JPH08117633A - Production of impact pneumatic pulverizer and static charge developing toner - Google Patents

Production of impact pneumatic pulverizer and static charge developing toner

Info

Publication number
JPH08117633A
JPH08117633A JP6279713A JP27971394A JPH08117633A JP H08117633 A JPH08117633 A JP H08117633A JP 6279713 A JP6279713 A JP 6279713A JP 27971394 A JP27971394 A JP 27971394A JP H08117633 A JPH08117633 A JP H08117633A
Authority
JP
Japan
Prior art keywords
collision
crushed
accelerating
crushing
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6279713A
Other languages
Japanese (ja)
Inventor
Hitoshi Kanda
仁志 神田
Masakichi Kato
政吉 加藤
Yoshinori Tsuji
善則 辻
Satoshi Mitsumura
聡 三ツ村
Youko Goka
洋子 五箇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6279713A priority Critical patent/JPH08117633A/en
Publication of JPH08117633A publication Critical patent/JPH08117633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve pulverizing efficiency by introducing a material to be pulverized into an accelerating pipe to form a solid-gas mixed flow, jetting it from the outlet of the accelerating tube toward an impact member to make it collide with a spherical impact surface provided on the impact member before further making it collide with the side wall of a pulverizing chamber. CONSTITUTION: A material to be pulverized fed from a material feeding cylinder 25 reaches a material feeding port 24 formed between the inner wall of a throat part 22 of an accelerating pipe 21 and the outer wall of a high pressure gas jetting nozzle 23. High pressure gas is introduced from a gas feeding port 26 into a gas chamber 27 and passed through a gas introducing pipe 28 and jetted from the gas jetting nozzle 23 toward an accelerating pipe outlet 29 while rapidly expanded. At this time, by ejector effect generated near the throat part 22, the material to be pulverized is sucked while entrained by air, and after it is accelerated, it collides with the spherical impact surface of an impact member 30, thereby it is pulverized and dispersed and further collides with a pulverizer chamber side wall 32 and is further pulverized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジェット気流(高圧気
体)を用い、粉体原料を粉砕する衝突式気流粉砕機及び
該粉砕機を使用して静電荷像現像用トナーを製造する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a collision type air flow pulverizer for pulverizing a powder raw material using a jet air flow (high pressure gas) and a method for producing a toner for developing an electrostatic charge image using the pulverizer. .

【0002】[0002]

【従来の技術】ジェット気流を用いた衝突式気流粉砕機
は、ジェット気流に粉体原料を乗せて粒子混合気流と
し、加速管の出口より噴射させ、この粒子混合気流を加
速管の出口前方に設けた衝突部材の衝突面に衝突させ
て、その衝撃力により粉砕原料を粉砕するものである。
2. Description of the Related Art A collision type air flow crusher using a jet air flow puts a powder raw material on the jet air flow to form a particle mixed air flow and jets it from an outlet of an accelerating pipe. The crushing raw material is crushed by the collision force of the collision member provided and colliding with the collision surface.

【0003】以下にその詳細を図6の従来例の衝突式気
流粉砕機に基づいて説明する。従来の衝突式気流粉砕機
は、高圧気体供給ノズル2を接続した加速管3の出口1
3に対向して衝突部材4を設け、加速管3に供給した高
圧気体の流動により、加速管3の中途に連通させた被粉
砕物供給口1から加速管3の内部に被粉砕物を吸引し、
これを高圧気体と共に噴射して衝突部材4の衝突面に衝
突させ、その衝撃によって粉砕する様にしたものであ
る。
The details will be described below based on the conventional collision type airflow crusher shown in FIG. The conventional collision type airflow crusher has an outlet 1 of an accelerating pipe 3 to which a high pressure gas supply nozzle 2 is connected.
3, a collision member 4 is provided so that the high pressure gas supplied to the accelerating pipe 3 sucks the crushed substance into the accelerating pipe 3 from the crushed substance supply port 1 communicating with the middle of the accelerating pipe 3. Then
This is jetted together with the high-pressure gas to collide with the collision surface of the collision member 4, and is crushed by the impact.

【0004】従来、かかる粉砕機における衝突部材の衝
突面14は、図6及び図7に示す様に、粉体原料を乗せ
たジェット気流方向(加速管の軸方向)に対し垂直或は
傾斜(例えば45°)している平面状のものが用いられ
てきた(特開昭57−50554号公報及び特開昭58
−143853号公報参照)。
Conventionally, the collision surface 14 of the collision member in such a crusher is, as shown in FIGS. 6 and 7, perpendicular or inclined (in the axial direction of the accelerating tube) with respect to the direction of the jet air flow on which the powder material is placed. For example, a flat surface having an angle of 45 ° has been used (JP-A-57-50554 and JP-A-58).
-143853).

【0005】図6の粉砕機において粗い粒径を有する粉
体原料は、投入口1より加速管3に供給され、ジェット
ノズル2から吹き出されるジェット気流によって、粉体
原料は衝突部材4の衝突面14にたたきつけられ、その
衝撃力で粉砕され、排出口5より粉砕室外に排出され
る。しかしながら、衝突面14が加速管3の軸方向と垂
直な場合、ジェットノズル2から吹き出される原料粉体
と衝突面14で反射される粉体とが衝突面14の近傍で
共存する割合が高く、その為、衝突面14近傍の粉体濃
度が高くなる為に粉砕効率が良くない。
In the pulverizer shown in FIG. 6, the powder raw material having a coarse particle size is supplied to the accelerating pipe 3 through the charging port 1 and jetted from the jet nozzle 2 so that the powder raw material collides with the collision member 4. It is struck on the surface 14, crushed by its impact force, and discharged from the discharge port 5 to the outside of the crushing chamber. However, when the collision surface 14 is perpendicular to the axial direction of the accelerating tube 3, the ratio of the raw material powder blown out from the jet nozzle 2 and the powder reflected by the collision surface 14 coexisting in the vicinity of the collision surface 14 is high. Therefore, the pulverization efficiency is not good because the powder concentration near the collision surface 14 becomes high.

【0006】更に、上記粉砕装置では、衝突面14にお
ける一次衝突が主体であり、粉砕室壁6との二次衝突を
有効に利用しているとは云えない。更に、衝突面の角度
が加速管3に対し垂直の粉砕機では、熱可塑性樹脂を粉
砕するときに、衝突部材の局部発熱により融着及び凝集
物が発生し易く、装置の安定した運転が困難となり、粉
砕能力低下の原因となる。その為に粉体濃度を高くして
使用することが困難であった。
Further, in the above-mentioned crushing device, the primary collision on the collision surface 14 is the main component, and it cannot be said that the secondary collision with the crushing chamber wall 6 is effectively utilized. Further, in a crusher whose collision surface angle is perpendicular to the accelerating pipe 3, when crushing the thermoplastic resin, fusion and agglomerates are likely to occur due to local heat generation of the collision member, and stable operation of the device is difficult. And causes a decrease in crushing ability. Therefore, it was difficult to use the powder with a high powder concentration.

【0007】図7の粉砕機において、衝突面14が加速
管3の軸方向に倒して傾斜している為に、衝突面14近
傍の粉体濃度は図6の粉砕機と比較して低くなるが、粉
砕圧が分散されて低下する。更に粉砕室6の二次衝突を
有効に利用していると云えない。
In the crusher shown in FIG. 7, since the collision surface 14 is inclined and inclined in the axial direction of the acceleration tube 3, the powder concentration in the vicinity of the collision surface 14 is lower than that in the crusher shown in FIG. However, the crushing pressure is dispersed and decreases. Further, it cannot be said that the secondary collision of the crushing chamber 6 is effectively used.

