral collision surface 67 for further crushing the primary crushed material to be crushed by collision. Also, the crushing chamber 63
Has a crushing chamber side wall 65 for tertiary crushing the secondary crushed material crushed secondarily on the outer peripheral collision surface by collision.

【0046】高圧気体の作用を説明すると、高圧気体は
まず高圧気体チャンバー58の左右にある高圧気体供給
口57から入り、圧力の変動等、動脈が均一にされた
後、被粉砕物供給筒55の中心部に設けられた高圧気体
供給ノズル53から加速管51に流入される。
Explaining the action of the high-pressure gas, the high-pressure gas first enters from the high-pressure gas supply ports 57 on the left and right of the high-pressure gas chamber 58, and the arteries are made uniform by pressure fluctuations, and then the crushed material supply cylinder 55. A high-pressure gas supply nozzle 53 provided in the central portion of the gas flows into the acceleration pipe 51.

【0047】加速管51と高圧気体供給ノズル53は共
に末広がり形状を有することが好ましく加速管51に流
入された高圧気体は膨張しながら超音速領域まで加速さ
れる。その過程で高圧気体は減圧され、加速管51を出
たところで気体の圧力は粉砕室63の圧力と略同一にな
る。
Both the accelerating tube 51 and the high-pressure gas supply nozzle 53 preferably have a divergent shape, and the high-pressure gas flowing into the accelerating tube 51 is accelerated to the supersonic region while expanding. In the process, the high pressure gas is decompressed, and the pressure of the gas at the exit of the accelerating pipe 51 becomes substantially the same as the pressure in the crushing chamber 63.

【0048】一方、円形状の粉砕室63では、粉砕物排
出口部64で粉砕室63内の気体を吸引すると、粉砕室
内部に吸引流が発生する。そして、この吸引流の作用に
より衝突部材61の表面は減圧状態となる。なお、粉砕
室の形状はこれに限定されるものではない。この衝突部
材61の表面の減圧作用により、加速管51より出た噴
流は更に加速され、衝突部材61の表面に衝突する。こ
の時、衝突部材61の衝突面上の突出中央部66の表面
で被粉砕物が一次粉砕され、更に外周衝突面67で二次
粉砕された後、粉砕室側壁65で三次粉砕される。
On the other hand, in the circular crushing chamber 63, when the gas in the crushing chamber 63 is sucked by the crushed material discharge port 64, a suction flow is generated inside the crushing chamber. Then, due to the action of this suction flow, the surface of the collision member 61 is in a reduced pressure state. The shape of the crushing chamber is not limited to this. Due to the depressurizing action of the surface of the collision member 61, the jet flow emitted from the acceleration pipe 51 is further accelerated and collides with the surface of the collision member 61. At this time, the object to be crushed is first crushed on the surface of the projecting central portion 66 on the collision surface of the collision member 61, further pulverized secondly on the outer peripheral collision surface 67, and then tertiary pulverized on the crushing chamber side wall 65.

【0049】次に、被粉砕物である粉体原料の作用につ
いて説明すると、被粉砕物供給筒55より供給された粉
体原料は供給筒下部にある被粉砕物供給口56から、加
速管51へ吸引排出される。原料の吸引排出の原理は、
前述した高圧気体の加速管における膨張減圧によるエゼ
クター効果による。この時、高圧気体供給ノズル53の
スロート部54と加速管出口60との間に加速管への全
円周方向に被粉砕物供給口56を設けているため、高速
気流により十分分散、加速される。なお、被粉砕物供給
口56は、全円周方向に設けることが好ましい。このよ
うにして加速管51内部に分散されて吸引された粉体原
料は、被粉砕物供給筒55の中央部に設けられている高
圧気体供給ノズル53から放射される高速気流により完
全に分散される。
Next, the operation of the powder raw material as the pulverized material will be described. The powder raw material supplied from the pulverized material supply cylinder 55 is supplied from the pulverized material supply port 56 at the lower portion of the supply cylinder to the acceleration pipe 51. Is sucked and discharged. The principle of suction and discharge of raw materials is
This is due to the ejector effect due to the expansion and decompression of the high-pressure gas in the acceleration tube. At this time, since the crushed object supply port 56 is provided between the throat portion 54 of the high-pressure gas supply nozzle 53 and the accelerating tube outlet 60 in the entire circumferential direction to the accelerating tube, it is sufficiently dispersed and accelerated by the high-speed airflow. It The crushed material supply port 56 is preferably provided in the entire circumferential direction. The powder raw material thus dispersed and sucked in the accelerating tube 51 is completely dispersed by the high-speed airflow radiated from the high-pressure gas supply nozzle 53 provided in the central portion of the pulverized material supply cylinder 55. It

【0050】次に、分散された原料は、加速管51内部
を流れる高速気流に乗って加速され、超音速固気混合流
れとなる。この固気混合流れは加速管51を出た後、固
気混合噴流となり、前述の噴流と同様の作用を受け衝突
部材61に衝突する。
Next, the dispersed raw material is accelerated by riding on the high-speed air current flowing inside the accelerating tube 51, and becomes a supersonic solid-gas mixture flow. After this solid-gas mixture flow exits the accelerating pipe 51, it becomes a solid-gas mixture jet, and collides with the collision member 61 by the same action as the aforementioned jet.

【0051】図6の衝突式気流粉砕機では、加速管の中
心軸を鉛直方向に配設し、特定の原料供給方法を有して
おり、被粉砕物である原料粉体がより強く分散されて粉
砕効率が向上でき、すぐれた粉砕処理能力が得られる。
また、被粉砕物の強分散による粉塵濃度の均一化によ
り、衝突部材、加速管及び粉砕室における被粉砕物の局
部的な融着や磨耗も従来の衝突式気流粉砕機に比ベて、
大幅に低減でき、安定稼働させることができる。
In the collision type air flow crusher of FIG. 6, the central axis of the accelerating tube is arranged in the vertical direction, and a specific raw material supply method is provided, so that the raw material powder to be pulverized is more strongly dispersed. Crushing efficiency can be improved, and excellent crushing processing capacity can be obtained.
Further, by homogenizing the dust concentration due to strong dispersion of the crushed object, the collision member, the acceleration tube and the local fusion and wear of the crushed object in the crushing chamber, as compared with the conventional collision type airflow crusher,
It can be greatly reduced and stable operation can be achieved.

【0052】なお、図6の衝突式気流粉砕機において
も、 L1 、L2 、L3 、a、b、c、d、e、θ1 、θ2
θ3 、θ4 が 2(L1 +L3 )/3<L2 <3・L3 0゜<θ3 <θ4 <180゜ a+2・L1 tan(θ1 /2)<b<c/2 b+2・L2 tan(θ2 /2)<c<d d+2・L3 tan(θ3 /2)>e>d の条件を満足するときに、図6に示すごとく、粉砕効率
を向上させることができる。
Also in the collision type air flow crusher of FIG. 6, L 1 , L 2 , L 3 , a, b, c, d, e, θ 1 , θ 2 ,
θ 3, θ 4 is 2 (L 1 + L 3) / 3 <L 2 <3 · L 3 0 ° <θ 34 <180 ° a + 2 · L 1 tan ( θ 1/2) <b <c / when satisfying 2 b + 2 · L 2 tan (θ 2/2) <c <d d + 2 · L 3 tan (θ 3/2)>e> d condition, as shown in FIG. 6, to improve the grinding efficiency be able to.

【0053】以上説明したように、本発明に使用した衝
突式気流粉砕機による粉体原料の粉砕方法は、図3及び
図8に示すがごとく加速管スロート部2の円周方向から
加速管1内に粉体原料を供給することができるため、加
速管1内の粉体原料の分散が良好になることで、衝突部
材10の衝突面に効率良く衝突し、粉砕効率が向上す
る。即ち、従来の粉砕機に比べ、処理能力が向上し、ま
た、同一処理能力では得られる製品の粒子径をより小さ
くできる。
As described above, the method for pulverizing the powder raw material by the collision type air flow pulverizer used in the present invention is as shown in FIGS. 3 and 8, from the circumferential direction of the accelerating tube throat section 2 to the accelerating tube 1. Since the powder raw material can be supplied inside, the dispersion of the powder raw material in the accelerating tube 1 is improved, so that the powder collides with the collision surface of the collision member 10 efficiently and the pulverization efficiency is improved. That is, compared with the conventional crusher, the processing capacity is improved, and the particle size of the obtained product can be made smaller with the same processing capacity.

【0054】また、従来例では、粉体原料が凝集した状
態で、衝突部材の衝突面に衝突するため、特に熱可塑性
樹脂を主体とする粉体を原料とした場合、融着物を発生
し易かったが、本発明の図1及び図6によれば、分散さ
れた状態で、衝突部材の衝突面に衝突するため、融着を
発生しにくい。
Further, in the conventional example, since the powder raw material collides with the collision surface of the collision member in a state where the powder raw material is agglomerated, a fusion material is easily generated especially when powder mainly containing a thermoplastic resin is used as the raw material. However, according to FIGS. 1 and 6 of the present invention, since they collide with the collision surface of the collision member in the dispersed state, fusion is unlikely to occur.

【0055】さらに、従来例では粉体原料が凝集してい
るため、過粉砕を生じ易く、そのため得られる粉砕品の
粒度分布が幅広のものとなるという問題があったが、本
発明によれば、過粉砕を防止でき、粒度分布のシャープ
な粉砕品が得られる。
Further, in the conventional example, since the powder raw material is agglomerated, there is a problem that over-pulverization is apt to occur, and the resulting pulverized product has a wide particle size distribution, but according to the present invention. In addition, over-pulverization can be prevented, and a pulverized product with a sharp particle size distribution can be obtained.

【0056】さらに、加速管スロート部の近傍で発生す
るエゼクター効果により、被粉砕物供給口での空気の吸
い込み能力が向上し、そのため、粉体原料の加速管内で
の搬送能力が向上し、粉砕処理量を従来より高めること
ができる。本発明による衝突式気流粉砕機を使用した粉
体原料の粉砕方法は粒径が小さくなるほど、効果が顕著
になる。
Further, due to the ejector effect generated in the vicinity of the throat portion of the accelerating tube, the air suction capacity at the material supply port for the material to be crushed is improved. The throughput can be increased as compared with the conventional one. The pulverizing method of the powder raw material using the collision type air flow pulverizer according to the present invention becomes more effective as the particle size becomes smaller.

【0057】本発明の他の実施例を図9及び図10に示
す。なお、図10は図9の拡大断面図である。
Another embodiment of the present invention is shown in FIGS. 10 is an enlarged sectional view of FIG.

【0058】粉砕されるべき粉体原料は、加速管71の
上部壁に設けられた被粉砕物供給口72より、加速管7
1に供給される。加速管71には圧縮空気のごとき高圧
気体が高圧気体供給ノズル79から導入されており、加
速管71に供給された粉体原料は、瞬時に加速されて、
高速度を有するようになる。高速度で加速管出口73か
ら粉砕室78に噴出された粉体原料は、衝突部材74の
衝突面に衝突して粉砕される。図9の粉砕機において、
衝突部材の衝突面には、錐体形状の突出している突出中
央部75と、該突出中央部の周囲に突出中央部で粉砕さ
れた被粉砕物の一次粉砕物をさらに衝突により粉砕する
ための外周衝突面76を有している。また、粉砕室78
には外周衝突面で二次粉砕された二次粉砕物を衝突によ
り三次粉砕するための粉砕室側壁77を有している。
The powder raw material to be crushed is supplied from an object 72 to be crushed provided on the upper wall of the accelerating tube 71 to the accelerating tube 7.
1 is supplied. High-pressure gas such as compressed air is introduced into the accelerating pipe 71 from a high-pressure gas supply nozzle 79, and the powder raw material supplied to the accelerating pipe 71 is instantaneously accelerated,
Will have high speed. The powder material ejected from the accelerating pipe outlet 73 into the crushing chamber 78 at a high speed collides with the collision surface of the collision member 74 and is crushed. In the crusher of FIG. 9,
On the collision surface of the collision member, a protrusion-shaped central portion 75 protruding in the shape of a cone and a primary crushed substance crushed at the protrusion central portion around the protrusion central portion are further crushed by collision. It has a peripheral collision surface 76. Also, the crushing chamber 78
Has a crushing chamber side wall 77 for tertiary crushing the secondary crushed material crushed secondarily on the outer peripheral collision surface by collision.

【0059】図10を用いて、更に詳しく説明する。上
記のように、衝突部材の衝突面に中央部が突出している
錐体形状の突起を設けることにより、加速管から噴出さ
れた粉体原料と圧縮空気の固気混合流は、突出中央部7
5の表面で一次粉砕され、更に外周衝突面76で二次粉
砕された後、粉砕室側壁77で三次粉砕される。
A more detailed description will be given with reference to FIG. As described above, the solid-gas mixture flow of the powder material and the compressed air ejected from the accelerating tube is provided in the protruding central portion 7 by providing the conical member-shaped projection with the central portion protruding on the collision surface of the collision member.
After being first crushed on the surface of No. 5, further crushed on the outer peripheral collision surface 76, crushed on the side wall 77 of the crushing chamber.

【0060】この時、図9の衝突式気流粉砕機において
も、図10に示すL1 、L2 、L3、a、b、c、d、
e、θ1 、θ2 、θ3 、θ4 が 2(L1 +L3 )/3<L2 <3・L3 0゜<θ3 <θ4 <180゜ a+2・L1 tan(θ1 /2)<b<c/2 b+2・L2 tan(θ2 /2)<c<d d+2・L3 tan(θ3 /2)>e>d の条件を満足するときに、粉砕効率を向上させることが
できる。
At this time, even in the collision type airflow crusher shown in FIG. 9, L 1 , L 2 , L 3 , a, b, c, d, shown in FIG.
e, θ 1 , θ 2 , θ 3 , θ 4 are 2 (L 1 + L 3 ) / 3 <L 2 <3 · L 3 0 ° <θ 34 <180 ° a + 2 · L 1 tan (θ 1 / 2) to satisfy the <b <c / 2 b + 2 · L 2 tan (θ 2/2) <c <d d + 2 · L 3 tan (θ 3/2)>e> d condition, the grinding efficiency Can be improved.

【0061】従来例では、加速管出口から噴射されて衝
突部材の衝突面に衝突した粉体原料は、反射流により加
速管出口から噴射された粉体原料とが共存する割合が高
く粉塵濃度が高くなり粉砕効率が良くなかったが、本発
明の図1、図6及び図9によれば、衝突部材の衝突面が
突出した錐体形状の突出中央部を有していることから衝
突面に衝突後の粉砕物は粉砕室内壁側に反射するため粉
体濃度が高くなることがなく粉砕効率が向上する。さら
には、衝突部材の衝突面に突出している突出中央部の先
端と加速管の中心軸とは実質的に一致させるのが粉砕の
均一化という点で好ましい。
In the conventional example, the powder material injected from the exit of the acceleration tube and colliding with the collision surface of the collision member has a high proportion of coexistence with the powder material injected from the exit of the acceleration tube due to the reflected flow and has a high dust concentration. However, according to FIGS. 1, 6 and 9 of the present invention, since the collision surface of the collision member has a protruding cone-shaped protruding central portion, the crushing efficiency is high. The crushed material after the collision is reflected toward the inner wall of the crushing chamber, so that the powder concentration does not increase and the crushing efficiency is improved. Further, it is preferable that the tip of the protruding central portion protruding from the collision surface of the collision member and the central axis of the acceleration tube substantially coincide with each other from the viewpoint of uniform crushing.

【0062】但し、図1及び図6のような衝突式気流粉
砕機は、上記に示す図9の構成の衝突式気流粉砕機に比
べ、全円周方向から粉体原料を加速管内へ吸引供給する
という点で加速管内への原料供給方法が異なっており、
加速管中の粉体原料をより均一に分散させることがで
き、より粉砕効率を向上させることができるために好ま
しい。
However, the collision type air flow crusher as shown in FIGS. 1 and 6 is different from the collision type air flow crusher having the structure shown in FIG. 9 in that the powder raw material is sucked and supplied into the accelerating pipe from the entire circumferential direction. The method of supplying raw materials into the acceleration tube is different in that
This is preferable because the powder raw material in the acceleration tube can be more uniformly dispersed and the pulverization efficiency can be further improved.

【0063】<トナーの製造例>本発明の粉砕機による
トナーの製造例と従来の粉砕機によるトナーの製造例を
示す。
<Toner Production Example> An example of toner production by the crusher of the present invention and an example of toner production by the conventional crusher will be described.

【0064】製造例1 スチレン−ブチルアクリレート−ジビニルベンゼン共重合体 100重量部 (モノマー重合重量比80.0/19.0/1.0,Mw35万) 磁性酸化鉄(平均粒径0.18μm) 100重量部 ニグロシン 2重量部 低分子量エチレン−プロピレン共重合体 4重量部 Production Example 1 100 parts by weight of styrene-butyl acrylate-divinylbenzene copolymer (monomer polymerization weight ratio 80.0 / 19.0 / 1.0, Mw 350,000) Magnetic iron oxide (average particle size 0.18 μm) 100 parts by weight Nigrosine 2 parts by weight Low molecular weight ethylene-propylene copolymer 4 parts by weight

【0065】上記処方の材料をヘンシェルミキサーFM
−75型(三井三池化工機株式会社製)でよく混合した
後、150℃に設定した2軸混練機PCM−30型(池
貝鉄工株式会社製)にて混練した。得られた混練物を冷
却し、ハンマーミルにて1mm以下に粗粉砕し、トナー
粉砕原料を得た。得られた粉砕原料を図1に示す衝突式
気流粉砕機で粉砕した。該衝突式気流粉砕機は、高圧気
体供給ノズルのスロート径が11mm(a=11)、高
圧気体供給ノズルの長さが13mm(L1 =13)、加
速管の長さが100mm(L2 =100)、衝突部材に
おける突出中央部の頂点と外周衝突面との最近接距離が
57mm(L3 =57)として 2(L1 +L3 )/3<L2 <3・L3 の関係式を満足し、高圧気体供給ノズルの拡がり角度を
10゜(θ1 =10)、加速管のスロート径を20mm
(b=20)、衝突部材の錐体形状を有する突起部の底
面径を56mm(c=56)にすると a+2・L1 tan(θ1 /2)<b<c/2 の関係式を満足する。更に、該粉砕機は、加速管の拡が
り角度を8゜(θ2 =8)、衝突部材の外周衝突面径を
100mm(d=100)にすると b+2・L2 tan(θ2 /2)<c<d の関係式を満足する。更に、該粉砕機は、衝突部材の錐
体状である突出中央部の頂角を55゜(θ3 =55)、
外周衝突面の頂角を160゜(θ4 =160)、粉砕室
の径を140mm(e=140)にすると d+2・L3 tan(θ3 /2)>e>d の関係式を満足する。
Henschel mixer FM
After thoroughly mixing with a -75 type (manufactured by Mitsui Miike Kakoki Co., Ltd.), it was kneaded with a twin-screw kneader PCM-30 type (manufactured by Ikegai Tekko Co., Ltd.) set at 150 ° C. The obtained kneaded product was cooled and roughly pulverized to 1 mm or less with a hammer mill to obtain a toner pulverized raw material. The obtained pulverized raw material was pulverized by the collision type air flow pulverizer shown in FIG. In the collision type air flow crusher, the throat diameter of the high pressure gas supply nozzle is 11 mm (a = 11), the length of the high pressure gas supply nozzle is 13 mm (L 1 = 13), and the length of the acceleration tube is 100 mm (L 2 = 100), assuming that the closest distance between the apex of the protruding central portion of the collision member and the outer peripheral collision surface is 57 mm (L 3 = 57), the relational expression of 2 (L 1 + L 3 ) / 3 <L 2 <3 · L 3 Satisfied, the divergence angle of the high pressure gas supply nozzle is 10 ° (θ 1 = 10), and the throat diameter of the accelerating tube is 20 mm.
(B = 20), 56mm the bottom diameter of the protrusion having a cone shape of the collision member (c = 56) when the a + 2 · L 1 tan ( θ 1/2) satisfies <b <c / 2 of equation To do. Furthermore, the crusher is spread angle 8 ° of the acceleration tube (theta 2 = 8), when the outer peripheral colliding surface diameter of the collision member to 100mm (d = 100) b + 2 · L 2 tan (θ 2/2) < The relational expression of c <d is satisfied. Further, in the crusher, the apex angle of the cone-shaped protrusion of the collision member is 55 ° (θ 3 = 55),
The apex angle of the outer peripheral colliding surface 160 ° (θ 4 = 160), satisfies when the diameter of the grinding chamber to 140mm (e = 140) d + 2 · L 3 tan (θ 3/2)>e> d relations .

【0066】以上の条件を満足した形状で粉砕を行なっ
た。定量供給機にて粉砕原料を46.0kg/hrの割
合で強制渦流式の分級機に供給し、分級された粗粉を該
衝突式気流粉砕機に導入し、圧力6.0kg/cm
2 (G)、6.0Nm3 /minの圧縮空気を用いて、
粉砕した後、再度分級機に循環し、閉回路粉砕を行なっ
た。その結果、分級された細粉として重量平均径8.1
μmのトナー用微粉砕品を得た。なお、融着物の発生は
なく、安定した運転ができた。
Pulverization was performed in a shape satisfying the above conditions. The pulverized raw material was supplied to the forced vortex type classifier at a rate of 46.0 kg / hr by a constant quantity feeder, and the classified coarse powder was introduced into the collision type air flow pulverizer, and the pressure was 6.0 kg / cm.
2 (G), using 6.0 Nm 3 / min compressed air,
After crushing, it was circulated through the classifier again to carry out closed circuit crushing. As a result, the weight average diameter of the classified fine powder was 8.1.
A finely pulverized product for toner having a size of μm was obtained. It should be noted that stable operation could be performed without the generation of fused substances.

【0067】微粉砕品またはトナーの粒度分布について
は、種々の方法によって測定できるが、本発明において
はコールターマルチサイザーを用いて行なった。
The particle size distribution of the finely pulverized product or toner can be measured by various methods, but in the present invention, it was measured using a Coulter Multisizer.

【0068】すなわち、測定装置としてはコールターマ
ルチサイザーII型(コールター社製)を用い、個数分
布、体積分布を出力するインターフェイス(日科機製)
及びCX−1パーソナルコンピューター(キヤノン製)
を接続し、電解液は特級または1級塩化ナトリウムを用
いて1%NaCl水溶液を調製する。測定法としては前
記電解水溶液100〜150ml中に分散剤として界面
活性剤、好ましくはアルキルベンゼンスルホン酸塩を
0.1〜5ml加え、さらに測定試料を2〜20mg加
える。試料を懸濁した電解液は超音波分散器で約1〜3
分間分散処理を行ない、前記コールターマルチサイザー
II型により、アパーチャーとして100μmアパーチ
ャーを用いて測定する。微粉末及びトナーの体積、個数
を測定して、体積分布と、個数分布とを算出した。それ
から本発明に係わるところの体積分布から求めた重量基
準の重量平均径を体積分布から求めた。
That is, a Coulter Multisizer II type (manufactured by Coulter) is used as a measuring device, and an interface (manufactured by Nikkaki) for outputting number distribution and volume distribution.
And CX-1 personal computer (Canon)
And a 1% NaCl aqueous solution is prepared by using special grade or primary grade sodium chloride as the electrolytic solution. As the measuring method, 0.1 to 5 ml of a surfactant, preferably an alkylbenzene sulfonate, is added as a dispersant to 100 to 150 ml of the electrolytic aqueous solution, and 2 to 20 mg of a measurement sample is further added. The electrolytic solution in which the sample is suspended is about 1 to 3 with an ultrasonic disperser.
Dispersion treatment is performed for a minute, and measurement is performed by the Coulter Multisizer II type using a 100 μm aperture as an aperture. The volume and number of fine powder and toner were measured, and the volume distribution and number distribution were calculated. Then, the weight-based weight average diameter obtained from the volume distribution according to the present invention was obtained from the volume distribution.

【0069】製造例2 製造例1と同様のトナー粉砕原料を用いて、図6に示す
衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機は、
高圧気体供給ノズルのスロート径が11mm(a=1
1)、高圧気体供給ノズルの長さ43mm(L1 =4
3)、加速管の長さが83mm(L2 =83)、衝突部
材における突出中央部の頂点と外周衝突面との最近接距
離が57mm(L3 =57)として 2(L1 +L3 )/3<L2 <3・L3 の関係式を満足し、高圧気体供給ノズルの拡がり角度が
8゜(θ1 =8)、加速管のスロート径が18mm(b
=18)、衝突部材の錐体形状を有する突起部の底面径
が56mm(c=56)にすると a+2・L1 tan(θ1 /2)<b<c/2 の関係式を満足する。更に、該粉砕機は、加速管の拡が
り角度が8°(θ2 =8)、衝突部材の外周衝突面径が
100mm(d=100)にすると b+2・L2 tan(θ2 /2)<c<d の関係式を満足する。更に、該粉砕機は、衝突部材の錐
体状である突出中央部の頂角が55゜(θ3 =55)、
外周衝突面の頂角が160゜(θ4 =160)、粉砕室
の径が140mm(e=140)にすると d+2・L3 tan(θ3 /2)>e>d の関係式を満足する。
Production Example 2 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The collision type airflow crusher,
Throat diameter of high pressure gas supply nozzle is 11mm (a = 1
1), the length of the high pressure gas supply nozzle is 43 mm (L 1 = 4
3) Assuming that the length of the accelerating tube is 83 mm (L 2 = 83) and the closest distance between the apex of the projecting central portion of the collision member and the outer peripheral collision surface is 57 mm (L 3 = 57), 2 (L 1 + L 3 ). / 3 <L 2 <3 · L 3 is satisfied, the divergence angle of the high pressure gas supply nozzle is 8 ° (θ 1 = 8), and the throat diameter of the accelerating tube is 18 mm (b
= 18), a bottom diameter of the protrusion having a cone shape of the collision member is 56 mm (c = 56) to the a + 2 · L 1 tan ( θ 1/2) to satisfy the <b <c / 2 relationship. Moreover, the grinder, spread angle of 8 ° of the acceleration tube (θ 2 = 8), the outer peripheral colliding surface diameter of the collision member to 100mm (d = 100) b + 2 · L 2 tan (θ 2/2) < The relational expression of c <d is satisfied. Further, in the crusher, the apex angle of the cone-shaped protrusion of the collision member is 55 ° (θ 3 = 55),
The apex angle of the outer peripheral colliding surface is 160 ° (θ 4 = 160), the diameter of the grinding chamber satisfies a 140mm (e = 140) to the d + 2 · L 3 tan ( θ 3/2)>e> d relations .

【0070】以上の条件を満足した形状で粉砕を行なっ
た。定量供給機にて粉砕原料を45.0kg/hrの割
合で強制渦流式の分級機に供給し、分級された粗粉を該
衝突式気流粉砕機に導入し、圧力6.0kg/cm
2 (G)、6.0Nm3 /minの圧縮空気を用いて、
粉砕した後、再度分級機に循環し、閉回路粉砕を行なっ
た。その結果、分級された細粉として重量平均径8.1
μmのトナー用微粉砕品を得た。なお、融着物の発生は
なく、安定した運転ができた。
Pulverization was performed in a shape satisfying the above conditions. The pulverized raw material was fed to the forced vortex type classifier at a rate of 45.0 kg / hr by a constant quantity feeder, and the classified coarse powder was introduced into the collision type air flow pulverizer, and the pressure was 6.0 kg / cm.
2 (G), using 6.0 Nm 3 / min compressed air,
After crushing, it was circulated through the classifier again to carry out closed circuit crushing. As a result, the weight average diameter of the classified fine powder was 8.1.
A finely pulverized product for toner having a size of μm was obtained. It should be noted that stable operation could be performed without the generation of fused substances.

【0071】製造例3 製造例1と同様のトナー粉砕原料を用いて、図9に示す
衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機は、
高圧気体供給ノズルのスロート径が11mm(a=1
1)、高圧気体供給ノズルの長さ40mm(L1 =4
0)、加速管の長さが73mm(L2 =73)、衝突部
材における突出中央部の頂点と外周衝突面との最近接距
離が57mm(L3 =57)として 2(L1 +L3 )/3<L2 <3・L3 の関係式を満足し、高圧気体供給ノズルの拡がり角度が
8゜(θ1 =8)、加速管のスロート径が19mm(b
=19)、衝突部材の錐体形状を有する突起部の底面径
が56mm(c=56)にすると a+2・L1 tan(θ1 /2)<b<c/2 の関係式を満足する。更に、該粉砕機は、加速管の拡が
り角度が8゜(θ2 =8)、衝突部材の外周衝突面径が
90mm(d=90)にすると b+2・L2 tan(θ2 /2)<c<d の関係式を満足する。更に、該粉砕機は、衝突部材の錐
体状である突出中央部の頂角が50゜(θ3 =50)、
外周衝突面の頂角が160゜(θ4 =160)、粉砕室
の径が110mm(e=110)にすると d+2・L3 tan(θ3 /2)>e>d の関係式を満足する。
Production Example 3 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The collision type airflow crusher,
Throat diameter of high pressure gas supply nozzle is 11mm (a = 1
1), length of high pressure gas supply nozzle 40 mm (L 1 = 4
0), the length of the accelerating tube is 73 mm (L 2 = 73), and the closest distance between the apex of the protruding central portion of the collision member and the outer peripheral collision surface is 57 mm (L 3 = 57), 2 (L 1 + L 3 ). / 3 <L 2 <3 · L 3 is satisfied, the divergence angle of the high pressure gas supply nozzle is 8 ° (θ 1 = 8), and the throat diameter of the accelerating tube is 19 mm (b
= 19), a bottom diameter of the protrusion having a cone shape of the collision member is 56 mm (c = 56) to the a + 2 · L 1 tan ( θ 1/2) to satisfy the <b <c / 2 relationship. Moreover, the grinder, spreading angle is 8 ° of the acceleration tube (theta 2 = 8), the outer peripheral colliding surface diameter of the collision member to 90mm (d = 90) b + 2 · L 2 tan (θ 2/2) < The relational expression of c <d is satisfied. Further, in the crusher, the apex angle of the cone-shaped protrusion of the collision member is 50 ° (θ 3 = 50),
The apex angle of the outer peripheral colliding surface is 160 ° (θ 4 = 160), the diameter of the grinding chamber satisfies a 110mm (e = 110) to the d + 2 · L 3 tan ( θ 3/2)>e> d relations .

【0072】以上の条件を満足した形状で粉砕を行なっ
た。定量供給機にて粉砕原料を30.0kg/hrの割
合で強制渦流式の分級機に供給し、分級された粗粉を該
衝突式気流粉砕機に導入し、圧力6.0kg/cm
2 (G)、6.0Nm3 /minの圧縮空気を用いて、
粉砕した後、再度分級機に循環し、閉回路粉砕を行なっ
た。その結果、分級された細粉として重量平均径8.0
μmのトナー用微粉砕品を得た。なお、融着物の発生は
なく、安定した運転ができた。
Crushing was performed in a shape satisfying the above conditions. The pulverized raw material is supplied to the forced vortex type classifier at a rate of 30.0 kg / hr by a constant quantity feeder, and the classified coarse powder is introduced into the collision type airflow pulverizer, and the pressure is 6.0 kg / cm.
2 (G), using 6.0 Nm 3 / min compressed air,
After crushing, it was circulated through the classifier again to carry out closed circuit crushing. As a result, a weight average diameter of 8.0 as classified fine powder was obtained.
A finely pulverized product for toner having a size of μm was obtained. It should be noted that stable operation could be performed without the generation of fused substances.

【0073】製造例4 製造例1と同様のトナー粉砕原料を用いて、図1に示す
衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機の構
成は製造例1で用いたのと同様の構成のものを使用し
た。定量供給機にて粉砕原料を30.0kg/hrの割
合で強制渦流式の分級機に供給し、分級された粗粉を該
衝突式気流粉砕機に導入し、圧力6.0kg/cm
2 (G)、6.0Nm3 /minの圧縮空気を用いて、
粉砕した後、再度分級機に循環し、閉回路粉砕を行なっ
た。その結果、分級された細粉として重量平均径6.0
μmのトナー用微粉砕品を得た。なお、融着物の発生は
なく、安定した運転ができた。
Production Example 4 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The structure of the collision type airflow crusher used was the same as that used in Production Example 1. The pulverized raw material is supplied to the forced vortex type classifier at a rate of 30.0 kg / hr by a constant quantity feeder, and the classified coarse powder is introduced into the collision type airflow pulverizer, and the pressure is 6.0 kg / cm.
2 (G), using 6.0 Nm 3 / min compressed air,
After crushing, it was circulated through the classifier again to carry out closed circuit crushing. As a result, a weight average diameter of 6.0 as classified fine powder was obtained.
A finely pulverized product for toner having a size of μm was obtained. It should be noted that stable operation could be performed without the generation of fused substances.

【0074】製造例5 製造例1と同様のトナー粉砕原料を用いて、図6に示す
衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機の構
成は製造例2で用いたのと同様の構成のものを使用し
た。定量供給機にて粉砕原料を29.0kg/hrの割
合で強制渦流式の分級機に供給し、分級された粗粉を該
衝突式気流粉砕機に導入し、圧力6.0kg/cm
2 (G)、6.0Nm3 /minの圧縮空気を用いて、
粉砕した後、再度分級機に循環し、閉回路粉砕を行なっ
た。その結果、分級された細粉として重量平均径6.1
μmのトナー用微粉砕品を得た。なお、融着物の発生は
なく、安定した運転ができた。
Production Example 5 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The structure of the collision type airflow crusher was the same as that used in Production Example 2. The pulverized raw material was fed to the forced vortex type classifier at a rate of 29.0 kg / hr by a constant quantity feeder, and the classified coarse powder was introduced into the collision type air flow pulverizer, and the pressure was 6.0 kg / cm.
2 (G), using 6.0 Nm 3 / min compressed air,
After crushing, it was circulated through the classifier again to carry out closed circuit crushing. As a result, the weight average diameter of the classified fine powder was 6.1.
A finely pulverized product for toner having a size of μm was obtained. It should be noted that stable operation could be performed without the generation of fused substances.

【0075】製造例6 製造例1と同様のトナー粉砕原料を用いて、図9に示す
衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機の構
成は製造例3で用いたのと同様の構成のものを使用し
た。定量供給機にて粉砕原料を18.0kg/hrの割
合で強制渦流式の分級機に供給し、分級された粗粉を該
衝突式気流粉砕機に導入し、圧力6.0kg/cm
2 (G)、6.0Nm3 /minの圧縮空気を用いて、
粉砕した後、再度分級機に循環し、閉回路粉砕を行なっ
た。その結果、分級された細粉として重量平均径6.0
μmのトナー用微粉砕品を得た。なお、融着物の発生は
なく、安定した運転ができた。
Production Example 6 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The structure of the collision type airflow crusher was the same as that used in Production Example 3. The pulverized raw material was fed to the forced vortex type classifier at a rate of 18.0 kg / hr by a constant quantity feeder, and the classified coarse powder was introduced into the collision type air flow pulverizer, and the pressure was 6.0 kg / cm.
2 (G), using 6.0 Nm 3 / min compressed air,
After crushing, it was circulated through the classifier again to carry out closed circuit crushing. As a result, a weight average diameter of 6.0 as classified fine powder was obtained.
A finely pulverized product for toner having a size of μm was obtained. It should be noted that stable operation could be performed without the generation of fused substances.

【0076】比較製造例1 製造例1と同様のトナー粉砕原料を用いて、図11に示
す衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機
は、高圧気体供給ノズルのスロート径が11mm(a=
11)、高圧気体供給ノズルの長さ62mm(L1 =6
2)、加速管の長さが71mm(L2 =71)、衝突部
材における突出中央部の頂点と外周衝突面との最近接距
離が0mm(L3 =0)として、高圧気体供給ノズルの
拡がり角度が5.6゜(θ1 =5.6)、加速管のスロ
ート径が16mm(b=16)、衝突部材の錐体形状を
有する突起部の底面径を0mm(c=0)とし、更に、
該粉砕機は、加速管の拡がり角度が5.6゜(θ2
5.6)、衝突部材の外周衝突面径が100mm(d=
100)とし、更に、該粉砕機は、衝突部材の錐体状で
ある突出中央部が存在しない頂角が180゜(θ3 =1
80)、外周衝突面の頂角が180゜(θ4 =180)
である平面形状にし、粉砕室の径を110mm(e=1
10)とした。
Comparative Production Example 1 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The high pressure gas supply nozzle has a throat diameter of 11 mm (a =
11), the length of the high pressure gas supply nozzle is 62 mm (L 1 = 6
2), the length of the accelerating tube is 71 mm (L 2 = 71), the closest distance between the apex of the projecting central portion of the collision member and the outer collision surface is 0 mm (L 3 = 0), and the expansion of the high pressure gas supply nozzle The angle is 5.6 ° (θ 1 = 5.6), the throat diameter of the accelerating tube is 16 mm (b = 16), and the bottom surface diameter of the protrusion having the cone shape of the collision member is 0 mm (c = 0). Furthermore,
The crusher has an accelerating tube spread angle of 5.6 ° (θ 2 =
5.6), the outer peripheral collision surface diameter of the collision member is 100 mm (d =
100), and the crusher has an apex angle of 180 ° (θ 3 = 1 where there is no cone-shaped projecting central portion of the collision member).
80), the apex angle of the outer collision surface is 180 ° (θ 4 = 180)
And the diameter of the crushing chamber is 110 mm (e = 1
10).

【0077】以上の条件で粉砕を行なった。定量供給機
にて粉砕原料を18.0kg/hrの割合で強制渦流式
の分級機に供給し、分級された粗粉を該衝突式気流粉砕
機に導入し、圧力6.0kg/cm2 (G)、6.0N
3 /minの圧縮空気を用いて、粉砕した後、再度分
級機に循環し、閉回路粉砕を行なった。その結果、分級
された細粉として重量平均径8.3μmのトナー用微粉
砕品を得た。
Crushing was carried out under the above conditions. The pulverized raw material was supplied to the forced vortex type classifier at a rate of 18.0 kg / hr by a constant quantity feeder, and the classified coarse powder was introduced into the collision type air flow pulverizer, and the pressure was 6.0 kg / cm 2 ( G), 6.0N
After pulverizing with compressed air of m 3 / min, it was circulated through the classifier again to carry out closed circuit pulverization. As a result, a finely pulverized product for toner having a weight average diameter of 8.3 μm was obtained as classified fine powder.

【0078】供給量を18.0kg/hr以上に増やす
と得られる細粉の重量平均径が大きくなり、また、衝突
部材上で粉砕物の融着、凝集物、粗粒子が生じはじめ、
融着物が加速管の原料投入口を詰まらせる場合があり、
安定した運転ができなかった。
When the supply amount is increased to 18.0 kg / hr or more, the weight average diameter of the fine powder obtained becomes large, and fusion of the pulverized material, agglomerates and coarse particles start to occur on the collision member.
The fused material may block the raw material inlet of the acceleration tube,
I couldn't drive stably.

