JPH04150957A - Collision type jet mill and grinding method - Google Patents

Collision type jet mill and grinding method

Info

Publication number
JPH04150957A
JPH04150957A JP2275417A JP27541790A JPH04150957A JP H04150957 A JPH04150957 A JP H04150957A JP 2275417 A JP2275417 A JP 2275417A JP 27541790 A JP27541790 A JP 27541790A JP H04150957 A JPH04150957 A JP H04150957A
Authority
JP
Japan
Prior art keywords
raw material
powder raw
collision
acceleration tube
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2275417A
Other languages
Japanese (ja)
Other versions
JP2663046B2 (en
Inventor
Satoshi Mitsumura
三ッ村 聡
Kazuhiko Komata
一彦 小俣
Hitoshi Kanda
仁志 神田
Yasuhide Goseki
康秀 後関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2275417A priority Critical patent/JP2663046B2/en
Publication of JPH04150957A publication Critical patent/JPH04150957A/en
Application granted granted Critical
Publication of JP2663046B2 publication Critical patent/JP2663046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To efficiently grind a thermoplastic resin by providing a plurality of powder raw material supply ports to an acceleration pipe and providing a secondary air introducing port between the powder raw material supply ports and the outlet of the acceleration pipe and forming the leading end part of the collision surface of a collision member into a specific conical shape. CONSTITUTION:In a grinding chamber 5, a collision member 6 for grinding the powder raw material injected from an acceleration pipe 2 by collision force is arranged in opposed relation to the outlet of the acceleration pipe 2 on the downstream side of the acceleration pipe 2 for feeding and accelerating the powder raw material by high pressure air. A plurality of powder raw material supply ports 1 are provided to the acceleration pipe 2 and a secondary air introducing port 11 is arranged between the plurality of the powder raw material supply ports and the outlet of the acceleration pipe 2. The leading end part of the collision surface of the collision member 6 is formed into a conical shape having a vertical angle of 110-180 deg.. As a result, a substance to be ground based on a thermoplastic resin such as a polyester resin or a styrenic resin can be efficiently ground.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジェット気流(高圧気体)を用いた衝突式気
流粉砕機及び粉砕方法に関し、特に、電子写真法による
画像形成方法に用いられるトナーまたはトナー用着色樹
脂粉体を効率良く生成するための衝突式気流粉砕機及び
粉砕方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an impingement type air jet pulverizer and a pulverizing method using a jet stream (high-pressure gas), and in particular to a toner used in an image forming method using electrophotography. The present invention also relates to a collision type air flow crusher and a crushing method for efficiently producing colored resin powder for toner.

[従来の技術] ジェット気流を用いた衝突式気流粉砕機は、ジェット気
流で粉体原料を搬送し、粉体原料を衝突部材に衝突させ
、その衝撃力により粉砕するものである。
[Prior Art] A collision-type air current pulverizer using a jet stream conveys a powder raw material by a jet stream, collides the powder raw material with a collision member, and crushes it by the impact force.

以下に、その詳細を第8図及び第9図に基づいて説明す
る。
The details will be explained below based on FIGS. 8 and 9.

圧縮気体供給ノズル3を接続した加速管12の出口4に
対向して衝突部材6を設け、前記加速管12に供給した
高圧気体の流動により、加速管12の中途に連通させた
粉体原料供給口1から加速管12の内部に粉体原料15
を吸引し、これを高圧気体とともに噴射して衝突部材6
の衝突面に衝突させ、その衝撃によって粉砕するように
したものである。そして、粉体原料15を所望の粒度に
粉砕するために使用する場合には、粉体原料供給口1と
排出口9の間に分級機を配して閉回路とし、分級機に粉
体原料15を供給し、その粗粉を粉体原料供給口1から
供給し、粉砕を行い、その粉砕物を排出口9から分級機
に戻すようにして再度分級するようにしてあり、その微
粉が、所望の粒度の微粉砕物となる。
A collision member 6 is provided opposite the outlet 4 of the acceleration tube 12 to which the compressed gas supply nozzle 3 is connected, and the powder raw material is supplied to the middle of the acceleration tube 12 by the flow of the high-pressure gas supplied to the acceleration tube 12. Powder raw material 15 is introduced into the acceleration tube 12 from the port 1.
is sucked in and injected together with high pressure gas to collide with the collision member 6.
The object is made to collide with the collision surface of the object, and is shattered by the impact. When the powder raw material 15 is used for pulverizing to a desired particle size, a classifier is arranged between the powder raw material supply port 1 and the discharge port 9 to form a closed circuit, and the powder raw material is connected to the classifier. 15, the coarse powder is supplied from the powder raw material supply port 1, pulverized, and the pulverized material is returned to the classifier from the discharge port 9 to be classified again, and the fine powder is A finely ground product with the desired particle size is obtained.

しかしながら、上記従来例では、加速管12内に吸引導
入された粉体原料15を高圧気流中で充分に分散させる
ことは困難であることから、加速管出口4から噴出する
粉流は粉塵濃度の濃い流れと淡い流れに分離してしまう
However, in the above-mentioned conventional example, it is difficult to sufficiently disperse the powder raw material 15 sucked into the acceleration tube 12 in a high-pressure air flow, so that the powder flow jetting out from the acceleration tube outlet 4 has a dust concentration. It separates into a thick stream and a light stream.

そのため、対向する衝突面17にあたる粉流は、部分的
(局所的)なものとなり、効率が低下し、処理能力の低
下を引き起こす。また、このような状態で処理能力を大
きくしようとすれば、更に粉塵濃度が部分的に高くなる
ため、効率がより低下し、特に樹脂含有物では衝突面1
7上で融着物が発生し、好ましくない。
Therefore, the powder flow that hits the opposing collision surfaces 17 becomes partial (local), resulting in a decrease in efficiency and a decrease in throughput. In addition, if you try to increase the processing capacity under these conditions, the dust concentration will increase in some areas, resulting in a further decrease in efficiency.Especially with resin-containing materials, the impact surface 1
7, which is not preferable.

その上、粗粒を多(含む粉体原料15を加速管12内に
吸引導入させると、粉体原料供給口1の吸込能力が低下
し、その結果、処理能力の低下を引き起こす。
Furthermore, when the powder raw material 15 containing a large number of coarse particles is sucked into the acceleration tube 12, the suction capacity of the powder raw material supply port 1 is reduced, resulting in a reduction in processing capacity.

加速管12内部での粒子の粉砕の効率を上げるために、
加速管出口4の手前側に二次高圧ガスを噴出せしめる高
圧ガス給送管を設けた粉砕管が特公昭46−22778
号公報で提案されている。
In order to increase the efficiency of particle pulverization inside the acceleration tube 12,
A crushing tube equipped with a high-pressure gas supply pipe that blows out secondary high-pressure gas on the near side of the acceleration pipe outlet 4 was published in Japanese Patent Publication No. 46-22778.
It is proposed in the publication.

これは加速管12内部での衝突を促進させることを意図
しており、加速管12内でのみ粉砕を行うような粉砕機
には有用な手段であるが、衝突部材6に衝突させて粉砕
を行う衝突式気流粉砕機では、有用な方法ではない。な
ぜならば、加速管12内で衝突を促進させるために二次
高圧ガスを導入すれば、圧縮気体供給ノズル3から導入
される高圧気体による搬送気流が阻害され、加速管出口
4から噴出する粉流の速度が低下してしまう。
This is intended to promote collisions inside the accelerating tube 12, and is a useful means for a crusher that only performs crushing inside the accelerating tube 12. Impingement-type air flow crushers are not a useful method. This is because if secondary high-pressure gas is introduced to promote collision within the acceleration tube 12, the carrier airflow caused by the high-pressure gas introduced from the compressed gas supply nozzle 3 is obstructed, and the powder flow ejected from the acceleration tube outlet 4. speed will decrease.