【0008】図7に示す如く、衝突面14の角度が加速
管に対し45°傾斜のものでは、熱可塑性樹脂を粉砕す
るときに上記の様な問題点は少ない。しかしながら、衝
突する際に粉砕に使われる衝撃力が小さく、更に粉砕室
壁6との二次衝突による粉砕が少ないので、粉砕能力は
図6の粉砕機と比較して1/2〜1/1.5に落ちる。
As shown in FIG. 7, when the collision surface 14 is inclined at an angle of 45 ° with respect to the accelerating tube, the above problems are less likely to occur when the thermoplastic resin is crushed. However, the impact force used for crushing at the time of collision is small, and further the crushing due to the secondary collision with the crushing chamber wall 6 is small, so the crushing capacity is 1/2 to 1/1 compared with the crusher of FIG. It falls to .5.

【0009】上記問題点が解消された衝突式気流粉砕機
として、実開平1−148740号公報及び特開平1−
254266号公報に記載の粉砕機が提案されている。
実開平1−148740号公報では、図9に示す様に、
衝突部材の原料衝突面14を加速管の軸芯に対して直角
に配置し、その原料衝突面に円錐形の突起15を設ける
ことにより衝突面での反射流を防止することが提案され
ている。
As a collision type air flow crusher in which the above problems have been solved, Japanese Utility Model Laid-Open No. 148740/1989 and Japanese Unexamined Patent Publication No.
A crusher described in Japanese Patent No. 254266 has been proposed.
In Japanese Utility Model Laid-Open No. 1-148740, as shown in FIG.
It has been proposed to prevent the reflected flow on the collision surface by arranging the material collision surface 14 of the collision member at right angles to the axis of the accelerating tube and providing the material collision surface with a conical projection 15. .

【0010】又、特開平1−254266号公報では、
図8に示す様に衝突部材の衝突面の先端部分を特定の円
錐形状とすることにより、衝突面近傍の粉体濃度を低く
し、粉体室壁6と効率良く二次衝突する様にした衝突式
気流粉砕機が提案されている。
Further, in Japanese Unexamined Patent Publication No. 1-254266,
As shown in FIG. 8, by making the tip of the collision surface of the collision member a specific conical shape, the powder concentration in the vicinity of the collision surface is lowered and the secondary collision with the powder chamber wall 6 is efficiently performed. A collision-type airflow crusher has been proposed.

【0011】又、電子写真法による画像形成方法に用い
られるトナー又はトナー用着色樹脂粉体は、通常、結着
樹脂及び着色剤又は磁性体を少なくとも含有している。
トナーは、潜像担持体に形成された静電荷像を現像し、
形成されたトナー像は普通紙又はプラスチックフィルム
の如き転写材へ転写され、加熱定着方法、圧カローラ定
着手段又は加熱加圧ローラ定着手段の如き定着装置によ
って潜像担持体上のトナー像は転写材に定着される。従
ってトナーに使用される結着樹脂は、熱及び/又は圧力
が付加されると塑性変形する特性を有する。
Further, the toner or the colored resin powder for toner used in the image forming method by the electrophotographic method usually contains at least a binder resin and a colorant or a magnetic material.
The toner develops the electrostatic charge image formed on the latent image carrier,
The formed toner image is transferred to a transfer material such as plain paper or a plastic film, and the toner image on the latent image carrier is transferred to a transfer material by a fixing device such as a heat fixing method, a pressure roller fixing means or a heat pressure roller fixing means. Is fixed in. Therefore, the binder resin used for the toner has a characteristic of being plastically deformed when heat and / or pressure is applied.

【0012】現在、トナー又はトナー用着色樹脂粉体
は、結着樹脂及び着色剤又は磁性紛(必要により、更に
第三成分を含有)を少なくとも含有する混合物を溶融混
練し、溶融混練物を冷却し、冷却物を粉砕し、粉砕物を
分級して調製されている。冷却物の粉砕は、通常、機械
的衝撃式粉砕機により粗粉砕(又は中粉砕)され、次い
で粉砕粗粉をジェット気流を用いた衝突式気流粉砕機で
微粉砕している。ジェット気流を用いた衝突式気流粉砕
機は、ジェット気流で粉体原料を搬送し、粉体原料を衝
突部材に衝突させ、その衝撃力により粉砕するものであ
る。
At present, a toner or a colored resin powder for a toner is melt-kneaded with a mixture containing at least a binder resin and a colorant or magnetic powder (and optionally a third component), and the melt-kneaded product is cooled. Then, the cooled product is crushed, and the crushed product is classified. The cooled product is usually crushed (or medium crushed) by a mechanical impact crusher, and then the crushed coarse powder is finely crushed by a collision type air flow crusher using a jet stream. The collision type air flow crusher using a jet air flow conveys the powder raw material by the jet air flow, collides the powder raw material with a collision member, and pulverizes by the impact force.

【0013】従来、使用されていた粉砕機としては、上
述の図6、図7、図8又は図9に示される粉砕機が挙げ
られる。上記の様に構成された衝突式気流粉砕機を用い
て静電荷像現像用トナーを製造することで、従来の問題
点はかなり改善されるが、未だ十分ではなく、又、最近
のニーズとして、より高精細且つ高画質を実現させる為
に、トナーの小径化が望まれており、更に効率良くトナ
ーを製造する方法が待望されている。
Conventionally used crushers include the crushers shown in FIG. 6, FIG. 7, FIG. 8 or FIG. By producing an electrostatic charge image developing toner using the collision type airflow pulverizer configured as described above, the conventional problems are considerably improved, but it is not sufficient yet, and as a recent need, In order to realize higher definition and higher image quality, it is desired to reduce the diameter of the toner, and a more efficient method for producing the toner is desired.

【0014】又、トナーに要求される別のニーズとし
て、粒子形状のコントロールが必要な場合があり、特に
粒子に丸みを帯びさせたり、粒子の角を少なくする様な
要求を達成する為には、粉砕の効率を落とす様な手段に
なる場合が多い。その為、この様な粒子形状のコントロ
ールと粉砕効率向上を両立させる様な粉砕装置及び粉砕
方法が望まれている。
Further, as another demand required for the toner, there is a case where it is necessary to control the particle shape, and in particular, in order to achieve the requirement that the particles are rounded or the corners of the particles are reduced. In many cases, it becomes a means of reducing the efficiency of crushing. Therefore, there is a demand for a crushing device and a crushing method that can achieve both control of particle shape and improvement of crushing efficiency.

【0015】[0015]

【発明が解決しようとしている課題】従って本発明の目
的は、上記の様な従来技術の問題点を解決して、粉体原
料を効率良く粉砕出来る新規な衝突式気流粉砕機を提供
することにある。更に、本発明の別の目的は、上記の様
な従来技術の問題点を解決して、静電荷像現像用トナー
を効率良く製造することが出来る製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a new collision type air flow crusher capable of efficiently crushing powder raw materials. is there. Further, another object of the present invention is to solve the above problems of the prior art and to provide a manufacturing method capable of efficiently manufacturing a toner for developing an electrostatic charge image.

【0016】[0016]

【課題を解決する為の手段】上記目的は以下の本発明に
よって達成される。即ち、本発明は、高圧気体により被
粉砕物を搬送し加速する為の加速管と、被粉砕物を微粉
砕する為の粉砕室とを有する衝突式気流粉砕機におい
て、加速管の後端部には被粉砕物を加速管内に供給する
為の被粉砕物供給口を有し、上記粉砕室内には、加速管
の出口の開口面に対向して設けた球状の衝突面を有する
衝突部材が具備されており、上記粉砕室は、衝突部材で
粉砕された被粉砕物を衝突により更に粉砕する為の側壁
を有していることを特徴とする衝突式気流粉砕機、及び
該粉砕機を使用する静電荷像現像用トナーの製造方法で
ある。
The above object can be achieved by the present invention described below. That is, the present invention relates to a collision type air flow crusher having an accelerating tube for conveying and accelerating an object to be crushed by high-pressure gas, and a crushing chamber for finely crushing the object to be crushed. Has a crushed object supply port for supplying the crushed object into the accelerating tube, and a collision member having a spherical collision surface provided facing the opening surface of the exit of the accelerating tube is provided in the crushing chamber. The collision type air flow crusher, wherein the crushing chamber is provided with a side wall for further crushing the object to be crushed by the collision member by collision, and the crusher is used. And a method for producing a toner for developing an electrostatic image.

【0017】[0017]

【作用】衝突式気流粉砕機において、加速管の後端部に
被粉砕物を加速管内に供給する為の被粉砕物供給口を設
け、粉砕室内に加速管の出口の開口面に対向して設けた
球状の衝突面を有する衝突部材を設け、且つ上記粉砕室
に衝突部材で粉砕された被粉砕物を衝突により更に粉砕
する為の側壁を設けることによって、粉体原料を効率良
く粉砕出来る新規な衝突式気流粉砕機を提供することが
出来る。
In the collision type air flow crusher, a crushed material supply port for supplying the crushed object into the accelerating tube is provided at the rear end of the accelerating tube, and the crushing chamber is provided with an opening surface of the accelerating tube facing the opening surface. By providing a collision member having a spherical collision surface provided and a side wall for further crushing the crushed object crushed by the collision member in the crushing chamber, the powder raw material can be efficiently crushed. It is possible to provide a collision-type airflow crusher.

【0018】[0018]

【実施例】次に本発明を実施例に基づいて更に詳細に説
明する。 実施例1 図1は、本発明の一実施例の概略断面図及び該粉砕機を
使用した粉砕工程及び分級機による分級工程を組み合わ
せた粉砕装置のフローチャートを示した図である。図2
は、図1のA−A線における加速管スロート部と高圧気
体噴出ノズルを示す拡大断面図、図3は図1のB−B線
における高圧気体供給口と高圧気体チャンバーを示す断
面図、図4は、図1のC−C線における粉砕室と衝突部
材を示す断面図である。
EXAMPLES The present invention will be described in more detail based on examples. Example 1 FIG. 1 is a schematic cross-sectional view of an example of the present invention and a diagram showing a flow chart of a pulverizing apparatus in which a pulverizing step using the pulverizer and a classifying step by a classifier are combined. Figure 2
1 is an enlarged cross-sectional view showing the accelerating pipe throat portion and the high-pressure gas jet nozzle along line AA in FIG. 1, and FIG. 3 is a cross-sectional view showing the high-pressure gas supply port and high-pressure gas chamber along line BB in FIG. 4 is a sectional view showing the crushing chamber and the collision member taken along the line C-C in FIG. 1.

【0019】図1の粉砕機について説明すると、高圧気
体により被粉砕物を搬送加速する為の加速管21と、該
加速管に対向して設けた衝突面を有する衝突部材30を
有し、該加速管21がラバルノズル状をなし、該加速管
21のスロート部上流に高圧気体噴出ノズル23を配
し、該高圧気体噴出ノズル23の外壁とスロート部22
の内壁間に被粉砕物供給口24を設け、更に該加速管2
1の出口に接続して設けた粉砕室の軸方向断面形状が円
形状を有している。
Explaining the crusher shown in FIG. 1, it has an accelerating tube 21 for accelerating the object to be crushed by high-pressure gas, and a collision member 30 having a collision surface provided opposite to the accelerating tube. The accelerating pipe 21 has a Laval nozzle shape, and a high-pressure gas jet nozzle 23 is arranged upstream of the throat portion of the accelerating pipe 21, and the outer wall of the high-pressure gas jet nozzle 23 and the throat portion 22.
The object to be crushed supply port 24 is provided between the inner walls of the
The crushing chamber connected to the outlet of No. 1 has a circular cross section in the axial direction.

【0020】被粉砕物供給筒25より供給された被粉砕
物は、中心軸を鉛直方向に配置した加速管21の加速管
スロート部22の内壁と、中心が加速管の中心軸と同軸
上にある高圧気体噴出ノズル23の外壁との間で形成さ
れた被粉砕物供給口24へ到達する。一方、高圧気体は
高圧気体供給口26より導入され高圧気体チャンバー2
7を経て、一本好ましくは複数本の高圧気体導入管28
を通り、高圧気体噴出ノズル23より加速管出口29方
向へ向かって急激に膨脹しながら噴出する。
The crushed material supplied from the crushed material supply cylinder 25 is coaxial with the inner wall of the accelerating tube throat portion 22 of the accelerating tube 21 whose central axis is arranged in the vertical direction and the center of the accelerating tube. It reaches the object to be crushed supply port 24 formed between the outer wall of a certain high-pressure gas jet nozzle 23. On the other hand, the high-pressure gas is introduced from the high-pressure gas supply port 26 and the high-pressure gas chamber 2
7 through one, preferably a plurality of high-pressure gas introduction pipes 28
Through the high-pressure gas jet nozzle 23 toward the accelerating pipe outlet 29, and is rapidly expanded.

【0021】この時、加速管スロート部22の近傍で発
生するエゼクター効果により、被粉砕物はこれと共存し
ている気体に同伴されながら、被粉砕物供給口24より
加速管出口29方向に向けて吸引され、加速管スロート
部22において高圧気体と均一に混合されながら急加速
し、加速管出口29に対向配置された衝突部材30の衝
突面に、粉塵濃度の偏りなく均一な固気混合気流の状態
で衝突して粉砕される。
At this time, due to the ejector effect generated in the vicinity of the accelerating tube throat portion 22, the crushed material is entrained in the gas coexisting with the crushed material and directed from the crushed material supply port 24 toward the acceleration tube outlet 29. Is rapidly sucked and rapidly accelerated while being uniformly mixed with the high-pressure gas in the accelerating tube throat portion 22, and a uniform solid-gas mixture air flow is provided on the collision surface of the collision member 30 opposed to the accelerating tube outlet 29 without biasing the dust concentration. It collides in the state of and is crushed.

【0022】図1の粉砕機において、衝突部材の衝突面
が球面形状を有している。本粉砕機によれば、衝突時に
発生する衝撃力は、充分分散した個々の粒子(被粉砕
物)に与えられる為に非常に効率の良い粉砕が出来る。
衝突部材30の球状の衝突面にて粉砕された粉砕物は全
周方向に分散され、更に粉砕室側壁32と衝突部材30
表面の間で衝突を繰り返し、より粉砕効率を上昇させ、
衝突部材30後方に配設された粉砕物排出口33より排
出される。
In the crusher shown in FIG. 1, the collision surface of the collision member has a spherical shape. According to this crusher, the impact force generated at the time of collision is applied to the sufficiently dispersed individual particles (objects to be crushed), so that the crushing can be performed very efficiently.
The crushed material crushed by the spherical collision surface of the collision member 30 is dispersed in the entire circumferential direction, and further, the crushing chamber side wall 32 and the collision member 30.
Repeated collisions between the surfaces increase the grinding efficiency,
The crushed material is discharged from the crushed material discharge port 33 provided behind the collision member 30.

【0023】本発明の粉砕装置は、特定の原料供給手段
を有し、球状形状を有する衝突部材を持つことに特徴が
ある。球状の衝突部材を有した気流粉砕機は、特開平4
−210252号公報及び特開平4−210255号公
報において提案されている。特開平4−210252号
公報では、旋回流式ジェット粉砕機の粉砕ノズルの前方
に球状の衝突部材を設置した構成であり、粉砕室壁との
二次衝突の効果はなく、又、原料の供給方法が本発明の
粉砕機とは全く異なっており、衝突面により均一に分散
した状態で衝突させる効果が少ないと考えられる。
The crushing device of the present invention is characterized by having a specific raw material supply means and having a collision member having a spherical shape. An air flow crusher having a spherical collision member is disclosed in Japanese Patent Laid-Open No.
-210252 and Japanese Patent Laid-Open No. 4-210255. In Japanese Patent Laid-Open No. 4-210252, a spherical collision member is installed in front of a crushing nozzle of a swirling flow type jet crusher, and there is no effect of a secondary collision with the wall of the crushing chamber, and the raw material is supplied. The method is completely different from that of the crusher of the present invention, and it is considered that the effect of causing collision in a state of being uniformly dispersed on the collision surface is small.

【0024】又、特開平4−210255号公報では、
図6の従来の衝突式気流粉砕機に球状の衝突部材を設け
た構成が開示されているが、この粉砕機では、被粉砕物
供給口が加速管(吸込ノズル)の中途に連通されてお
り、加速管内に吸引導入された粉体原料は、被粉砕物供
給口を通過直後に、高圧気体供給ノズルより噴出する高
圧気流により、加速管出口方向に向かって流路を急激に
変更しながら分散急加速される。
Further, in Japanese Patent Laid-Open No. 4-210255,
Although a structure in which a spherical collision member is provided in the conventional collision type air flow crusher of FIG. 6 is disclosed, in this crusher, the object to be crushed supply port is communicated with the middle of the acceleration pipe (suction nozzle). , The powder material sucked into the accelerating tube is dispersed immediately after passing through the object to be crushed by the high-pressure gas jet from the high-pressure gas supply nozzle, rapidly changing the flow path toward the accelerating tube outlet. Suddenly accelerated.

【0025】この状態において、粉体原料中比較的粗粒
子のものは、その慣性力の影響から加速管低流部を、
又、比較的微粒子のものは、加速管高流部を通過してお
り、高圧気流中に均一に分散されずに、粉体原料濃度の
高い流れと低い流れに分離したまま粉体原料が対向する
衝突部材に部分的に集中して衝突することになり、粉砕
効率が低下し、処理能力の低下を引き起こす。又、長時
間の運転においては、衝突部材の部分的な摩耗が生じ易
く、トナーの様な熱可塑性樹脂を主成分とする原料を粉
砕する場合には、融着が発生し易い。
In this state, if the powder raw material has relatively coarse particles, the low flow part of the accelerating tube is affected by the inertial force,
In addition, relatively fine particles pass through the high flow part of the accelerating tube, and are not uniformly dispersed in the high-pressure air stream. The colliding member partially collides with the colliding member, which lowers the pulverizing efficiency and lowers the processing capacity. In addition, during long-time operation, partial abrasion of the collision member is likely to occur, and fusion is likely to occur when a raw material containing a thermoplastic resin as a main component such as toner is crushed.

【0026】これに対して、図1に示した本発明の粉砕
機では、高圧気体の噴出方向と被粉砕物の供給方向を同
一方向とすることにより、加速管内に粉体原料を粉塵濃
度による偏りがない様に、均一に噴出する高気圧気流中
に分散させることが出来る。その為、衝突部材に均一に
粉塵濃度の偏りなく衝突させることが出来、粉砕効率の
向上が達成出来る。
On the other hand, in the crusher of the present invention shown in FIG. 1, the jetting direction of the high-pressure gas and the feeding direction of the crushed object are made to be the same direction, so that the powder raw material is adjusted to the dust concentration in the accelerating pipe. It can be dispersed in a uniformly high-pressure air stream so that there is no bias. Therefore, it is possible to uniformly collide with the collision member without unevenness in the dust concentration, and to improve the pulverization efficiency.

【0027】加速管1の長軸方向の傾きは、好ましく
は、鉛直方向に対して0〜20°の範囲内であれば、被
粉砕物が被粉砕物供給口で閉塞することなく処理可能で
ある。被粉砕物の流動性が良好でないものは、被粉砕物
供給管の下方に滞留する場合があり、加速管1の傾きと
しては、鉛直方向に対して0〜5°であれば更に好まし
い。
If the inclination of the acceleration tube 1 in the long axis direction is preferably within the range of 0 to 20 ° with respect to the vertical direction, the crushed material can be processed without being blocked by the crushed material supply port. is there. If the fluidity of the material to be ground is not good, the material to be ground may stay below the material supply pipe of the material to be ground, and the inclination of the acceleration tube 1 is more preferably 0 to 5 ° with respect to the vertical direction.

【0028】本発明の粉砕装置で微粉砕された粉砕物の
粒子形状は、従来の衝突式気流粉体機で得られた粉砕物
に比べて角部の少ない形状になる。これは、球状の衝突
面を用いた場合、粉体は全周方向に効率良く分散され、
粉砕室側壁との二次粉砕の効果は高められるが、衝突面
上での一次粉砕の衝撃力は、従来の平面状の衝突部材に
比べ小さくなるからである。
The particle shape of the pulverized material finely pulverized by the pulverizing apparatus of the present invention has a shape with fewer corners than that of the pulverized material obtained by the conventional collision type airflow powder machine. This is because when a spherical collision surface is used, the powder is efficiently dispersed in the entire circumferential direction,
This is because the effect of the secondary crushing with the side wall of the crushing chamber is enhanced, but the impact force of the primary crushing on the collision surface is smaller than that of the conventional flat collision member.

【0029】その為、平面状の衝突部材では体積粉砕が
主となり、粉砕面形状が角ばったものになり易いが、球
状の衝突部材では衝撃力が小さい為、体積粉砕だけでは
なく、表面粉砕が起こり易く、角の取れた形状になり易
い。即ち、本発明の粉砕機では粉砕効率が高く且つ粒子
形状をコントロールすることが可能となる。
Therefore, in the case of a flat collision member, volume crushing is mainly performed, and the crushed surface shape tends to be angular. However, in the case of a spherical collision member, since the impact force is small, not only volume crushing but surface crushing is performed. It is easy to occur and tends to have a sharp corner. That is, the pulverizer of the present invention has high pulverization efficiency and can control the particle shape.

【0030】本発明において、衝突部材の設置位置は、
加速管の中心軸と衝突部材の中心を一致させる様にする
のが好ましい。又、球状の衝突部材の衝突面と加速管出
口との最近接距離は、衝突部材と粉砕室側壁との最近接
距離よりも長い方が好ましい。この時、粉砕室側壁と二
次衝突が有効に利用出来る。又、衝突部材のサイズとし
ては、衝突部材の直径が加速管出口の直径よりも大きい
ほうが好ましい。又、粉砕室の断面形状は円筒状に限定
されるものではなく、適宜設定すればよい。
In the present invention, the installation position of the collision member is
It is preferable that the central axis of the accelerating tube and the center of the collision member are aligned with each other. The closest distance between the collision surface of the spherical collision member and the exit of the acceleration tube is preferably longer than the closest distance between the collision member and the side wall of the grinding chamber. At this time, the secondary collision with the side wall of the crushing chamber can be effectively used. Further, as the size of the collision member, it is preferable that the diameter of the collision member is larger than the diameter of the acceleration tube outlet. Further, the sectional shape of the crushing chamber is not limited to the cylindrical shape, and may be set appropriately.

【0031】実施例2 図5は、本発明の他の好ましい実施例の概略断面図及び
該粉砕機を使用した粉砕工程及び分級機による分級工程
を組み合わせた粉砕装置のフローチャートを示した図で
ある。図1の粉砕機と同じ部材については、同じ符号で
ある。図5の粉砕機について説明すると、衝突部材の衝
突面が、球状の第一の衝突面16と球状の第二の衝突面
17とを有している。その為、加速管から噴出した固気
混合流は、衝突部部材上の第一の衝突面16で一次粉砕
され、更にその外周に形成された第二の衝突面17で二
次粉砕された後、粉砕室側壁32で三次粉砕される。図
1の粉砕機と比較して、第二粉砕面での二次衝突による
粉砕効果により、より優れた粉砕効率の向上が図れる。
この実施例では衝突面が2段の場合を示したが、これに
限ったものではない。
Example 2 FIG. 5 is a schematic sectional view of another preferred embodiment of the present invention and a diagram showing a flow chart of a pulverizing apparatus which combines a pulverizing step using the pulverizer and a classifying step by a classifier. . The same members as those of the crusher of FIG. 1 have the same reference numerals. Explaining the crusher of FIG. 5, the collision surface of the collision member has a spherical first collision surface 16 and a spherical second collision surface 17. Therefore, the solid-gas mixture flow ejected from the accelerating tube is first pulverized by the first collision surface 16 on the collision member and then second pulverized by the second collision surface 17 formed on the outer periphery thereof. Thirdly crushed by the side wall 32 of the crushing chamber. Compared with the crusher shown in FIG. 1, the crushing effect by the secondary collision on the second crushing surface can further improve the crushing efficiency.
In this embodiment, the case where the collision surface has two stages is shown, but the present invention is not limited to this.

【0032】次に本発明の粉砕機を使用して、静電荷像
現像用トナーの粉砕を行う場合の具体例を以下に示す。 実施例3 実施例1(図1)に示す粉砕機を使用した。該衝突式気
流粉砕機は、衝突面の形状が直径で60mmφの真球状
であり、衝突部材と加速管出口との最近接距離は50m
mであり、衝突部材と粉砕室側壁との距離は30mmで
行った。又、加速管の中心軸と衝突部材の中心は一致し
ていた。鉛直線を基準とした加速管の長軸方向の傾きは
実質的に0°で行い、粉砕室形状は円筒状のものを用い
た。
Next, specific examples of the case where the toner for developing an electrostatic charge image is pulverized by using the pulverizer of the present invention are shown below. Example 3 The crusher shown in Example 1 (FIG. 1) was used. The collision type air flow crusher has a collision surface of a spherical shape having a diameter of 60 mmφ, and the closest distance between the collision member and the acceleration pipe outlet is 50 m.
The distance between the collision member and the side wall of the crushing chamber was 30 mm. Further, the center axis of the accelerating tube and the center of the collision member coincided with each other. The inclination of the acceleration tube with respect to the vertical line in the long axis direction was substantially 0 °, and the crushing chamber had a cylindrical shape.

【0033】粉砕には、圧力0.59Mpa、風力6.
0Nm3/minの圧縮エアーを用いた。粉砕原料とし
ては、静電荷像現像用トナーのハンマーミル粗粉砕(1
mmスクリーン通過品)を使用し、定量供給機にて該粉
砕原料を30kg/hrの割合で図1のフローチャート
に従って分級機に供給し、分級された粗粉を前記条件の
粉砕機に導入し、粉砕した後再度分級機に循環し閉回路
粉砕を行った。その結果、分級された細粉として重量平
均径8.0μmのトナー用微粉砕品を得た。得られた微
粉砕品を電子顕微鏡で観察したところ、角ばった部分が
少なかった。尚、融着物の発生はなく安定した運転が出
来た。
For crushing, pressure 0.59 Mpa, wind force 6.
Compressed air of 0 Nm 3 / min was used. As a pulverization raw material, a hammer mill coarse pulverization (1
mm screen passing product), the pulverized raw material is supplied to the classifier at a rate of 30 kg / hr according to the flowchart of FIG. 1 with a constant amount feeder, and the classified coarse powder is introduced into the pulverizer under the above conditions, After crushing, it was circulated through the classifier again for closed circuit crushing. As a result, a finely pulverized product for toner having a weight average diameter of 8.0 μm was obtained as classified fine powder. When the resulting finely pulverized product was observed with an electron microscope, there were few angular portions. It should be noted that stable operation was possible without the generation of fused substances.

【0034】微粉砕品又はトナーの粒度分布は種々の方
法によって測定出来るが、本発明においてはコールター
マルチサイザー(コールター社製)を用いた。電解液
は、1級塩化ナトリウムを用いて、約1%NaCl水溶
液を調製する。例えば、ISOTONR−(コールター
サイエンティフィクジャパン社製)が使用出来る。測定
方法としては、前記電解質水溶液100〜150ml中
に分散剤として界面活性剤、好ましくはアルキベンゼン
スルホン酸塩を0.1〜5ml加え、更に測定資料を2
〜20mg加える。資料を懸濁した電解液は、超音波分
散器で約1〜3分間分散処理を行い、前記測定装置によ
りアパーチャーとして100μmのアパーチャーを用い
て、トナーの体積及び個数を測定して体積分布と個数分
布とを算出した。それから、本発明に係るところの体積
分布から求めた重量基準の重量平均粒径を求めた。
The particle size distribution of the finely pulverized product or toner can be measured by various methods. In the present invention, Coulter Multisizer (manufactured by Coulter Co.) is used. As the electrolytic solution, about 1% NaCl aqueous solution is prepared using first-grade sodium chloride. For example, ISOTONR- (manufactured by Coulter Scientific Japan Co.) can be used. As a measuring method, a surfactant, preferably 0.1 to 5 ml of an alkylbenzene sulfonate as a dispersant is added to 100 to 150 ml of the above-mentioned aqueous electrolyte solution, and the measurement data is 2
Add ~ 20 mg. The electrolytic solution in which the material is suspended is subjected to dispersion treatment for about 1 to 3 minutes with an ultrasonic disperser, and the volume and number of toner are measured using the aperture of 100 μm as an aperture with the above-mentioned measuring device to measure the volume distribution and number. And the distribution was calculated. Then, the weight-based weight average particle diameter obtained from the volume distribution according to the present invention was obtained.

【0035】実施例4 実施例2(図5)に示す粉砕機を使用した。該衝突式気
流粉砕機は、第一衝突面の直径が40mm、第二衝突面
の直径が80mmであり、第一衝突面の先端と加速管出
口との最近接距離は30mmであり、第二衝突面の端部
と粉砕室側壁との距離は20mmで行った。又、加速管
の中心軸と衝突部材の中心は一致していた。鉛直線を基
準とした加速管の長軸方向の傾きは実質的に0°で行
い、粉砕室形状は円筒状のものを用いた。
Example 4 The crusher shown in Example 2 (FIG. 5) was used. The collision type airflow crusher has a diameter of the first collision surface of 40 mm, a diameter of the second collision surface of 80 mm, and a closest distance between the tip of the first collision surface and the outlet of the acceleration tube is 30 mm. The distance between the end of the collision surface and the side wall of the crushing chamber was 20 mm. Further, the center axis of the accelerating tube and the center of the collision member coincided with each other. The inclination of the acceleration tube with respect to the vertical line in the long axis direction was substantially 0 °, and the crushing chamber had a cylindrical shape.

【0036】粉砕には、圧力0.59Mpa、風力6.
0Nm3/minの圧縮エアーを用いた。粉砕原料とし
ては、実施例1と同じ静電荷像現像用トナーのハンマー
ミル粗粉砕(1mmスクリーン通過品)を使用し、定量
供給機にて該粉砕原料を35kg/hrの割合で図5の
フローチャートに従って分級機に供給し、分級された粗
粉を前記条件の粉砕機に導入し、粉砕した後再度分級機
に循環し閉回路粉砕を行った。その結果、分級された細
粉として重量平均径8.0μmのトナー用微粉砕品を得
た。得られた微粉砕品を電子顕微鏡で観察したところ、
角ばった部分が少なかった。尚、融着物の発生はなく安
定した運転が出来た。
For the pulverization, a pressure of 0.59 Mpa and a wind force of 6.
Compressed air of 0 Nm 3 / min was used. As the pulverization raw material, the same hammer mill coarse pulverization (1 mm screen passing product) of the toner for developing an electrostatic charge image as in Example 1 was used, and the pulverization raw material was flown at a rate of 35 kg / hr by a constant quantity feeder. According to the procedure described above, the classified coarse powder was introduced into the pulverizer under the above conditions, pulverized, and then circulated through the classifier again for closed circuit pulverization. As a result, a finely pulverized product for toner having a weight average diameter of 8.0 μm was obtained as classified fine powder. When the obtained finely pulverized product was observed with an electron microscope,
There were few angular parts. It should be noted that stable operation was possible without the generation of fused substances.

【0037】比較例1 実施例3と同様のトナー粗粉物を用いて、図6に示す衝
突式気流粉砕機で粉砕した。該衝突式気流粉砕機は、衝
突面の形状が加速管の長軸方向に対して垂直な平面状の
ものを用いた。衝突部材の直径は60mmであり、衝突
面と加速管出口との距離は50mmであり、粉砕室壁と
の距離は30mmであり、粉砕室形状は箱型で行った。
Comparative Example 1 The same toner coarse powder as in Example 3 was used to pulverize with a collision type air flow pulverizer shown in FIG. The collision-type airflow crusher used had a collision surface in a plane shape perpendicular to the long axis direction of the acceleration tube. The diameter of the collision member was 60 mm, the distance between the collision surface and the outlet of the acceleration tube was 50 mm, the distance from the crushing chamber wall was 30 mm, and the crushing chamber was shaped like a box.

【0038】粉砕には、圧力0.59Mpa、風力6.
0Nm3/minの圧縮エアーを用いた。粉砕原料とし
ては、静電荷像現像用トナーのハンマーミル粗粉砕(1
mmスクリーン通過品)を使用し、定量供給機にて該粉
砕原料を15kg/hrの割合で図6のフローチャート
に従って分級機に供給し、分級された粗粉を前記条件の
粉砕機に導入し、粉砕した後再度分級機に循環し閉回路
粉砕を行った。その結果、分級された細粉として重量平
均径8.1μmのトナー用微粉砕品を得た。
For crushing, a pressure of 0.59 Mpa and a wind force of 6.
Compressed air of 0 Nm 3 / min was used. As a pulverization raw material, a hammer mill coarse pulverization (1
mm screen passing product), the crushing raw material is supplied to the classifier at a rate of 15 kg / hr according to the flowchart of FIG. 6 by a constant quantity feeder, and the classified coarse powder is introduced into the crusher under the above conditions, After crushing, it was circulated through the classifier again for closed circuit crushing. As a result, a finely pulverized product for toner having a weight average diameter of 8.1 μm was obtained as classified fine powder.

【0039】得られた微粉砕品を電子顕微鏡で観察した
ところ、角ばった部分が実施例3及び4に比較して多か
った。又、供給量を15kg/hr以上に増やすと衝突
部材上で粉砕物の融着物及び凝集物が生じ始め、その為
に融着物が加速管の原料投入口を詰まらせる場合があ
り、安定した運転が出来なかった。
When the finely pulverized product obtained was observed with an electron microscope, the number of angular portions was larger than in Examples 3 and 4. Further, when the supply amount is increased to 15 kg / hr or more, fusion products and agglomerates of the pulverized material will start to be generated on the collision member, which may cause the fusion product to clog the raw material charging port of the accelerating tube, which results in stable operation. I couldn't.

【0040】比較例2 実施例3と同様のトナー粗粉物を用いて、図7に示す衝
突式気流粉砕機で粉砕した。該衝突式気流粉砕機は、衝
突面の形状が加速管の長軸方向に対して45°傾斜させ
た平面状のものを用いた。衝突部材の直径は60mmで
あり、衝突面と加速管出口との距離は50mmであり、
粉砕室壁との距離は30mmであり、粉砕室形状は箱型
で行った。
Comparative Example 2 The same coarse toner powder as in Example 3 was used and pulverized by the collision type air flow pulverizer shown in FIG. The collision-type airflow crusher used was a planar one having a collision surface inclined by 45 ° with respect to the long axis direction of the acceleration tube. The diameter of the collision member is 60 mm, the distance between the collision surface and the exit of the acceleration tube is 50 mm,
The distance from the crushing chamber wall was 30 mm, and the crushing chamber was box-shaped.

【0041】粉砕には、圧力0.59Mpa、風力6.
0Nm3/minの圧縮エアーを用いた。粉砕原料とし
ては、静電荷像現像用トナーのハンマーミル粗粉砕(1
mmスクリーン通過品)を使用し、定量供給機にて該粉
砕原料を10kg/hrの割合で図7のフローチャート
に従って分級機に供給し、分級された粗粉を前記条件の
粉砕機に導入し、粉砕した後再度分級機に循環し閉回路
粉砕を行った。その結果、分級された細粉として重量平
均径8.1μmのトナー用微粉砕品を得た。得られた微
粉砕品を電子顕微鏡で観察したところ、角ばった部分が
実施例3及び4に比較して多かった。尚、融着物の発生
はなかったが、粉砕処理量が実施例3及び4に比較して
極端に少なかった。
For crushing, pressure 0.59 Mpa, wind force 6.
Compressed air of 0 Nm 3 / min was used. As a pulverization raw material, a hammer mill coarse pulverization (1
mm screen passing product), the pulverized raw material is supplied to the classifier at a rate of 10 kg / hr according to the flow chart of FIG. 7 by a constant amount feeder, and the classified coarse powder is introduced into the pulverizer under the above conditions, After crushing, it was circulated through the classifier again for closed circuit crushing. As a result, a finely pulverized product for toner having a weight average diameter of 8.1 μm was obtained as classified fine powder. When the obtained finely pulverized product was observed with an electron microscope, the number of angular portions was larger than in Examples 3 and 4. Although no fusion product was generated, the amount of pulverization treatment was extremely small as compared with Examples 3 and 4.

【0042】比較例3 実施例3と同様のトナー粗粉物を用いて、図8に示す衝
突式気流粉砕機で粉砕した。該衝突式気流粉砕機は衝突
面の形状が160°の円錐形状のものを用いた。衝突部
材の直径は60mmであり、衝突面と加速管出口との距
離は50mmであり、粉砕室壁との距離は30mmであ
り、粉砕室形状は箱型で行った。粉砕には、圧力0.5
9Mpa、風力6.0Nm3/minの圧縮エアーを用
いた。粉砕原料としては、静電荷像現像用トナーのハン
マーミル粗粉砕(1mmスクリーン通過品)を使用し、
定量供給機にて該粉砕原料を20kg/hrの割合で図
8のフローチャートに従って分級機に供給し、分級され
た粗粉を前記条件の粉砕機に導入し、粉砕した後再度分
級機に循環し閉回路粉砕を行った。その結果、分級され
た細粉として重量平均径8.0μmのトナー用微粉砕品
を得た。得られた微粉砕品を電子顕微鏡で観察したとこ
ろ、角ばった部分が実施例3及び4に比較して多かっ
た。尚、融着物の発生はなかった。
Comparative Example 3 The same toner coarse powder as in Example 3 was used and pulverized by the collision type air flow pulverizer shown in FIG. The collision type airflow crusher used was a conical shape having a collision surface of 160 °. The diameter of the collision member was 60 mm, the distance between the collision surface and the outlet of the acceleration tube was 50 mm, the distance from the crushing chamber wall was 30 mm, and the crushing chamber was shaped like a box. For crushing, pressure 0.5
Compressed air with a wind power of 6.0 Nm 3 / min was used at 9 Mpa. As a pulverization raw material, a hammer mill coarse pulverization (1 mm screen passing product) of an electrostatic charge image developing toner is used,
The pulverized raw material is supplied to the classifier at a rate of 20 kg / hr by a constant quantity feeder according to the flowchart of FIG. 8, and the classified coarse powder is introduced into the pulverizer under the above conditions, pulverized, and then circulated to the classifier again. Closed circuit crushing was performed. As a result, a finely pulverized product for toner having a weight average diameter of 8.0 μm was obtained as classified fine powder. When the obtained finely pulverized product was observed with an electron microscope, the number of angular portions was larger than in Examples 3 and 4. No fused substance was generated.

【0043】比較例4 実施例3と同様のトナー粗粉物を用いて、図9に示す衝
突式気流粉砕機で粉砕した。該衝突式気流粉砕機は、衝
突部材の原料衝突面が加速管の軸芯に対して直角であ
り、その原料衝突面に頂角50°の円錐状の突起を設け
たものを用いた。衝突部材の直径は60mmであり、衝
突面と加速管出口との距離は50mmであり、粉砕室壁
との距離は30mmであり、粉砕室形状は箱型で行っ
た。粉砕には、圧力0.59Mpa、風力6.0Nm3
/minの圧縮エアーを用いた。粉砕原料としては、静
電荷像現像用トナーのハンマーミル粗粉砕(1mmスク
リーン通過品)を使用し、定量供給機にて該粉砕原料を
20kg/hrの割合で図9のフローチャートに従って
分級機に供給し、分級された粗粉を前記条件の粉砕機に
導入し、粉砕した後再度分級機に循環し閉回路粉砕を行
った。その結果、分級された細粉として重量平均径8.
0μmのトナー用微粉砕品を得た。
Comparative Example 4 The same toner coarse powder as in Example 3 was used to pulverize with a collision type air flow pulverizer shown in FIG. The collision-type airflow crusher used was one in which the raw material collision surface of the collision member was perpendicular to the axis of the accelerating tube, and the raw material collision surface was provided with a conical projection having an apex angle of 50 °. The diameter of the collision member was 60 mm, the distance between the collision surface and the outlet of the acceleration tube was 50 mm, the distance from the crushing chamber wall was 30 mm, and the crushing chamber was shaped like a box. For crushing, pressure 0.59 Mpa, wind force 6.0 Nm 3
/ Min of compressed air was used. As a pulverization raw material, a hammer mill coarse pulverization (1 mm screen passing product) of a toner for developing an electrostatic charge image is used, and the pulverization raw material is supplied to a classifier at a rate of 20 kg / hr by a constant amount supply device according to the flowchart of FIG. Then, the classified coarse powder was introduced into the crusher under the above conditions, crushed, and then circulated through the classifier again for closed circuit crushing. As a result, the weight average diameter of the finely divided powder was 8.
A finely pulverized product for toner of 0 μm was obtained.

【0044】得られた微粉砕品を電子顕微鏡で観察した
ところ、角ばった部分が実施例3及び4に比較して多か
った。尚、粗大融着物の発生は認められなかったが、1
時間運転後衝突部材を点検したところ、原料衝突面にう
っすらと粉砕物の融着物の層が付着しているのが確認さ
れた。以上の実施例3〜4、比較例1〜4の結果をまと
めたものを下記表1に示す。
When the obtained finely pulverized product was observed with an electron microscope, the number of angular portions was larger than in Examples 3 and 4. In addition, the generation of a coarse fused substance was not observed, but 1
When the collision member was inspected after the time operation, it was confirmed that a layer of the fused material of the pulverized material was slightly attached to the raw material collision surface. Table 1 below summarizes the results of Examples 3 to 4 and Comparative Examples 1 to 4 described above.

【0045】表1 ※:上記表1において、粉砕効率比は比較例1の供給量
を1.0とした時の各条件での供給量を比として表し
た。
Table 1 *: In Table 1 above, the pulverization efficiency ratio was expressed as the ratio of the supply amount under each condition when the supply amount of Comparative Example 1 was 1.0.

【0046】[0046]

【発明の効果】本発明によれば、加速管内に被粉砕物を
粉塵濃度の偏りがない様に均一に分散させて導入し、固
気混合流を形成させ、この様な固気混合流が加速管出口
から対向する衝突部材に向かって分散良く噴出し、衝突
部材に設けた球状の衝突面に衝突した後全周方向に分散
され、更に粉砕室側壁に衝突することにより、粉砕効率
の向上が図れる。特に、静電荷像現像用トナー原料を微
粉砕する場合において、粉砕物の融着物及び凝集物の発
生を防止し、衝突部材の衝突面及び加速管内壁等の装置
内摩耗を低減出来、且つ効率的に粉砕することが可能と
なると共に、粒子形状のコントロールも行うことが出来
る。
According to the present invention, the material to be pulverized is uniformly dispersed and introduced into the accelerating tube so that there is no bias in the dust concentration, and a solid-gas mixed flow is formed. Improving pulverization efficiency by spraying from the exit of the accelerating tube toward the opposing collision member with good dispersion, colliding with the spherical collision surface provided on the collision member, then dispersed in the entire circumferential direction, and further colliding with the side wall of the crushing chamber. Can be achieved. In particular, in the case of finely pulverizing the toner image developing toner raw material, it is possible to prevent the generation of fused substances and agglomerates of the pulverized substance, reduce the abrasion of the collision surface of the collision member, the inner wall of the acceleration tube and the like in the apparatus, and the efficiency. In addition to being able to pulverize the particles, it is possible to control the particle shape.

【0047】[0047]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝突式気流粉砕機の概略的断面図であ
る。
FIG. 1 is a schematic cross-sectional view of a collision type airflow crusher of the present invention.

【図2】図−1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図−1のB−B断面図である。FIG. 3 is a sectional view taken along line BB of FIG.

【図4】図−1のC−C断面図である。FIG. 4 is a sectional view taken along line CC of FIG.

【図5】本発明の他の衝突式気流粉砕機の概略断面図で
ある。
FIG. 5 is a schematic sectional view of another collision type airflow crusher of the present invention.

【図6】従来例の衝突式気流粉砕機を示す概略断面図で
ある。
FIG. 6 is a schematic cross-sectional view showing a conventional collision type airflow crusher.

【図7】別の従来例の衝突式気流粉砕機を示す概略断面
図である。
FIG. 7 is a schematic cross-sectional view showing another conventional collision type airflow crusher.

【図8】別の従来例の衝突式気流粉砕機を示す概略断面
図である。
FIG. 8 is a schematic cross-sectional view showing another conventional collision type airflow crusher.

【図9】別の従来例の衝突式気流粉砕機を示す概略断面
図である。
FIG. 9 is a schematic cross-sectional view showing another conventional collision type airflow crusher.

【符号の説明】[Explanation of symbols]

1‥‥被粉砕物供給口 2‥‥高圧気体供給ノズル 3‥‥加速管 4‥‥衝突部材 5‥‥排出口 6‥‥粉砕室側壁 7‥‥粉体原料 8‥‥粉砕室 13‥‥加速管出口 14‥‥衝突面 15‥‥突出中央部 16‥‥第一衝突面 17‥‥第二衝突面 21‥‥加速管 22‥‥加速管スロート部 23‥‥高圧気体噴出ノズル 24‥‥被粉砕物供給口 25‥‥被粉砕物供給筒 26‥‥高圧気体供給口 27‥‥高圧気体チャンバー 28‥‥高圧気体導入管 29‥‥加速管出口 30‥‥衝突部材 32‥‥粉砕室側壁 33‥‥粉砕室排出口 34‥‥粉砕室 35‥‥衝突部材支持体 1 ・ ・ ・ Material supply port 2 ・ ・ ・ High pressure gas supply nozzle 3 ・ ・ ・ Accelerator tube 4 ・ ・ ・ Colliding member 5 ・ ・ ・ Discharge port 6 ・ ・ ・ Grinding chamber side wall 7 ・ ・ ・ Powder raw material 8 ・ ・ ・ Grinding chamber 13 ・ ・ ・Accelerator pipe outlet 14 Collision surface 15 Protruding central portion 16 First collision surface 17 Second collision surface 21 Acceleration tube 22 Acceleration tube throat section 23 High pressure gas jet nozzle 24 Milled object supply port 25 ... Grinded object supply tube 26 ... High-pressure gas supply port 27 ... High-pressure gas chamber 28 ... High-pressure gas inlet tube 29 ... Accelerator tube outlet 30 ... Colliding member 32 ... Grinding chamber side wall 33: Grinding chamber discharge port 34: Grinding chamber 35: Collision member support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三ツ村 聡 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 五箇 洋子 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── (72) Inventor Satoshi Mitsumura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yoko 3-5-30 Shimomaruko, Ota-ku, Tokyo Canon Within the corporation

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高圧気体により被粉砕物を搬送し加速す
る為の加速管と、被粉砕物を微粉砕する為の粉砕室とを
有する衝突式気流粉砕機において、加速管の後端部には
被粉砕物を加速管内に供給する為の被粉砕物供給口を有
し、上記粉砕室内には、加速管の出口の開口面に対向し
て設けた球状の衝突面を有する衝突部材が具備されてお
り、上記粉砕室は、衝突部材で粉砕された被粉砕物を衝
突により更に粉砕する為の側壁を有していることを特徴
とする衝突式気流粉砕機。
1. A collision type air flow crusher having an accelerating tube for conveying and accelerating an object to be crushed by a high pressure gas, and a crushing chamber for finely crushing the object to be crushed. Has a crushed object supply port for supplying the crushed object into the accelerating tube, and the crushing chamber is provided with a collision member having a spherical collision surface facing the opening surface of the outlet of the accelerating tube. The collision type airflow crusher is characterized in that the crushing chamber has a side wall for further crushing the object to be crushed by the collision member by collision.
【請求項2】 被粉砕物供給口が、高圧気体噴出ノズル
の外壁と加速管のスロート部内壁間に設られていること
を特徴とする請求項1に記載の衝突式気流粉砕機。
2. The collision type airflow crusher according to claim 1, wherein the material to be crushed supply port is provided between the outer wall of the high pressure gas jet nozzle and the inner wall of the throat portion of the accelerating pipe.
【請求項3】 加速管が、鉛直線を基準にして加速管の
長軸方向の傾きが0〜20°となる様に設置されている
請求項1に記載の衝突式気流粉砕機。
3. The collision type airflow crusher according to claim 1, wherein the acceleration tube is installed such that the inclination of the acceleration tube in the long axis direction is 0 to 20 ° with respect to the vertical line.
【請求項4】 加速管が、鉛直線を基準にして加速管の
長軸方向の傾きが0〜5°となる様に設置されている請
求項1に記載の衝突式気流粉砕機。
4. The collision type airflow crusher according to claim 1, wherein the acceleration tube is installed so that the inclination of the acceleration tube in the long axis direction is 0 to 5 ° with respect to the vertical line.
【請求項5】 結着樹脂及び着色剤を少なくとも含有す
る混合物を溶融混練し、混練物を冷却し、冷却物を粉砕
手段によって粉砕して粉砕物を得、得られた粉砕物を衝
突式気流粉砕手段により微粉砕して、生成した微粉砕物
から静電荷像現像用トナーを製造する方法において、前
記衝突式気流粉砕手段が、高圧気体により供給された被
粉砕物を搬送し加速する為の加速管と、被粉砕物を微粉
砕する為の粉砕室を有し、加速管の後端部には被粉砕物
を加速管内に供給する為の被粉砕物供給口を有し、上記
粉砕室内には、加速管の出口の開口面に対向して設けた
球状の衝突面を有する衝突部材が具備されており、上記
粉砕室は、衝突部材で粉砕された被粉砕物を衝突により
更に粉砕する為の側壁を有していることを特徴とする静
電荷像現像用トナーの製造方法。
5. A mixture containing at least a binder resin and a colorant is melt-kneaded, the kneaded product is cooled, and the cooled product is pulverized by a pulverizing means to obtain a pulverized product. In the method for producing a toner for developing an electrostatic charge image from a finely pulverized product produced by finely pulverizing the product by a pulverizing means, the collision type air flow pulverizing means conveys and accelerates an object to be pulverized supplied by a high pressure gas. The crushing chamber has an accelerating tube and a crushing chamber for finely crushing the crushed object, and has a crushed object supply port for supplying the crushed object into the accelerating tube at the rear end of the accelerating tube. Is provided with a collision member having a spherical collision surface provided facing the opening surface of the outlet of the acceleration tube, and the crushing chamber further crushes the object crushed by the collision member by collision. For developing an electrostatic charge image, characterized by having a side wall for Manufacturing method.
【請求項6】 被粉砕物供給口が、高圧気体噴出ノズル
の外壁と加速管のスロート部内壁間に設けられているこ
とを特徴とする請求項5に記載の静電荷像現像用トナー
の製造方法。
6. The toner for developing an electrostatic charge image according to claim 5, wherein the pulverized material supply port is provided between the outer wall of the high-pressure gas jet nozzle and the inner wall of the throat portion of the accelerating tube. Method.
【請求項7】 加速管が、鉛直線を基準にして加速管の
長軸方向の傾きが0〜20°となる様に設置されている
請求項5に記載の静電荷像現像用トナーの製造方法。
7. The toner for developing an electrostatic charge image according to claim 5, wherein the accelerating tube is installed such that the inclination of the accelerating tube in the long axis direction is 0 to 20 ° with respect to the vertical line. Method.
【請求項8】 加速管が、鉛直線を基準にして加速管の
長軸方向の傾きが0〜5°となる様に設置されている請
求項5に記載の静電荷像現像用トナーの製造方法。
8. The toner for developing an electrostatic charge image according to claim 5, wherein the accelerating tube is installed such that the inclination of the accelerating tube in the long axis direction is 0 to 5 ° with respect to the vertical line. Method.
JP6279713A 1994-10-20 1994-10-20 Production of impact pneumatic pulverizer and static charge developing toner Pending JPH08117633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279713A JPH08117633A (en) 1994-10-20 1994-10-20 Production of impact pneumatic pulverizer and static charge developing toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279713A JPH08117633A (en) 1994-10-20 1994-10-20 Production of impact pneumatic pulverizer and static charge developing toner

Publications (1)

Publication Number Publication Date
JPH08117633A true JPH08117633A (en) 1996-05-14

Family

ID=17614848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279713A Pending JPH08117633A (en) 1994-10-20 1994-10-20 Production of impact pneumatic pulverizer and static charge developing toner

Country Status (1)

Country Link
JP (1) JPH08117633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866581B2 (en) 2004-02-10 2011-01-11 Kao Corporation Method of manufacturing toner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866581B2 (en) 2004-02-10 2011-01-11 Kao Corporation Method of manufacturing toner

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
JP3114040B2 (en) Collision type air crusher
JPH08117633A (en) Production of impact pneumatic pulverizer and static charge developing toner
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2663046B2 (en) Collision type air flow crusher and crushing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP2654989B2 (en) Powder grinding method
JP2759499B2 (en) Powder grinding method
JP2704787B2 (en) Powder material grinding method
JP3101786B2 (en) Collision type air crusher
JP2805332B2 (en) Grinding method
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP3308802B2 (en) Toner manufacturing method and toner manufacturing system
JPH08182938A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH08112543A (en) Pulverizer
JPH07289933A (en) Grinder
JPH03296446A (en) Impact type jet grinder and grinding method
JPH0386257A (en) Collision-type jet pulverizer and crushing method
JPH0651130B2 (en) Collision type airflow crusher and crushing method
JPH0651131B2 (en) Collision type airflow crusher and crushing method
JPH08103684A (en) Impact type pneumatic pulverizer