【0079】比較製造例2 製造例1と同様のトナー粉砕原料を用いて、図13に示
す衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機
は、高圧気体供給ノズルのスロート径が11mm(a=
11)、高圧気体供給ノズルの長さ62mm(L1 =6
2)、加速管の長さが71mm(L2 =71)、衝突部
材における突出中央部の頂点と外周衝突面との最近接距
離が0mm(L3 =0)として高圧気体供給ノズルの拡
がり角度が5.6゜(θ1 =5.6)、加速管のスロー
ト径が16mm(b=16)、衝突部材の錐体形状を有
する突起部の底面径を0mm(c=0)とし、更に、該
粉砕機は、加速管の拡がり角度が5.6゜(θ2 =5.
6)、衝突部材の外周衝突面径を60mm(d=60)
とし、更に、該粉砕機は、衝突部材の錐体状である突出
中央部が存在しない頂角が160゜(θ3 =160)、
外周衝突面の頂角が160゜(θ4 =160)である単
なる円錐形状にし、粉砕室の径が110mm(e=11
0)とした。
Comparative Production Example 2 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The high pressure gas supply nozzle has a throat diameter of 11 mm (a =
11), the length of the high pressure gas supply nozzle is 62 mm (L 1 = 6
2), the length of the accelerating tube is 71 mm (L 2 = 71), the closest distance between the apex of the projecting center of the collision member and the outer peripheral collision surface is 0 mm (L 3 = 0), and the divergence angle of the high-pressure gas supply nozzle Is 5.6 ° (θ 1 = 5.6), the throat diameter of the accelerating tube is 16 mm (b = 16), and the bottom diameter of the conical protrusion of the collision member is 0 mm (c = 0). In the crusher, the accelerating tube spread angle is 5.6 ° (θ 2 = 5.
6), the outer collision surface diameter of the collision member is 60 mm (d = 60)
Further, in the crusher, the apex angle of the collision member where the cone-shaped protruding central portion does not exist is 160 ° (θ 3 = 160),
The outer peripheral collision surface is simply conical with the apex angle of 160 ° (θ 4 = 160), and the diameter of the grinding chamber is 110 mm (e = 11).
0).

【0080】以上の条件で粉砕を行なった。定量供給機
にて粉砕原料を22.0kg/hrの割合で強制渦流式
の分級機に供給し、分級された粗粉を該衝突式気流粉砕
機に導入し、圧力6.0kg/cm2 (G)、6.0N
3 /minの圧縮空気を用いて、粉砕した後、再度分
級機に循環し、閉回路粉砕を行なった。その結果、分級
された細粉として重量平均径8.2μmのトナー用微粉
砕品を得た。
Crushing was performed under the above conditions. The pulverized raw material was supplied to the forced vortex type classifier at a rate of 22.0 kg / hr by a constant quantity feeder, and the classified coarse powder was introduced into the collision type air flow pulverizer, and the pressure was 6.0 kg / cm 2 ( G), 6.0N
After pulverizing with compressed air of m 3 / min, it was circulated through the classifier again to carry out closed circuit pulverization. As a result, a finely pulverized product for toner having a weight average diameter of 8.2 μm was obtained as classified fine powder.

【0081】供給量を22kg/hr以上に増やすと得
られる細粉の重量平均径が大きくなった。なお、融着物
の発生は認められなかった。
When the supply amount was increased to 22 kg / hr or more, the weight average diameter of the fine powder obtained increased. In addition, generation of a fused substance was not recognized.

【0082】比較製造例3 製造例1と同様のトナー粉砕原料を用いて、図14に示
す衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機
は、高圧気体供給ノズルのスロート径が11mm(a=
11)、高圧気体供給ノズルの長さ62mm(L1 =6
2)、加速管の長さが71mm(L2 =71)、衝突部
材における突出中央部の頂点と外周衝突面との最近接距
離が53mm(L3 =53)として高圧気体供給ノズル
の拡がり角度が5.6゜(θ1 =5.6)、加速管のス
ロート径が16mm(b=16)、衝突部材の錐体形状
を有する突起部の底面径が49mm(c=49)とし、
更に、該粉砕機は、加速管の拡がり角度が5.6゜(θ
2 =5.6)、衝突部材の外周衝突面径が60mm(d
=60)とし、更に、該粉砕機は、衝突部材の錐体状で
ある突出中央部の頂角が50゜(θ3=50)、外周衝
突面の頂角が180゜(θ4 =180)、粉砕室の径が
110mm(e=110)とした。
Comparative Production Example 3 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The high pressure gas supply nozzle has a throat diameter of 11 mm (a =
11), the length of the high pressure gas supply nozzle is 62 mm (L 1 = 6
2), the length of the accelerating tube is 71 mm (L 2 = 71), and the closest distance between the apex of the protruding central portion of the collision member and the outer peripheral collision surface is 53 mm (L 3 = 53). Is 5.6 ° (θ 1 = 5.6), the throat diameter of the accelerating tube is 16 mm (b = 16), and the bottom diameter of the cone-shaped projection of the collision member is 49 mm (c = 49),
Further, the crusher has a accelerating tube spreading angle of 5.6 ° (θ
2 = 5.6), the outer collision surface diameter of the collision member is 60 mm (d
= 60), and in the crusher, the apex angle of the cone-shaped protrusion of the collision member is 50 ° (θ 3 = 50), and the apex angle of the outer peripheral collision surface is 180 ° (θ 4 = 180). ), And the diameter of the crushing chamber was 110 mm (e = 110).

【0083】以上の条件で粉砕を行なった。定量供給機
にて粉砕原料を22.0kg/hrの割合で強制渦流式
の分級機に供給し、分級された粗粉を該衝突式気流粉砕
機に導入し、圧力6.0kg/cm2 (G)、6.0N
3 /minの圧縮空気を用いて、粉砕した後、再度分
級機に循環し、閉回路粉砕を行なった。その結果、分級
された細粉として重量平均径8.2μmのトナー用微粉
砕品を得た。
Crushing was carried out under the above conditions. The pulverized raw material was supplied to the forced vortex type classifier at a rate of 22.0 kg / hr by a constant quantity feeder, and the classified coarse powder was introduced into the collision type air flow pulverizer, and the pressure was 6.0 kg / cm 2 ( G), 6.0N
After pulverizing with compressed air of m 3 / min, it was circulated through the classifier again to carry out closed circuit pulverization. As a result, a finely pulverized product for toner having a weight average diameter of 8.2 μm was obtained as classified fine powder.

【0084】供給量を22.0kg/hr以上に増やす
と得られる細粉の重量平均径が大きくなった。なお、粗
大融着物の発生は認められなかったが1時間運転後、衝
突部材を点検したところ、原料衝突面にうっすらと粉砕
物の融着している層が付着しているのが確認された。
When the supply amount was increased to 22.0 kg / hr or more, the weight average diameter of the fine powder obtained increased. Although no generation of a coarse fusion product was observed, the collision member was inspected after the operation for 1 hour, and it was confirmed that a fusion layer of the pulverized product was slightly attached to the raw material collision surface. .

【0085】比較製造例4 製造例1と同様のトナー粉砕原料を用いて、図11に示
す衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機の
構成は比較製造例1で用いたものと同様の構成のものを
使用した。定量供給機にて粉砕原料を8.0kg/hr
の割合で強制渦流式の分級機に供給し、分級された粗粉
を該衝突式気流粉砕機に導入し、圧力6.0kg/cm
2 (G)、6.0Nm3 /minの圧縮空気を用いて、
粉砕した後、再度分級機に循環し、閉回路粉砕を行なっ
た。その結果、分級された細粉として重量平均径6.4
μmのトナー用微粉砕品を得た。供給量を8.0kg/
hr以上に増やすと得られる細粉の重量平均径が大きく
なり、また、衝突部材上で粉砕物の融着、凝集物、粗粒
子が生じはじめ、融着物が加速管の原料投入口を詰まら
せる場合があり、安定した運転ができなかった。
Comparative Production Example 4 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The structure of the collision type airflow crusher was the same as that used in Comparative Production Example 1. 8.0 kg / hr of crushed raw material with a constant quantity feeder
To a forced vortex type classifier, and the classified coarse powder is introduced into the collision type air flow pulverizer at a pressure of 6.0 kg / cm.
2 (G), using 6.0 Nm 3 / min compressed air,
After crushing, it was circulated through the classifier again to carry out closed circuit crushing. As a result, the weight-average diameter of the classified fine powder was 6.4.
A finely pulverized product for toner having a size of μm was obtained. Supply amount 8.0 kg /
If it is increased to more than hr, the weight average diameter of the fine powder obtained becomes large, and fusion of the pulverized material, agglomerates, and coarse particles start to occur on the collision member, and the fusion material clogs the raw material inlet of the acceleration tube. In some cases, stable operation was not possible.

【0086】比較製造例5 製造例1と同様のトナー粉砕原料を用いて、図13に示
す衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機の
構成は比較製造例2で用いたのと同様の構成のものを使
用した。定量供給機にて粉砕原料を14.0kg/hr
の割合で強制渦流式の分級機に供給し、分級された粗粉
を該衝突式気流粉砕機に導入し、圧力6.0kg/cm
2 (G)、6.0Nm3 /minの圧縮空気を用いて、
粉砕した後、再度分級機に循環し、閉回路粉砕を行なっ
た。その結果、分級された細粉として重量平均径6.2
μmのトナー用微粉砕品を得た。
Comparative Production Example 5 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The structure of the collision type airflow crusher used was the same as that used in Comparative Production Example 2. 14.0 kg / hr of crushed raw material with a constant quantity feeder
To a forced vortex type classifier, and the classified coarse powder is introduced into the collision type air flow pulverizer at a pressure of 6.0 kg / cm.
2 (G), using 6.0 Nm 3 / min compressed air,
After crushing, it was circulated through the classifier again to carry out closed circuit crushing. As a result, the weight average diameter of the classified fine powder was 6.2.
A finely pulverized product for toner having a size of μm was obtained.

【0087】比較製造例6 製造例1と同様のトナー粉砕原料を用いて、図14に示
す衝突式気流粉砕機で粉砕した。該衝突式気流粉砕機の
構成は比較製造例3で用いたのと同様の構成のものを使
用した。定量供給機にて粉砕原料を14.0kg/hr
の割合で強制渦流式の分級機に供給し、分級された粗粉
を該衝突式気流粉砕機に導入し、圧力6.0kg/cm
2 (G)、6.0Nm3 /minの圧縮空気を用いて、
粉砕した後、再度分級機に循環し、閉回路粉砕を行なっ
た。その結果、分級された細粉として重量平均径6.1
μmのトナー用微粉砕品を得た。供給量を14.0kg
/hr以上に増やすと得られる細粉の重量平均径が大き
くなった。なお、粗大融着物の発生は認められなかった
が1時間運転後、衝突部材を点検したところ、原料衝突
面にうっすらと粉砕物の融着した層が付着しているのが
確認された。
Comparative Production Example 6 The same toner pulverization raw material as in Production Example 1 was used to pulverize with a collision type air flow pulverizer shown in FIG. The structure of the collision type air flow crusher used was the same as that used in Comparative Production Example 3. 14.0 kg / hr of crushed raw material with a constant quantity feeder
To a forced vortex type classifier, and the classified coarse powder is introduced into the collision type air flow pulverizer at a pressure of 6.0 kg / cm.
2 (G), using 6.0 Nm 3 / min compressed air,
After crushing, it was circulated through the classifier again to carry out closed circuit crushing. As a result, the weight average diameter of the classified fine powder was 6.1.
A finely pulverized product for toner having a size of μm was obtained. Supply amount 14.0kg
The weight average diameter of the fine powder obtained was increased when the amount was increased to / hr or more. Although no generation of coarse fused material was observed, the collision member was inspected after the operation for 1 hour, and it was confirmed that a fused layer of the pulverized material was slightly attached to the raw material collision surface.

【0088】以上の製造例1〜6、比較製造例1〜6の
結果をまとめたものを下記表1に示す。この表におい
て、粉砕効率比は比較製造例2の供給量を1.0とした
ときの各条件での供給量比として表わした。
Table 1 below summarizes the results of the above Production Examples 1 to 6 and Comparative Production Examples 1 to 6. In this table, the pulverization efficiency ratio is expressed as a supply amount ratio under each condition when the supply amount in Comparative Production Example 2 is 1.0.

【0089】[0089]

【表1】 [Table 1]

【0090】[0090]

【発明の効果】以上説明したように、本発明によれば、
加速管内に被粉砕物を粉塵濃度の偏りが無いように均一
に分散させて導入し、もしくは、一方向から加速管内に
被粉砕物を導入させても十分に加速膨張させた固気混合
流を形成させ、このような固気混合流が加速管出口から
対向する衝突部材に向かって分散良く噴出し、衝突部材
に設けた錐体状の突出中央部で一次粉砕され、更に、突
出中央部の周囲に設けられた錐体形状の外周衝突面で二
次粉砕された後、粉砕室側壁でさらに三次粉砕されるた
め、従来の衝突式気流粉砕機に比ベ、粉砕効率が大幅に
向上する。また、粉砕物の融着、凝集、粗粒化や加速管
内壁、衝突部材の衝突面での局部的な磨耗の発生を防止
でき、効率的に二次さらに三次衝突せしめることによ
り、効率の良い粉砕を行ないながら装置の安定した運転
を可能にすることができる。このため、本発明は、特に
トナーのごとく熱可塑性樹脂を主体とする粉体の微粉砕
に威力を発揮する。
As described above, according to the present invention,
The material to be crushed is uniformly dispersed and introduced so that there is no bias in the dust concentration in the accelerating tube, or even if the material to be crushed is introduced into the accelerating tube from one direction, the solid-gas mixture flow is sufficiently accelerated and expanded. Such a solid-gas mixture flow is jetted from the outlet of the accelerating pipe toward the opposing collision member with good dispersion, and is primary crushed at the cone-shaped protrusion central portion provided on the collision member. After the secondary crushing is performed on the cone-shaped outer peripheral collision surface provided around the crushing chamber, the crushing efficiency is significantly improved as compared with the conventional collision type airflow crusher because the crushing chamber side wall further performs the tertiary crush. Further, it is possible to prevent fusion, agglomeration, coarsening of the pulverized material and local wear on the inner surface of the acceleration tube and the collision surface of the collision member, and to efficiently perform secondary and tertiary collisions, resulting in high efficiency. It is possible to enable stable operation of the device while crushing. For this reason, the present invention is particularly effective in finely pulverizing powder mainly containing a thermoplastic resin such as toner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝突式気流粉砕機の概略断面図であ
る。
FIG. 1 is a schematic sectional view of a collision-type airflow crusher of the present invention.

【図2】図1の拡大断面図である。FIG. 2 is an enlarged sectional view of FIG.

【図3】図1のA−A断面図である。3 is a cross-sectional view taken along the line AA of FIG.

【図4】図1のB−B断面図である。FIG. 4 is a sectional view taken along line BB of FIG.

【図5】図1のC−C断面図である。5 is a sectional view taken along line CC of FIG.

【図6】本発明の他の衝突式気流粉砕機の概略断面図で
ある。
FIG. 6 is a schematic sectional view of another collision type airflow crusher of the present invention.

【図7】図6の拡大断面図である。FIG. 7 is an enlarged sectional view of FIG.

【図8】図6のA’−A’断面図である。8 is a cross-sectional view taken along the line A'-A 'of FIG.

【図9】本発明の他の衝突式気流粉砕機の概略断面図で
ある。
FIG. 9 is a schematic sectional view of another collision type airflow crusher of the present invention.

【図10】図9の拡大断面図である。10 is an enlarged cross-sectional view of FIG.

【図11】従来例の衝突式気流粉砕機を示す概略断面図
である。
FIG. 11 is a schematic cross-sectional view showing a conventional collision type airflow crusher.

【図12】別の従来例の衝突式気流粉砕機を示す概略断
面図である。
FIG. 12 is a schematic cross-sectional view showing another conventional collision type airflow crusher.

【図13】別の従来例の衝突式気流粉砕機を示す概略断
面図である。
FIG. 13 is a schematic cross-sectional view showing another conventional collision type airflow crusher.

【図14】別の従来例の衝突式気流粉砕機を示す概略断
面図である。
FIG. 14 is a schematic cross-sectional view showing another conventional collision type airflow crusher.

【図15】図14の衝突式気流粉砕機に用いられた衝突
面形状の例を示す概略断面図である。
15 is a schematic cross-sectional view showing an example of a collision surface shape used in the collision type airflow crusher of FIG.

【符号の説明】[Explanation of symbols]

1,23,71 加速管 2,52,81 加速管スロート部 3,53,79 高圧気体供給ノズル 4,54,80 高圧気体供給ノズルスロート部 5,56,72 被粉砕物供給口 6,55 被粉砕物供給筒 7,57 高圧気体供給口 8,58 高圧気体チャンバー 9.59 高圧気体導入管 10,24,60,73 加速管出口 11,25,61,74 衝突部材 12,62 衝突部材支持体 13,63,78 粉砕室 14,27,64,82 粉砕物排出口 15,28,65,77 粉砕室側壁 16,66,75 突出中央部 17,67,76 外周衝突面 18,29,68,83 粉体原料 21,72 被粉砕物供給口 22,79 高圧気体供給ノズル 26 衝突面 1,23,71 Accelerator tube 2,52,81 Accelerator tube throat part 3,53,79 High pressure gas supply nozzle 4,54,80 High pressure gas supply nozzle throat part 5,56,72 Ground material supply port 6,55 Crushed material supply cylinder 7,57 High-pressure gas supply port 8,58 High-pressure gas chamber 9.59 High-pressure gas introduction pipe 10,24,60,73 Accelerator pipe outlet 11,25,61,74 Collision member 12,62 Collision member support 13, 63, 78 Crushing chamber 14, 27, 64, 82 Crushed material discharge port 15, 28, 65, 77 Crushing chamber side wall 16, 66, 75 Protruding central part 17, 67, 76 Outer peripheral collision surface 18, 29, 68, 83 powder raw material 21,72 ground material supply port 22,79 high pressure gas supply nozzle 26 collision surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 政吉 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masakichi Kato 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高圧気体により被粉砕物を搬送加速する
ための加速管と被粉砕物を微粉砕するための粉砕室とを
有し、該粉砕室内には、該加速管の出口の開口面に対向
して設けた衝突面を有する衝突部材が具備されている衝
突式気流粉砕機において、 加速管の後端部には被粉砕物を加速管内に供給するため
の被粉砕物供給口を有し、衝突面は、突出している突出
中央部を有し、かつ、外周衝突面は錐体形状を有してお
り、粉砕室は、衝突部材で粉砕された被粉砕物を衝突に
よりさらに粉砕するための側壁を有しており、 高圧気体供給ノズルスロート径a(>0)を有する高圧
気体供給ノズルのノズル長L1 (≧0)、加速管長L2
(>0)及び衝突部材における突出中央部の頂点と外周
衝突面との最近接距離L3 (>0)の関係式が 2(L1 +L3 )/3<L2 <3・L3 であり、 さらに高圧気体供給ノズルの拡がり角度θ1 が0゜≦θ
1 ≦20゜の範囲で a+2・L1 tan(θ1 /2)<b<c/2 (b:加速管スロート径、c:衝突部材の錐体形状を有
する突起部底面径) である条件を満足することを特徴とする衝突式気流粉砕
機。
1. An accelerating pipe for conveying and accelerating an object to be crushed by a high-pressure gas, and a crushing chamber for finely crushing the object to be crushed, and an opening surface of an outlet of the accelerating tube in the crushing chamber. In a collision type air flow crusher equipped with a collision member having a collision surface facing each other, at the rear end of the accelerating tube, there is a crushed object supply port for supplying the crushed object into the accelerating tube. The collision surface has a protruding central portion, and the outer peripheral collision surface has a cone shape, and the crushing chamber further crushes the object to be crushed by the collision member by collision. For the high pressure gas supply nozzle having a throat diameter a (> 0), the nozzle length L 1 (≧ 0), and the acceleration pipe length L 2
(> 0) and the relational expression of the closest distance L 3 (> 0) between the apex of the protruding central portion of the collision member and the outer peripheral collision surface is 2 (L 1 + L 3 ) / 3 <L 2 <3 · L 3 . Yes, the divergence angle θ 1 of the high pressure gas supply nozzle is 0 ° ≤ θ
1 ≦ 20 ° range a + 2 · L 1 tan ( θ 1/2) <b <c / 2 condition is (b:: accelerating tube throat diameter, c protrusion bottom diameter having a cone-shaped collision member) A collision type airflow crusher characterized by satisfying.
【請求項2】 加速管の拡がり角度θ2 が 0゜≦θ2
≦20゜の範囲で b+2・L2 tan(θ2 /2)<c<d (d:外周衝突面径) である条件を満足すると同時に、衝突部材の突出中央部
の頂角θ3 と外周衝突面の頂角θ4 が 0゜<θ3 <9
0゜の範囲で 0゜<θ3 <θ4 <180゜ であり、 d+2・L3 tan(θ3 /2)>e>d (e:粉砕室径、c=2・L3 tan(θ3 /2)) である条件を満足することを特徴とする請求項1に記載
の粉砕機。
2. The spread angle θ 2 of the acceleration tube is 0 ° ≦ θ 2
≦ 20 DEG b + 2 · L 2 tan ( θ 2/2) <c <d: at the same time to satisfy the (d outer peripheral colliding surface diameter) is a condition, the apex angle theta 3 and the outer periphery of the projecting central portion of the collision member The apex angle θ 4 of the collision surface is 0 ° <θ 3 <9
0 ° <θ 34 <180 ° at 0 DEG, d + 2 · L 3 tan (θ 3/2)>e> d (e: grinding chamber diameter, c = 2 · L 3 tan3/2)) grinding machine according to claim 1, characterized by satisfying the condition it is.
JP05232269A 1993-08-26 1993-08-26 Collision type air crusher Expired - Lifetime JP3114040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05232269A JP3114040B2 (en) 1993-08-26 1993-08-26 Collision type air crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05232269A JP3114040B2 (en) 1993-08-26 1993-08-26 Collision type air crusher

Publications (2)

Publication Number Publication Date
JPH0760150A true JPH0760150A (en) 1995-03-07
JP3114040B2 JP3114040B2 (en) 2000-12-04

Family

ID=16936602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05232269A Expired - Lifetime JP3114040B2 (en) 1993-08-26 1993-08-26 Collision type air crusher

Country Status (1)

Country Link
JP (1) JP3114040B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296873A (en) * 2004-04-14 2005-10-27 Sankemikkusu Tokai:Kk Solid-gas mixing ejector and jet mill
JP2010099639A (en) * 2008-09-25 2010-05-06 Ricoh Co Ltd Fluid spray nozzle, pulverizer and method of preparing toner
JP2011255268A (en) * 2010-06-07 2011-12-22 Nippon Pneumatic Mfg Co Ltd Fine particle manufacturing apparatus
JP2012081461A (en) * 2010-09-15 2012-04-26 Ricoh Co Ltd Pulverizing device, pulverizing method, method for manufacturing toner, and toner
US9022307B2 (en) 2012-03-21 2015-05-05 Ricoh Company, Ltd. Pulverizer
CN107675539A (en) * 2017-10-23 2018-02-09 济南大学 A kind of reciprocating multi-cavity gas shock and the pulping equipment for shearing pulping

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296873A (en) * 2004-04-14 2005-10-27 Sankemikkusu Tokai:Kk Solid-gas mixing ejector and jet mill
JP4575017B2 (en) * 2004-04-14 2010-11-04 株式会社ナノプラス Solid-gas mixing ejector and jet mill
JP2010099639A (en) * 2008-09-25 2010-05-06 Ricoh Co Ltd Fluid spray nozzle, pulverizer and method of preparing toner
JP2011255268A (en) * 2010-06-07 2011-12-22 Nippon Pneumatic Mfg Co Ltd Fine particle manufacturing apparatus
JP2012081461A (en) * 2010-09-15 2012-04-26 Ricoh Co Ltd Pulverizing device, pulverizing method, method for manufacturing toner, and toner
US9022307B2 (en) 2012-03-21 2015-05-05 Ricoh Company, Ltd. Pulverizer
CN107675539A (en) * 2017-10-23 2018-02-09 济南大学 A kind of reciprocating multi-cavity gas shock and the pulping equipment for shearing pulping

Also Published As

Publication number Publication date
JP3114040B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
JP6255681B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP3114040B2 (en) Collision type air crusher
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2663046B2 (en) Collision type air flow crusher and crushing method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JPH0852376A (en) Collision type airflow grinder
JP2654989B2 (en) Powder grinding method
JP2759499B2 (en) Powder grinding method
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP3313922B2 (en) Crusher
JP3101786B2 (en) Collision type air crusher
JP2704787B2 (en) Powder material grinding method
JP2805332B2 (en) Grinding method
JPH08182938A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH07289933A (en) Grinder
JPH03296446A (en) Impact type jet grinder and grinding method
JPH08117633A (en) Production of impact pneumatic pulverizer and static charge developing toner
JPH08112543A (en) Pulverizer
JPH0386257A (en) Collision-type jet pulverizer and crushing method
JPH09251215A (en) Production of toner and producing system of toner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12