JPH07289933A - Grinder - Google Patents

Grinder

Info

Publication number
JPH07289933A
JPH07289933A JP15781994A JP15781994A JPH07289933A JP H07289933 A JPH07289933 A JP H07289933A JP 15781994 A JP15781994 A JP 15781994A JP 15781994 A JP15781994 A JP 15781994A JP H07289933 A JPH07289933 A JP H07289933A
Authority
JP
Japan
Prior art keywords
crushing
collision
nozzle
collision member
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15781994A
Other languages
Japanese (ja)
Inventor
Hitoshi Kanda
仁志 神田
Masakichi Kato
政吉 加藤
Satoshi Mitsumura
聡 三ツ村
Youko Goka
洋子 五箇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15781994A priority Critical patent/JPH07289933A/en
Publication of JPH07289933A publication Critical patent/JPH07289933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To enhance the grinding efficiency by effectively utilizing a grinding energy by forming the collision surface of the collision member arranged in front of the ejecting direction of compressed air and opposed to a grinding nozzle from a protruding central part and an outer peripheral collision surface. CONSTITUTION:In a grinder, compressed air is ejected to the raw material to be ground introduced into a fluidized bed grinding chamber from a grinding nozzle 5 to finely grind the raw material to be ground. A collision member 9 is arranged in front of the ejecting direction of compressed air in opposed relation to the grinding nozzle 5. In this case, the collision surface of the collision member 9 is formed from a protruding central part 11 and an outer peripheral collision surface 12. When the vertical angle of the protruding central part 11 is set to alpha and the angle of inclination to the vertical surface of the center axis in the grinding nozzle 5 of the outer peripheral collision surface 12 is set to beta deg., these angles alpha deg., beta deg. satisfy O<alpha<90, beta<>O and 30<=alpha+2beta<=90. By this constitution, a grinding energy is effectively utilized to enhance the grinding efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジェット気流を用いた
流動層型ジェットミル又は旋回流式ジェットミルの改良
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving a fluidized bed type jet mill or a swirling flow type jet mill using a jet stream.

【0002】[0002]

【従来の技術】流動層型ジェットミルでは、一般に、圧
縮空気を粉砕ノズルより噴射させ、その高速空気流のエ
ネルギーにより粒子相互の衝突を起こして、被粉砕物を
粉砕し、その後に必要に応じて分級機により粉砕された
粒子を分級して、目的とする粉砕粒径を有する粒子を得
ている。又、旋回流式ジェットミルでは、、一般に、旋
回粉砕室を有し、該旋回粉砕室に圧縮空気を粉砕ノズル
より噴射させ、その高速旋回空気流のエネルギーによ
り、粒子相互の衝突を起こして被粉砕物を粉砕し、その
後、必要に応じて分級機により粉砕された粒子を分級
し、目的とする粉砕粒径を有する粒子を得ている。
2. Description of the Related Art In a fluidized bed type jet mill, generally, compressed air is jetted from a pulverizing nozzle, and the energy of a high-speed air flow causes particles to collide with each other to pulverize an object to be pulverized, and thereafter, if necessary. The particles crushed by a classifier are classified to obtain particles having a desired crushed particle size. Further, a swirling flow type jet mill generally has a swirling crushing chamber, and compressed air is jetted from the crushing nozzle into the swirling crushing chamber, and the energy of the high-speed swirling air flow causes particles to collide with each other and to be covered. The pulverized product is pulverized, and then the particles pulverized by a classifier are classified as necessary to obtain particles having a desired pulverized particle size.

【0003】これらのジェットミルの長所としては、圧
縮空気のノズルからの噴射を利用する為、断熱膨張作用
による温度低下が起こる為、熱を嫌う物質の粉砕も可能
である点、更に、粒子相互の衝突、即ち、表面粉砕が主
である為、微粉砕に適するといった利点が挙げられる。
逆に、短所としては、大量の圧縮空気を使用する為、大
型コンプレッサーが必要であり、粉砕消費エネルギーが
大きい点、更には、粒子相互の衝突が主である為、超微
粉が発生し易く、又、衝突回数の少ない粒子は粗粉のま
ま排出され、粉砕粒度が粗くなるといった問題点があ
る。特に、いわゆる衝突型ジェットミルに比較すると、
粉砕における消費エネルギーが大きく、又、より細かい
粒子を得る場合には、効率の低下が著しいという問題点
もある。
The advantage of these jet mills is that the injection of compressed air from a nozzle is used, and a temperature drop occurs due to the adiabatic expansion action, so that substances that dislike heat can be pulverized. Since collision of the particles, that is, surface pulverization is the main, it is suitable for fine pulverization.
On the contrary, as a disadvantage, since a large amount of compressed air is used, a large compressor is required, the energy consumption for pulverization is large, and further, the collision of particles is mainly, so that ultrafine powder is easily generated, Further, there is a problem that particles having a small number of collisions are discharged as coarse powder, and the crushed particle size becomes coarse. Especially when compared with so-called collision type jet mill,
There is also a problem that the energy consumption in the pulverization is large and the efficiency is remarkably lowered when finer particles are obtained.

【0004】上記問題点を解消した粉砕装置が、特開平
3−21356号公報、特開平3−213161号公報
に提案されている。即ち、特開平3−21356号公報
では、旋回流式ジェットミルに特定形状の衝突部材、特
に球形の衝突部材を用いることにより消費エネルギーを
低減させることが提案されている。又、特開平3−21
3161号公報では、流動層型ジェットミルに上記と同
様の衝突部材、即ち、球形の衝突部材を用いることによ
り、消費エネルギーを低減させることが提案されてい
る。しかし、上記の様な構成によって従来の問題点はか
なり改善されるものの、衝突部材の衝突面が球形の場合
は、粒子と衝突部材との衝撃力が衝突面で弱められてし
まう為、圧縮空気エネルギーを未だ充分に利用している
とは云い難かった。即ち、上記した様に、従来より粉砕
装置については各種の改善が行われているものの、未だ
充分ではない為、粉砕エネルギー効率が更に良好な粉砕
装置の出現が待望されている。
A crushing device which solves the above problems has been proposed in Japanese Patent Laid-Open Nos. 3-213356 and 3-213161. That is, JP-A-3-21356 proposes to reduce energy consumption by using a collision member having a specific shape, particularly a spherical collision member, in a swirling flow type jet mill. In addition, JP-A-3-21
In 3161, it is proposed to reduce energy consumption by using a collision member similar to the above, that is, a spherical collision member, in a fluidized bed jet mill. However, although the conventional problems are considerably improved by the above configuration, when the collision surface of the collision member is spherical, the impact force between the particles and the collision member is weakened on the collision surface, so compressed air is used. It was hard to say that they are still fully utilizing energy. That is, as described above, although various improvements have been made to the crushing device from the past, it is still not sufficient, and therefore, the advent of a crushing device having further excellent crushing energy efficiency is desired.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の目的
は、上記の様な従来技術の問題点を解決し、粉砕エネル
ギー効率を更に向上させ、粉砕原料をより効率よく粉砕
することの出来る新規な粉砕装置を提供することにあ
る。
Therefore, the object of the present invention is to solve the problems of the prior art as described above, to further improve the energy efficiency of pulverization, and to pulverize the pulverized raw material more efficiently. To provide a simple crushing device.

【0006】[0006]

【課題を解決するための手段】上記の目的は、下記の本
発明によって達成される。即ち、本発明は、粉砕室内で
圧縮空気を複数の粉砕ノズルから噴射して固形物を粉砕
する流動層型ジェットミル又は旋回流式ジェットミルで
あって、圧縮空気の噴射方向前方の噴射空気が衝突する
位置に各粉砕ノズルに対面して衝突部材が設けられてい
る粉砕装置において、該衝突部材の衝突面が、突出した
形状の突出中央部と該突出中央部の周囲に設けられてい
る外周衝突面とからなることを特徴とする粉砕装置であ
る。
The above objects can be achieved by the present invention described below. That is, the present invention is a fluidized bed type jet mill or a swirling flow type jet mill that pulverizes solid matter by injecting compressed air from a plurality of pulverizing nozzles in a pulverizing chamber, and the blast air in the forward direction of the compressed air is In a crushing device in which a collision member is provided at a collision position so as to face each crushing nozzle, the collision surface of the collision member has a projecting central portion having a projecting shape, and an outer circumference provided around the projecting central portion. It is a crushing device characterized by comprising a collision surface.

【0007】[0007]

【作用】本発明者等は上記した従来技術の問題点を解決
すべく鋭意研究の結果、従来の粉砕機に、噴射方向前方
に噴射空気が衝突する様に衝突部材を設置し、且つ該衝
突部材の形状を特定のものとすれば、粉砕原料の衝突回
数が増え、より効果的に粉砕原料を衝突部材に衝突させ
ることが出来る結果、粉砕エネルギーを効果的に使用
し、粉砕粒度の細かい粒子を効率的に得ることが出来る
ことを知見して本発明に至った。
As a result of intensive studies to solve the above-mentioned problems of the prior art, the inventors of the present invention have installed a collision member in a conventional crusher so that the injection air may collide forward in the injection direction, and the collision may occur. If the shape of the member is made specific, the number of collisions of the pulverized raw material is increased, and the pulverized raw material can be more effectively collided with the collision member. The present invention has been accomplished by finding that the above can be efficiently obtained.

【0008】[0008]

【好ましい実施態様】次に本発明の好ましい実施態様を
挙げて本発明を詳細に説明する。本発明にかかる粉砕装
置は、粉砕室内で圧縮空気を複数の粉砕ノズルから噴射
して固形物を粉砕する流動層型ジェットミル又は旋回流
式ジェットミルであって、圧縮空気の噴射方向前方の噴
射空気が衝突する位置に各粉砕ノズルに対面して衝突部
材が設けられている粉砕装置において、該衝突部材の衝
突面が、突出した形状の突出中央部と該突出中央部の周
囲に設けられている外周衝突面とからなることを特徴と
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to preferred embodiments of the present invention. The crushing apparatus according to the present invention is a fluidized bed type jet mill or a swirling flow type jet mill that crushes solid matter by injecting compressed air from a plurality of crushing nozzles in a crushing chamber, and injects compressed air forward in the injection direction. In a crushing device in which a collision member is provided at a position where air collides with each crushing nozzle, the collision surface of the collision member is provided in a protruding central portion of a protruding shape and around the protruding central portion. It is characterized by comprising an outer peripheral collision surface.

【0009】図1は、本発明にかかる粉砕装置を構成す
る流動層型ジェットミルの一例の概略的断面図であり、
図2は、図1のAーA’線の断面図である。図中、1は
流動層型ジェットミル本体、2は原料供給装置、3は原
料供給用スクリューフィーダー、4は衝突部材を支持す
る支持部材、5は粉砕ノズル、6は圧縮空気入口、7は
流動層粉砕室、8は分級用ローター、9は衝突部材及び
10は排出管である。
FIG. 1 is a schematic sectional view of an example of a fluidized bed type jet mill constituting a crushing apparatus according to the present invention,
FIG. 2 is a sectional view taken along the line AA ′ of FIG. In the figure, 1 is a fluidized bed type jet mill main body, 2 is a raw material supply device, 3 is a raw material supply screw feeder, 4 is a supporting member for supporting a collision member, 5 is a pulverizing nozzle, 6 is a compressed air inlet, and 7 is a flow. A layer crushing chamber, 8 is a classification rotor, 9 is a collision member, and 10 is a discharge pipe.

【0010】上記の粉砕装置においては、原料供給装置
2から原料供給用スクリューフィーダー3により粉砕原
料が流動層粉砕室7の下部に導入され、粉砕ノズル5か
ら圧縮空気が粉砕室7内に噴射されて粉砕原料の微粉砕
が行われる。この様にして粉砕された粉砕物は、流動層
粉砕室7上部に設けられた分級ローター8によって分級
され、所望の粒度分布を有する粉砕物が排出管10から
排出される機構を有する。本発明においては、図2に示
した様に、粉砕ノズル5の噴射方向前方の噴射空気が衝
突する位置に各粉砕ノズルに対面させて特定形状の衝突
部材が設けられている。かかる衝突部材を設けたことに
より、流動層粉砕室7に投入された圧縮空気エネルギー
をより有効に粉砕処理に利用することが可能となる。以
下これについて説明する。
In the above-mentioned crushing device, the crushing raw material is introduced from the raw material supplying device 2 into the lower part of the fluidized bed pulverizing chamber 7 by the raw material supplying screw feeder 3, and the compressed air is jetted into the pulverizing chamber 7 from the pulverizing nozzle 5. The pulverized raw material is finely pulverized. The pulverized product thus pulverized is classified by a classification rotor 8 provided in the upper part of the fluidized bed pulverization chamber 7, and the pulverized product having a desired particle size distribution is discharged from the discharge pipe 10. In the present invention, as shown in FIG. 2, a collision member having a specific shape is provided at a position in front of the crushing nozzle 5 in which the blast air collides, so as to face each crushing nozzle. By providing such a collision member, it becomes possible to utilize the compressed air energy input to the fluidized bed pulverization chamber 7 more effectively in the pulverization process. This will be described below.

【0011】図3は、本発明にかかる粉砕装置の主たる
構成部分である衝突部材9及び粉砕ノズル5の部分拡大
断面図を示す。図3に示した様に、本発明における衝突
部材は、突出中央部11と外周衝突面12とからなる。
粉砕ノズル5から噴出された圧縮空気と粉砕室7内に供
給された粉砕原料との固気混合流は、先ず、粉砕ノズル
5と対面して設けられている衝突部材の突出中央部11
の表面で一次粉砕され、次に衝突部材の外周衝突面12
で二次粉砕された後、流動層粉砕室7内での粒子同士の
衝突により更に粉砕される。
FIG. 3 is a partially enlarged sectional view of the collision member 9 and the crushing nozzle 5, which are the main components of the crushing device according to the present invention. As shown in FIG. 3, the collision member according to the present invention comprises a protruding central portion 11 and an outer peripheral collision surface 12.
The solid-gas mixture flow of the compressed air ejected from the crushing nozzle 5 and the crushing raw material supplied into the crushing chamber 7 is first of all the protruding central portion 11 of the collision member provided facing the crushing nozzle 5.
Is first crushed on the surface of the
After being secondary pulverized in, the particles are further pulverized by collision of particles in the fluidized bed pulverization chamber 7.

【0012】この際に、衝突部材の衝突面が特定の形状
を有している場合に、一次粉砕及び二次粉砕がより効率
よく行われる。即ち、衝突部材の衝突面の突出している
突出中央部11の頂角α(°)と、該突出中央部の周囲
に設けられている外周衝突面12の粉砕ノズル5の中心
軸の垂直面に対する傾斜角β(°)が、下記式の関係を
満足するときに非常に効率のよい粉砕が行われる。 0<α<90、β>0 30≦α+2β≦90
At this time, when the collision surface of the collision member has a specific shape, the primary crushing and the secondary crushing are performed more efficiently. That is, the apex angle α (°) of the protruding central portion 11 of the collision surface of the collision member and the outer peripheral collision surface 12 provided around the protruding central portion with respect to the plane perpendicular to the central axis of the crushing nozzle 5. When the inclination angle β (°) satisfies the relationship of the following formula, very efficient grinding is performed. 0 <α <90, β> 0 30 ≦ α + 2β ≦ 90

【0013】この理由について考察すると、先ず、角α
≧90の時は、突起表面で一次粉砕された粉砕物の反射
流が、固気混合流の流れを乱すことになり好ましくな
い。角β=0の時、即ち、外周衝突面が固気混合流に対
して直角の場合には、外周衝突面での反射流が固気混合
流に向かって流れる為、固気混合流の乱れを生じ好まし
くない。更に、角β=0の時には、外周衝突面上での粉
体濃度が大きくなり熱可塑性樹脂の粉体又は熱可塑性樹
脂を主成分とする粉体を原料とした場合、外周衝突面上
で融着物及び凝集物を生じ易く、この様な融着物が生じ
た場合には装置の安定した運転が困難となる。又、角α
及び角βがα+2β<30の関係にある時は、突起表面
での一次粉砕の衝撃力が弱められる為、粉砕効率の低下
を招き好ましくない。一方、角α及び角βがα+2β>
90の関係にある時は、外周衝突面での二次粉砕の衝撃
力が弱められる為、粉砕効率の低下を招き好ましくな
い。
Considering the reason for this, first, the angle α
When ≧ 90, the reflected flow of the pulverized material that is primarily pulverized on the projection surface disturbs the flow of the solid-gas mixture flow, which is not preferable. When the angle β = 0, that is, when the outer peripheral collision surface is at a right angle to the solid-gas mixture flow, the reflected flow at the outer peripheral collision surface flows toward the solid-gas mixture flow, so that the solid-gas mixture flow is turbulent. Is not preferable. Further, when the angle β = 0, the powder concentration on the outer peripheral collision surface becomes large, and when the powder of the thermoplastic resin or the powder mainly containing the thermoplastic resin is used as the raw material, the melting on the outer peripheral collision surface occurs. Kimono and agglomerates are likely to be formed, and when such a fused material is formed, stable operation of the apparatus becomes difficult. Also, the angle α
And the angle β is in the relationship of α + 2β <30, the impact force of the primary pulverization on the surface of the protrusions is weakened, resulting in a reduction in pulverization efficiency, which is not preferable. On the other hand, the angles α and β are α + 2β>
In the case of the relationship of 90, the impact force of the secondary crushing on the outer peripheral collision surface is weakened, so that the crushing efficiency is lowered, which is not preferable.

【0014】以上述べた様に、角α及び角βが下記式の
関係をを満たすとき、 0<α<90、β>0 30≦α+2β≦90 更に好ましくは、角α及び角βが下記式の関係をを満た
すときに、粉砕が効率よく行われ、粉砕効率を向上させ
ることが出来る。 10<α<80 5<β<40 即ち、粉砕ノズル5の噴射方向前方の噴射空気が衝突す
る位置に各粉砕ノズルに対面させて衝突部材が設置さ
れ、且つ該衝突部材が特定の形状で構成された本発明に
かかる粉砕装置によれば、従来の粉砕装置に較べて粉砕
原料の衝突回数を格段に増やすことが出来、且つより効
果的に粉砕原料を衝突させることが可能となる。
As described above, when the angle α and the angle β satisfy the relationship of the following equation, 0 <α <90, β> 0 30 ≦ α + 2β ≦ 90 More preferably, the angle α and the angle β are as follows. When the relationship is satisfied, the crushing is efficiently performed, and the crushing efficiency can be improved. 10 <α <805 5 <β <40 That is, a collision member is installed facing each crushing nozzle at a position where the blast air in front of the crushing nozzle 5 collides, and the collision member has a specific shape. According to the crushing device of the present invention described above, the number of collisions of the crushing raw material can be significantly increased as compared with the conventional crushing device, and the crushing raw material can be more effectively collided.

【0015】図4は、本発明にかかる粉砕装置を構成す
る旋回流式ジェットミルの一実施例の概略断面図であ
る。又、図4のB−B’線断面図を図5に示す。図中、
21は旋回流式ジェットミル本体、5は粉砕ノズル、9
は衝突部材、22は圧縮空気室、23は旋回粉砕室であ
る。旋回流式ジェットミルでは、旋回粉砕室23に圧縮
空気を粉砕ノズル5より噴射させ、その際に発生する高
速旋回空気流のエネルギーにより粉砕原料を粉砕する
が、本発明においては、旋回流式ジェットミル本体21
の旋回粉砕室23内に、各粉砕ノズル5の噴射方向前方
の位置に各粉砕ノズルに対面させて特定形状の衝突部材
を設ける。この結果、投入された圧縮空気エネルギーは
より有効に粉砕に利用される。
FIG. 4 is a schematic sectional view of an embodiment of a swirl flow type jet mill constituting the crushing apparatus according to the present invention. Further, FIG. 5 shows a sectional view taken along the line BB ′ of FIG. In the figure,
21 is a swirling flow jet mill main body, 5 is a crushing nozzle, 9
Is a collision member, 22 is a compressed air chamber, and 23 is a swirling crushing chamber. In the swirling flow type jet mill, compressed air is injected into the swirling and crushing chamber 23 from the crushing nozzle 5, and the crushing raw material is crushed by the energy of the high-speed swirling air flow generated at that time. Mill body 21
In the swirling crushing chamber 23, a collision member having a specific shape is provided at a position in front of each crushing nozzle 5 in the injection direction so as to face each crushing nozzle. As a result, the input compressed air energy is more effectively utilized for pulverization.

【0016】上記した旋回流式ジェットミルに設けられ
る衝突部材の形状も、先に説明した流動層型ジェットミ
ルの場合と同様に、図3に示す形状のものを用いる。即
ち、図3に示す様に、衝突部材は、突出中央部11と外
周衝突面12とを有し、粉砕ノズル5から旋回流が生じ
る方向に噴出された圧縮空気と粉砕室内に供給された粉
砕原料との固気混合流は、衝突部材の突出中央部11の
表面で一次粉砕され、次に外周衝突面12で二次粉砕さ
れた後、旋回粉砕室23内で更に粒子同士の衝突により
粉砕される。
The shape of the collision member provided in the above-mentioned swirling flow type jet mill also has the shape shown in FIG. 3, similarly to the case of the fluidized bed type jet mill described above. That is, as shown in FIG. 3, the collision member has a projecting central portion 11 and an outer peripheral collision surface 12, and the compressed air jetted from the crushing nozzle 5 in the direction in which a swirl flow is generated and the crushing supplied to the crushing chamber. The solid-gas mixture flow with the raw material is first pulverized on the surface of the protruding central portion 11 of the collision member, and then secondly pulverized on the outer peripheral collision surface 12, and then pulverized by further collision of particles in the swirling pulverization chamber 23. To be done.

【0017】この時、衝突部材の衝突面に突出している
突出中央部11の頂角α(°)と、外周衝突面の粉砕ノ
ズルの中心軸の垂直面に対する傾斜角β(°)が、下記
式の関係を満たすとき、 0<α<90、β>0 30≦α+2β≦90 更に好ましくは、 10<α<80 5<β<40 を満たす時に、粉砕が効率よく行われ、粉砕効率を向上
させることが出来る。即ち、旋回流式ジェットミルにお
いても、前記した流動層型ジェットミルの場合と同様
に、粉砕ノズル5の噴射方向前方の噴射空気が衝突する
位置に各粉砕ノズルに対面させて衝突部材を設置し、且
つ該衝突部材が特定の形状で構成された本発明にかかる
粉砕装置によれば、衝突部材上での衝突回数を増やし、
且つより効果的な粉砕を行うことが出来る。
At this time, the apex angle α (°) of the protruding central portion 11 projecting on the collision surface of the collision member and the inclination angle β (°) of the outer peripheral collision surface with respect to the vertical plane of the central axis of the crushing nozzle are as follows. When the relationship of the formula is satisfied, 0 <α <90, β> 0 30 ≦ α + 2β ≦ 90, and more preferably, when 10 <α <805 5 <β <40, the grinding is efficiently performed and the grinding efficiency is improved. It can be done. That is, also in the swirling flow type jet mill, as in the case of the fluidized bed type jet mill described above, a collision member is installed facing each pulverizing nozzle at a position where the blast air in front of the pulverizing nozzle 5 collides with the pulverizing nozzle. According to the crushing device of the present invention in which the collision member has a specific shape, the number of collisions on the collision member is increased,
In addition, more effective crushing can be performed.

【0018】本発明にかかる粉砕装置において、粉砕ノ
ズル5はラバール状をなし、且つ粉砕ノズル5の出口の
直径が衝突部材の直径よりも小さい内径を有することが
好ましい。又、各衝突部材の衝突面に突出している突出
中央部11の先端と粉砕ノズル5の中心軸とは、実質的
に一致させて構成するのが好ましい。
In the crushing apparatus according to the present invention, it is preferable that the crushing nozzle 5 has a Laval shape, and the diameter of the outlet of the crushing nozzle 5 is smaller than the diameter of the collision member. Further, it is preferable that the tip end of the protruding central portion 11 protruding on the collision surface of each collision member and the central axis of the crushing nozzle 5 are substantially aligned with each other.

【0019】[0019]

【実施例】次に、実施例を挙げて本発明を更に詳細に説
明する。本発明の粉砕装置を使用して微粉砕を行う場合
の実施例を以下に示す。 実施例1 本実施例においては、図1及び図2に示す流動層型ジェ
ットミルを使用した。本実施例の微粉砕装置は、ホソカ
ワミクロン社製カウンタージェットミル200AFGを
ベースとし、特定の形状の衝突部材を設置した。図2に
示した様に、粉砕室円周部に設けられた粉砕ノズルとし
ては、内径4mmφのラバール状ノズル3個が粉砕室中
心方向に向けて設置されており、又、これら3個の粉砕
ノズルに夫々対面して衝突部材が3個設置されている。
衝突部材の形状としては、突出中央部の頂角αが50°
の円錐形状のもの、外周衝突面の粉砕ノズルの中心軸の
垂直面に対する傾斜角βが10°のものを使用した(α
+2β=70°)。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. An example of performing fine pulverization using the pulverizing apparatus of the present invention will be shown below. Example 1 In this example, the fluidized bed type jet mill shown in FIGS. 1 and 2 was used. The fine pulverization apparatus of this example was based on a counter jet mill 200AFG manufactured by Hosokawa Micron Co., Ltd., and a collision member having a specific shape was installed. As shown in FIG. 2, three Laval-shaped nozzles having an inner diameter of 4 mmφ are installed toward the center of the crushing chamber as the crushing nozzles provided in the circumferential portion of the crushing chamber, and these three crushing units are also used. Three collision members are installed facing the nozzles.
As the shape of the collision member, the apex angle α of the protrusion central portion is 50 °.
Of the conical shape, and the inclination angle β of the outer peripheral collision surface with respect to the vertical plane of the central axis of the crushing nozzle was 10 ° (α
+ 2β = 70 °).

【0020】粉砕原料としては、静電荷像現像用トナー
材料の粉砕物(1mmスクリーンパス品)を使用し、粉
砕圧6.0kg/cm2G、3Nm3/minの圧縮空気
を用いて微粉砕を行った。尚、分級機は、ホソカワミク
ロン社製100ATPを用いた。粉砕原料を10kg/
hの割合で上記構成の粉砕装置に導入し、分級機の回転
数を調整することで、重量平均粒径8μmのトナー用微
粉砕物を得た。尚、得られた微粉砕物の粒度分布は種々
の方法によって測定することが出来るが、本発明におい
てはコールターマルチサイザーII型(コールターエレ
クトロニクス社製)を用い、アパチャーとして100μ
mアパチャーを使用して粒度分布を求めた。
As a pulverization raw material, a pulverized product of a toner material for electrostatic charge image development (1 mm screen pass product) is used, and finely pulverized using compressed air having a pulverization pressure of 6.0 kg / cm 2 G, 3 Nm 3 / min. I went. The classifier used was 100ATP manufactured by Hosokawa Micron. 10 kg of crushed raw material
The toner was finely pulverized with a weight average particle diameter of 8 μm by introducing the mixture into the pulverizing apparatus having the above-described ratio at a rate of h and adjusting the rotation speed of the classifier. The particle size distribution of the obtained finely pulverized product can be measured by various methods. In the present invention, Coulter Multisizer II type (manufactured by Coulter Electronics Co.) is used, and an aperture of 100 μm is used.
Particle size distribution was determined using m-aperture.

【0021】実施例2 本実施例においては、図4及び図5に示す旋回流式ジェ
ットミルを用いた。本実施例の微粉砕装置においては、
旋回流粉砕室円周部に粉砕ノズルを設けたが、図5に示
す様に、内径4mmφのラバールノズル4個を中心方向
から40度ずらせた角度に設置した。又、粉砕原料は粉
砕室上部より供給する様にした。衝突部材の形状として
は、突出中央部の頂角αが50°、外周衝突面の粉砕ノ
ズルの中心軸の垂直面に対する傾斜角βが10°のもの
を各ラバールノズルに対面する位置に設置した(α+2
β=70°)。粉砕原料としては実施例1と同じ原料を
用い、粉砕圧6.0kg/cm2 、4Nm3/minの
圧縮空気を用いて微粉砕を行った。尚、分級機は、ホソ
カワミクロン社製100ATPを用いた。粉砕原料を1
4kg/hの割合で上記構成の粉砕装置に導入し、分級
機の回転数を調整することで、重量平均粒径7.8μm
のトナー用微粉砕物を得た。
Example 2 In this example, the swirling jet mill shown in FIGS. 4 and 5 was used. In the fine pulverizer of this example,
A crushing nozzle was provided on the circumference of the swirling flow crushing chamber, but as shown in FIG. 5, four Laval nozzles having an inner diameter of 4 mmφ were installed at an angle of 40 degrees offset from the center direction. Further, the crushing raw material was supplied from the upper part of the crushing chamber. As the shape of the collision member, the apex angle α of the central portion of the protrusion is 50 °, and the inclination angle β of the outer peripheral collision surface with respect to the vertical plane of the central axis of the crushing nozzle is 10 °, which is installed at a position facing each Laval nozzle ( α + 2
β = 70 °). The same raw material as in Example 1 was used as the raw material for pulverization, and fine pulverization was performed using compressed air at a pulverization pressure of 6.0 kg / cm 2 , 4 Nm 3 / min. The classifier used was 100ATP manufactured by Hosokawa Micron. 1 crushed raw material
The weight average particle diameter is 7.8 μm by introducing into the crushing device having the above structure at a rate of 4 kg / h and adjusting the rotation speed of the classifier.
To obtain a finely pulverized product for toner.

【0022】実施例3 図1及び図2に示す流動層型ジェットミルを使用し、実
施例1と同じ粉砕原料を用いて、同じ装置条件で微粉砕
を行った。粉砕原料を6kg/hの割合で粉砕装置に導
入し、分級機の回転数を調整して重量平均粒径6μmの
トナー用微粉砕物を得た。
Example 3 Using the fluidized bed jet mill shown in FIGS. 1 and 2, the same pulverization raw material as in Example 1 was used to perform fine pulverization under the same apparatus conditions. The pulverized raw material was introduced into the pulverizer at a rate of 6 kg / h, and the rotation number of the classifier was adjusted to obtain a finely pulverized product for toner having a weight average particle size of 6 μm.

【0023】実施例4 図4及び図5に示す旋回流式ジェットミルを使用し、実
施例2と同じ粉砕原料を用いて、同じ装置条件で微粉砕
を行った。粉砕原料を8kg/hの割合で粉砕装置に導
入し、分級機の回転数を調整し、重量平均粒径5.9μ
mのトナー用微粉砕物を得た。
Example 4 Using the swirling flow type jet mill shown in FIGS. 4 and 5, the same pulverization raw material as in Example 2 was used to perform fine pulverization under the same apparatus conditions. The crushed raw material was introduced into the crusher at a rate of 8 kg / h, the rotation speed of the classifier was adjusted, and the weight average particle diameter was 5.9 μm.
m finely pulverized product for toner was obtained.

【0024】比較例1 粉砕室内に衝突部材を設けない構造とした以外は、実施
例1と同じ条件で、同じ粉砕原料を用いて微粉砕を行っ
た。その結果、衝突部材を設けない構造の流動層型ジェ
ットミルでは、実施例1と同様の粉砕圧6.0kg/c
2G、3Nm3/minの圧縮空気を使用しての微粉砕
により、粉砕原料供給量が3kg/hで8μmの微粉砕
品が得られた。
Comparative Example 1 Fine pulverization was carried out under the same conditions as in Example 1 except that the collision member was not provided in the pulverization chamber, using the same pulverization raw material. As a result, in the fluidized bed type jet mill having the structure in which the collision member is not provided, the same crushing pressure of 6.0 kg / c as in Example 1 was used.
By fine pulverization using compressed air of m 2 G, 3 Nm 3 / min, a finely pulverized product of 8 μm was obtained at a pulverized raw material supply rate of 3 kg / h.

【0025】比較例2 粉砕室内に衝突部材を設けない構造とした以外は、実施
例2と同じ条件で、同じ粉砕原料を用いて微粉砕を行っ
た。その結果、衝突部材を設けない構造の旋回流式ジェ
ットミルでは、実施例2と同様の粉砕圧6.0kg/c
2G、4Nm3/minの圧縮空気を使用しての微粉砕
により、粉砕原料供給量が4kg/hで8μmの微粉砕
品が得られた。
Comparative Example 2 Fine pulverization was carried out under the same conditions as in Example 2 except that the collision member was not provided in the pulverization chamber, using the same pulverization raw material. As a result, in the swirling flow type jet mill having no collision member, the same crushing pressure of 6.0 kg / c as in Example 2 was used.
By fine pulverization using compressed air of m 2 G and 4 Nm 3 / min, a finely pulverized product of 8 μm was obtained at a feed rate of pulverizing raw material of 4 kg / h.

【0026】比較例3 実施例1で使用した粉砕装置の衝突部材の形状を球形と
し、実施例1と同じ粉砕原料を用いて微粉砕を行った。
その結果、実施例1と同様の粉砕圧6.0kg/cm2
G、3Nm3/minの圧縮空気を使用しての微粉砕に
より、粉砕原料供給量が7kg/hで8μmの微粉砕品
が得られた。これを比較例1の衝突部材を設けない構造
の流動層型ジェットミルを使用した場合と較べると、粉
砕処理量の向上は図られているが、実施例1の様な特定
の形状の衝突部材を設けた場合と較べると粉砕処理量が
劣っていた。
Comparative Example 3 The collision member of the crushing device used in Example 1 had a spherical shape, and the same crushing raw material as in Example 1 was used for fine crushing.
As a result, the same grinding pressure as in Example 1 6.0 kg / cm 2
By fine pulverization using G, 3 Nm 3 / min of compressed air, a finely pulverized product of 8 μm was obtained at a feed rate of pulverization raw material of 7 kg / h. Compared with the case of using the fluidized bed type jet mill of Comparative Example 1 in which the collision member is not provided, the crushing amount is improved, but the collision member having a specific shape as in Example 1 is used. The amount of pulverization processing was inferior as compared with the case of providing.

【0027】比較例4 実施例2で使用した粉砕装置の衝突部材の形状を球形と
し、実施例2と同じ粉砕原料を用いて微粉砕を行った。
その結果、実施例1と同様の粉砕圧6.0kg/cm2
G、4Nm3/minの圧縮空気を使用しての微粉砕に
より、粉砕原料供給量が10kg/hで8μmの微粉砕
品が得られた。これを比較例2の衝突部材を設けない構
造の流動層型ジェットミルを使用した場合と較べると、
粉砕処理量の向上は図られているが、実施例2の様な特
定の形状の衝突部材を設けた場合と較べると粉砕処理量
が劣っていた。
Comparative Example 4 The shape of the collision member of the crushing apparatus used in Example 2 was spherical, and the same crushing raw material as in Example 2 was used for fine crushing.
As a result, the same grinding pressure as in Example 1 6.0 kg / cm 2
By fine pulverization using compressed air of G, 4 Nm 3 / min, a finely pulverized product of 8 μm was obtained at a feed rate of the pulverization raw material of 10 kg / h. Comparing this with the case of using the fluidized bed type jet mill of Comparative Example 2 in which the collision member is not provided,
Although the amount of pulverization processing has been improved, the amount of pulverization processing was inferior as compared with the case where a collision member having a specific shape as in Example 2 was provided.

【0028】比較例5 実施例3と同じ粉砕原料を用い、比較例1と同じ装置を
用いて分級機回転数を調節して、重量平均粒径6μmの
粉砕物を得ようとしたが、原料供給量を落としても得る
ことが出来なかった。
Comparative Example 5 The same pulverized raw material as in Example 3 was used, and the same apparatus as in Comparative Example 1 was used to adjust the number of revolutions of the classifier to obtain a pulverized product having a weight average particle size of 6 μm. I could not get it even if I reduced the supply.

【0030】比較例6 実施例4と同じ粉砕原料を用いて、比較例2と同じ装置
を用いて分級機回転数を調節して、重量平均粒径6μm
の粉砕物を得ようとしたが、原料供給量を落としても得
ることが出来なかった。
Comparative Example 6 The same grinding raw material as in Example 4 was used, the rotation speed of the classifier was adjusted using the same apparatus as in Comparative Example 2, and the weight average particle diameter was 6 μm.
Although it was tried to obtain the pulverized product, it could not be obtained even if the raw material supply amount was reduced.

【0031】以上説明した様に本発明によれば、流動層
型ジェットミル又は旋回流式ジェットミルに特定形状の
衝突部材を設けることにより、先ず、衝突部材の突出中
央部で固気混合流が一次粉砕され、次に突出中央部の周
囲に設けられている外周衝突面で二次粉砕され、その
後、流動層粉砕室又は旋回粉砕室内で更に粒子同士の衝
突により粉砕される結果、従来の特定形状の衝突部材を
設けていない装置と較べ、粉砕エネルギーが効果的に利
用され、粉砕効率を大幅に向上することが出来、粉砕粒
度の細かい粒子を効率的に得ることが可能となる。
As described above, according to the present invention, by providing the fluidized bed type jet mill or the swirling flow type jet mill with the collision member having a specific shape, first, the solid-gas mixture flow is generated in the central portion of the protrusion of the collision member. Primary crushing, then secondary crushing at the outer peripheral collision surface provided around the protruding central part, and then further crushing by collision of particles in the fluidized bed crushing chamber or swirling crushing chamber, resulting in conventional identification As compared with an apparatus not provided with a shaped collision member, crushing energy is effectively used, crushing efficiency can be significantly improved, and fine crushed particles can be efficiently obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】流動層型ジェットミルを利用した本発明の粉砕
装置の一実施例を示す概略的断面図である。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a crushing apparatus of the present invention using a fluidized bed type jet mill.

【図2】図1のA−A’線断面図である。FIG. 2 is a sectional view taken along the line A-A ′ in FIG.

【図3】図1に示した粉砕装置に設けられている衝突部
材と粉砕ノズルの断面の部分拡大図である。
FIG. 3 is a partially enlarged view of a cross section of a collision member and a crushing nozzle provided in the crushing device shown in FIG.

【図4】旋回流式ジェットミルを利用した本発明の粉砕
装置の一実施例を示す概略的断面図である。
FIG. 4 is a schematic cross-sectional view showing an embodiment of a crushing apparatus of the present invention using a swirling flow type jet mill.

【図5】図4のB−B’線断面図である。5 is a sectional view taken along line B-B ′ of FIG.

【符号の説明】[Explanation of symbols]

1: 流動層型ジェットミル本体 2: 原料供給装置 3: 原料供給用スクリューフィーダー 4: 衝突部材の支持部材 5: 粉砕ノズル 6: 圧縮空気入口 7: 流動層粉砕室 8: 分級用ローター 9: 衝突部材 10:排出管 11:突出中央部 12:外周衝突面 21:旋回流式ジェットミル本体 22:圧縮空気室 23:旋回粉砕室 24:衝突部材支持部材 1: Fluidized bed type jet mill main body 2: Raw material supply device 3: Raw material supply screw feeder 4: Colliding member supporting member 5: Grinding nozzle 6: Compressed air inlet 7: Fluidized bed grinding chamber 8: Classification rotor 9: Collision Member 10: Discharge pipe 11: Projected central portion 12: Outer peripheral collision surface 21: Swirling flow type jet mill main body 22: Compressed air chamber 23: Swirl crushing chamber 24: Collision member support member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五箇 洋子 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoko Goka 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉砕室内で圧縮空気を複数の粉砕ノズル
から噴射して固形物を粉砕する流動層型ジェットミル又
は旋回流式ジェットミルであって、圧縮空気の噴射方向
前方の噴射空気が衝突する位置に各粉砕ノズルに対面し
て衝突部材が設けられている粉砕装置において、該衝突
部材の衝突面が、突出した形状の突出中央部と該突出中
央部の周囲に設けられている外周衝突面とからなること
を特徴とする粉砕装置。
1. A fluidized bed type jet mill or a swirling flow type jet mill which pulverizes solid matter by blasting compressed air from a plurality of pulverizing nozzles in a pulverizing chamber. In a crushing device in which a collision member is provided at a position facing each crushing nozzle, the collision surface of the collision member has a projecting central portion having a projecting shape, and an outer circumferential collision provided around the projecting central portion. A crushing device characterized by comprising a surface and a surface.
【請求項2】 突出中央部の頂角をα(°)とし、外周
衝突面の粉砕ノズルの中心軸の垂直面に対する傾斜角を
β(°)とした場合に、角α及び角βが下記式に示す関
係を夫々満足する様に構成されている請求項1に記載の
粉砕装置。 0<α<90、β>0 30≦α+2β≦90
2. When the apex angle of the protrusion central portion is α (°) and the inclination angle of the outer peripheral collision surface with respect to the vertical plane of the central axis of the crushing nozzle is β (°), the angles α and β are as follows. The crushing device according to claim 1, wherein the crushing device is configured so as to satisfy the relationships shown in the equations. 0 <α <90, β> 0 30 ≦ α + 2β ≦ 90
JP15781994A 1994-04-28 1994-04-28 Grinder Pending JPH07289933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15781994A JPH07289933A (en) 1994-04-28 1994-04-28 Grinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15781994A JPH07289933A (en) 1994-04-28 1994-04-28 Grinder

Publications (1)

Publication Number Publication Date
JPH07289933A true JPH07289933A (en) 1995-11-07

Family

ID=15658004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15781994A Pending JPH07289933A (en) 1994-04-28 1994-04-28 Grinder

Country Status (1)

Country Link
JP (1) JPH07289933A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8905340B2 (en) 2011-03-11 2014-12-09 Ricoh Company, Ltd. Pulverizer and cylindrical adaptor
JP2020536728A (en) * 2017-10-12 2020-12-17 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Equipment and methods for low temperature grinding using a merging jet
RU2754158C1 (en) * 2020-12-29 2021-08-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" Shock-abrasive method for grinding plant raw materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8905340B2 (en) 2011-03-11 2014-12-09 Ricoh Company, Ltd. Pulverizer and cylindrical adaptor
JP2020536728A (en) * 2017-10-12 2020-12-17 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Equipment and methods for low temperature grinding using a merging jet
RU2754158C1 (en) * 2020-12-29 2021-08-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" Shock-abrasive method for grinding plant raw materials

Similar Documents

Publication Publication Date Title
KR970008350B1 (en) Pneumatic pulverizer and process for producing toner
JPH04271853A (en) Fluidized bed jet mill
JPH07289933A (en) Grinder
JP3114040B2 (en) Collision type air crusher
JP3182039B2 (en) Crusher
JP4738770B2 (en) Grinding device and grinding method
JP3283728B2 (en) Crusher
JP2654989B2 (en) Powder grinding method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP3102902B2 (en) Collision type supersonic jet crusher
JP2004160371A (en) Crusher and crushing method
JPH08112543A (en) Pulverizer
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP3313922B2 (en) Crusher
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP2805332B2 (en) Grinding method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH08182937A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2004358365A (en) Pulverizer and pulverizing method
JP2002224585A (en) Crusher and apparatus for toner production
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP2566158B2 (en) Collision airflow crusher
JP3101786B2 (en) Collision type air crusher