そのため衝突部材6に衝突する衝撃力が低下し、粉砕効
率が低下してしまい好ましくない。
Therefore, the impact force colliding with the collision member 6 decreases, and the crushing efficiency decreases, which is not preferable.

一方、従来かかる粉砕機における衝突部材の衝突面は、
第8図及び第9図に示すように、被粉砕物を載せた高圧
気流方向(加速管の軸方向)に対し垂直あるいは傾斜(
例えば45°)している平面状のものが用いられてきた
(特開昭57−50554号公報及び特開昭58−14
3853号公報参照)。
On the other hand, the collision surface of the collision member in conventional crushers is
As shown in Fig. 8 and Fig. 9, the direction of the high-pressure airflow (the axial direction of the accelerator tube) carrying the material to be crushed is perpendicular or inclined.
For example, a planar shape with an angle of 45° has been used (JP-A-57-50554 and JP-A-58-14).
(See Publication No. 3853).

しかしながら、第8図のように加速管12の軸方向と垂
直な衝突面17の場合、加速管出口4から吹き呂される
被粉砕物と衝突面で反射される粉砕物とが衝突面の近傍
で共存する割合が高く、そのため、衝突面近傍での粉体
(被粉砕物及び粉砕物)濃度が高くなり、粉砕効率が良
(ない。
However, in the case of the collision surface 17 perpendicular to the axial direction of the acceleration tube 12 as shown in FIG. Therefore, the concentration of powder (material to be crushed and crushed material) near the collision surface becomes high, resulting in good (poor) pulverization efficiency.

さらに、衝突面における一時衝突が主体であり、粉砕室
壁8との二次衝突を有効に利用しているとはいえない。
Furthermore, temporary collisions occur mainly on the collision surface, and secondary collisions with the crushing chamber wall 8 cannot be said to be effectively utilized.

さらに、熱可塑性樹脂を粉砕するときには、衝突時の局
部発熱により融着及び凝集物が発生し易(、装置の安定
した運転が困難になり、粉砕能力低下の原因となる。そ
のために、被粉砕物濃度を高くして使用することが困難
であった。
Furthermore, when crushing thermoplastic resins, fusion and agglomerates are likely to occur due to local heat generation during collision (which makes stable operation of the equipment difficult and causes a reduction in crushing capacity. It was difficult to use it at a high concentration.

また、第9図の粉砕機においては、衝突面27が加速管
12の軸方向に対して傾斜しているために、衝突面近傍
の粉体濃度は第8図の粉砕機と比較して低くなるが、高
圧気流による衝突力が分散されて低下する。さらに、粉
砕室壁8との二次衝突を有効に利用しているとはいえな
い。例えば、第9図に示す如く、衝突面の角度が加速管
に対し45°傾斜のものでは、熱可塑性樹脂を粉砕する
ときに上記のような問題点は少ない。しかしながら、衝
突する際に粉砕に使われる衝撃力が小さく、さらに粉砕
室壁8との二次衝突による粉砕が少ないので粉砕能力は
、第8図の粉砕機と比較して1/2〜1/1.5に粉砕
能力が落ちる。
Furthermore, in the crusher shown in FIG. 9, since the collision surface 27 is inclined with respect to the axial direction of the acceleration tube 12, the powder concentration near the collision surface is lower than in the crusher shown in FIG. However, the collision force due to the high-pressure airflow is dispersed and reduced. Furthermore, it cannot be said that the secondary collision with the crushing chamber wall 8 is effectively utilized. For example, as shown in FIG. 9, if the collision surface is inclined at an angle of 45 degrees with respect to the accelerator tube, the above-mentioned problems are less likely to occur when pulverizing thermoplastic resin. However, since the impact force used for crushing during collision is small, and there is less crushing due to secondary collision with the crushing chamber wall 8, the crushing capacity is 1/2 to 1/2 compared to the crusher shown in FIG. The crushing capacity drops to 1.5.

それ故、粉砕効率の良好な粉砕機及び粉砕方法が待望さ
れている。
Therefore, a crusher and a crushing method with good crushing efficiency are desired.

一方、電子写真法による画像形成方法に用いられるトナ
ーまたはトナー用着色樹脂粉体は、通常結着樹脂及び着
色剤または磁性粉を少なくとも含有している。トナーは
、潜像担持体に形成された静電荷像を現像し、形成され
たトナー像は普通紙またはプラスチックフィルムの如き
転写材へ転写され、加熱定着手段、圧力ローラ定着手段
または加熱加圧ローラ定着手段の如き定着装置によって
転写材上のトナー像は転写材に定着される。したがって
、トナーに使用される結着樹脂は、熱及び/または圧力
が付加されると塑性変形する特性を有する。
On the other hand, toners or colored resin powders for toners used in electrophotographic image forming methods usually contain at least a binder resin, a colorant, or magnetic powder. The toner develops the electrostatic charge image formed on the latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or plastic film, and is then transferred to a transfer material such as a heat fixing means, a pressure roller fixing means, or a heat pressure roller. The toner image on the transfer material is fixed to the transfer material by a fixing device such as a fixing means. Therefore, the binder resin used in the toner has the property of being plastically deformed when heat and/or pressure is applied.

現在、トナーまたはトナー用着色樹脂粉体は、結着樹脂
及び着色剤または磁性粉(必要により、さらに第三成分
を含有)を少なくとも含有する混合物を溶融混練し、溶
融混練物を冷却し、冷却物を粉砕し、粉砕物を分級して
調製される。冷却物の粉砕は、通常、機械的衝撃式粉砕
機により粗粉砕(または中粉砕)され、次いで粉砕粗粉
をジェット気流を用いた衝突式気流粉砕機で微粉砕して
いるのが一般的である。
Currently, toners or colored resin powders for toners are produced by melt-kneading a mixture containing at least a binder resin and a colorant or magnetic powder (further containing a third component if necessary), cooling the melt-kneaded mixture, and cooling the mixture. It is prepared by crushing a substance and classifying the crushed substance. Generally, when pulverizing a cooled material, it is coarsely (or medium) pulverized using a mechanical impact pulverizer, and then the coarse powder is pulverized into a fine pulverizer using an impingement airflow pulverizer that uses a jet stream. be.

かかる場合、第9図に示すような従来の衝突式気流粉砕
機及び粉砕方法では、処理能力を更に向上させようとす
れば、加速管12に設けられる粉体原料供給口1に吸引
不足が起こり、又は、衝突面27上で融着物が発生し、
安定生産が行えない。そのため、電子写真法による画像
形成方法に用いられるトナーまたはトナー用着色樹脂粉
体を更に効率良(生成するため、上記問題点を解決した
、効率のよい衝突式気流粉砕機及び粉砕方法が望まれて
いる。
In such a case, in the conventional collision type airflow crusher and crushing method as shown in FIG. 9, if the processing capacity is to be further improved, suction will be insufficient at the powder raw material supply port 1 provided in the acceleration tube 12. , or a fused substance is generated on the collision surface 27,
Stable production cannot be achieved. Therefore, in order to more efficiently produce toner or colored resin powder for toner used in electrophotographic image forming methods, an efficient impingement type air flow mill and a milling method that solve the above problems are desired. ing.

[発明が解決しようとする課題] 上述のような従来の問題点に鑑み、本発明の目的とする
ところは、ポリエステル樹脂またはスチレン系樹脂の如
き熱可塑性樹脂を主体とする被粉砕物を効率良く粉砕す
る衝突式気流粉砕機及び粉砕方法を提供することにある
[Problems to be Solved by the Invention] In view of the above-mentioned conventional problems, it is an object of the present invention to efficiently crush materials mainly made of thermoplastic resins such as polyester resins or styrene resins. An object of the present invention is to provide an impact type airflow crusher for crushing and a crushing method.

また、粉砕室内における被粉砕物及び粉砕された粉体の
融着が発生しに(く、被粉砕物の処理量を増加した場合
でも被粉砕物及び粉砕された粉体の融着が抑制され、凝
集物及び粗粒子の生成が少ない衝突式気流粉砕機及び粉
砕方法を提供することにあり、特に、平均粒径20〜2
000μmを有する樹脂粒子を平均粒径3〜15μmに
効率良(微粉砕し得る衝突式気流粉砕機及び粉砕方法を
提供することにある。
In addition, the fusion of the material to be crushed and the crushed powder in the grinding chamber is prevented (and even when the throughput of the material to be crushed is increased, the fusion of the material to be crushed and the crushed powder is suppressed). The object of the present invention is to provide an impingement type air jet pulverizer and a pulverizing method that generate less aggregates and coarse particles.
An object of the present invention is to provide an impingement type air flow crusher and a crushing method capable of efficiently (finely pulverizing) resin particles having a diameter of 000 μm to an average particle size of 3 to 15 μm.

さらには、加熱加圧ローラ定着手段を有する複写機及び
プリンタに使用されるトナーまたはトナー用着色樹脂粒
子を効率良く生成し得る衝突式気流粉砕機及び粉砕方法
を提供することにある。
Another object of the present invention is to provide an impingement type air flow crusher and a crushing method that can efficiently produce toner or colored resin particles for toner used in copying machines and printers having heating and pressure roller fixing means.

[課題を解決するための手段及び作用]本発明は、高圧
気体により粉体原料15を搬送加速するための加速管2
の下流に、該加速管2より噴出する粉体原料15を衝突
力により粉砕するための衝突部材6を加速管出口4に対
向配置する粉砕室5を設けた衝突式気流粉砕機において
、前記加速管2に複数の粉体原料供給口を設け、かかる
複数の粉体原料供給口と加速管出口との間に二次空気導
入口を設け、かつ、前記衝突部材の衝突面の先端部分が
頂角11o°以上180°未満の錐体形状である衝突式
気流粉砕機としている点にある。
[Means and effects for solving the problem] The present invention provides an acceleration tube 2 for transporting and accelerating powder raw material 15 using high-pressure gas.
In the collision type air flow crusher, a crushing chamber 5 is provided downstream of the accelerating tube 2, in which a crushing member 6 for crushing the powder raw material 15 ejected from the accelerating tube 2 by a collision force is arranged opposite to the accelerating tube outlet 4. A plurality of powder raw material supply ports are provided in the pipe 2, a secondary air introduction port is provided between the plurality of powder raw material supply ports and the acceleration tube outlet, and the tip portion of the collision surface of the collision member is at the top. The point is that the collision type air flow crusher has a conical shape with an angle of 11° or more and less than 180°.

また、加速管2内で高圧気体により粉体原料15を搬送
加速し、粉砕室内に加速管出口4から吐出し、対向する
衝突部材6に衝突させて粉体原料15を微粒子に粉砕す
る粉砕方法において、複数の粉体原料供給口から加速管
2の上流に粉体原料を導き、該複数の粉体原料供給口と
加速管出口との間に二次空気を導入し、かつ、衝突面の
先端部分が頂角110°以上180°未満の錐体形状を
有する衝突部材6に粉体原料15を衝突させて粉砕し、
衝突後の粉砕物をさらに粉砕室壁に二次衝突させて粉砕
する粉砕方法をも特徴とするものである。
In addition, a grinding method includes transporting and accelerating the powder raw material 15 using high-pressure gas in the acceleration tube 2, discharging it from the acceleration tube outlet 4 into the grinding chamber, and colliding it with the opposing collision member 6 to crush the powder raw material 15 into fine particles. In this step, the powder raw material is guided upstream of the acceleration tube 2 from a plurality of powder raw material supply ports, secondary air is introduced between the plurality of powder raw material supply ports and the acceleration tube outlet, and the A powder raw material 15 is crushed by colliding with a collision member 6 whose tip portion has a conical shape with an apex angle of 110° or more and less than 180°,
The present invention is also characterized by a pulverizing method in which the pulverized material after the collision is further pulverized by secondary collision with the wall of the pulverizing chamber.

以上の構成を具備した本発明の衝突式気流粉砕機によれ
ば、被粉砕物を効率良く5高速気流を利用して数μmの
オーダーまで粉砕することができる。特に、熱可塑性樹
脂の被粉砕物または熱可塑性樹脂を主成分とする被粉砕
物を効率良く、数μmのオーダ=まで粉砕することがで
きる。
According to the collision-type airflow pulverizer of the present invention having the above-described configuration, it is possible to efficiently pulverize objects to be pulverized down to the order of several micrometers by using 5 high-speed airflows. In particular, objects made of thermoplastic resin or objects whose main component is a thermoplastic resin can be efficiently pulverized to the order of several μm.

さらに、本発明を添付図面に基づいて詳述する。第1図
は、本発明の衝突式気流粉砕機の概略的断面図及び該粉
砕機を使用した粉砕工程及び分級機による分級工程を組
み合せた粉砕方法のフローチャートの一例を示した図で
ある。粉砕されるべき粉体原料15は、第5図において
示す(第1図C−C断面)加速管2の上流に設けられた
複数の粉体原料供給口1より、粉体原料を分散させて加
速管2に供給される。加速管2には圧縮空気の如き圧縮
気体が圧縮気体供給ノズル3から導入されており、加速
管2に供給された粉体原料15は、瞬時に加速されて、
高速度を有するようになる。高速度で加速管出口4から
粉砕室5に吐出された粉体原料15は、衝突部材6の衝
突面7に衝突して粉砕される。また、かかる粉砕機にお
いて、加速管2の粉体原料供給口1と加速管出口4との
間に二次空気導入口11を設け、二次空気を加速管に導
入することにより、粉体原料供給口1の吸引能力を向上
させ、加速管内の被粉砕物を分散し、加速管出口4から
被粉砕物をより均一に噴出させ、対向する衝突部材6の
衝突面7に効率良(衝突させることにより粉砕性を従来
より向上することができる。ここで、導入される二次空
気は、加速管内を高速移動する被粉砕物の凝集を解きほ
ぐし、分散させるために寄与している。また、加速管内
で加速気体流速分布の遅い部分である加速管内壁に沿う
流れを加速する効果がある。
Further, the present invention will be explained in detail based on the accompanying drawings. FIG. 1 is a diagram showing a schematic cross-sectional view of the impingement-type air current pulverizer of the present invention and an example of a flowchart of a pulverization method that combines a pulverization process using the pulverizer and a classification process using a classifier. The powder raw material 15 to be pulverized is obtained by dispersing the powder raw material through a plurality of powder raw material supply ports 1 provided upstream of the acceleration tube 2 shown in FIG. It is supplied to the acceleration tube 2. Compressed gas such as compressed air is introduced into the acceleration tube 2 from a compressed gas supply nozzle 3, and the powder raw material 15 supplied to the acceleration tube 2 is instantly accelerated.
Will have high speed. The powder raw material 15 discharged from the acceleration tube outlet 4 into the crushing chamber 5 at high speed collides with the collision surface 7 of the collision member 6 and is crushed. In addition, in such a crusher, a secondary air introduction port 11 is provided between the powder raw material supply port 1 of the acceleration tube 2 and the acceleration tube outlet 4, and by introducing secondary air into the acceleration tube, the powder raw material The suction capacity of the supply port 1 is improved, the material to be crushed in the acceleration tube is dispersed, the material to be crushed is jetted out from the acceleration tube outlet 4 more uniformly, and the material to be crushed is efficiently (collided with) the collision surface 7 of the opposing collision member 6. This makes it possible to improve the pulverization performance compared to the conventional method.The secondary air introduced here contributes to loosening and dispersing the agglomeration of the material to be pulverized that moves at high speed in the acceleration tube. This has the effect of accelerating the flow along the inner wall of the accelerating tube, which is the part of the tube where the accelerated gas flow velocity distribution is slow.

第3図に加速管の要部断面図を示し、より詳細に説明す
る。導入される二次空気の導入方法については、鋭意検
討を重ねた結果、次のような結論に達した。すなわち、
二次空気の導入位置については、第3図において被粉砕
物供給口1と加速管804との距離をX、被粉砕物供給
口1と二次空気導入口11との距離をYとした場合、X
とYが0、 2≦Y/X;0. 9 より好ましくは、 0.3≦Y/X≦0.8 を満足したときに良好な結果が得られた。また、二次空
気導入口11の導入角度については、第3図において加
速管の軸方向に対する角度をψとした時、ψが 10°≦ψ≦80゜ より好ましくは、 20″≦ψ≦80゜ の条件を満足したときに良好な粉砕結果が得られた。導
入される二次空気の風量については、圧縮気体供給ノズ
ル3から導入される高圧気体による搬送気体の風量をa
Nm”/min、二次空気導入口11から導入される二
次空気の総風量をbNm”/minとした場合、a、b
が 0.001≦b / a≦0,5 より好ましくは、 0.01≦b/a≦0.4 を満足する条件下で粉砕を行ったときに良好な結果が得
られた。二次空気としては、圧縮気体、常圧気体のいず
れを用いても良い。二次空気導入口にバルブの如き風量
制御装置を設け、導入風量を調整することは非常に好ま
しい。加速管の円周方向のどの位置に何か断連入口を設
けるかは、被粉砕原料、目標粉砕粒子径等により適宜設
定すれば良い。第4図は、一実施例として、加速管の日
周方向に二次空気導入口を8か所設けた場合の第3図に
おけるB−B視断面図である。
FIG. 3 shows a sectional view of a main part of the accelerator tube, and will be explained in more detail. As a result of extensive studies regarding the method of introducing secondary air, the following conclusions were reached. That is,
Regarding the introduction position of the secondary air, in Fig. 3, the distance between the material supply port 1 and the acceleration tube 804 is X, and the distance between the material supply port 1 and the secondary air introduction port 11 is Y. ,X
and Y is 0, 2≦Y/X;0. 9 More preferably, good results were obtained when 0.3≦Y/X≦0.8 was satisfied. Furthermore, regarding the introduction angle of the secondary air inlet 11, where ψ is the angle with respect to the axial direction of the accelerator tube in FIG. Good pulverization results were obtained when the following conditions were satisfied. Regarding the volume of secondary air introduced, the volume of the carrier gas by the high pressure gas introduced from the compressed gas supply nozzle 3 was
Nm"/min, and when the total air volume of the secondary air introduced from the secondary air inlet 11 is bNm"/min, a, b
Good results were obtained when pulverization was carried out under conditions where 0.001≦b/a≦0.5, more preferably 0.01≦b/a≦0.4. As the secondary air, either compressed gas or normal pressure gas may be used. It is highly preferable to provide an air volume control device such as a valve at the secondary air inlet to adjust the introduced air volume. The position in the circumferential direction of the accelerator tube at which the disconnection port is to be provided may be determined as appropriate depending on the raw material to be crushed, the target size of the crushed particles, etc. FIG. 4 is a cross-sectional view taken along line BB in FIG. 3 in the case where eight secondary air inlets are provided in the diurnal direction of the accelerator tube as an example.

この場合、8か所からどのような配分で二次空気を導入
するかは適宜設定を行う。また、加速管の断面は真円に
限定されるものではない。
In this case, the distribution of secondary air introduced from the eight locations is appropriately set. Further, the cross section of the accelerator tube is not limited to a perfect circle.

一方、第1図の粉砕機において、衝突面7が頂角110
°以上180°未満、好ましくは160’近傍を有する
円錐形状を有しているので、粉砕された粉砕物は実質的
に全周方向に分散され、粉砕室壁8と二次衝突を起こし
、さらに粉砕される。第2図は、第1図に示す衝突式気
流粉砕機のA−A面における視断面を概略的に示した図
であり、衝突面7で衝突した後の粉砕物の分散状態を模
式的に示している。第1,2図からは、本発明の衝突式
気流粉砕機によれば、粉砕室壁8における粉砕物の二次
衝突が有効に利用されていることが知見される。さらに
、本発明の粉砕機においては、第1図に示す如(衝突面
7で粉砕物が良好に衝突部材の径方向に拡散され、粉砕
室壁8が広く二次衝突に利用されるため、衝突面7の近
傍における(被)粉砕物の濃度が濃くならないので、粉
砕の処理能率を向上させることができ、衝突面7におけ
る(被)粉砕物の融着を良好に抑制することが可能であ
る。
On the other hand, in the crusher shown in FIG. 1, the collision surface 7 has an apex angle of 110
Since it has a conical shape with an angle of 180° or more, preferably around 160', the crushed material is dispersed substantially in the entire circumferential direction, causes secondary collision with the crushing chamber wall 8, and further Shattered. FIG. 2 is a diagram schematically showing a cross section of the collision type air flow crusher shown in FIG. It shows. From FIGS. 1 and 2, it can be seen that according to the collision type air flow crusher of the present invention, the secondary collision of the crushed materials on the crushing chamber wall 8 is effectively utilized. Furthermore, in the crusher of the present invention, as shown in FIG. Since the concentration of the (to-be) pulverized material in the vicinity of the collision surface 7 does not become high, the processing efficiency of pulverization can be improved, and it is possible to favorably suppress the fusion of the (to-be) pulverized material on the collision surface 7. be.

粉砕室5に導入された被粉砕物は、衝突面7における一
次の゛衝突による粉砕が行われ、次いで粉砕室壁8にお
ける二次の衝突による粉砕がさらに行われ、場合により
、粉砕された粉砕物は排出口9に搬送されるまでに粉砕
室壁8及び衝突部材6の側面との三次(及び四次)の衝
突によりさらに粉砕される。排出口9から排出された粉
砕物は固定壁式気流分級機の如き分級機で細粉と粗粉と
に分級される。分級された細粉は粉砕製品とじて取り出
される。分級された粗粉は、新たに投入される被粉砕物
とともに粉体原料供給口1に投入され金。
The material to be crushed introduced into the crushing chamber 5 is crushed by a first collision on the collision surface 7, and then further crushed by a secondary collision on the crushing chamber wall 8, and in some cases, the crushed material is crushed. The material is further crushed by tertiary (and quaternary) collisions with the crushing chamber wall 8 and the side surface of the collision member 6 before being conveyed to the discharge port 9 . The pulverized material discharged from the outlet 9 is classified into fine powder and coarse powder by a classifier such as a fixed wall air classifier. The classified fine powder is taken out as a pulverized product. The classified coarse powder is fed into the powder raw material supply port 1 together with the newly introduced material to be crushed.

他の例として第6図及び第7図に加速管2に2つ及び4
つの粉体原料供給口を設けた断面図(第1図のC−C部
断面)を示す。また、加速管2の断面は円形に限定され
るものではない。
As another example, in Figures 6 and 7, there are two and four
A cross-sectional view (C-C section cross-section in FIG. 1) in which two powder raw material supply ports are provided is shown. Further, the cross section of the acceleration tube 2 is not limited to a circular shape.

一方、加速管出口4の内径は、通常10〜100mmを
有し、衝突部材6の直径よりも小さい内径を有すること
が好ましい。
On the other hand, the inner diameter of the acceleration tube outlet 4 is usually 10 to 100 mm, and preferably smaller than the diameter of the collision member 6.

加速管出口4と衝突部材6の先端部との距離は、衝突部
材6の直径の0.3倍乃至3倍が好ましい。0.3倍未
満では、過粉砕が生じる傾向かあり、3倍を越える場合
は、粉砕効率が低下する傾向がある。
The distance between the acceleration tube outlet 4 and the tip of the collision member 6 is preferably 0.3 to 3 times the diameter of the collision member 6. If it is less than 0.3 times, over-pulverization tends to occur, and if it exceeds 3 times, the grinding efficiency tends to decrease.

なお、本発明における衝突式気流粉砕機の粉砕室5は第
1図に示す箱型に限定されるものではない。
Incidentally, the crushing chamber 5 of the collision type air current crusher according to the present invention is not limited to the box shape shown in FIG. 1.

本発明における技術思想は、圧縮気体供給ノズル3から
導入される高圧気体による搬送気流に粉体原料15を投
入し、加速管出口4から唄圧させ、対向する衝突部材6
の衝突面7に粉体原料15を衝突させて粉砕を行う衝突
式気流粉砕機において、加速管2内での粉体原料15の
分散状態と粉体原料供給ホッパー管16下の粉体原料供
給口1の吸引力が、粉砕効率に影響を及ぼすのではない
かという考え方に基づいている。すなわち、加速管2か
ら供給される粉体原料15は、凝集した状態で加速管2
に流入するため、加速管2内の分散が不充分となり、そ
のため加速管804から噴出する時、粉Ma度にバラツ
キが生じ、衝突面7を有効に利用できず、さらに粗粒子
においては、粉体原料供給口1の吸引力が低下し、粉体
原料15の供給が不充分となり、粉砕効率が低下するも
のと考えた。この現象は粉砕処理量が太き(なるほど顕
著になる。
The technical concept of the present invention is to introduce the powder raw material 15 into a carrier airflow of high-pressure gas introduced from the compressed gas supply nozzle 3, apply pressure from the acceleration tube outlet 4, and collide with the opposing collision member 6.
In a collision-type air flow crusher that performs pulverization by colliding the powder raw material 15 against the collision surface 7 of This is based on the idea that the suction force of the mouth 1 may affect the grinding efficiency. That is, the powder raw material 15 supplied from the acceleration tube 2 is delivered to the acceleration tube 2 in an agglomerated state.
As a result, the dispersion within the accelerating tube 2 becomes insufficient, and therefore, when ejected from the accelerating tube 804, the powder Ma degree varies, making it impossible to effectively utilize the collision surface 7. It was considered that the suction force of the powder raw material supply port 1 decreased, the supply of the powder raw material 15 became insufficient, and the pulverization efficiency decreased. This phenomenon becomes more noticeable as the amount of pulverization increases.

二次空気としては高圧縮気体、常圧気体のいずれを用い
てもよい。各二次空気導入口11にバルブの如き開閉装
置を取り付け、導入風量を制御することは非常に好まし
い。加速管2の上部方向のどの位置に何本二次空気導入
口11を取り付けるかは、粉体原料15、目標粒子径等
により適宜設定すればよい。第4図に一例として加速管
2の円周方向に、二次空気導入口11を8ケ所取り付け
た場合のB−B楔断面図を示す。この場合、8ケ所から
どのような配分で二次空気を導入するかは適宜設定すれ
ばよい。
As the secondary air, either highly compressed gas or normal pressure gas may be used. It is highly preferable to attach an opening/closing device such as a valve to each secondary air inlet 11 to control the amount of air introduced. The number of secondary air inlets 11 to be installed and at which positions in the upper direction of the acceleration tube 2 may be appropriately set depending on the powder raw material 15, the target particle diameter, etc. FIG. 4 shows, as an example, a BB wedge sectional view in the case where eight secondary air inlets 11 are installed in the circumferential direction of the accelerator tube 2. In this case, the distribution of the secondary air to be introduced from the eight locations may be determined as appropriate.

以上説明したように、本発明の装置及び方法によれば、
複数の粉体原料供給口1から粉体原料15を加速管2内
へ分散して供給することができ、二次空気を加速管2に
導入することにより、粉体原料供給口1からの粉体原料
15の吸引能力が向上し、加速管2内の粉体原料15の
分散が良好となり、衝突面17に効率良く衝突し粉砕効
率が向上する。即ち、従来の粉砕機に較べ処理能力が向
上し、また、同一処理能力では、得られる製品の粒子径
をより小さくできる。
As explained above, according to the apparatus and method of the present invention,
The powder raw material 15 can be distributed and supplied into the acceleration tube 2 from a plurality of powder raw material supply ports 1, and by introducing secondary air into the acceleration tube 2, the powder from the powder raw material supply port 1 can be distributed and supplied. The suction ability of the powder raw material 15 is improved, the powder raw material 15 is well dispersed in the accelerator tube 2, and the powder raw material 15 collides efficiently with the collision surface 17, thereby improving the pulverization efficiency. That is, the processing capacity is improved compared to conventional pulverizers, and the particle size of the resulting product can be made smaller with the same processing capacity.

従来例では、粉体原料15が凝集した状態で、衝突面1
7.27に衝突するため、特に熱可塑性樹脂を主体とす
る粉体を原料とした場合、融着物を発生し易い。これに
対して、本発明によれば、分散された状態で、衝突面7
に衝突するため、融着物を発生しに(い。
In the conventional example, the powder raw material 15 is in an agglomerated state, and the collision surface 1
7.27, so fused materials are likely to occur, especially when the raw material is powder mainly composed of thermoplastic resin. In contrast, according to the present invention, the collision surface 7
Because it collides with the object, it creates a bond.

また従来例では、粉体原料15が凝集しているため、過
粉砕を生じ易く、そのため得られる粉砕品の粒度分布が
幅広のものとなるという問題があった。これに対して、
本発明によれば、過粉砕を防止でき、粒度分布のシャー
プな粉砕品が得られる。
Further, in the conventional example, since the powder raw material 15 is agglomerated, over-pulverization tends to occur, and as a result, there is a problem that the resulting pulverized product has a wide particle size distribution. On the contrary,
According to the present invention, over-pulverization can be prevented and a pulverized product with a sharp particle size distribution can be obtained.

また本発明によれば、複数の粉体原料供給口1から粉体
原料15を加速管2内へ分散して供給することができ、
二次空気を効率良(導入することで、粉体原料供給口1
での空気の吸込能力が向上し、そのため粉体原料ユ5の
加速管2内での搬送能力が向上し、粉砕処理量を従来よ
り高めることができる。
Further, according to the present invention, the powder raw material 15 can be distributed and supplied into the acceleration tube 2 from the plurality of powder raw material supply ports 1,
By introducing secondary air efficiently (introducing the powder raw material supply port 1
This improves the air suction capacity of the powder raw material unit 5, thereby improving the conveyance capacity of the powder raw material unit 5 within the acceleration tube 2, making it possible to increase the pulverization throughput compared to the conventional method.

本発明の装置及び方法は粒径が小さ(なる程効果が顕著
になる。
The apparatus and method of the present invention have a smaller particle size (the effect becomes more pronounced).

[実施例] 以下、本発明を実施例、比較例に基づいて詳細に説明す
る。
[Examples] Hereinafter, the present invention will be described in detail based on Examples and Comparative Examples.

上記原材料をヘンシェルミキサーにて混合し、混合物を
得た。次にこの混合物をエクストルーダーにて約180
℃で溶融混練した後、冷却して固化し、溶融混線物の冷
却物をハンマーミルで100〜1000μmの粒子に粗
粉砕したものを粉体原料15とした。そして、第1図〜
第5図に示す粉砕機及びフローで粉砕を行った。粉砕さ
れた粉体を細粉と粗粉とに分級するための分級手段とし
て固定壁式風力分級機を使用した。
The above raw materials were mixed in a Henschel mixer to obtain a mixture. Next, mix this mixture in an extruder to about 180%
After melt-kneading at a temperature of .degree. C., the mixture was cooled and solidified, and the cooled molten mixture was coarsely ground into particles of 100 to 1000 .mu.m using a hammer mill, which was used as powder raw material 15. And Figure 1~
Grinding was carried out using the grinder and flow shown in FIG. A fixed wall type wind classifier was used as a classification means to classify the pulverized powder into fine powder and coarse powder.

ここで、衝突式気流粉砕機は、加速管2の出口4の内径
が25mmであり、第3図及び第4図において の条件を満たしており、衝突部材6が直径60mmの酸
化アルミニウム系セラミックで形成された円柱状で、衝
突面7の先端部が頂角160°を有する円錐形状を有し
ていた。加速管2の中心軸と衝突部材6の先端とは一致
していた。加速管出口4から衝突面7までの最近接距離
は60mmであり、衝突部材6と粉砕室壁8との最近接
距離は18mmであった。
Here, in the collision type air flow crusher, the inner diameter of the outlet 4 of the acceleration tube 2 is 25 mm, satisfying the conditions shown in FIGS. 3 and 4, and the collision member 6 is made of aluminum oxide ceramic with a diameter of 60 mm. The collision surface 7 had a cylindrical shape, and the tip of the collision surface 7 had a conical shape with an apex angle of 160°. The central axis of the accelerating tube 2 and the tip of the collision member 6 coincided. The closest distance from the acceleration tube outlet 4 to the collision surface 7 was 60 mm, and the closest distance between the collision member 6 and the crushing chamber wall 8 was 18 mm.

衝突式気流粉砕機の圧縮気体供給ノズル3から流量(a
)6.4Nm3/mi n (圧力6.0kg/cm”
)の圧縮空気を導入し、粉体原料供給口1から45 k
 g/時間の割合で粉体原料15を供給した。粉砕され
た粉体原料は分級機に運ばれ、細粉は分級粉体として取
り除き、粗粉は再び粉体原料供給口1より粉体原料15
と共に加速管2に投入した。また、二次空気としては、
第4図におけるF、G、H,I、J、に、L、Mの8ケ
所から、各0.1Nm” /min (5,0kg/c
m2)の圧縮空気(b)を導入したこの結果、細粉とし
て体積平均粒径7.5μm(コールタ−カウンターによ
る測定)の粉砕粉体が、45 k g/時間の割合で収
集された。また、6時間の連続運転を行っても融着物の
発生は全くなかった。
The flow rate (a
)6.4Nm3/min (pressure 6.0kg/cm"
) is introduced, and 45 k is introduced from the powder raw material supply port 1.
Powder raw material 15 was fed at a rate of g/hour. The crushed powder raw material is transported to a classifier, the fine powder is removed as classified powder, and the coarse powder is returned to the powder raw material 15 from the powder raw material supply port 1.
It was also put into the accelerator tube 2. In addition, as secondary air,
0.1Nm”/min (5.0kg/c
m2) of compressed air (b) was introduced.As a result of this, a ground powder with a volume average particle size of 7.5 μm (measured by Coulter counter) was collected as fine powder at a rate of 45 kg/h. Further, even after continuous operation for 6 hours, no fused material was generated.

尚、トナーの粒度分布は種々の方法によって測定できる
が、本実施例においてはコールタ−カウンターを用いて
行った。
Although the particle size distribution of the toner can be measured by various methods, in this example, it was measured using a Coulter counter.

すなわち、測定装置としてはコールタ−カウンターTA
−II型(コールタ−社製)を用い、個数分布1体積分
布を圧力するインターフェイス(日科機製)及びCX−
1パーソナルコンピユータ(キャノン製)を接続し、電
解液は1級塩化ナトリウムを用いて1%NaCj2水溶
液を調製する。
In other words, the measuring device is Coulter counter TA.
- An interface (manufactured by Nikkaki) that applies pressure to a number distribution of 1 volume using a type II (manufactured by Coulter) and a CX-
1 A personal computer (manufactured by Canon) is connected, and a 1% NaCj2 aqueous solution is prepared using primary sodium chloride as the electrolyte.

測定法としては前記電解水溶液100〜150mA中に
分散剤として界面活性剤、好ましくはアルキルベンゼン
スルホン酸塩を0.1〜5mj2加え、更に測定試料を
2〜20mg加える。試料を懸濁した電解液は超音波分
散器で約1〜3分間分散処理を行い、前記コールタ−カ
ウンターTA−■型により、アパチャーとして100μ
mアパチャーを用いて、個数を基準として2〜40μm
の粒子の粒度分布を測定して、それから本実施例に係る
ところの値を求めた。
As a measuring method, 0.1 to 5 mj2 of a surfactant, preferably an alkylbenzene sulfonate, as a dispersant is added to the electrolytic aqueous solution at 100 to 150 mA, and 2 to 20 mg of a measurement sample is added. The electrolyte in which the sample was suspended was dispersed for about 1 to 3 minutes using an ultrasonic disperser, and the aperture was set to 100μ using the Coulter Counter TA-■ model.
m aperture, 2 to 40 μm based on the number of pieces
The particle size distribution of the particles was measured, and the values according to this example were determined from the particle size distribution.

Ki玉ユ 実施例1で用いた粉体原料を、加速管出口4の内径が2
5mmであり、第3図及び第4図において、 の条件を満たしており、衝突部材の衝突面が頂角120
°を有する円錐形状である衝突式気流粉砕機を用いて、
圧縮気体供給ノズル3から6.4Nm” /min (
6kgf/cm” )の圧縮空気を導入し、二次空気は
、第4図におけるF、G。
The powder raw material used in Ki Tamu Yu Example 1 was
5mm, and in Figures 3 and 4, the following conditions are satisfied, and the collision surface of the collision member has an apex angle of 120mm.
Using an impingement type air flow crusher that has a conical shape with a
6.4 Nm”/min from compressed gas supply nozzle 3 (
Compressed air of 6 kgf/cm") was introduced, and the secondary air was F and G in Fig. 4.

H,I、J、に、L、Mの8ケ所から、各0.  lN
m3/mi n (5kgf/cm2)の圧縮空気を導
入し、第6図に示す粉体原料供給口1から36 k g
/時間の割合で粉体原料15を供給した。粉砕された粉
体原料は分級機に運ばれ、細粉は分級粉体として取り除
き、粗粉は再び粉体原料供給口1より粉体原料15と共
に加速管2に投入した。
0.0 each from 8 locations: H, I, J, N, L, M. lN
Compressed air of m3/min (5 kgf/cm2) was introduced, and 36 kg was supplied from powder raw material supply port 1 shown in Fig.
Powder raw material 15 was supplied at a rate of /hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the acceleration tube 2 together with the powder raw material 15 from the powder raw material supply port 1.

この結果、細粉として体積平均粒径7.5μm(コール
タ−カウンターによる測定)の粉砕粉体が、36 k 
g/時間の割合で収集された。また、6時間の連続運転
を行っても融着物の発生は全くなかった。
As a result, a pulverized powder with a volume average particle diameter of 7.5 μm (measured by Coulter counter) was obtained as a fine powder with a particle size of 36 k
g/hour. Further, even after continuous operation for 6 hours, no fused material was generated.

天上1凱1 実施例1で用いた粉体原料を、加速管出口4の内径が2
5mmであり、第3図及び第4図において、 の条件を満たしており、衝突部材の衝突面が頂角120
°を有する円錐形状である衝突式気流粉砕機を用いて、
圧縮気体供給ノズル3から6.4N m ” / m 
i n (6k g f / c m ” )の圧縮空
気を導入し、二次空気は、第4図におけるF、G。
Tenjo 1 Gai 1 The powder raw material used in Example 1 was
5mm, and in Figures 3 and 4, the following conditions are satisfied, and the collision surface of the collision member has an apex angle of 120mm.
Using an impingement type air flow crusher that has a conical shape with a
6.4N m”/m from compressed gas supply nozzle 3
In (6kg f/cm'') of compressed air was introduced, and the secondary air was F and G in FIG.

H,I、J、に、L、Mの8ケ所から、各0.1Nm”
 /mi n (5kgf/cm” )の圧縮空気を導
入し、第7図に示す粉体原料供給口1から39.5kg
/時間の割合で粉体原料15を供給した。粉砕された粉
体原料は分級機に運ばれ、細粉は分級粉体として取り除
き、粗粉は再び粉体原料供給口1より粉体原料15と共
に加速管2に投入した。
0.1Nm each from 8 locations: H, I, J, N, L, M.
/min (5 kgf/cm") of compressed air was introduced, and 39.5 kg was
Powder raw material 15 was supplied at a rate of /hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the acceleration tube 2 together with the powder raw material 15 from the powder raw material supply port 1.

この結果、細粉として体積平均粒径7.5μm(コール
タ−カウンターによる測定)の粉砕粉体が、39.5k
g/時間の割合で収集された。また、6時間の連続運転
を行っても融着物の発生は全(なかった。
As a result, the pulverized powder with a volume average particle diameter of 7.5 μm (measured by Coulter counter) was 39.5 k
g/hour. Further, even after 6 hours of continuous operation, no fused material was generated.

を較正ユ 実施例1で用いた粉体原料を、第8図に示す従来の衝突
式気流粉砕機で粉砕した。該粉砕機において、衝突部材
6の先端の衝突面17は加速管12の軸方向に対して垂
直である平面であり、加連管出口4の内径は25mmで
ある。加速管12には、圧縮気体供給ノズル3から6.
4Nm” /m i n (6k g f / c m
 2)の圧縮気体を供給し、細粉(粉砕製品)が重量平
均粒径7.5μmになるよう分級機を設定し粉砕を行っ
た。衝突面17に衝突した(被)粉砕物は、加速管12
からの吐巴方向と対向する方向に反射されるために、衝
突面近傍の(被)粉砕物の存在濃度は著しく高(なった
。そのため被粉砕物原料の供給割合が4.5kg/時間
を超えると、衝突部材上で、融着、凝集物が生じはじめ
、融着物が粉砕室内や分級機を詰まらせる場合があった
。従って、粉砕処理量を1時間当り4.5kgに低下さ
せることを余儀なくされ、これが粉砕能力の限界となっ
た。
Calibration The powder raw material used in Example 1 was pulverized with a conventional impingement air flow pulverizer shown in FIG. In this crusher, the collision surface 17 at the tip of the collision member 6 is a plane perpendicular to the axial direction of the acceleration tube 12, and the inner diameter of the joint tube outlet 4 is 25 mm. The acceleration tube 12 includes compressed gas supply nozzles 3 to 6.
4Nm”/min (6kg f/cm
The compressed gas of 2) was supplied, and the classifier was set to perform pulverization so that the fine powder (pulverized product) had a weight average particle size of 7.5 μm. The (to be) crushed material that collided with the collision surface 17 is transferred to the acceleration tube 12
Because the material is reflected in the direction opposite to the direction of the discharge port, the concentration of the material to be crushed near the collision surface is extremely high.Therefore, the feed rate of the raw material for the material to be crushed is 4.5 kg/hour. If this exceeds the limit, fusion and agglomerates begin to form on the collision member, and the fused substances sometimes clog the grinding chamber and classifier.Therefore, it is recommended to reduce the grinding throughput to 4.5 kg per hour. This was the limit of its crushing ability.

また、重量平均粒径11μmの細粉(粉砕製品)が得ら
れるように粉砕を行った場合、被粉砕物原料の供給割合
が9kg/時間を超えると、衝突部材上で融着、凝集物
が生じはじめ、これが粉砕能力の限界となった。
In addition, when pulverization is performed to obtain fine powder (pulverized product) with a weight average particle size of 11 μm, if the feed rate of the raw material to be pulverized exceeds 9 kg/hour, fusion and agglomerates will occur on the collision member. This began to occur and this became the limit of crushing capacity.

工敗土ユ 実施例1で用いた粉体原料を、第9図に示す衝突式気流
粉砕機を用いて比較例1と同様に粉砕した。該粉砕機は
、衝突部材6の先端の衝突面27が、加速管12の軸方
向に対して45°の傾斜を有する平面であることを除い
ては、全て比較例1で用いた粉砕機と同じである。
The powder raw material used in Example 1 was pulverized in the same manner as in Comparative Example 1 using the collision type air flow pulverizer shown in FIG. This pulverizer is completely the same as the pulverizer used in Comparative Example 1, except that the collision surface 27 at the tip of the collision member 6 is a plane inclined at 45° with respect to the axial direction of the acceleration tube 12. It's the same.

衝突面27に衝突した(被)粉砕物は、比較例1に比べ
、加速管8口4から離れる方向へ反射されるので融着及
び凝集物は生じなかった。しかし、衝突する際に、衝撃
力が弱くなるため、粉砕効率が悪く、重量平均粒径7.
5μmの細粉(粉砕製品)は、1時間当り約4.5Kg
Lか得られなかった。
Compared to Comparative Example 1, the pulverized material that collided with the collision surface 27 was reflected in the direction away from the opening 4 of the acceleration tube 8, so that no fusion or agglomeration occurred. However, since the impact force is weak during collision, the crushing efficiency is poor and the weight average particle size is 7.
5μm fine powder (pulverized product) is approximately 4.5Kg per hour.
I couldn't get L.

また、重量平均粒径11μmの細粉(粉砕製品)を得る
場合には、1時間当り約9KgL、か得られなかった。
Further, when obtaining fine powder (pulverized product) with a weight average particle size of 11 μm, only about 9 kgL could be obtained per hour.

以上の実施例及び比較例の結果を第1表に示す。Table 1 shows the results of the above examples and comparative examples.

第 表 [発明の効果] 以上述べたように、本発明の衝突式気流粉砕機及び粉砕
方法によれば、粉砕時における融着、凝集物の発生を防
げ、装置の安定した運転を可能にする。その上、粉砕物
が粉砕室壁へ強く二次衝突するために、従来の粉砕能力
を著しく向上することができる。
Table 1 [Effects of the Invention] As described above, according to the collision type air flow crusher and crushing method of the present invention, it is possible to prevent fusion and generation of aggregates during crushing, and to enable stable operation of the device. . Moreover, since the pulverized material has a strong secondary collision with the wall of the pulverizing chamber, the pulverizing ability of the conventional method can be significantly improved.

以上により、粉砕効率のアップすなわち生産性の向上が
図れる。
With the above, it is possible to improve the pulverization efficiency, that is, the productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の衝突式気流粉砕機の概略的断面図及
び該粉砕機と分級機を組合せた粉砕方法のフローチャー
トの一例を示した図である。 第2図は、第1図のA−A視断面図で粉砕室内を表した
図である。 第3図は、加速管の要部を示した図である。 第4図は、第3図のB−B断面図で二次空気導入口の配
置例を示す図である。 第5図、第6図及び第7図は、第1図のC−0面におけ
る断面の具体例を示した図である。 第8図及び第9図は、従来例の衝突式気流粉砕機の概略
的断面図及び粉砕方法のフローチャートを示した図であ
る。
FIG. 1 is a diagram showing an example of a schematic cross-sectional view of an impingement-type air flow crusher of the present invention and a flowchart of a crushing method using a combination of the crusher and a classifier. FIG. 2 is a sectional view taken along the line AA in FIG. 1, showing the inside of the crushing chamber. FIG. 3 is a diagram showing the main parts of the accelerator tube. FIG. 4 is a sectional view taken along line BB in FIG. 3, showing an example of the arrangement of the secondary air inlet. 5, 6, and 7 are diagrams showing specific examples of cross sections taken along the C-0 plane of FIG. 1. FIGS. 8 and 9 are diagrams showing a schematic cross-sectional view of a conventional collision-type air flow crusher and a flowchart of a crushing method.

Claims (1)

【特許請求の範囲】 (1)高圧気体により粉体原料を搬送加速するための加
速管の下流に、該加速管より噴出する粉体原料を衝突力
により粉砕するための衝突部材を加速管出口に対向配置
する粉砕室を設けた衝突式気流粉砕機において、 前記加速管に複数の粉体原料供給口を設け、該複数の粉
体原料供給口と加速管出口との間に二次空気導入口を設
け、かつ、前記衝突部材の衝突面の先端部分が頂角11
0゜以上180゜未満の錐体形状であることを特徴とす
る衝突式気流粉砕機。 (2)前記加速管に設けられた複数の粉体原料供給口と
加速管出口との距離をX、複数の粉体原料供給口と二次
空気導入口との距離をYとした場合、XとYが、 0.2≦Y/X≦0.9 を満足することを特徴とする請求項1記載の衝突式気流
粉砕機。 (3)前記加速管に設けられた二次空気導入口の導入角
度Ψが加速管の軸方向に対して 10゜≦Ψ≦80゜ を満足することを特徴とする請求項1又は2記載の衝突
式気流粉砕機。 (4)請求項1〜3いずれかの衝突式気流粉砕機に具備
された加速管内で、高圧気体により粉体原料を搬送・加
速し、粉砕室内に加速管出口から吐出し、対向する衝突
部材に衝突させて粉体原料を微粒子に粉砕する粉砕方法
において、 複数の粉体原料供給口から加速管の上流に粉体原料を導
き、該複数の粉体原料供給口と加速管出口との間に二次
空気を導入し、かつ、衝突面の先端部分が頂角110゜
以上180゜未満の錐体形状を有する衝突部材に粉体原
料を衝突させて粉砕し、衝突後の粉砕物をさらに粉砕室
壁に二次衝突させて粉砕することを特徴とする粉砕方法
。 (5)前記加速管に導入する粉体原料を搬送加速する高
圧気体の風量をaNm^3/min、二次空気の風量を
bNm^3/minとした場合、aとbが 0.001≦b/a≦0.5 を満足する条件下で粉砕することを特徴とする請求項4
記載の粉砕方法。
[Scope of Claims] (1) A collision member for crushing the powder raw material ejected from the acceleration tube by collision force is installed downstream of the acceleration tube for transporting and accelerating the powder raw material by high-pressure gas at the acceleration tube outlet. In a collision type airflow crusher having a crushing chamber disposed facing each other, the acceleration tube is provided with a plurality of powder raw material supply ports, and secondary air is introduced between the plurality of powder raw material supply ports and the acceleration tube outlet. a mouth is provided, and the tip portion of the collision surface of the collision member has an apex angle of 11.
A collision type air flow crusher characterized by having a conical shape with an angle of 0° or more and less than 180°. (2) If the distance between the plurality of powder raw material supply ports provided in the acceleration tube and the acceleration tube outlet is X, and the distance between the plurality of powder raw material supply ports and the secondary air introduction port is Y, then The impingement type air flow crusher according to claim 1, wherein and Y satisfy 0.2≦Y/X≦0.9. (3) The introduction angle Ψ of the secondary air inlet provided in the acceleration tube satisfies 10°≦Ψ≦80° with respect to the axial direction of the acceleration tube. Collision type air flow crusher. (4) The powder raw material is conveyed and accelerated by high-pressure gas in the acceleration tube provided in the collision type air flow crusher according to any one of claims 1 to 3, and is discharged from the acceleration tube outlet into the crushing chamber, and the opposing collision member In the pulverization method of pulverizing the powder raw material into fine particles by colliding with the powder raw material, the powder raw material is guided upstream of the acceleration tube from a plurality of powder raw material supply ports, and the powder raw material is guided between the plural powder raw material supply ports and the acceleration tube outlet. The powder raw material is crushed by colliding with a colliding member having a conical shape in which the tip of the colliding surface has an apex angle of 110° or more and less than 180°, and the crushed material after the collision is further crushed. A grinding method characterized by grinding by secondary collision with the wall of a grinding chamber. (5) When the air volume of high-pressure gas that conveys and accelerates the powder raw material introduced into the acceleration tube is aNm^3/min, and the air volume of secondary air is bNm^3/min, a and b are 0.001≦ Claim 4, characterized in that the pulverization is carried out under conditions satisfying b/a≦0.5.
Grinding method as described.
JP2275417A 1990-10-16 1990-10-16 Collision type air flow crusher and crushing method Expired - Fee Related JP2663046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275417A JP2663046B2 (en) 1990-10-16 1990-10-16 Collision type air flow crusher and crushing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275417A JP2663046B2 (en) 1990-10-16 1990-10-16 Collision type air flow crusher and crushing method

Publications (2)

Publication Number Publication Date
JPH04150957A true JPH04150957A (en) 1992-05-25
JP2663046B2 JP2663046B2 (en) 1997-10-15

Family

ID=17555217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275417A Expired - Fee Related JP2663046B2 (en) 1990-10-16 1990-10-16 Collision type air flow crusher and crushing method

Country Status (1)

Country Link
JP (1) JP2663046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816970A (en) * 2014-01-27 2014-05-28 上海应用技术学院 Preparing device and preparing method for liquid nano solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860354A (en) * 2019-11-28 2020-03-06 湘潭大学 Sepiolite ore powder superfine crushing device based on target plate type jet mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816970A (en) * 2014-01-27 2014-05-28 上海应用技术学院 Preparing device and preparing method for liquid nano solution

Also Published As

Publication number Publication date
JP2663046B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
KR920009291B1 (en) Collision type gas current pulverizer and method for pulverizing powders
JPH0549349B2 (en)
JP3114040B2 (en) Collision type air crusher
JPH04150957A (en) Collision type jet mill and grinding method
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP2805332B2 (en) Grinding method
JP2654989B2 (en) Powder grinding method
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JP2759499B2 (en) Powder grinding method
JP2704777B2 (en) Collision type air flow crusher and crushing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JPH03296446A (en) Impact type jet grinder and grinding method
JPH0386257A (en) Collision-type jet pulverizer and crushing method
JP2704787B2 (en) Powder material grinding method
JPH07185383A (en) Circulation type pulverizing and classifying machine
JP2663041B2 (en) Collision type air crusher
JPH03213162A (en) Impact type air jet grinder and grinding method
JP3101786B2 (en) Collision type air crusher
JPH08117633A (en) Production of impact pneumatic pulverizer and static charge developing toner
JPH03109951A (en) Collision type air flow grinder and grinding method
JPH03178351A (en) Impact type air jet grinder and grinding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees