JP2663046B2 - Collision type air flow crusher and crushing method - Google Patents

Collision type air flow crusher and crushing method

Info

Publication number
JP2663046B2
JP2663046B2 JP2275417A JP27541790A JP2663046B2 JP 2663046 B2 JP2663046 B2 JP 2663046B2 JP 2275417 A JP2275417 A JP 2275417A JP 27541790 A JP27541790 A JP 27541790A JP 2663046 B2 JP2663046 B2 JP 2663046B2
Authority
JP
Japan
Prior art keywords
powder
acceleration tube
collision
raw material
powder raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2275417A
Other languages
Japanese (ja)
Other versions
JPH04150957A (en
Inventor
聡 三ッ村
一彦 小俣
仁志 神田
康秀 後関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2275417A priority Critical patent/JP2663046B2/en
Publication of JPH04150957A publication Critical patent/JPH04150957A/en
Application granted granted Critical
Publication of JP2663046B2 publication Critical patent/JP2663046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジョット気流(高圧気体)を用いた衝突式
気流粉砕機及び粉砕方法に関し、特に、電子写真法によ
る画像形成方法に用いられるトナーまたはトナー用着色
樹脂粉体を効率良く生成するための衝突式気流粉砕機及
び粉砕方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impingement airflow pulverizer and a pulverization method using a giotto airflow (high-pressure gas), and more particularly, to a toner used in an image forming method by electrophotography. Also, the present invention relates to an impingement airflow pulverizer and a pulverization method for efficiently producing a colored resin powder for toner.

[従来の技術] ジェット気流を用いた衝突式気流粉砕機は、ジェット
気流で粉体原料を搬送し、粉体原料を衝突部材に衝突さ
せ、その衝撃力により粉砕するものである。
[Related Art] A collision-type airflow pulverizer using a jet airflow conveys a powdery raw material by a jet airflow, collides the powdery raw material with a collision member, and pulverizes the powdery raw material by the impact force.

以下に、その詳細を第8図及び第9図に基づいて説明
する。
The details will be described below with reference to FIGS. 8 and 9.

圧縮気体供給ノズル3を接続した加速管12の出口4に
対向して衝突部材6を設け、前記加速管12に供給した高
圧気体の流動により、加速管12の中途に連通させた粉体
原料供給口1から加速管12の内部に粉体原料15を吸引
し、これを高圧気体とともに噴射して衝突部材6の衝突
面に衝突させ、その衝撃によって粉砕するようにしたも
のである。そして、粉体原料15を所望の粒度に粉砕する
ために使用する場合には、粉体原料供給口1と排出口9
の間に分級機を配して閉回路とし、分級機に粉体原料15
を供給し、その粗粉を粉体原料供給口1から供給し、粉
砕を行い、その粉砕物を排出口9から分級機に戻すよう
にして再度分級するようにしてあり、その微粉が、所望
の粒度の微粉砕物となる。
A collision member 6 is provided to face the outlet 4 of the acceleration tube 12 to which the compressed gas supply nozzle 3 is connected, and the high-pressure gas supplied to the acceleration tube 12 is supplied to supply the powder raw material that is communicated to the middle of the acceleration tube 12. The powder raw material 15 is sucked from the port 1 into the accelerating tube 12 and injected with the high-pressure gas to collide with the collision surface of the collision member 6 and to be pulverized by the impact. When the powder raw material 15 is used for pulverizing the powder raw material 15 to a desired particle size, the powder raw material supply port 1 and the discharge port 9 are used.
A classifier is placed in between to make a closed circuit.
And the coarse powder is supplied from the powder material supply port 1 to be pulverized, and the pulverized material is returned to the classifier through the discharge port 9 to be classified again. Of fine particles.

しかしながら、上記従来例では、加速管12内に吸引導
入された粉体原料15を高圧気流中で充分に分散させるこ
とは困難であることから、加速管出口4から噴出する粉
粒は粉塵濃度の濃い流れと淡い流れに分離してしまう。
However, in the above-described conventional example, it is difficult to sufficiently disperse the powder raw material 15 sucked and introduced into the acceleration tube 12 in a high-pressure airflow. It separates into a thick stream and a pale stream.

そのため、対向する衝突面17にあたる粉流は、部分的
(局所的)なものとなり、効率が低下し、処理能力の低
下を引き起こす。また、このような状態で処理能力を大
きくしようとすれば、更に粉塵濃度が部分的に高くなる
ため、効率がより低下し、特に樹脂含有物では衝突面17
上で融着物が発生し、好ましくない。
Therefore, the powder flow hitting the opposing collision surface 17 becomes partial (local), the efficiency is reduced, and the processing capacity is reduced. Further, if the processing capacity is to be increased in such a state, the dust concentration is further increased partially, so that the efficiency is further reduced.
A fused material is generated on the surface, which is not preferable.

その上、粗粒を多く含む粉体原料15を加速管12内に吸
引導入させると、粉体原料供給口1の吸込能力が低下
し、その結果、処理能力の低下を引き起こす。
In addition, when the powder raw material 15 containing a large amount of coarse particles is sucked and introduced into the acceleration tube 12, the suction capacity of the powder raw material supply port 1 is reduced, and as a result, the processing capacity is reduced.

加速管12内部での粒子の粉砕の効率を上げるために、
加速管出口4の手前側に二次高圧ガスを噴出せしめる高
圧ガス給送管を設けた粉砕管が特公昭46−22778号公報
で提案されている。これは加速管12内部での衝突を促進
させることを意図しており、加速管12内でのみ粉砕を行
うような粉砕機には有用な手段であるが、衝突部材6に
衝突させて粉砕を行う衝突式気流粉砕機では、有用な方
法ではない。なぜならば、加速管12内で衝突を促進させ
るために二次高圧ガスを導入すれば、圧縮気体供給ノズ
ル3から導入される高圧気体による搬送気流が阻害さ
れ、加速管出口4から噴出する粉流の速度が低下してし
まう。そのため衝突部材6に衝突する衝撃力が低下し、
粉砕効率が低下してしまい好ましくない。
In order to increase the efficiency of crushing particles inside the acceleration tube 12,
Japanese Patent Publication No. 46-22778 proposes a pulverizing pipe provided with a high-pressure gas supply pipe for ejecting a secondary high-pressure gas before the acceleration pipe outlet 4. This is intended to promote collision inside the accelerating tube 12 and is a useful means for a pulverizer that performs pulverization only inside the accelerating tube 12. It is not a useful method in the impingement type air current pulverizer. This is because, if a secondary high-pressure gas is introduced to promote collision in the acceleration tube 12, the carrier airflow due to the high-pressure gas introduced from the compressed gas supply nozzle 3 is obstructed, and the powder flow ejected from the acceleration tube outlet 4 is disturbed. Speed is reduced. Therefore, the impact force colliding with the collision member 6 decreases,
The pulverization efficiency is undesirably reduced.

一方、従来かかる粉砕機における衝突部材の衝突面
は、第8図及び第9図に示すように、被粉砕物を載せた
高圧気流方向(加速管の軸方向)に対し垂直あるいは傾
斜(例えば45゜)している平面状のものが用いられてき
た(特開昭57−50554号公報及び特開昭58−143853号公
報参照)。
On the other hand, as shown in FIGS. 8 and 9, the collision surface of the collision member in such a conventional crusher is perpendicular or inclined (for example, 45 degrees) with respect to the direction of the high-pressure airflow (axial direction of the acceleration tube) on which the object to be crushed is placed. Ii) A flat plate has been used (see JP-A-57-50554 and JP-A-58-148453).

しかしながら、第8図のように加速管12の軸方向と垂
直な衝突面17の場合、加速管出口4から吹き出される被
粉砕物と衝突面で反射される粉砕物とが衝突面の近傍で
共存する割合が高く、そのため、衝突面近傍での粉体
(被粉砕物及び粉砕物)濃度が高くなり、粉砕効率が良
くない。
However, in the case of the collision surface 17 perpendicular to the axial direction of the acceleration tube 12 as shown in FIG. 8, the crushed material blown out from the acceleration tube outlet 4 and the crushed material reflected on the collision surface are close to the collision surface. The coexistence ratio is high, so that the concentration of the powder (the material to be crushed and the crushed material) near the collision surface becomes high, and the crushing efficiency is not good.

さらに、衝突面における一時衝突が主体であり、粉砕
室壁8と二次衝突を有効に利用しているとはいえない。
さらに、熱可塑性樹脂を粉砕するときには、衝突時の局
部発熱により融着及び凝集物が発生し易く、装置の安定
した運転が困難になり、粉砕能力低下の原因となる。そ
のために、被粉砕物濃度を高くして使用することが困難
であった。
Furthermore, temporary collision at the collision surface is mainly performed, and it cannot be said that the secondary collision with the crushing chamber wall 8 is effectively used.
Furthermore, when pulverizing a thermoplastic resin, fusion and agglomerates are liable to be generated due to local heat generation at the time of collision, which makes stable operation of the apparatus difficult and causes reduction in pulverization ability. For this reason, it has been difficult to use the material to be crushed with a high concentration.

また、第9図の粉砕機においては、衝突面27が加速管
12の軸方向に対して傾斜しているために、衝突面近傍の
粉体濃度は第8図の粉砕機と比較して低くなるが、高圧
気流による衝突力が分散されて低下する。さらに、粉砕
室壁8との二次衝突を有効に利用しているとはいえな
い。例えば、第9図に示す如く、衝突面の角度が加速管
に対し45゜傾斜のものでは、熱可塑性樹脂を粉砕すると
きに上記のような問題点は少ない。しかしながら、衝突
する際に粉砕に使われる衝撃力が小さく、さらに粉砕室
壁8との二次衝突による粉砕が少ないので粉砕能力は、
第8図の粉砕機と比較して1/2〜1/1.5に粉砕能力が落ち
る。
Further, in the crusher shown in FIG.
Although the powder concentration near the collision surface is lower than that of the pulverizer in FIG. 8 due to the inclination with respect to the axial direction 12, the collision force due to the high-pressure air flow is dispersed and lowers. Furthermore, it cannot be said that the secondary collision with the crushing chamber wall 8 is effectively used. For example, as shown in FIG. 9, when the collision surface has an angle of 45 ° with respect to the accelerating tube, the above-mentioned problems are small when pulverizing the thermoplastic resin. However, since the impact force used for the crushing at the time of collision is small and the crushing due to the secondary collision with the crushing chamber wall 8 is small, the crushing ability is
The crushing ability is reduced to 1/2 to 1 / 1.5 as compared with the crusher shown in FIG.

それ故、粉砕効率の良好な粉砕機及び粉砕方法が待望
されている。
Therefore, a pulverizer and a pulverization method with good pulverization efficiency are expected.

一方、電子写真法による画像形成方法に用いられるト
ナーまたはトナー用着色樹脂粉体は、通常結着樹脂及び
着色剤または磁性粉を少なくとも含有している。トナー
は、潜像担持体に形成された静電荷像を現像し、形成さ
れたトナー像は普通紙またはプラスチックフィルムの如
き転写材へ転写され、加熱定着手段,圧力ローラ定着手
段または加熱加圧ローラ定着手段の如き定着装置によっ
て転写材上のトナー像は転写材に定着される。したがっ
て、トナーに使用される結着樹脂は、熱及び/または圧
力が付加されると塑性変形する特性を有する。
On the other hand, a toner or a colored resin powder for a toner used in an image forming method by an electrophotographic method usually contains at least a binder resin and a colorant or a magnetic powder. The toner develops the electrostatic charge image formed on the latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or a plastic film, and is heated and fixed, a pressure roller is fixed, or a heat and pressure roller is used. The toner image on the transfer material is fixed to the transfer material by a fixing device such as a fixing unit. Therefore, the binder resin used for the toner has a property of being plastically deformed when heat and / or pressure is applied.

現在、トナーまたはトナー用着色樹脂粉体は、結着樹
脂及び着色剤または磁性粉(必要により、さらに第三成
分を含有)を少なくとも含有する混合物を溶融混練し、
溶融混練物を冷却し、冷却物を粉砕し、粉砕物を分級し
て調製される。冷却物の粉砕は、通常、機械的衝撃式粉
砕機により粗粉砕(または中粉砕)され、次いで粗粉砕
粉をジェット気流を用いた衝突式気流粉砕機で微粉砕し
ているのが一般的である。
At present, the toner or the colored resin powder for the toner is prepared by melt-kneading a mixture containing at least a binder resin and a colorant or a magnetic powder (containing a third component, if necessary),
It is prepared by cooling the melt-kneaded product, pulverizing the cooled product, and classifying the pulverized product. Generally, the crushing of the cooled material is roughly crushed (or medium crushed) by a mechanical impact crusher, and then the coarsely crushed powder is finely crushed by an impinging airflow crusher using a jet stream. is there.

かかる場合、第9図に示すような従来の衝突式気流粉
砕機及び粉砕方法では、処理能力を更に向上させようと
すれば、加速管12に設けられる粉体原料供給口1に吸引
不足が起こり、又は、衝突面27上で融着物が発生し、安
定生産が行えない。そのため、電子写真法による画像形
成方法に用いられるトナーまたはトナー用着色樹脂粉体
を更に効率良く生成するため、上記問題点を解決した、
効率のよい衝突式気流粉砕機及び粉砕方法が望まれてい
る。
In such a case, in the conventional impingement airflow pulverizer and the pulverization method as shown in FIG. 9, if the processing capacity is to be further improved, the powder raw material supply port 1 provided in the acceleration tube 12 will have insufficient suction. Alternatively, a fusion product is generated on the collision surface 27, and stable production cannot be performed. Therefore, in order to more efficiently generate a toner or a colored resin powder for toner used in an image forming method by electrophotography, the above-described problems have been solved.
There is a need for an efficient impingement airflow pulverizer and pulverization method.

[発明が解決しようとする課題] 上述のような従来の問題点に鑑み、本発明の目的とす
るところは、ポリエステル樹脂またはスチレン系樹脂の
如き熱可塑性樹脂を主体とする被粉砕物を効率良く粉砕
する衝突式気流粉砕機及び粉砕方法を提供することにあ
る。
[Problems to be Solved by the Invention] In view of the above conventional problems, an object of the present invention is to efficiently pulverize an object to be crushed mainly composed of a thermoplastic resin such as a polyester resin or a styrene resin. An object of the present invention is to provide an impingement type air current pulverizer and a pulverization method for pulverization.

また、粉砕室内における被粉砕物及び粉砕された粉体
の融着が発生しにくく、被粉砕物の処理量を増加した場
合でも被粉砕物及び粉砕された粉体の融着が抑制され、
凝集物及び粗粒子の生成が少ない衝突式気流粉砕機及び
粉砕方法を提供することにあり、特に、平均粒径20〜20
00μmを有する樹脂粒子を平均粒径3〜15μmに効率良
く微粉砕し得る衝突式気流粉砕機及び粉砕方法を提供す
ることにある。
Further, the fusion of the crushed object and the crushed powder in the crushing chamber hardly occurs, and even when the processing amount of the crushed object is increased, the fusion of the crushed object and the crushed powder is suppressed,
An object of the present invention is to provide an impingement airflow pulverizer and a pulverization method with less generation of agglomerates and coarse particles, and in particular, an average particle diameter of 20 to 20.
An object of the present invention is to provide an impinging airflow pulverizer and a pulverization method capable of efficiently pulverizing resin particles having a size of 00 μm to an average particle size of 3 to 15 μm.

さらには、加熱加圧ローラ定着手段を有する複写機及
びプリンタに使用されるトナーまたはトナー用着色樹脂
粒子を効率良く生成し得る衝突式気流粉砕機及び粉砕方
法を提供することにある。
It is still another object of the present invention to provide a collision-type airflow pulverizer and a pulverization method capable of efficiently producing toner or toner colored resin particles used in a copying machine and a printer having a heating / pressing roller fixing unit.

[課題を解決するための手段及び作用] 本発明は、高圧気体により粉体原料15を搬送加速する
ための加速管2の下流に、該加速管2より噴出する粉体
原料15を衝突力により粉砕するための衝突部材6を加速
管出口4に対向配置する粉砕室5を設けた衝突式気流粉
砕機において、 前記加速管2に複数の粉体原料供給口を設け、かかる
複数の粉体原料供給口と加速管出口との間に二次空気導
入口を設け、かつ、前記衝突部材の衝突面の先端部分の
頂角110゜以上180゜未満の錐体形状である衝突式気流粉
砕機としている点にある。
[Means and Actions for Solving the Problems] According to the present invention, the powder raw material 15 ejected from the accelerating pipe 2 is caused to collide with the powder raw material 15 ejected from the accelerating pipe 2 downstream of the accelerating pipe 2 for transporting and accelerating the powder raw material 15 by high pressure gas. In a collision type air current pulverizer provided with a pulverizing chamber 5 in which a collision member 6 for pulverization is arranged opposite to an acceleration tube outlet 4, a plurality of powder material supply ports are provided in the acceleration tube 2. Providing a secondary air inlet between the supply port and the outlet of the accelerating tube, and as a collision-type airflow pulverizer having a cone shape with a vertex angle of 110 ° or more and less than 180 ° at the tip of the collision surface of the collision member There is in the point.

また、加速管2内で高圧気体により粉体原料15を搬送
加速し、粉砕室内に加速管出口4から吐出し、対向する
衝突部材6に衝突させて粉体原料15を微粒子に粉砕する
粉砕方法において、 複数の粉体原料供給口から加速管2の上流に粉体原料
を導き、該複数の粉体原料供給口と加速管出口との間に
二次空気を導入し、かつ、衝突面の先端部分が頂角110
゜以上180゜未満の錐体形状を有する衝突部材6に粉体
原料15を衝突させて粉砕し、衝突後の粉砕物をさらに粉
砕室壁に二次衝突させて粉砕する粉砕方法をも特徴とす
るものである。
Also, a pulverizing method in which the powder raw material 15 is conveyed and accelerated by a high-pressure gas in the accelerating tube 2, discharged from the accelerating tube outlet 4 into the pulverizing chamber, and collided with the opposing collision member 6 to pulverize the powder raw material 15 into fine particles. In the above, the powder raw material is guided to the upstream of the accelerating tube 2 from the plurality of powder raw material supply ports, secondary air is introduced between the plurality of powder raw material supply ports and the acceleration pipe outlet, and The tip is apex 110
The pulverizing method is also characterized in that the powder raw material 15 is crushed by colliding with the colliding member 6 having a cone shape of not less than 180 ° and the crushed material is further subjected to secondary collision with the wall of the crushing chamber to be crushed. Is what you do.

以上の構成を具備した本発明の衝突式気流粉砕機によ
れば、被粉砕物を効率良く高速気流を利用して数μmの
オーダーまで粉砕することができる。特に、熱可塑性樹
脂の被粉砕物または熱可塑性樹脂を主成分とする被粉砕
物を効率良く、数μmのオーダーまで粉砕することがで
きる。
According to the collision type airflow pulverizer of the present invention having the above-described configuration, the object to be pulverized can be efficiently pulverized to the order of several μm by utilizing the high-speed airflow. In particular, the object to be ground by the thermoplastic resin or the object to be ground mainly comprising the thermoplastic resin can be efficiently ground to the order of several μm.

さらに、本発明を添付図面に基づいて詳述する。第1
図は、本発明の衝突式気流粉砕機の概略的断面図及び該
粉砕機を使用した粉砕工程及び分級機による分級工程を
組み合せた粉砕方法のフローチャートの一例を示した図
である。粉砕されるべき粉体原料15は、第5図において
示す(第1図C−C断面)加速管2の上流に設けられた
複数の粉体原料供給口1より、粉体原料を分散させて加
速管2に供給される。加速管2には圧縮空気の如き圧縮
気体が圧縮気体供給ノズル3から導入されており、加速
管2に供給された粉体原料15は、瞬時に加速されて、高
速度を有するようになる。高速度で加速管出口4から粉
砕室5に吐出された粉体原料15は、衝突部材6の衝突面
7に衝突して粉砕される。また、かかる粉砕機におい
て、加速管2の粉体原料供給口1と加速管出口4との間
に二次空気導入口11を設け、二次空気を加速管に導入す
ることにより、粉体原料供給口1の吸引能力を向上さ
せ、加速管内の被粉砕物を分散し、加速管出口4から被
粉砕物をより均一に噴出させ、対向する衝突部材6の衝
突面7に効率良く衝突させることにより粉砕性を従来よ
り向上することができる。ここで、導入される二次空気
は、加速管内を高速移動する被粉砕物の凝集を解きほぐ
し、分散させるために寄与している。また、加速管内で
加速気体流速分布の遅い部分である加速管内壁に沿う流
れを加速する効果がある。
Further, the present invention will be described in detail with reference to the accompanying drawings. First
FIG. 1 is a schematic cross-sectional view of an impinging airflow pulverizer of the present invention and an example of a flowchart of a pulverizing method in which a pulverizing step using the pulverizer and a classification step using a classifier are combined. The powder raw material 15 to be pulverized is obtained by dispersing the powder raw material from a plurality of powder raw material supply ports 1 provided upstream of the acceleration tube 2 shown in FIG. It is supplied to the acceleration tube 2. A compressed gas such as compressed air is introduced into the acceleration tube 2 from a compressed gas supply nozzle 3, and the powder material 15 supplied to the acceleration tube 2 is instantaneously accelerated to have a high speed. The powdery raw material 15 discharged from the acceleration pipe outlet 4 into the pulverizing chamber 5 at a high speed collides with the collision surface 7 of the collision member 6 and is pulverized. Further, in such a crusher, a secondary air inlet 11 is provided between the powder material supply port 1 of the acceleration tube 2 and the acceleration tube outlet 4, and the secondary air is introduced into the acceleration tube so that the powder material is removed. Improving the suction capability of the supply port 1 to disperse the crushed object in the acceleration tube, more uniformly eject the crushed object from the acceleration tube outlet 4, and efficiently collide with the collision surface 7 of the opposing collision member 6. Thereby, the pulverizability can be improved more than before. Here, the introduced secondary air contributes to break up and disperse the coagulation of the object to be crushed moving at high speed in the acceleration tube. In addition, there is an effect of accelerating the flow along the inner wall of the acceleration tube, which is a portion where the acceleration gas flow velocity distribution is slow in the acceleration tube.

第3図に加速管の要部断面図を示し、より詳細に説明
する。導入される二次空気の導入方法については、鋭意
検討を重ねた結果、次のような結論に達した。すなわ
ち、二次空気の導入位置については、第3図において被
粉砕物供給口1と加速管出口4との距離をX、被粉砕物
供給口1と二次空気導入口11との距離をYとした場合、
XとYが 0.2≦Y/X≦0.9 より好ましくは、 0.3≦Y/X≦0.8 を満足したときに良好な結果が得られた。また、二次空
気導入口11の導入角度については、第3図において加速
管の軸方向に対する角度をΨとした時、Ψが 10゜≦Ψ≦80゜ より好ましくは、 20゜≦Ψ≦80゜ の条件を満足したときに良好な粉砕結果が得られた。導
入される二次空気の風量については、圧縮気体供給ノズ
ル3から導入される高圧気体による搬送気体の風量をaN
m3/min、二次空気導入口11から導入される二次空気の総
風量をbNm3/minとした場合、a,bが 0.001≦b/a≦0.5 より好ましくは、 0.01≦b/a≦0.4 を満足する条件下で粉砕を行ったときに良好な結果が得
られた。二次空気としては、圧縮気体,常圧気体のいず
れを用いても良い。二次空気導入口にバルブの如き風量
制御装置を設け、導入風量を調整することは非常に好ま
しい。加速管の円周方向のどの位置に何か所導入口を設
けるかは、被粉砕原料,目標粉砕粒子径等により適宜設
定すれば良い。第4図は、一実施例として、加速管の円
周方向に二次空気導入口を8か所設けた場合の第3図に
おけるB−B視断面図である。
FIG. 3 shows a cross-sectional view of a main part of the acceleration tube, which will be described in more detail. As a result of intensive studies on the method of introducing the introduced secondary air, the following conclusions were reached. That is, as for the position where the secondary air is introduced, in FIG. 3, the distance between the crushed material supply port 1 and the acceleration pipe outlet 4 is X, and the distance between the crushed material supply port 1 and the secondary air introduction port 11 is Y. Then,
Good results were obtained when X and Y satisfied 0.2 ≦ Y / X ≦ 0.9, more preferably 0.3 ≦ Y / X ≦ 0.8. Regarding the introduction angle of the secondary air inlet 11, assuming that the angle with respect to the axial direction of the acceleration tube in FIG. 3 is Ψ, 10Ψ ≦ ゜ ≦ 80 ゜, more preferably, 20 ゜ ≦ Ψ ≦ 80. When the conditions of ゜ were satisfied, good pulverization results were obtained. Regarding the flow rate of the introduced secondary air, the flow rate of the carrier gas by the high-pressure gas introduced from the compressed gas supply nozzle 3 is aN
m 3 / min, when the total air volume of the secondary air introduced from the secondary air inlet 11 is bNm 3 / min, a, b is more preferably 0.001 ≦ b / a ≦ 0.5, more preferably 0.01 ≦ b / a Good results were obtained when pulverization was performed under conditions satisfying ≦ 0.4. As the secondary air, either a compressed gas or a normal pressure gas may be used. It is very preferable to provide an air flow control device such as a valve at the secondary air inlet to adjust the air flow. The position in the circumferential direction of the accelerating tube at which the introduction port is provided may be appropriately set according to the raw material to be pulverized, the target particle diameter to be pulverized, and the like. FIG. 4 is a sectional view taken along the line BB in FIG. 3 in a case where eight secondary air inlets are provided in the circumferential direction of the accelerating tube as one embodiment.

この場合、8か所からどのような配分で二次空気を導
入するかは適宜設定を行う。また、加速管の断面は真円
に限定されるものではない。
In this case, the distribution of the secondary air to be introduced from eight locations is appropriately set. Further, the cross section of the acceleration tube is not limited to a perfect circle.

一方、第1図の粉砕機において、衝突面7が頂角110
゜以上180゜未満、好ましくは160゜近傍を有する円錐形
状を有しているので、粉砕された粉砕物は実質的に全周
方向に分散され、粉砕室壁8と二次衝突を起こし、さら
に粉砕される。第2図は、第1図に示す衝突式気流粉砕
機のA−A面における視断面を概略的に示した図であ
り、衝突面7で衝突した後の粉砕物の分散状態を模式的
に示している。第1,2図からは、本発明の衝突式気流粉
砕機によれば、粉砕室壁8における粉砕物の二次衝突が
有効に利用されていることが知見される。さらに、本発
明の粉砕機においては、第1図に示す如く衝突面7で粉
砕物が良好に衝突部材の径方向に拡散され、粉砕室壁8
が広く二次衝突に利用されるため、衝突面7の近傍にお
ける(被)粉砕物の濃度が濃くならないので、粉砕の処
理能率を向上させることができ、衝突面7における
(被)粉砕物の融着を良好に抑制することが可能であ
る。
On the other hand, in the pulverizer shown in FIG.
Since it has a conical shape having an angle of not less than ゜ and less than 180 °, preferably about 160 °, the crushed material is dispersed substantially in the entire circumferential direction, causing secondary collision with the crushing chamber wall 8, Crushed. FIG. 2 is a view schematically showing a cross section taken along the line AA of the impingement type air current pulverizer shown in FIG. Is shown. From FIGS. 1 and 2, it can be seen that according to the impingement type air current pulverizer of the present invention, the secondary collision of the pulverized material on the pulverization chamber wall 8 is effectively utilized. Further, in the pulverizer of the present invention, as shown in FIG.
Is widely used in the secondary collision, the concentration of the (crushed) material in the vicinity of the collision surface 7 does not increase, so that the processing efficiency of the grinding can be improved, It is possible to favorably suppress fusion.

粉砕室5に導入された被粉砕物は、衝突面7における
一次の衝突による粉砕が行われ、次いで粉砕室壁8にお
ける二次の衝突による粉砕がさらに行われ、場合によ
り、粉砕された粉砕物は排出口9に搬送されるまでに粉
砕室壁8及び衝突部材6の側面との三次(及び四次)の
衝突によりさらに粉砕される。排出口9から排出された
粉砕物は固定壁式気流分級機の如き分級機で細粉と粗粉
とに分級される。分級された細粉は粉砕製品として取り
出される。分級された粗粉は、新たに投入される被粉砕
物とともに粉体原料供給口1に投入される。
The pulverized material introduced into the pulverizing chamber 5 is pulverized by primary collision at the collision surface 7, and then pulverized by secondary collision at the pulverizing chamber wall 8. Before being transported to the discharge port 9, it is further crushed by tertiary (and quaternary) collision with the crushing chamber wall 8 and the side surface of the collision member 6. The pulverized material discharged from the discharge port 9 is classified into fine powder and coarse powder by a classifier such as a fixed wall type air classifier. The classified fine powder is taken out as a crushed product. The classified coarse powder is supplied to the powder material supply port 1 together with a newly-input crushed material.

他の例として第6図及び第7図に加速管2に2つ及び
4つの粉体原料供給口を設けた断面図(第1図のC−C
部断面)を示す。また、加速管2の断面は円形に限定さ
れるものではない。
6 and 7 are cross-sectional views in which two and four powder material supply ports are provided in the acceleration tube 2 (see CC in FIG. 1).
Part cross section) is shown. The cross section of the acceleration tube 2 is not limited to a circular shape.

一方、加速管出口4の内径は、通常10〜100mmを有
し、衝突部材6の直径よりも小さい内径を有することが
好ましい。
On the other hand, the inner diameter of the acceleration tube outlet 4 usually has a diameter of 10 to 100 mm, and preferably has an inner diameter smaller than the diameter of the collision member 6.

加速管出口4と衝突部材6の先端部との距離は、衝突
部材6の直径の0.3倍乃至3倍が好ましい。0.3倍未満で
は、過粉砕が生じる傾向があり、3倍を越える場合は、
粉砕効率が低下する傾向がある。
The distance between the acceleration tube outlet 4 and the tip of the collision member 6 is preferably 0.3 to 3 times the diameter of the collision member 6. If it is less than 0.3 times, over-pulverization tends to occur, and if it exceeds 3 times,
The grinding efficiency tends to decrease.

なお、本発明における衝突式気流粉砕機の粉砕室5は
第1図に示す箱型に限定されるものではない。
The crushing chamber 5 of the impinging airflow crusher in the present invention is not limited to the box type shown in FIG.

本発明における技術思想は、圧縮気体供給ノズル3か
ら導入される高圧気体による搬送気流に粉体原料15を投
入し、加速管出口4から噴出させ、対向する衝突部材6
の衝突面7に粉体原料15を衝突させて粉砕を行う衝突式
気流粉砕機において、加速管2内での粉体原料15の分散
状態と粉体原料供給ホッパー管16下の粉体原料供給口1
の吸引力が、粉砕効率に影響を及ぼすのではないかとい
う考え方に基づいている。すなわち、加速管2から供給
される粉体原料15は、凝集した状態で加速管2に流入す
るため、加速管2内の分散が不充分となり、そのため加
速管出口4から噴出する時、粉塵濃度にバラツキが生
じ、衝突面7を有効に利用できず、さらに粗粒子におい
ては、粉体原料供給口1の吸引力が低下し、粉体原料15
の供給が不充分となり、粉砕効率が低下するものと考え
た。この現象は粉砕処理量が大きくなるほど顕著にな
る。
The technical idea of the present invention is that the powder raw material 15 is injected into a carrier gas flow by the high-pressure gas introduced from the compressed gas supply nozzle 3, ejected from the acceleration tube outlet 4, and
In the collision-type air current pulverizer which crushes the powder material 15 by colliding the powder material 15 with the collision surface 7, the dispersion state of the powder material 15 in the acceleration tube 2 and the supply of the powder material under the powder material supply hopper tube 16 Mouth 1
Is based on the idea that the suction force may affect the crushing efficiency. That is, since the powder raw material 15 supplied from the accelerating tube 2 flows into the accelerating tube 2 in an agglomerated state, the dispersion in the accelerating tube 2 becomes insufficient. And the collision surface 7 cannot be used effectively. Further, in the case of coarse particles, the suction force of the powder material supply port 1 decreases, and the powder material 15
It was considered that the supply of the powder was insufficient and the grinding efficiency was reduced. This phenomenon becomes more conspicuous as the amount of pulverization increases.

二次空気としては高圧縮気体,常圧気体のいずれを用
いてもよい。各二次空気導入口11にバルブの如き開閉装
置を取り付け、導入風量を制御することは非常に好まし
い。加速管2の上部方向のどの位置に何本二次空気導入
口11を取り付けるかは、粉体原料15、目標粒子径等によ
り適宜設定すればよい。第4図に一例として加速管2の
円周方向に、二次空気導入口11を8ケ所取り付けた場合
のB−B視断面図を示す。この場合、8ケ所からどのよ
うな配分で二次空気を導入するかは適宜設定すればよ
い。
Either a highly compressed gas or a normal pressure gas may be used as the secondary air. It is very preferable that an opening / closing device such as a valve is attached to each secondary air inlet 11 to control the amount of introduced air. The number of the secondary air inlets 11 to be attached at which position in the upper direction of the acceleration tube 2 may be appropriately set according to the powder raw material 15, the target particle diameter, and the like. FIG. 4 is a sectional view taken along line BB when eight secondary air inlets 11 are attached in the circumferential direction of the acceleration tube 2 as an example. In this case, what distribution of the secondary air is introduced from the eight locations may be set as appropriate.

以上説明したように、本発明の装置及び方法によれ
ば、複数の粉体原料供給口1から粉体原料15を加速管2
内へ分散して供給することができ、二次空気を加速管2
に導入することにより、粉体原料供給口1からの粉体原
料15の吸引能力が向上し、加速管2内の粉体原料15の分
散が良好となり、衝突面17に効率良く衝突し粉砕効率が
向上する。即ち、従来の粉砕機に較べ処理能力が向上
し、また、同一処理能力では、得られる製品の粒子径を
より小さくできる。
As described above, according to the apparatus and method of the present invention, the powder material 15 is supplied from the plurality of powder material supply ports 1 to the acceleration tube 2.
The secondary air can be dispersed and supplied into the
In this way, the suction ability of the powder raw material 15 from the powder raw material supply port 1 is improved, the dispersion of the powder raw material 15 in the acceleration tube 2 becomes good, and the powder raw material 15 collides with the collision surface 17 efficiently, and the pulverization efficiency is improved. Is improved. That is, the processing capacity is improved as compared with the conventional pulverizer, and the particle size of the obtained product can be made smaller with the same processing capacity.

従来例では、粉体原料15が凝集した状態で、衝突面1
7,27に衝突するため、特に熱可塑性樹脂を主体とする粉
体を原料とした場合、融着物を発生し易い。これに対し
て、本発明によれば、分散された状態で、衝突面7に衝
突するため、融着物を発生しにくい。
In the conventional example, in the state where the powder raw material 15 is agglomerated,
Since the particles collide with the particles 7, 27, a fused material is liable to be generated particularly when a powder mainly composed of a thermoplastic resin is used as a raw material. On the other hand, according to the present invention, the dispersed state collides with the collision surface 7, so that it is difficult to generate a fused material.

また従来例では、粉体原料15が凝集しているため、過
粉砕を生じ易く、そのため得られる粉砕品の粒度分布が
幅広のものとなるという問題があった。これに対して、
本発明によれば、過粉砕を防止でき、粒度分布のシャー
プな粉砕品が得られる。
Further, in the conventional example, since the powder raw material 15 is agglomerated, excessive pulverization is likely to occur, and therefore, there is a problem that the particle size distribution of the obtained pulverized product is wide. On the contrary,
According to the present invention, excessive pulverization can be prevented, and a pulverized product having a sharp particle size distribution can be obtained.

また、本発明によれば、複数の粉体原料供給口1から
粉体原料15を加速管2内へ分散して供給することがで
き、二次空気を効率良く導入することで、粉体原料供給
口1での空気の吸込能力が向上し、そのため粉体原料15
の加速管2内での搬送能力が向上し、粉砕処理量を従来
より高めることができる。
Further, according to the present invention, the powder raw material 15 can be dispersed and supplied from the plurality of powder raw material supply ports 1 into the acceleration tube 2, and the secondary air is efficiently introduced, so that the powder raw material 15 can be efficiently supplied. The air suction capability at the supply port 1 is improved, and
The transfer capacity in the accelerating tube 2 is improved, and the pulverization processing amount can be increased as compared with the conventional case.

本発明の装置及び方法は粒径が小さくなる程効果が顕
著になる。
The effect of the apparatus and method of the present invention becomes more remarkable as the particle diameter becomes smaller.

[実施例] 以下、本発明を実施例,比較例に基づいて詳細に説明
する。
[Examples] Hereinafter, the present invention will be described in detail based on examples and comparative examples.

実施例1 上記原材料をヘンシェルミキサーにて混合し、混合物
を得た。次にこの混合物をエクストルーダーにて約180
℃で溶融混練した後、冷却して固化し、溶融混練物の冷
却物をハンマーミルで100〜1000μmの粒子に粗粉砕し
たものを粉体原料15とした。そして、第1図〜第5図に
示す粉砕機及びフローで粉砕を行った。粉砕された粉体
を細粉と粗粉とに分級するための分級手段として固定壁
式風力分級機を使用した。
Example 1 The above raw materials were mixed with a Henschel mixer to obtain a mixture. Next, mix this mixture with an extruder for about 180
After melt-kneading at a temperature of ℃, the mixture was cooled and solidified, and a cooled material of the melt-kneaded product was roughly pulverized into particles of 100 to 1000 μm with a hammer mill to obtain powder raw material 15. Then, pulverization was carried out with a pulverizer and a flow shown in FIGS. A fixed wall type air classifier was used as a classification means for classifying the pulverized powder into fine powder and coarse powder.

ここで、衝突式気流粉砕機は、加速管2の出口4の内
径が25mmであり、第3図及び第4図において の条件を満たしており、衝突部材6が直径60mmの酸化ア
ルミニウム系セラミックで形成された円柱状で、衝突面
7の先端部が頂角160゜を有する円錐形状を有してい
た。加速管2の中心軸と衝突部材6の先端とは一致して
いた。加速管出口4から衝突面7までの最近接距離は60
mmであり、衝突部材6と粉砕室壁8との最近接距離は18
mmであった。
Here, in the collision type air flow pulverizer, the inner diameter of the outlet 4 of the acceleration tube 2 is 25 mm, and in FIG. 3 and FIG. Was satisfied, the collision member 6 had a columnar shape made of aluminum oxide ceramic having a diameter of 60 mm, and the tip of the collision surface 7 had a conical shape having an apex angle of 160 °. The center axis of the accelerating tube 2 and the tip of the collision member 6 coincided with each other. The closest distance from the accelerator tube exit 4 to the collision surface 7 is 60
mm, and the closest distance between the collision member 6 and the crushing chamber wall 8 is 18 mm.
mm.

衝突式気流粉砕機の圧縮気体供給ノズル3から流量
(a)6.4Nm3/min(圧力6.0kg/cm2)の圧縮空気を導入
し、粉体原料供給口1から45kg/時間の割合で粉体原料1
5を供給した。粉砕された粉体原料は分級機に運ばれ、
細粉は分級粉体として取り除き、粗粉は再び粉体原料供
給口1より粉体原料15と共に加速管2に投入した。また
二次空気としては、第4図におけるF,G,H,I,J,K,L,Mの
8ケ所から、各0.1Nm3/min(5.0kg/cm2)の圧縮空気
(b)を導入した この結果、細粉として体積平均粒径7.5μm(コール
ターカウンターによる測定)の粉砕粉体が、45kg/時間
の割合で収集された。また、6時間の連続運転を行って
も融着物の発生は全くなかった。
Compressed air having a flow rate (a) of 6.4 Nm 3 / min (pressure 6.0 kg / cm 2 ) was introduced from the compressed gas supply nozzle 3 of the impingement type air flow pulverizer, and powder was supplied at a rate of 45 kg / hour from the powder material supply port 1. Body material 1
5 supplied. The crushed powder material is transported to a classifier,
The fine powder was removed as a classified powder, and the coarse powder was again fed into the acceleration tube 2 together with the powder raw material 15 from the powder raw material supply port 1. As the secondary air, compressed air of 0.1 Nm 3 / min (5.0 kg / cm 2 ) from each of the eight locations F, G, H, I, J, K, L and M in FIG. 4 (b) Introduced As a result, pulverized powder having a volume average particle size of 7.5 μm (measured by a Coulter counter) as fine powder was collected at a rate of 45 kg / hour. Further, even after the continuous operation for 6 hours, no fused product was generated.

尚、トナーの粒度分布は種々の方法によって測定でき
るが、本実施例においてはコールターカウンターを用い
て行った。
The particle size distribution of the toner can be measured by various methods. In the present embodiment, the measurement was performed using a Coulter counter.

すなわち、測定装置としてはコールターカウンターTA
−II型(コールター社製)を用い、個数分布,体積分布
を出力するインターフェイス(日科機製)及びCX−1パ
ーソナルコンピュータ(キヤノン製)を接続し、電解液
は1級塩化ナトリウムを用いて1%NaCl水溶液を調製す
る。測定法としては前記電解水溶液100〜150ml中に分散
剤として界面活性剤、好ましくはアルキルベンゼンスル
ホン酸塩を0.1〜5ml加え、更に測定試料を2〜20mg加え
る。試料を懸濁した電解液は超音波分散器で約1〜3分
間分散処理を行い、前記コールターカウンターTA−II型
により、アパチャーとして100μmアパチャーを用い
て、個数を基準として2〜40μmの粒子の粒度分布を測
定して、それから本実施例に係るところの値を求めた。
In other words, the Coulter Counter TA is used as a measuring device.
-Type II (manufactured by Coulter, Inc.) is connected to an interface (manufactured by Nikkaki) that outputs the number distribution and volume distribution, and a CX-1 personal computer (manufactured by Canon). Prepare a% NaCl aqueous solution. As a measurement method, 0.1 to 5 ml of a surfactant, preferably an alkylbenzene sulfonate, is added as a dispersant to 100 to 150 ml of the aqueous electrolytic solution, and 2 to 20 mg of a measurement sample is further added. The electrolyte solution in which the sample was suspended was subjected to a dispersion treatment for about 1 to 3 minutes with an ultrasonic disperser, and the Coulter Counter TA-II was used, and a 100-μm aperture was used as an aperture. The particle size distribution was measured and then the values according to this example were determined.

実施例2 実施例1で用いた粉体原料を、加速管出口4の内径が
25mmであり、第3図及び第4図において、 の条件を満たしており、衝突部材の衝突面が頂角120゜
を有する円錐形状である衝突式気流粉砕機を用いて、圧
縮気体供給ノズル3から6.4Nm3/min(6kgf/cm2)の圧縮
空気を導入し、二次空気は、第4図におけるF,G,H,I,J,
K,L,Mの8ケ所から、各0.1Nm3/min(5kgf/cm2)の圧縮
空気を導入し、第6図に示す粉体原料供給口1から36kg
/時間の割合で粉体原料15を供給した。粉砕された粉体
原料は分級機に運ばれ、細粉は分級粉体として取り除
き、粗粉は再び粉体原料供給口1より粉体原料15と共に
加速管2に投入した。
Example 2 The powder raw material used in Example 1 was prepared by changing the inner diameter of the outlet 4 of the acceleration tube.
25 mm, and in FIGS. 3 and 4, 6.4 Nm 3 / min (6 kgf / cm 2 ) from the compressed gas supply nozzle 3 by using a conical impingement type air pulverizer in which the collision surface of the collision member has a cone angle of 120 ° Compressed air is introduced, and the secondary air is F, G, H, I, J,
Compressed air of 0.1 Nm 3 / min (5 kgf / cm 2 ) is introduced from each of the eight locations K, L, and M, and 36 kg is fed from the powder material supply port 1 shown in FIG.
Powder material 15 was supplied at a rate of / hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the acceleration tube 2 together with the powder raw material 15 from the powder raw material supply port 1.

この結果、細粉として体積平均粒径7.5μm(コール
ターカウンターによる測定)の粉砕粉体が、36kg/時間
の割合で収集された。また、6時間の連続運転を行って
も融着物の発生は全くなかった。
As a result, pulverized powder having a volume average particle size of 7.5 μm (measured by a Coulter counter) was collected as fine powder at a rate of 36 kg / hour. Further, even after the continuous operation for 6 hours, no fused product was generated.

実施例3 実施例1で用いた粉体原料を、加速管出口4の内径が
25mmであり、第3図及び第4図において、 の条件を満たしており、衝突部材の衝突面が頂角120゜
を有する円錐形状である衝突式気流粉砕機を用いて、圧
縮気体供給ノズル3から6.4Nm3/min(6kgf/cm2)の圧縮
空気を導入し、二次空気は、第4図におけるF,G,H,I,J,
K,L,Mの8ケ所から、各0.1Nm3/min(5kgf/cm2)の圧縮
空気を導入し、第7図に示す粉体原料供給口1から39.5
kg/時間の割合で粉体原料15を供給した。粉砕された粉
体原料は分級機に運ばれ、細粉は分級粉体として取り除
き、粗粉は再び粉体原料供給口1より粉体原料15と共に
加速管2に投入した。
Example 3 The powder raw material used in Example 1 was prepared by changing the inner diameter of the outlet 4 of the acceleration tube.
25 mm, and in FIGS. 3 and 4, 6.4 Nm 3 / min (6 kgf / cm 2 ) from the compressed gas supply nozzle 3 by using a conical impingement type air pulverizer in which the collision surface of the collision member has a cone angle of 120 ° Compressed air is introduced, and the secondary air is F, G, H, I, J,
Compressed air of 0.1 Nm 3 / min (5 kgf / cm 2 ) was introduced from each of the eight locations K, L, and M, and 39.5 g of powder air was supplied from the powder material supply port 1 shown in FIG.
Powder raw material 15 was supplied at a rate of kg / hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the acceleration tube 2 together with the powder raw material 15 from the powder raw material supply port 1.

この結果、細粉として体積平均粒径7.5μm(コール
ターカウンターによる測定)の粉砕粉体が、39.5kg/時
間の割合で収集された。また、6時間の連続運転を行っ
ても融着物の発生は全くなかった。
As a result, pulverized powder having a volume average particle size of 7.5 μm (measured by a Coulter counter) as fine powder was collected at a rate of 39.5 kg / hour. Further, even after the continuous operation for 6 hours, no fused product was generated.

比較例1 実施例1で用いた粉体原料を、第8図に示す従来の衝
突式気流粉砕機で粉砕した。該粉砕機において、衝突部
材6の先端の衝突面17は加速管12の軸方向に対して垂直
である平面であり、加速管出口4の内径は25mmである。
加速管12には、圧縮気体供給ノズル3から6.4Nm3/min
(6kgf/cm2)の圧縮気体を供給し、細粉(粉砕製品)が
重量平均粒径7.5μmになるよう分級機を設定し粉砕を
行った。衝突面17に衝突した(被)粉砕物は、加速管12
からの吐出方向と対向する方向に反射されるために、衝
突面近傍の(被)粉砕物の存在濃度は著しく高くなっ
た。そのため被粉砕物原料の供給割合が4.5kg/時間を超
えると、衝突部材上で、融着、凝集物が生じはじめ、融
着物が粉砕室内や分級機を詰まらせる場合があった。従
って、粉砕処理量を1時間当り4.5kgに低下させること
を余儀なくされ、これが粉砕能力の限界となった。
Comparative Example 1 The powder raw material used in Example 1 was pulverized by a conventional impingement airflow pulverizer shown in FIG. In the crusher, the collision surface 17 at the tip of the collision member 6 is a plane perpendicular to the axial direction of the acceleration tube 12, and the inside diameter of the acceleration tube outlet 4 is 25 mm.
6.4 Nm 3 / min from the compressed gas supply nozzle 3
(6 kgf / cm 2 ) of compressed gas was supplied, and pulverization was performed by setting a classifier so that the fine powder (pulverized product) had a weight average particle size of 7.5 μm. The (crushed) material colliding with the collision surface 17 is
Since the light is reflected in the direction opposite to the discharge direction from the crushed material, the concentration of the (crushed) material in the vicinity of the collision surface becomes extremely high. Therefore, if the supply rate of the raw material to be pulverized exceeds 4.5 kg / hour, fusion and agglomerates may start to occur on the collision member, and the fusion may clog the pulverizing chamber and the classifier. Therefore, it was necessary to reduce the pulverization throughput to 4.5 kg per hour, which was the limit of the pulverization ability.

また、重量平均粒径11μmの細粉(粉砕製品)が得ら
れるように粉砕を行った場合、被粉砕物原料の供給割合
が9kg/時間を超えると、衝突部材上で融着、凝集物が生
じはじめ、これが粉砕能力の限界となった。
In addition, when pulverization is performed to obtain fine powder (pulverized product) having a weight average particle size of 11 μm, if the supply rate of the raw material to be pulverized exceeds 9 kg / hour, fusion and agglomeration on the collision member may occur. This began to occur and this was the limit of the grinding capacity.

比較例2 実施例1で用いた粉体原料を、第9図に示す衝突式気
流粉砕機を用いて比較例1と同様に粉砕した。該粉砕機
は、衝突部材6の先端の衝突面27が、加速管12の軸方向
に対して45゜の傾斜を有する平面であることを除いて
は、全て比較例1で用いた粉砕機と同じである。
Comparative Example 2 The powder raw material used in Example 1 was pulverized in the same manner as in Comparative Example 1 using a collision-type air-flow pulverizer shown in FIG. The crusher was the same as the crusher used in Comparative Example 1 except that the collision surface 27 at the tip of the collision member 6 was a flat surface inclined at 45 ° with respect to the axial direction of the acceleration tube 12. Is the same.

衝突面27に衝突した(被)粉砕物は、比較例1に比
べ、加速管出口4から離れる方向へ反射されるので融着
及び凝集物は生じなかった。しかし、衝突する際に、衝
撃力が弱くなるため、粉砕効率が悪く、重量平均粒径7.
5μmの細粉(粉砕製品)は、1時間当り約4.5Kgしか得
られなかった。
The (crushed) material that collided with the collision surface 27 was reflected in a direction away from the acceleration tube outlet 4 as compared with Comparative Example 1, so that no fusion or agglomeration occurred. However, when colliding, the impact force is weakened, so the crushing efficiency is poor, and the weight average particle size is 7.
Only about 4.5 kg per hour of a 5 μm fine powder (ground product) was obtained.

また、重量平均粒径11μmの細粉(粉砕製品)を得る
場合には、1時間当り約9Kgしか得られなかった。
In the case of obtaining fine powder (pulverized product) having a weight average particle size of 11 μm, only about 9 kg was obtained per hour.

以上の実施例及び比較例の結果を第1表に示す。 Table 1 shows the results of the above Examples and Comparative Examples.

[発明の効果] 以上述べたように、本発明の衝突式気流粉砕機及び粉
砕方法によれば、粉砕時における融着,凝集物の発生を
防げ、装置の安定した運転を可能にする。その上、粉砕
物が粉砕室壁へ強く二次衝突するために、従来の粉砕能
力を著しく向上することができる。
[Effects of the Invention] As described above, according to the collision-type airflow pulverizer and the pulverization method of the present invention, fusion and agglomeration during pulverization can be prevented, and stable operation of the apparatus can be achieved. Moreover, since the pulverized material strongly collides with the pulverizing chamber wall, the conventional pulverizing ability can be remarkably improved.

以上により、粉砕効率のアップすなわち生産性の向上
が図れる。
As described above, the pulverization efficiency can be improved, that is, productivity can be improved.

【図面の簡単な説明】 第1図は、本発明の衝突式気流粉砕機の概略的断面図及
び該粉砕機と分級機を組合せた粉砕方法のフローチャー
トの一例を示した図である。 第2図は、第1図のA−A視断面図で粉砕室内を表した
図である。 第3図は、加速管の要部を示した図である。 第4図は、第3図のB−B断面図で二次空気導入口の配
置例を示す図である。 第5図,第6図及び第7図は、第1図のC−C面におけ
る断面の具体例を示した図である。 第8図及び第9図は、従来例の衝突式気流粉砕機の概略
的断面図及び粉砕方法のフローチャートを示した図であ
る。 1……粉体原料供給口、2,12……加速管 3……圧縮気体供給ノズル、4……加速管出口 5……粉砕室、6……衝突部材 7,17,27……衝突部材の衝突面 8……粉砕室壁、9……排出口 11……二次空気供給口、15……粉体原料
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of an impinging airflow pulverizer of the present invention and an example of a flowchart of a pulverizing method in which the pulverizer and a classifier are combined. FIG. 2 is a sectional view taken along the line AA of FIG. 1, showing the inside of the crushing chamber. FIG. 3 is a diagram showing a main part of the acceleration tube. FIG. 4 is a view showing an example of the arrangement of the secondary air inlet in the sectional view taken along the line BB of FIG. FIG. 5, FIG. 6, and FIG. 7 are views showing specific examples of the cross section taken along the line CC of FIG. FIG. 8 and FIG. 9 are a schematic cross-sectional view of a conventional collision-type airflow pulverizer and a flow chart of a pulverization method. DESCRIPTION OF SYMBOLS 1 ... Powder material supply port, 2, 12 ... Acceleration tube 3 ... Compressed gas supply nozzle 4, ... Acceleration tube outlet 5 ... Crushing chamber, 6 ... Collision member 7, 17, 27 ... Collision member Collision surface of 8: crushing chamber wall, 9: discharge port 11: secondary air supply port, 15: powder raw material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後関 康秀 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平3−109951(JP,A) 特開 平4−48942(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhide Goseki 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-3-109951 (JP, A) JP-A 4-48942 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高圧気体により粉体原料を搬送加速するた
めの加速管の下流に、該加速管より噴出する粉体原料を
衝突力により粉砕するための衝突部材を加速管出口に対
向配置する粉砕室を設けた衝突式気流粉砕機において、 前記加速管に複数の粉体原料供給口を設け、該複数の粉
体原料供給口と加速管出口との間に二次空気導入口を設
け、かつ、前記衝突部材の衝突面の先端部分が頂角110
゜以上180゜未満の錐体形状であることを特徴とする衝
突式気流粉砕機。
A collision member for pulverizing the powder raw material ejected from the acceleration tube by a collision force is disposed downstream of the acceleration tube for transporting and accelerating the powder raw material by a high-pressure gas, facing the acceleration tube outlet. In a collision type air current pulverizer provided with a pulverizing chamber, a plurality of powder material supply ports are provided in the acceleration tube, and a secondary air inlet is provided between the plurality of powder material supply ports and an acceleration tube outlet, The tip of the collision surface of the collision member has an apex angle of 110
A collision-type airflow pulverizer having a cone shape of not less than ゜ and less than 180 ゜.
【請求項2】前記加速管に設けられた複数の粉体原料供
給口と加速管出口との距離をX、複数の粉体原料供給口
と二次空気導入口との距離をYとした場合、XとYが、 を満足することを特徴とする請求項1記載の衝突式気流
粉砕機。
2. A case where a distance between a plurality of powder material supply ports provided in the acceleration tube and an outlet of the acceleration tube is X, and a distance between the plurality of powder material supply ports and a secondary air inlet is Y. , X and Y are 2. The impingement airflow pulverizer according to claim 1, wherein the following formula is satisfied.
【請求項3】前記加速管に設けられた二次空気導入口の
導入角度Ψが加速管の軸方向に対して 10゜≦Ψ≦80゜ を満足することを特徴とする請求項1又は2記載の衝突
式気流粉砕機。
3. An apparatus according to claim 1, wherein the angle of introduction of the secondary air inlet provided in the acceleration tube satisfies 10 ° ≦ Ψ ≦ 80 ° with respect to the axial direction of the acceleration tube. The impingement airflow crusher as described.
【請求項4】請求項1〜3いずれかの衝突式気流粉砕機
に具備された加速管内で、高圧気体により粉体原料を搬
送・加速し、粉砕室内に加速管出口から吐出し、対向す
る衝突部材に衝突させて粉体原料を微粒子に粉砕する粉
砕方法において、 複数の粉体原料供給口から加速管の上流に粉体原料を導
き、該複数の粉体原料供給口と加速管出口とに間の二次
空気を導入し、かつ、衝突面の先端部分が頂角110゜以
上180゜未満の錐体形状を有する衝突部材に粉体原料を
衝突させて粉砕し、衝突後の粉砕物をさらに粉砕室壁に
二次衝突させて粉砕することを特徴とする粉砕方法。
4. A powder material is conveyed and accelerated by a high-pressure gas in an acceleration tube provided in any one of the collision-type airflow pulverizers, discharged into the grinding chamber from an acceleration tube outlet, and opposed to each other. In the pulverization method of crushing the powder raw material into fine particles by colliding with a collision member, the powder raw material is guided from a plurality of powder raw material supply ports to an upstream of the acceleration tube, and the plurality of powder raw material supply ports and the acceleration pipe outlet are connected to each other. The powdered raw material collides with a collision member having a conical shape with an apex angle of 110 ° or more and less than 180 °, and pulverizes the powdered material. Crushing further by secondary collision with the crushing chamber wall.
【請求項5】前記加速管に導入する粉体原料を搬送加速
する高圧気体の風量をaNm3/min、二次空気の風量をbNm3
/minとした場合、aとbが を満足する条件下で粉砕することを特徴とする請求項4
記載の粉砕方法。
5. An air flow rate of a high-pressure gas for conveying and accelerating a powdery raw material introduced into the acceleration tube is aNm 3 / min, and an air flow rate of a secondary air is bNm 3.
/ min and a and b The pulverization is performed under a condition satisfying the following condition.
The pulverization method described.
JP2275417A 1990-10-16 1990-10-16 Collision type air flow crusher and crushing method Expired - Fee Related JP2663046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275417A JP2663046B2 (en) 1990-10-16 1990-10-16 Collision type air flow crusher and crushing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275417A JP2663046B2 (en) 1990-10-16 1990-10-16 Collision type air flow crusher and crushing method

Publications (2)

Publication Number Publication Date
JPH04150957A JPH04150957A (en) 1992-05-25
JP2663046B2 true JP2663046B2 (en) 1997-10-15

Family

ID=17555217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275417A Expired - Fee Related JP2663046B2 (en) 1990-10-16 1990-10-16 Collision type air flow crusher and crushing method

Country Status (1)

Country Link
JP (1) JP2663046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860354A (en) * 2019-11-28 2020-03-06 湘潭大学 Sepiolite ore powder superfine crushing device based on target plate type jet mill

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816970B (en) * 2014-01-27 2015-08-26 上海应用技术学院 The preparation facilities of liquid nano solution and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860354A (en) * 2019-11-28 2020-03-06 湘潭大学 Sepiolite ore powder superfine crushing device based on target plate type jet mill

Also Published As

Publication number Publication date
JPH04150957A (en) 1992-05-25

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
JPH04218065A (en) Manufacture of electrostatic charge image developing toner and apparatus system for the same
KR920009291B1 (en) Collision type gas current pulverizer and method for pulverizing powders
JP3114040B2 (en) Collision type air crusher
JPH0549349B2 (en)
JP2663046B2 (en) Collision type air flow crusher and crushing method
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP2654989B2 (en) Powder grinding method
JP2704787B2 (en) Powder material grinding method
JP2759499B2 (en) Powder grinding method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP2805332B2 (en) Grinding method
JP3102902B2 (en) Collision type supersonic jet crusher
JP2663041B2 (en) Collision type air crusher
JP3101786B2 (en) Collision type air crusher
JPH0386257A (en) Collision-type jet pulverizer and crushing method
JPH03296446A (en) Impact type jet grinder and grinding method
JPH03213162A (en) Impact type air jet grinder and grinding method
JPH08182938A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH09187733A (en) Air current-utilizing type classifying apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees