JP3101786B2 - Collision type air crusher - Google Patents

Collision type air crusher

Info

Publication number
JP3101786B2
JP3101786B2 JP05124701A JP12470193A JP3101786B2 JP 3101786 B2 JP3101786 B2 JP 3101786B2 JP 05124701 A JP05124701 A JP 05124701A JP 12470193 A JP12470193 A JP 12470193A JP 3101786 B2 JP3101786 B2 JP 3101786B2
Authority
JP
Japan
Prior art keywords
collision
pulverized
collision surface
pulverizer
pulverizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05124701A
Other languages
Japanese (ja)
Other versions
JPH06315649A (en
Inventor
仁志 神田
聡 三ッ村
一彦 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP05124701A priority Critical patent/JP3101786B2/en
Publication of JPH06315649A publication Critical patent/JPH06315649A/en
Application granted granted Critical
Publication of JP3101786B2 publication Critical patent/JP3101786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ジェット気流(高圧気
体)を用い、粉体原料を粉砕する衝突式気流粉砕機に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impingement type airflow pulverizer for pulverizing powdery raw materials using a jet airflow (high-pressure gas).

【0002】[0002]

【従来の技術】ジェット気流を用いた衝突式気流粉砕機
は、ジェット気流に粉体原料を乗せ粒子混合気流とし、
加速管の出口より噴射させ、この粒子混合気流を加速管
の出口前方に設けた衝突部材の衝突面に衝突させて、そ
の衝撃力により粉体原料を粉砕するものである。
2. Description of the Related Art In a collision type air flow pulverizer using a jet air flow, a powder material is put on a jet air flow to form a particle mixed air flow.
Injection is performed from the outlet of the accelerating tube, and this particle mixed gas stream is caused to collide with a collision surface of a collision member provided in front of the outlet of the accelerating tube, and the powder material is pulverized by the impact force.

【0003】以下にその詳細を図8の従来例の衝突式気
流粉砕機に基づいて説明する。
The details will be described below with reference to a conventional collision type air flow pulverizer shown in FIG.

【0004】従来の衝突式気流粉砕機は、高圧気体供給
ノズル2を接続した加速管3の出口13に対向して衝突
部材4を設け、加速管3に供給した高圧気体の流動によ
り、加速管3の中途に連通させた粉体原料供給口1から
加速管3の内部に粉体原料を吸引し、これを高圧気体と
共に噴射して衝突部材4の衝突面に衝突させ、その衝撃
によって粉砕する様にしたものである。
In the conventional collision type airflow pulverizer, a collision member 4 is provided opposite to an outlet 13 of an acceleration tube 3 to which a high pressure gas supply nozzle 2 is connected, and the acceleration tube is supplied by the flow of the high pressure gas supplied to the acceleration tube 3. The powder raw material is sucked into the acceleration tube 3 from the powder raw material supply port 1 which is communicated in the middle of the pipe 3, and is injected together with a high-pressure gas to collide with the collision surface of the collision member 4 and to be pulverized by the impact. It is what we did.

【0005】[0005]

【発明が解決しようとする課題】従来、かかる粉砕機に
おける衝突部材の衝突面14は、図8,図9に示すよう
に、粉体原料を乗せたジェット気流方向(加速管の軸方
向)に対し垂直あるいは傾斜(例えば45°)している
平面状のものが用いられてきた(特開昭57−5055
4号公報及び特開昭58−143853号公報参照)。
Conventionally, as shown in FIGS. 8 and 9, the collision surface 14 of the collision member in such a crusher is in a jet stream direction (axial direction of the accelerating tube) on which the powder material is loaded. On the other hand, a planar shape which is vertical or inclined (for example, 45 °) has been used (Japanese Patent Laid-Open No. 57-5055).
4 and JP-A-58-143853).

【0006】図8の粉砕機において粗い粒径を有する粉
体原料は、投入口1より加速管3に供給され、ジェット
ノズル2から吹き出されるジェット気流によって、粉体
原料は衝突部材4の衝突面14にたたきつけられ、その
衝撃力で粉砕され、排出口5より粉砕室外に排出され
る。しかしながら、衝突面14が加速管3の軸方向と垂
直な場合、ジェットノズル2から吹き出される原料粉体
と衝突面14で反射される粉体とが衝突面14の近傍で
共存する割合が高く、そのため、衝突面14近傍の粉体
濃度が高くなるために、粉砕効率が良くない。さらに、
衝突面14における一次衝突が主体であり、粉砕室壁6
との二次衝突を有効に利用しているとはいえない。さら
に、衝突面の角度が加速管3に対し垂直の粉砕機では、
熱可塑性樹脂を粉砕するときに、衝突時の局部発熱によ
り融着及び凝集物が発生しやすく、装置の安定した運転
が困難になり、粉砕能力低下の原因となる。そのため
に、粉体濃度を高くして使用することが困難であった。
[0008] In the pulverizer shown in FIG. 8, the powdery raw material having a coarse particle diameter is supplied from an inlet 1 to an acceleration tube 3, and the powdery raw material collides with a collision member 4 by a jet stream blown out from a jet nozzle 2. It is beaten to the surface 14, crushed by the impact force, and discharged from the discharge port 5 to the outside of the crushing chamber. However, when the collision surface 14 is perpendicular to the axial direction of the acceleration tube 3, the ratio of the raw material powder blown out from the jet nozzle 2 and the powder reflected on the collision surface 14 coexist near the collision surface 14 is high. Therefore, the powder concentration in the vicinity of the collision surface 14 becomes high, so that the pulverization efficiency is not good. further,
The primary collision at the collision surface 14 is the main
It cannot be said that the secondary collision with the system is being used effectively. Furthermore, in a crusher in which the angle of the collision surface is perpendicular to the acceleration tube 3,
When the thermoplastic resin is pulverized, fusion and agglomerates are apt to be generated due to local heat generation at the time of collision, which makes stable operation of the apparatus difficult and causes reduction in pulverization ability. For this reason, it has been difficult to increase the powder concentration for use.

【0007】図9の粉砕機において、衝突面14が加速
管3の軸方向に対して傾斜しているために、衝突面14
近傍の粉体濃度は図8の粉砕機と比較して低くなるが粉
砕圧が分散されて低下する。さらに、粉砕室壁6との二
次衝突を有効に利用しているとはいえない。
In the crusher shown in FIG. 9, since the collision surface 14 is inclined with respect to the axial direction of the acceleration tube 3, the collision surface 14
The powder concentration in the vicinity is lower than that of the pulverizer of FIG. 8, but the pulverization pressure is dispersed and lower. Furthermore, it cannot be said that the secondary collision with the crushing chamber wall 6 is effectively used.

【0008】図9に示す如く、衝突面14の角度が加速
管に対し45°傾斜のものでは、熱可塑性樹脂を粉砕す
るときに上記のような問題点は少ない。しかしながら、
衝突するさいに粉砕に使われる衝撃力が小さく、さらに
粉砕室壁6との二次衝突による粉砕が少ないので粉砕能
力は、図8の粉砕機と比較して1/2〜1/1.5に粉
砕能力が落ちる。
As shown in FIG. 9, when the collision surface 14 has an angle of 45 ° with respect to the accelerating tube, the above-mentioned problems are lessened when the thermoplastic resin is pulverized. However,
Since the impact force used for the crushing during the collision is small and the crushing due to the secondary collision with the crushing chamber wall 6 is small, the crushing ability is 1/2 to 1 / 1.5 as compared with the crusher of FIG. The crushing ability drops.

【0009】上記問題点が解消された衝突式気流粉砕機
として実開平1−148740号公報及び特開平1−2
54266号公報が提案されている。前者では、図11
に示すように、衝突部材の原料衝突面14を加速管の軸
芯に対して直角に配置し、その原料衝突面に円錐形の突
起15を設けることにより、衝突面での反射流を防止す
ることが提案されている。
[0009] Japanese Patent Laid-Open Publication No. 1-148740 and Japanese Patent Laid-Open Publication No. 1-2 have disclosed a collision-type airflow pulverizer in which the above problems have been solved.
No. 54266 has been proposed. In the former case, FIG.
As shown in (1), the raw material collision surface 14 of the collision member is disposed at right angles to the axis of the acceleration tube, and the conical projection 15 is provided on the raw material collision surface to prevent the reflected flow at the collision surface. It has been proposed.

【0010】また、後者では、図10に示すように衝突
部材の衝突面の先端部分を特定の円錐形状とすることに
より、衝突面近傍の粉体濃度を低くし、粉砕室壁6と効
率良く二次衝突するようにした衝突式気流粉砕機が提案
されている。
In the latter, as shown in FIG. 10, the tip portion of the collision surface of the collision member has a specific conical shape, so that the powder concentration in the vicinity of the collision surface is reduced, and the collision with the crushing chamber wall 6 is efficiently performed. 2. Description of the Related Art A collision type air pulverizer designed to cause secondary collision has been proposed.

【0011】上記のように構成することで、従来の問題
点はかなり改善されるがまだ充分ではなく、また、最近
のニーズとして、より微細な粉砕処理物が望まれてお
り、更に粉砕効率の良好な微粉砕機が待望されている。
With the above-mentioned structure, the conventional problems are considerably improved, but are still not sufficient. Further, as a recent need, a finer pulverized product has been desired. A good pulverizer is expected.

【0012】本発明の目的は、上記のような従来技術の
問題点を解決して粉体原料を効率よく粉砕できる衝突式
気流粉砕機を提供することにある。
An object of the present invention is to provide an impingement type air current pulverizer which can solve the above-mentioned problems of the prior art and can pulverize powder raw materials efficiently.

【0013】[0013]

【課題を解決するための手段】上記の目的は、下記の本
発明により達成される。
The above objects are achieved by the present invention described below.

【0014】即ち、本発明は、高圧気体により被粉砕物
を搬送加速するための加速管と被粉砕物を微粉砕するた
めの粉砕室とを有する衝突式気流粉砕機において、該粉
砕室内には、該加速管の出口の開口面に対向して設けた
衝突面を有する衝突部材が具備されており、該衝突面上
で被粉砕物が少なくとも3回以上衝突により粉砕するた
めの衝突面を有し、該粉砕室には、衝突面で粉砕された
粉砕物をさらに衝突により粉砕するための側壁を有する
ことを特徴とする衝突式気流粉砕機である。
That is, the present invention relates to a collision type air current pulverizer having an accelerating tube for transporting and accelerating an object to be crushed by a high-pressure gas and a crushing chamber for finely crushing the object to be crushed. A collision member having a collision surface provided to face an opening surface of an outlet of the acceleration tube, and having a collision surface on the collision surface for crushing an object to be ground at least three times by collision. The crushing chamber has a side wall for further crushing the crushed material crushed on the collision surface by collision.

【0015】また、本発明は、上記の粉砕機において、
衝突部材の衝突面は、突出している突出中心部を有し、
該突出中心部で粉砕された被粉砕物の一次粉砕物をさら
に衝突により粉砕するための外周衝突面を該突出中心部
の周囲に多段に設け、該突出中心部の頂角をα1 (°)
とし、外周衝突面の延長線上の頂角を順番にα2 ,α3
…αn (°)(n≧3)として、該α1 ,α2 ,α3
αn が下記式 α1 <α2 <α3 …<αn ,0°<α1 <90°,90
°<αn <180° を満足する衝突式気流粉砕機である。
[0015] Further, the present invention provides the above crusher,
The collision surface of the collision member has a protruding center portion that protrudes,
An outer peripheral collision surface for further crushing the primary crushed material crushed at the projecting central portion by collision is provided in multiple stages around the projecting central portion, and the apex angle of the projecting central portion is α 1 (° )
And the apex angle on the extension of the outer peripheral collision surface is α 2 , α 3
.., Α n (°) (n ≧ 3), and α 1 , α 2 , α 3 .
α n is represented by the following equation α 123 ... <α n , 0 ° <α 1 <90 °, 90
This is an impingement airflow pulverizer that satisfies ° <α n <180 °.

【0016】[0016]

【実施例】本発明を実施例に基づいて詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on embodiments.

【0017】図1は、本発明の一実施例の概略的断面図
及び該粉砕機を使用した粉砕工程及び分級機による分級
工程を組み合せた粉砕装置のフローチャートを示した図
である。
FIG. 1 is a schematic sectional view of an embodiment of the present invention and a flow chart of a pulverizing apparatus in which a pulverizing step using the pulverizer and a classification step using a classifier are combined.

【0018】粉砕されるべき粉体原料7は、加速管3の
上方の粉体原料供給口1より、加速管3に供給される。
加速管3には圧縮空気の如き圧縮気体が圧縮気体供給ノ
ズル2から導入されており、加速管3に供給された粉体
原料7は、瞬時に加速されて、高速度を有するようにな
る。高速度で加速管出口13から粉砕室8に吐出された
粉体原料7は、衝突部材4の衝突面14に衝突して粉砕
される。図1の粉砕機において、衝突部材の衝突面14
は、錐体状の突出している突出中心部141と、該突出
中心部の周囲に突出中心部で粉砕された被粉砕物の一次
粉砕物をさらに衝突により粉砕するための外周衝突面1
42,143を有している。また粉砕室8には外周衝突
面143で粉砕された粉砕物を衝突により粉砕するため
の側壁6を有している。
The powder material 7 to be pulverized is supplied to the acceleration tube 3 from the powder material supply port 1 above the acceleration tube 3.
A compressed gas such as compressed air is introduced into the acceleration tube 3 from the compressed gas supply nozzle 2, and the powder material 7 supplied to the acceleration tube 3 is instantaneously accelerated to have a high speed. The powdery raw material 7 discharged from the acceleration tube outlet 13 into the pulverizing chamber 8 at a high speed collides with the collision surface 14 of the collision member 4 and is pulverized. In the crusher shown in FIG.
Is an outer peripheral collision surface 1 for further crushing, by collision, a protruding central portion 141 having a conical shape and a primary crushed material crushed at the protruding central portion around the protruding central portion.
42, 143. The pulverizing chamber 8 has a side wall 6 for pulverizing the pulverized material pulverized on the outer collision surface 143 by collision.

【0019】図2に図1の横断平面図を示し、さらに詳
しく説明する。
FIG. 2 is a cross-sectional plan view of FIG. 1 and will be described in more detail.

【0020】上記のように、原料衝突面に中央部が突出
している錐体状の突起を設けることにより、加速管から
噴出された粉砕原料と圧縮空気の固気混合流は突起14
1の表面で一次粉砕され、さらに外周衝突面142で二
次粉砕された後、外周衝突面143で三次粉砕される。
しかる後に粉砕室側壁6でさらに粉砕される。
As described above, by providing the conical projection having a central portion projecting on the raw material collision surface, the solid-gas mixed flow of the pulverized raw material and compressed air ejected from the accelerating tube is formed by the projection 14.
After the first crushing is performed on the surface of No. 1 and the second crushing is performed on the outer circumferential collision surface 142, the crushed material is tertiary crushed on the outer circumferential collision surface 143.
Thereafter, the material is further pulverized on the side wall 6 of the pulverizing chamber.

【0021】この時、衝突部材の衝突面に突出している
突出中心部の頂角α1 (°)と外周衝突面142及び1
43の延長線上の頂角α2 (°),α3 (°)が、 α1 <α2 <α3 , 0°<α1 <90°, 90°<
α3 <180° を満足するときに非常に効率よく粉砕が行なわれる。
At this time, the apex angle α 1 (°) of the central portion of the collision member projecting from the collision surface and the outer collision surfaces 142 and 1
The vertical angles α 2 (°) and α 3 (°) on the extension of 43 are α 123 , 0 ° <α 1 <90 °, 90 ° <
When α 3 <180 ° is satisfied, grinding is performed very efficiently.

【0022】α1 ≧90°の時は、突起表面で一次粉砕
された粉砕物の反射流が加速管から噴出する固気混合流
の流れを乱し、また外周衝突面への効率的な衝突が行な
われない。また、α3 =180°のとき、すなわち外周
衝突面16が固気混合流に対して直角の場合には、外周
衝突面での反射流が固気混合流に向かって流れるため、
固気混合流の乱れを生じ好ましくない。また、外周衝突
面上での粉体濃度が大きくなり熱可塑性樹脂の粉体また
は熱可塑性樹脂を主成分とする粉体を原料とした場合、
外周衝突面上で融着物及び凝集物を生じやすい。かかる
融着物が生じた場合、装置の安定した運転が困難とな
る。一方、α3 ≦90°のときには、突起表面及び外周
衝突面での粉砕の衝撃力が弱められるため、粉砕効率の
低下を招き好ましくない。
When α 1 ≧ 90 °, the reflected flow of the primary pulverized material on the projection surface disturbs the flow of the solid-gas mixed flow ejected from the acceleration tube, and efficiently collides with the outer peripheral collision surface. Is not done. Further, when α 3 = 180 °, that is, when the outer peripheral collision surface 16 is perpendicular to the solid-gas mixed flow, the reflected flow at the outer peripheral collision surface flows toward the solid-gas mixed flow,
Undesirably, turbulence of the gas-solid mixed flow occurs. In addition, when the powder concentration on the outer peripheral collision surface is increased and a powder of a thermoplastic resin or a powder mainly containing a thermoplastic resin is used as a raw material,
Fused materials and aggregates are likely to be generated on the outer peripheral collision surface. If such a fusion occurs, stable operation of the apparatus becomes difficult. On the other hand, when α 3 ≦ 90 °, the impact force of the pulverization on the projection surface and the outer peripheral collision surface is weakened, so that the pulverization efficiency is lowered, which is not preferable.

【0023】以上述べたように、α1 ,α2 ,α3 が α1 <α2 <α3 , 0°<α1 <90°, 90°<
α3 <180° を満たすときに、図2に示す如く、効率よく多段に粉砕
が行われ、粉砕効率を向上させることができる。なお、
図1では、n=3の場合の実施例を述べたがこれに限定
されるものではなく、n≧3を満足すればよい。
As described above, α 1 , α 2 , and α 3 satisfy α 123 , 0 ° <α 1 <90 °, 90 ° <
When α 3 <180 ° is satisfied, as shown in FIG. 2, the pulverization is efficiently performed in multiple stages, and the pulverization efficiency can be improved. In addition,
In FIG. 1, the embodiment in the case of n = 3 has been described. However, the present invention is not limited to this, and it is sufficient that n ≧ 3 is satisfied.

【0024】従来の粉砕機に比べ、衝突回数を増やしか
つより効果的に衝突させることが本発明の特徴であり、
粉砕効率の向上が図れ、粉砕時における融着物の発生を
防止することができ、安定した運転を行うことができ
る。
It is a feature of the present invention to increase the number of collisions and make the collision more effective as compared with a conventional pulverizer.
It is possible to improve the pulverization efficiency, to prevent generation of a fused material at the time of pulverization, and to perform a stable operation.

【0025】図3は本発明の他の好ましい実施例の概略
断面図及び該粉砕機を使用した粉砕工程及び、分級機に
よる分級工程を組合せた粉砕装置のフローチャート図で
あり、図4は図3のA−A線における拡大断面図、図5
は図3のB−B線における断面図である。
FIG. 3 is a schematic sectional view of another preferred embodiment of the present invention, and is a flowchart of a pulverizing apparatus in which a pulverizing step using the pulverizer and a classifying step using a classifier are combined, and FIG. 5 is an enlarged sectional view taken along line AA of FIG.
FIG. 4 is a sectional view taken along line BB in FIG. 3.

【0026】図3の粉砕機について説明すると、高圧気
体により被粉砕物を搬送加速するための加速管21と、
該加速管出口に対向して設けた衝突面を有する衝突部材
30を有し、該加速管21がラバルノズル状をなし、該
加速管21のスロート部上流に高圧気体噴出ノズル23
を配し、該高圧気体噴出ノズル23の外壁とスロート部
22内壁間に被粉砕物供給口24を設け、さらに、該加
速管21の出口に接続して設けた粉砕室34の軸方向断
面形状が円形状を有している。
The pulverizer shown in FIG. 3 will be described. An accelerating tube 21 for transporting and accelerating an object to be pulverized by a high-pressure gas,
A collision member 30 having a collision surface provided opposite to the acceleration tube outlet, wherein the acceleration tube 21 has a Laval nozzle shape, and a high-pressure gas ejection nozzle 23 is provided upstream of a throat portion of the acceleration tube 21;
Is provided between the outer wall of the high-pressure gas ejection nozzle 23 and the inner wall of the throat portion 22, and further, an axial cross-sectional shape of a grinding chamber 34 provided to be connected to the outlet of the acceleration tube 21. Has a circular shape.

【0027】被粉砕物供給筒25より供給された被粉砕
物は、中心軸を鉛直方向に配設したラバルノズル形状を
なす加速管21の加速管スロート部22の内壁と中心が
加速管21の中心軸と同軸上にある高圧気体噴出ノズル
23の外壁との間で形成された被粉砕物供給口24へ到
達する。一方、高圧気体は高圧気体供給口26より導入
され高圧気体チャンバー27を経て、一本好ましくは複
数本の高圧気体導入管28を通り高圧気体噴出ノズル2
3より加速管出口29方向に向って急激に膨張しながら
噴出する。この時、加速管スロート部22の近傍で発生
するエゼクター効果により、被粉砕物はこれと共存して
いる気体に同伴されながら、被粉砕物供給口24より加
速管出口29方向に向けて吸引され、加速管スロート部
22において高圧気流と均一に混合されながら急加速
し、加速管出口29に対向配置された衝突部材30の衝
突面に、粉塵濃度の偏りなく均一な固気混合気流の状態
で衝突する。
The material to be crushed supplied from the crushed material supply cylinder 25 is formed such that the inner wall and the center of the acceleration tube throat portion 22 of the acceleration tube 21 having a Laval nozzle shape whose central axis is disposed in the vertical direction are the center of the acceleration tube 21. The material reaches a pulverized material supply port 24 formed between the shaft and the outer wall of the high-pressure gas ejection nozzle 23. On the other hand, the high-pressure gas is introduced from the high-pressure gas supply port 26, passes through the high-pressure gas chamber 27, and passes through one or preferably a plurality of high-pressure gas introduction pipes 28.
3 and spouts while rapidly expanding in the direction of the acceleration tube outlet 29. At this time, due to the ejector effect generated in the vicinity of the accelerating tube throat portion 22, the material to be ground is sucked from the material to be ground supply port 24 toward the acceleration tube outlet 29 while being accompanied by the gas coexisting therewith. In the accelerating tube throat portion 22, the fuel is rapidly accelerated while being uniformly mixed with the high-pressure airflow, and is uniformly distributed on the collision surface of the collision member 30 disposed opposite the accelerating tube outlet 29 in a state of a uniform solid-gas mixed airflow without unevenness in dust concentration. collide.

【0028】衝突時に発生する衝撃力は、十分分散した
個々の粒子(被粉砕物)に与えられるため、非常に効率
の良い粉砕ができる。衝突部材30の衝突面にて粉砕さ
れた粉砕物は、更に粉砕室側壁32と衝突部材30表面
の間で衝突を繰り返し、より粉砕効率を上昇させ、衝突
部材30後方に配設された粉砕物排出口33より排出さ
れる。
Since the impact force generated at the time of collision is given to the individual particles (objects to be crushed) which are sufficiently dispersed, very efficient crushing can be performed. The pulverized material pulverized on the collision surface of the collision member 30 further repeats collision between the pulverizing chamber side wall 32 and the surface of the collision member 30 to further increase the pulverization efficiency, and the pulverized material disposed behind the collision member 30 It is discharged from the discharge port 33.

【0029】衝突部材の衝突面には、突出している突出
中心部141と、該突出中心部の周囲に突出中心部で粉
砕された被粉砕物の一次粉砕物をさらに衝突により粉砕
するための外周衝突面142,143を有している。ま
た、粉砕室34には外周衝突面143で粉砕された粉砕
物を衝突により粉砕するための側壁32を有している。
The collision surface of the collision member has a protruding central portion 141 and an outer periphery around the protruding central portion for further crushing the primary pulverized material pulverized at the protruding central portion by collision. It has collision surfaces 142 and 143. The pulverizing chamber 34 has a side wall 32 for pulverizing the pulverized material pulverized on the outer peripheral collision surface 143 by collision.

【0030】図1の粉砕機と同様に、衝突面上の突起の
表面で被粉砕物は一次粉砕され、さらに外周衝突面14
2で二次粉砕された後、外周衝突面143で三次粉砕さ
れる。しかる後に粉砕室側壁32でさらに粉砕される。
As in the case of the pulverizer shown in FIG. 1, the object to be pulverized is primarily pulverized on the surface of the projection on the collision surface.
After the secondary pulverization in step 2, the secondary pulverization is performed in the outer peripheral collision surface 143. Thereafter, the powder is further pulverized by the pulverizing chamber side wall 32.

【0031】図3の粉砕機では、加速管の中心軸を鉛直
方向に配設し、加速管内壁と高圧気体噴出ノズル外壁間
より被粉砕物を供給せしめ、高圧気体の噴出方向と被粉
砕物の供給方向を同一方向とすることにより、被粉砕物
を粉塵濃度による偏りがない様均一に噴出する高圧気流
中に分散させることができる。
In the pulverizer shown in FIG. 3, the center axis of the accelerating tube is disposed in a vertical direction. By setting the supply directions of the powders to be the same, it is possible to disperse the material to be ground in a high-pressure airflow that is jetted out uniformly so that there is no deviation due to the dust concentration.

【0032】ここで図3に示した加速管は、被粉砕物の
流動状態を良好にするために鉛直線を基準にして該加速
管の長軸方向の傾きが0〜45°の範囲内である事が好
ましく、該加速管の長軸を中心としてより均一に被粉砕
物供給口に被粉砕物を分布せしめるためには該加速管の
長軸方向の傾きが鉛直線を基準にして0〜20°の範囲
内であればより好ましく、さらには0〜5°の範囲内で
あればさらに好ましい。
Here, in order to improve the flow state of the material to be crushed, the acceleration tube shown in FIG. It is preferable that, in order to more evenly distribute the crushed object in the crushed object supply port around the long axis of the acceleration tube, the inclination in the long axis direction of the acceleration tube is 0 to 0 with respect to the vertical line. It is more preferable that the angle is within the range of 20 °, and it is even more preferable that the angle is within the range of 0 to 5 °.

【0033】本発明の他の実施例を図6,図7に示す。
なお図7は図6のC−C線における断面図である。図6
に示すものは、被粉砕物供給口24、ラバルノズル3
5、加速管スロート部36が異なっている他は図3に示
すものと同じである。
Another embodiment of the present invention is shown in FIGS.
FIG. 7 is a cross-sectional view taken along line CC of FIG. FIG.
Are the supply port 24 for the pulverized material, the Laval nozzle 3
5 is the same as that shown in FIG. 3 except that the acceleration tube throat portion 36 is different.

【0034】図3及び図6の粉砕機は、図1の構成の粉
砕機に比べ、加速管への原料投入方法が異なっており、
加速管中の粉体原料をより均一に分散させることがで
き、そのためより粉砕効率を向上させることができる。
The pulverizers of FIGS. 3 and 6 differ from the pulverizer of FIG.
The powder raw material in the acceleration tube can be more uniformly dispersed, and therefore, the pulverization efficiency can be further improved.

【0035】なお、図3及び図6の粉砕機においても、
α1 ,α2 ,α3 が α1 <α2 <α3 , 0°<α1 <90°, 90°<
α3 <180° を満足するときに粉砕が効率良く行われ、粉砕効率を向
上させることができる。
The crusher shown in FIGS. 3 and 6 also
α 1 , α 2 , α 3 are α 123 , 0 ° <α 1 <90 °, 90 ° <
When α 3 <180 ° is satisfied, the pulverization is performed efficiently, and the pulverization efficiency can be improved.

【0036】図3及び図6では、n=3の場合の実施例
を述べたが、これに限定されるものではなく、n≧3を
満足すればよい。
FIGS. 3 and 6 show an embodiment in which n = 3, but the present invention is not limited to this, and it is sufficient that n ≧ 3.

【0037】本発明の粉砕機において、加速管出口の内
径は衝突部材の直径bよりも小さい内径を有することが
好ましい。衝突部材の衝突面に突出している突出中心部
の先端と加速管の中心軸とは、実質的に一致させるのが
粉砕の均一化という点で好ましい。加速管出口と衝突部
材の衝突面端部との距離aは該衝突部材の直径の0.1
倍から2倍以下が好ましく、0.2倍から1.0倍がよ
り好ましい。
In the pulverizer of the present invention, it is preferable that the inner diameter of the outlet of the accelerating tube has an inner diameter smaller than the diameter b of the collision member. It is preferable that the tip of the projecting center portion projecting from the collision surface of the collision member and the central axis of the accelerating tube be substantially coincident with each other in terms of uniform pulverization. The distance a between the accelerator tube outlet and the end of the collision surface of the collision member is 0.1 mm of the diameter of the collision member.
It is preferably from 2 to 2 times, more preferably from 0.2 to 1.0 times.

【0038】0.1倍未満では衝突面近傍の粉塵濃度が
高くなり2倍を超える場合には、衝撃力が弱まり、粉砕
効率が低下する傾向がある。
If it is less than 0.1 times, the dust concentration near the collision surface increases, and if it exceeds 2 times, the impact force is weakened and the pulverizing efficiency tends to decrease.

【0039】また衝突部材の衝突面端部と粉砕室側壁
(内壁)との最短距離cは、該衝突部材の直径bの0.
1倍から2倍以下が好ましい。0.1倍未満では、高圧
気体の通過時の圧力損失が大きく、粉砕効率を低下させ
るのみならず、粉砕物の流動がスムーズに行かない傾向
があり、2倍を超える場合は、粉砕室側壁での被粉砕物
の衝突の効果が減少し、粉砕効率の低下を招く。また粉
砕室形状は特に限定されるものではなく、衝突部材の衝
突面端部と粉砕室側壁間の距離が上記数値を満足してい
れば良い。
The shortest distance c between the end of the collision surface of the collision member and the side wall (inner wall) of the crushing chamber is 0.
It is preferably 1 to 2 times or less. If the pressure is less than 0.1 times, the pressure loss at the time of passage of the high-pressure gas is large, not only lowering the pulverization efficiency, but also the flow of the pulverized material tends not to be smooth. In this case, the effect of the collision of the objects to be crushed is reduced, and the crushing efficiency is reduced. The shape of the crushing chamber is not particularly limited as long as the distance between the end of the collision surface of the colliding member and the side wall of the crushing chamber satisfies the above value.

【0040】本発明の粉砕機は、通常、融着や凝集の生
じやすい固体粒子の微粉砕に好適なものであり、具体的
には、熱可塑性樹脂を用いた電子写真用トナー組成物の
粗粒子の微粒化に威力を発揮する。
The pulverizer of the present invention is generally suitable for finely pulverizing solid particles which are liable to be fused or agglomerated. Specifically, the pulverizer may be used to roughly prepare an electrophotographic toner composition using a thermoplastic resin. Effective for atomization of particles.

【0041】以下、本発明の粉砕機によるトナーの製造
例を示す。
Hereinafter, an example of the production of toner by the pulverizer of the present invention will be described.

【0042】 (トナーの製造例) スチレン−ブチルアクリレート−ジビニルベンゼン共重合体 100重量部 (モノマー重合重量比80.0/19.0/1.0, 重量平均分子量(Mw)35万) 磁性体(平均粒径0.18μm) 100重量部 低分子量エチレン−プロピレン共重合体 4重量部 正荷電性制御剤 2重量部 上記処方の混合物よりなるトナー原料を2軸型エクスト
ルーダーPCM−30(池貝鉄工社製)を用い溶融混練
を行った。冷却後、ハンマーミルで0.1〜1mmの粗
粉砕物を得た。
(Production Example of Toner) Styrene-butyl acrylate-divinylbenzene copolymer 100 parts by weight (monomer polymerization weight ratio 80.0 / 19.0 / 1.0, weight average molecular weight (Mw) 350,000) (Average particle diameter 0.18 μm) 100 parts by weight Low molecular weight ethylene-propylene copolymer 4 parts by weight Positive charge control agent 2 parts by weight Toner raw material composed of the mixture of the above formulation is mixed with a biaxial extruder PCM-30 (Ikegai Iron Works) Melt kneading). After cooling, a coarsely pulverized product of 0.1 to 1 mm was obtained with a hammer mill.

【0043】得られた粗粉砕物を図3に示した気流分級
機と微粉砕機(衝突部材の衝突面のα1 =40°,α2
=120°,α3 =160°)とから構成された微粉体
製造装置に供給して、微粉砕機に圧縮気体供給ノズルか
ら6.0Nm3 /min(6.0kgf/cm2 )の圧
縮空気を導入して、微粉砕製品として重量平均粒径8.
0μm(コールターカウンターによる測定、以下同様)
になるように微粉砕を行った。微粉砕機の加速管は鉛直
線を基準にして加速管の長軸方向の傾きがほぼ0°であ
った。
The obtained coarsely pulverized product was subjected to an air flow classifier and a fine pulverizer (α 1 = 40 °, α 2 at the collision surface of the collision member) shown in FIG.
= 120 °, α 3 = 160 °) and compressed air of 6.0 Nm 3 / min (6.0 kgf / cm 2 ) from the compressed gas supply nozzle to the pulverizer. To obtain a finely pulverized product having a weight average particle size of 8.
0 μm (measurement by Coulter counter, the same applies hereinafter)
Was finely pulverized. In the accelerating tube of the pulverizer, the inclination of the accelerating tube in the major axis direction was almost 0 ° with respect to the vertical line.

【0044】このときの微粉砕処理量(=粗粉砕物処理
量)は、41kg/hrであった。また6時間の連続運
転を行なっても融着物の発生は全くなかった。
At this time, the processing amount of the fine pulverization (= the processing amount of the coarse pulverized product) was 41 kg / hr. Further, even after the continuous operation for 6 hours, no fused product was generated.

【0045】なお、微粉砕製品またはトナーの粒度分布
は種々の方法によって測定できるが、本発明においては
コールターカウンターを用いて行った。すなわち、測定
装置としてはコールターカウンターTA−II型(コー
ルター社製)を用い、個数分布,体積分布を出力するイ
ンターフェイス(日科機製)及びCX−1パーソナルコ
ンピュータ(キヤノン製)を接続し、電解液は1級塩化
ナトリウムを用いて1%NaCl水溶液を調製する。測
定法としては前記電解水溶液100〜150ml中に分
散剤として界面活性剤、好ましくはアルキルベンゼンス
ルホン酸塩を0.1〜5ml加え、更に測定試料を2〜
20mg加える。試料を懸濁した電解液は超音波分散器
で約1〜3分間分散処理を行い、前記コールターカウン
ターTA−II型により、アパチャーとして100μm
アパチャーを用い、個数を基準として2〜40μmの粒
子の粒度分布を測定して、それから本発明に係るところ
の重量平均粒径の値を求めた。
The particle size distribution of the finely pulverized product or the toner can be measured by various methods. In the present invention, the measurement was performed using a Coulter counter. That is, a Coulter Counter TA-II type (manufactured by Coulter) was used as a measuring device, and an interface (manufactured by Nikkaki) for outputting a number distribution and a volume distribution was connected to a CX-1 personal computer (manufactured by Canon). Prepares a 1% NaCl aqueous solution using primary sodium chloride. As a measurement method, 0.1 to 5 ml of a surfactant, preferably an alkylbenzene sulfonate, is added as a dispersant to 100 to 150 ml of the electrolytic aqueous solution, and the measurement sample is further diluted with 2 to 50 ml.
Add 20 mg. The electrolytic solution in which the sample was suspended was subjected to dispersion treatment for about 1 to 3 minutes using an ultrasonic disperser, and the above-mentioned Coulter Counter TA-II was used to form an aperture of 100 μm.
Using an aperture, the particle size distribution of the particles of 2 to 40 μm was measured on the basis of the number, and the value of the weight average particle size according to the present invention was obtained from the measured values.

【0046】得られた微粉砕製品をさらに、ディスパー
ジョンセパレータ(日本ニューマチック工業社製)を用
いて規定粒度以上の細粉を除去するための分級をおこな
うことにより収率良く調製された分級品はトナー用とし
て優れていた。
The obtained finely pulverized product is further classified by using a dispersion separator (manufactured by Nippon Pneumatic Industries, Ltd.) to remove fine powder having a specified particle size or more, thereby obtaining a classified product prepared in good yield. Was excellent for toner.

【0047】他に、他の微粉体製造装置又は衝突面形状
等を変えた製造例2〜4、更に比較のため衝突面が平
面、錐体の場合についても微粉砕を試みた。
In addition, fine pulverization was also attempted for other fine powder production apparatuses or Production Examples 2 to 4 in which the shape of the collision surface was changed, and for comparison, the case where the collision surface was a flat surface or a cone.

【0048】結果を下記表に示す。The results are shown in the following table.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【発明の効果】以上のように、本発明によれば、加速管
から噴射された固気混合流は、衝突部材に設けた錐体状
の突出中心部で一次粉砕され、さらに突出中心部の周囲
に設けられた外周衝突面で多段に粉砕された後、粉砕室
側壁でさらに粉砕されるため、従来の衝突式気流粉砕機
に比べ、粉砕効率が大幅に向上する。また、衝突後の反
射流が加速管に向けて流れず、このため、固気混合流の
乱れを防止でき、衝突面上での融着物の発生を防止でき
る。
As described above, according to the present invention, the solid-gas mixed flow injected from the accelerating tube is primarily pulverized at the conical protruding center provided on the collision member, and is further pulverized at the protruding center. After being pulverized in multiple stages at the peripheral collision surface provided around the pulverizer, the pulverization is further pulverized on the side wall of the pulverization chamber. Therefore, the pulverization efficiency is greatly improved as compared with a conventional collision type airflow pulverizer. Further, the reflected flow after the collision does not flow toward the accelerating tube, and therefore, the turbulence of the solid-gas mixed flow can be prevented, and the generation of the fused material on the collision surface can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した衝突式気流粉砕機の概略断面
図である。
FIG. 1 is a schematic cross-sectional view of a collision type air current pulverizer embodying the present invention.

【図2】図1の横断平面図である。FIG. 2 is a cross-sectional plan view of FIG.

【図3】本発明を実施した他の衝突式気流粉砕機の概略
断面図である。
FIG. 3 is a schematic sectional view of another collision-type airflow pulverizer embodying the present invention.

【図4】図3のA−A線における拡大断面図である。FIG. 4 is an enlarged sectional view taken along line AA of FIG. 3;

【図5】図3のB−B線における拡大断面図である。FIG. 5 is an enlarged sectional view taken along line BB of FIG. 3;

【図6】本発明を実施した他の衝突式気流粉砕機の概略
断面図である。
FIG. 6 is a schematic sectional view of another collision-type airflow pulverizer embodying the present invention.

【図7】図6のC−C線における拡大断面図である。FIG. 7 is an enlarged sectional view taken along line CC of FIG. 6;

【図8】従来例の粉砕機を示す概略断面図である。FIG. 8 is a schematic sectional view showing a conventional crusher.

【図9】従来例の粉砕機を示す概略断面図である。FIG. 9 is a schematic sectional view showing a conventional crusher.

【図10】従来例の粉砕機を示す概略断面図である。FIG. 10 is a schematic sectional view showing a conventional crusher.

【図11】従来例の粉砕機を示す概略断面図である。FIG. 11 is a schematic sectional view showing a conventional crusher.

【符号の説明】[Explanation of symbols]

1 粉体原料投入口 2 圧縮気体供給ノズル 3 加速管 4 衝突部材 5 排出口 6 粉砕室側壁 7 粉体原料 8 粉砕室 13 加速管出口 14 衝突面 141 突出中心部 142,143 外周衝突面 21 加速管 22 加速管スロート部 23 高圧気体噴出ノズル 24 被粉砕物供給口 25 被粉砕物供給筒 26 高圧気体供給口 27 高圧気体チャンバー 28 高圧気体導入管 29 加速管出口 30 衝突部材 32 粉砕室側壁 33 粉砕物排出口 34 粉砕室 35 ラバルノズル 36 加速管スロート部 37 加速管出口 DESCRIPTION OF SYMBOLS 1 Powder raw material inlet 2 Compressed gas supply nozzle 3 Acceleration tube 4 Collision member 5 Discharge port 6 Pulverization chamber side wall 7 Powder raw material 8 Pulverization chamber 13 Acceleration pipe outlet 14 Collision surface 141 Projection center part 142,143 Outer collision surface 21 Acceleration Tube 22 accelerating tube throat part 23 high-pressure gas ejection nozzle 24 pulverized material supply port 25 pulverized material supply cylinder 26 high-pressure gas supply port 27 high-pressure gas chamber 28 high-pressure gas introduction pipe 29 accelerating pipe outlet 30 collision member 32 pulverizing chamber side wall 33 pulverization Material discharge port 34 Grinding chamber 35 Laval nozzle 36 Acceleration tube throat 37 Acceleration tube outlet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−322753(JP,A) (58)調査した分野(Int.Cl.7,DB名) B02C 19/00 B02C 19/06 ────────────────────────────────────────────────── (5) References JP-A-4-322275 (JP, A) (58) Fields studied (Int. Cl. 7 , DB name) B02C 19/00 B02C 19/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高圧気体により被粉砕物を搬送加速する
ための加速管と被粉砕物を微粉砕するための粉砕室とを
有する衝突式気流粉砕機において、 該粉砕室内には、該加速管の出口の開口面に対向して設
けた衝突面を有する衝突部材が具備されており、該衝突
面上で被粉砕物が少なくとも3回以上衝突により粉砕す
るための衝突面を有し、該粉砕室には、衝突面で粉砕さ
れた粉砕物をさらに衝突により粉砕するための側壁を有
することを特徴とする衝突式気流粉砕機。
1. A collision type air current pulverizer having an accelerating tube for conveying and accelerating an object to be pulverized by a high-pressure gas and a pulverizing chamber for pulverizing the object to be pulverized, wherein the accelerating tube is provided in the pulverizing chamber. A collision member having a collision surface provided opposite to the opening surface of the outlet, and having a collision surface for crushing the object to be crushed at least three times on the collision surface; A collision-type airflow pulverizer characterized in that the chamber has a side wall for further pulverizing the pulverized material pulverized at the collision surface by collision.
【請求項2】 衝突部材の衝突面は、突出している突出
中心部を有し、該突出中心部で粉砕された被粉砕物の一
次粉砕物をさらに衝突により粉砕するための外周衝突面
を該突出中心部の周囲に多段に設け、該突出中心部の頂
角をα1 (°)とし、外周衝突面の延長線上の頂角を順
番にα2 ,α3 …αn (°)(n≧3)として、該α
1 ,α2 ,α3 …αn が下記式 α1 <α2 <α3 …<αn ,0°<α1 <90°,90
°<αn <180° を満足することを特徴とする請求項1に記載の衝突式気
流粉砕機。
2. The collision surface of the collision member has a projecting central portion, and an outer peripheral collision surface for further crushing the primary crushed material crushed at the projecting central portion by collision. .. Α n (°) (n). The apex angle of the protruding center portion is α 1 (°), and the apex angles on the extension of the outer peripheral collision surface are α 1 , α 3 . ≧ 3), the α
1 , α 2 , α 3 ... Α n are represented by the following formulas α 123 ... <Α n , 0 ° <α 1 <90 °, 90
° <alpha n collision type air pulverizer according to claim 1, characterized by satisfying the <180 °.
JP05124701A 1993-04-30 1993-04-30 Collision type air crusher Expired - Fee Related JP3101786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05124701A JP3101786B2 (en) 1993-04-30 1993-04-30 Collision type air crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05124701A JP3101786B2 (en) 1993-04-30 1993-04-30 Collision type air crusher

Publications (2)

Publication Number Publication Date
JPH06315649A JPH06315649A (en) 1994-11-15
JP3101786B2 true JP3101786B2 (en) 2000-10-23

Family

ID=14891958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05124701A Expired - Fee Related JP3101786B2 (en) 1993-04-30 1993-04-30 Collision type air crusher

Country Status (1)

Country Link
JP (1) JP3101786B2 (en)

Also Published As

Publication number Publication date
JPH06315649A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
JP6255681B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP3114040B2 (en) Collision type air crusher
JP3101786B2 (en) Collision type air crusher
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JP3283728B2 (en) Crusher
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP2654989B2 (en) Powder grinding method
JP3313922B2 (en) Crusher
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP2805332B2 (en) Grinding method
JP2704787B2 (en) Powder material grinding method
JP2759500B2 (en) Collision type air crusher
JP3016402B2 (en) Collision type air crusher
JPH08182938A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH03296446A (en) Impact type jet grinder and grinding method
JPH08117633A (en) Production of impact pneumatic pulverizer and static charge developing toner
JPH07185383A (en) Circulation type pulverizing and classifying machine
JP2566158B2 (en) Collision airflow crusher
JPH0386257A (en) Collision-type jet pulverizer and crushing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees