JP2805332B2 - Grinding method - Google Patents

Grinding method

Info

Publication number
JP2805332B2
JP2805332B2 JP1117401A JP11740189A JP2805332B2 JP 2805332 B2 JP2805332 B2 JP 2805332B2 JP 1117401 A JP1117401 A JP 1117401A JP 11740189 A JP11740189 A JP 11740189A JP 2805332 B2 JP2805332 B2 JP 2805332B2
Authority
JP
Japan
Prior art keywords
collision
powder
raw material
tube
pulverizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1117401A
Other languages
Japanese (ja)
Other versions
JPH02298364A (en
Inventor
聡 三ツ村
政吉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1117401A priority Critical patent/JP2805332B2/en
Publication of JPH02298364A publication Critical patent/JPH02298364A/en
Application granted granted Critical
Publication of JP2805332B2 publication Critical patent/JP2805332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジェット気流(高圧気体)を用いた衝突式
気流粉砕機で粉体原料を粉砕する方法に関する。特に、
電子写真法による画像形成方法に用いられるトナーまた
はトナー用着色樹脂粉体も効率良く生成する粉砕方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a method for pulverizing a powder material by a collision type air flow pulverizer using a jet air flow (high-pressure gas). Especially,
The present invention relates to a pulverizing method for efficiently producing a toner or a colored resin powder for a toner used in an image forming method by an electrophotographic method.

[従来の技術] ジェット気流を用いた衝突式気流粉砕機は、ジェット
気流で粉体原料を搬送し、粉体原料を衝突部材に衝突さ
せ、その衝撃力により粉砕するものである。
[Related Art] A collision-type airflow pulverizer using a jet airflow conveys a powdery raw material by a jet airflow, collides the powdery raw material with a collision member, and pulverizes the powdery raw material by the impact force.

従来、かかる粉砕機における衝突部材の衝突面14は、
第3図及び第4図に示すように、粉体原料を乗せたジェ
ット気流方向(加速管の軸方向)に対し垂直あるいは傾
斜(例えば45゜)している平面状のものが用いられてき
た(特開昭57−50554号公報及び特開昭58−143853号公
報参照)。
Conventionally, the collision surface 14 of the collision member in such a crusher,
As shown in FIG. 3 and FIG. 4, a flat plate which is perpendicular or inclined (for example, 45 °) to the jet stream direction (axial direction of the accelerating tube) on which the powder material is loaded has been used. (See JP-A-57-50554 and JP-A-58-148453).

第3図の粉砕機において粗い粒径を有する粉体原料
は、投入口1より加速管3に供給され、ジェットノズル
2から吹き出されるジェット気流によって、粉体原料は
衝突部材4の衝突面14にたたきつけられ、その衝撃力で
粉砕され、排出口5より粉砕室外に排出される。
In the pulverizer shown in FIG. 3, a powder raw material having a coarse particle size is supplied from an inlet 1 to an acceleration tube 3 and is jetted from a jet nozzle 2 so that the powder raw material is converted into a collision surface 14 of a collision member 4. And is pulverized by the impact force, and is discharged out of the pulverization chamber through the discharge port 5.

しかしながら、衝突面14が加速管3の軸方向と垂直な
場合、ジェットノズル2から吹き出される原料粉体と衝
突面14で反射される粉体とが衝突面14の近傍で共存する
割合が高く、そのため、衝突面14近傍の粉体濃度が高く
なるために、粉砕効率が良くない。さらに、衝突面14に
おける一次衝突が主体であり、粉砕室壁6との二次衝突
を有効に利用しているとはいえない。さらに、衝突面の
角度が加速管3に対し垂直の粉砕機では、粉体原料が熱
可塑性樹脂である材料を粉砕するときに、衝突時の局部
発熱により融着及び凝集物が発生しやすく、装置の安定
した運転が困難になり、粉砕衝撃力を向上させるために
6.5Kg/cm2以上の高圧縮気体を用いることはできなくな
る。
However, when the collision surface 14 is perpendicular to the axial direction of the acceleration tube 3, the ratio of the raw material powder blown out from the jet nozzle 2 and the powder reflected by the collision surface 14 coexist near the collision surface 14 is high. Therefore, the powder concentration in the vicinity of the collision surface 14 becomes high, so that the pulverization efficiency is not good. Further, the primary collision at the collision surface 14 is mainly performed, and it cannot be said that the secondary collision with the crushing chamber wall 6 is effectively used. Further, in a pulverizer in which the angle of the collision surface is perpendicular to the accelerating tube 3, when the powder raw material is a material that is a thermoplastic resin, fusion and agglomerates are easily generated due to local heat generation at the time of collision. In order to make stable operation of the equipment difficult and to improve the crushing impact force
It becomes impossible to use a highly compressed gas of 6.5 kg / cm 2 or more.

電子写真法による画像形成方法に用いられるトナーま
たはトナー用着色樹脂粉体は、通常結着樹脂及び着色剤
または磁性粉を少なくとも含有している。トナーは、潜
像担持体に形成された静電荷像を現像し、形成されたト
ナー像は普通紙またはプラスチックフィルムの如き転写
材へ転写され、加熱定着手段,圧力ローラ定着手段また
は加熱加圧ローラ定着手段の如き定着装置によって転写
材料のトナー像は転写材に定着される。したがって、ト
ナーに使用される結着樹脂は、熱及び/または圧力が付
加されると塑性変形する特性を有する。現在、トナーま
たはトナー用着色樹脂粉体は、結着樹脂及び着色剤また
は磁性粉(必要により、さらに第三成分を含有)を少な
くとも含有する混合物を溶融混練し、溶融混練物を冷却
し、冷却物を粉砕し、粉砕物を分級して調製される。冷
却物の粉砕は、通常、機械的衝撃式粉砕機により粗粉砕
(または中粉砕)される過程を経て、この粉砕粗粉をジ
ェット気流を用いた衝突式気流粉砕機で微粉砕するが、
被粉砕物濃度を高くし、好ましくは、7.0Kg/cm2以上の
高圧縮気体を使用して微粉砕することは困難であった。
A toner or a colored resin powder for a toner used in an image forming method by an electrophotographic method usually contains at least a binder resin and a colorant or a magnetic powder. The toner develops the electrostatic charge image formed on the latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or a plastic film, and is heated and fixed, a pressure roller is fixed, or a heat and pressure roller is used. The toner image of the transfer material is fixed on the transfer material by a fixing device such as a fixing unit. Therefore, the binder resin used for the toner has a property of being plastically deformed when heat and / or pressure is applied. At present, a toner or a colored resin powder for a toner is prepared by melt-kneading a mixture containing at least a binder resin and a colorant or a magnetic powder (and further containing a third component as necessary), cooling the melt-kneaded product, and cooling. It is prepared by crushing the product and classifying the crushed product. The crushing of the cooled product is usually carried out through a process of coarse crushing (or medium crushing) by a mechanical impact crusher, and then the crushed coarse powder is finely crushed by a collision type airflow crusher using a jet stream.
It was difficult to increase the concentration of the material to be pulverized, and preferably to pulverize using a highly compressed gas of 7.0 kg / cm 2 or more.

一方、第4図及び第5図に示す如く、衝突面14の角度
が加速管に対し45゜傾斜のものでは、衝突面14近傍の粉
体濃度は第3図の粉砕機と比較して低く、熱可塑性樹脂
を粉砕するときに上記のような問題点は少ない。しかし
ながら、衝突するさいに粉砕に使われる衝突力が小さ
く、さらに粉砕室壁6との二次衝突による粉砕が少ない
ので粉砕能力は、第1図の粉砕機と比較して1/2〜1/1.5
に粉砕能力が落ちる。
On the other hand, as shown in FIGS. 4 and 5, when the angle of the collision surface 14 is 45 ° with respect to the accelerating tube, the powder concentration near the collision surface 14 is lower than that of the pulverizer of FIG. However, the above-mentioned problems when pulverizing a thermoplastic resin are small. However, at the time of collision, the crushing force used for crushing is small, and crushing due to secondary collision with the crushing chamber wall 6 is small. 1.5
The crushing ability drops.

従って、被粉砕物原料及び時に、熱可塑性樹脂を含む
材料を粉砕するときに粉砕効率が良好であり、6.5Kg/cm
2以上の高圧縮気体を利用しても粉砕能力が向上できる
粉砕方法が待望されている。
Therefore, when the material to be pulverized and sometimes, when pulverizing a material containing a thermoplastic resin, the pulverization efficiency is good, and 6.5 kg / cm
A pulverization method that can improve the pulverization ability even when two or more highly compressed gases are used has been desired.

[発明が解決しようとしている課題] 本発明が解決しようとしている課題は、上記問題点が
解消された粉砕方法を提供することにある。
[Problem to be solved by the invention] A problem to be solved by the present invention is to provide a pulverization method in which the above-mentioned problem is solved.

[課題を解決するための手段及び作用] 本発明は、加速管内で高圧気体により熱可塑性樹脂を
含む粉体原料を加速し、該加速管出口から該粉体原料を
吐出し、加速管出口に対向して粉砕室内に設けられてい
る衝突部材の衝突面に該粉体原料を衝突させて粉砕する
粉砕方法において、 該加速管は、加速管の軸方向に垂直な断面積が加速管出
口方向に向かって順次大きくなっている管通路を有し、 該加速管内に供給する高圧気体は、6.5kg/cm2以上の圧
縮気体であり、 該管通路で加速され、加速管出口から吐出された該粉体
原料を先端部分の頂角が120゜〜170゜の円錐形状の衝突
面を有する衝突部材に衝突させて粉砕し、衝突後の粉体
を実質的に全周方向に分散させ、分散した粉体を粉砕室
壁に二次衝突させてさらに粉砕することを特徴とする粉
砕方法に関する。
Means and Action for Solving the Problems According to the present invention, a powder material containing a thermoplastic resin is accelerated by a high-pressure gas in an acceleration tube, and the powder material is discharged from the acceleration tube outlet. In a pulverization method for pulverizing the raw material by colliding the raw material with a collision surface of a collision member provided in a pulverization chamber opposed to the pulverization chamber, the accelerating tube has a cross-sectional area perpendicular to an axial direction of the accelerating tube in an accelerating tube outlet direction. The high-pressure gas supplied into the acceleration tube is a compressed gas of 6.5 kg / cm 2 or more, accelerated in the tube passage, and discharged from the acceleration tube outlet. The powdered raw material collides with a collision member having a cone-shaped collision surface having a vertex angle of 120 ° to 170 ° at the tip portion to be pulverized, and the powder after the collision is substantially dispersed in the entire circumferential direction. Pulverization characterized by secondary collision of the ground powder with a pulverization chamber wall to further pulverize Law on.

本発明によれば、樹脂や粘着性のあるものを粉砕した
時に発生する融着・凝集物・粗粒子による粉砕能力の低
下を解決するために、第1図、第2図に示すように、衝
突板面の先端部分が頂角120゜〜170゜である円錐形状と
した。
According to the present invention, in order to solve the reduction of the crushing ability due to fusion, agglomerates and coarse particles generated when crushing a resin or a sticky thing, as shown in FIG. 1 and FIG. The tip portion of the impact plate surface was formed in a conical shape having an apex angle of 120 ° to 170 °.

こうすることにより、熱可塑性樹脂や粘着性のあるも
のを粉砕した時に、衝突板の角度が加速管に対し90゜の
ものに生じる融着・凝集物・粗粒子は生じず、粉砕時の
粉塵濃度の上昇が可能になった。
In this way, when crushing thermoplastic resin or sticky material, there is no fusion, agglomeration, or coarse particles that occur when the collision plate has an angle of 90 ° to the accelerating tube. The concentration can be increased.

更に、このような衝突板を用いることにより、衝突板
に衝突して粉砕され且つ分散良くはねかえった粉体を粉
砕室に二次衝突せしめ、より粉砕効率を上昇させること
が可能になった。
Furthermore, by using such a collision plate, it is possible to make the powder that has been crushed by the collision plate and rebounded with good dispersion collide with the crushing chamber a second time, thereby further increasing the crushing efficiency. .

また、粉体を分散良く衝突板からはねかえし粉砕室壁
と二次衝突せしめたために、6.5Kg/cm2以上の高圧縮気
体を利用して、熱可塑性樹脂を原料とするものを微粉砕
することが可能になり、衝突板の角度が加速管に対して
垂直のものより粉砕能力の向上が図れた。
In addition, since the powder was rebounded from the collision plate with good dispersion and collided secondly with the wall of the grinding chamber, highly compressed gas of 6.5 kg / cm 2 or more was used to finely pulverize thermoplastic resin as raw material. And the crushing ability is improved compared to the case where the angle of the collision plate is perpendicular to the acceleration tube.

以下、本発明を実施例及び比較例に基づいて説明す
る。
Hereinafter, the present invention will be described based on examples and comparative examples.

[実施例] 実施例1 添付図面の第1図及び第2図に示す衝突式気流粉砕機
を使用して粉体の粉砕をおこなった。粉砕された粉体を
微粉と粗粉とに分級するための分級手段として固定壁式
風力分級機を使用した。
Example 1 Example 1 A powder was pulverized by using an impinging airflow pulverizer shown in FIGS. 1 and 2 of the accompanying drawings. As a classification means for classifying the pulverized powder into fine powder and coarse powder, a fixed wall type air classifier was used.

衝突式気流粉砕機は、直径(b)が60mmの酸化アルミ
ニウム系セラミックで形成された円柱状の衝突部材4を
有し、衝突部材4の先端部は、頂角(θ)120゜を有す
る円錐形状を有している。粉砕室8の内壁はセラミック
コートされている。加速管出口13の内径は25mmであり、
加速管3の中心軸と衝突部材4の先端とは一致してい
る。加速管出口13から衝突面14までの最近接距離(a)
は60mmであり、衝突部材4と粉砕室壁6との最近接距離
(c)は20mmである。衝突式気流粉砕機のA−B面にお
ける断面は、第2図に示すU字形を有している。衝突部
材4の左右及び下方の粉砕室壁6との距離は、20〜40mm
である。
The impingement type air current pulverizer has a columnar impacting member 4 made of an aluminum oxide ceramic having a diameter (b) of 60 mm, and the tip of the impacting member 4 has a cone having an apex angle (θ) of 120 °. It has a shape. The inner wall of the crushing chamber 8 is ceramic-coated. The inner diameter of the acceleration tube outlet 13 is 25 mm,
The center axis of the acceleration tube 3 and the tip of the collision member 4 coincide with each other. Closest distance from accelerator tube exit 13 to collision surface 14 (a)
Is 60 mm, and the closest distance (c) between the collision member 4 and the crushing chamber wall 6 is 20 mm. The cross section along the AB plane of the impinging airflow pulverizer has a U-shape as shown in FIG. The distance between the collision member 4 and the left and right and below the crushing chamber wall 6 is 20 to 40 mm.
It is.

原料7として下記のものを使用した。 The following was used as raw material 7.

上記処方の混合物よりなるトナー原料を約180℃で約
1.0時間溶融混練後、冷却して固化し、溶融混練物の冷
却物をハンマーミルで100〜1000μの粒子に粗粉砕した
ものを粉体原料とした。
The toner raw material consisting of the mixture of the above formulation is
After melt-kneading for 1.0 hour, the mixture was cooled and solidified, and the cooled melt-kneaded product was roughly pulverized into particles of 100 to 1000 μm with a hammer mill to obtain a powder raw material.

投入口1から粉体原料が33Kg/時間の割合で供給され
ると、ノズル2から拭き出される圧縮空気8.0Kgf/cm2
よって、加速管3内で粉体原料は加速され、加速管出口
13から粉砕室8内に吐出され、粉体原料7は衝突面14に
たたきつけられ、その衝撃力で粉砕された。それと共に
120゜の傾斜が付いた円錐形状の衝突面14により、衝突
した粉体原料は全周方向に分散し、対向する粉砕室壁6
と、二次衝突し、そこで更に粉砕された。
When the powder material is supplied at a rate of 33 kg / hour from the inlet 1, the powder material is accelerated in the acceleration tube 3 by the compressed air 8.0 kgf / cm 2 wiped out from the nozzle 2, and the outlet of the acceleration tube is accelerated.
The powder raw material 7 was discharged into the pulverizing chamber 8 from 13 and was hit against the collision surface 14 and pulverized by the impact force. With it
Due to the conical collision surface 14 inclined at 120 °, the colliding powder material is dispersed in all circumferential directions,
Secondary collision, where it was further crushed.

粉砕された粉体原料は排出口5からスムーズに分級機
24に運ばれ、細粉は分級粉体として取り除かれ、粗分は
再び投入口1より粉体原料と共に投入された。細粉とし
て重量平均粒径12μmの粉砕粉体が33Kg/時の割合で収
集された。
The crushed powder raw material is smoothly classified from the outlet 5
24, the fine powder was removed as a classified powder, and the coarse fraction was again charged together with the powder raw material from the charging port 1. A ground powder having a weight average particle size of 12 μm was collected as a fine powder at a rate of 33 kg / hour.

このように、衝突部材4の衝突面は頂角(θ)120゜
の傾斜の付いた円錐形状をしているため、衝突した粉体
原料は全周方向に分散し、対向する粉砕壁と二次衝突し
た。そのため、衝突部材付近での融着、凝集物、粗粒子
が生じないために、粉体濃度が上昇せず、さらに二次衝
突するために、従来より粉砕能力が非常に高くなること
が確認された。
As described above, the collision surface of the collision member 4 has a conical shape with an apex angle (θ) of 120 °, so that the colliding powder material is dispersed in the entire circumferential direction, and the crushed powder material is in contact with the opposing crushing wall. Next collision. Therefore, it was confirmed that the powder concentration did not increase because no fusion, agglomerates, and coarse particles were generated near the collision member, and further, the secondary collision caused the pulverization ability to be much higher than before. Was.

実施例2 実施例1と同様な粉体原料を第1図に示す頂角(θ)
160度の傾斜の付いた円錐形状の衝突面を有する衝突部
材を用いて、実施例1と同様に粉砕したところ、粉砕時
の衝突面付近での粉塵濃度が上昇せずかつ二次衝突する
ために実施例1と同様、従来より粉砕能力が非常に高く
なることが確認された。粉体原料の投入量は、処理量に
応じて調整した。
Example 2 A powder raw material similar to that of Example 1 was used and the apex angle (θ) shown in FIG.
Using a collision member having a conical collision surface with a 160-degree inclination, pulverization was performed in the same manner as in Example 1, but the dust concentration near the collision surface during the pulverization did not increase and secondary collision occurred. In the same manner as in Example 1, it was confirmed that the pulverizing ability was much higher than before. The input amount of the powder raw material was adjusted according to the processing amount.

実施例3 実施例1と同様な粉体原料を第1図に示す頂角(θ)
170度の傾斜の付いた円錐形状の衝突面を有する衝突部
材を用いて、実施例1と同様に粉砕したところ、粉砕時
の衝突面付近での粉塵濃度が上昇せず、かつ二次衝突す
るために従来より粉砕能力が非常に高くなることが確認
された。
Example 3 A powder material similar to that of Example 1 was subjected to the apex angle (θ) shown in FIG.
When crushing was performed in the same manner as in Example 1 using a collision member having a conical collision surface inclined at 170 degrees, the dust concentration near the collision surface during the crushing did not increase, and secondary collision occurred. Therefore, it has been confirmed that the pulverizing ability is much higher than before.

比較例1 実施例1と同様な粉体原料を第3図に示す従来の衝突
式気流粉砕機で粉砕した。該粉砕機において、加速管3
に対し垂直である平面状衝突面14を有する衝突部材4を
用いて、実施例1と同様に粉砕した。ただし、ノズル2
から吹き出される圧縮空気は6.0Kg/cm2で粉砕した。
Comparative Example 1 The same powdery raw material as in Example 1 was pulverized by a conventional impingement airflow pulverizer shown in FIG. In the crusher, the acceleration tube 3
Pulverized in the same manner as in Example 1 using a collision member 4 having a planar collision surface 14 perpendicular to However, nozzle 2
Compressed air blown from the container was pulverized at 6.0 kg / cm 2 .

衝突面14に衝突した粉体原料は、吐出方向と対向する
方向に反射されるために、衝突面付近の粉体濃度は著し
く高くなった。そのため、粉体原料の供給割合が10Kg/
時間を超えると、衝突部材上で、融着、凝集物、粗粒子
が生じはじめ、融着物が加速管出口13や分級機を詰まら
せる場合があった。従って、粉砕処理量を1時間当り10
Kgに低下させることを余儀なくされ、これが粉砕能力の
限界となった。
The powder raw material that collided with the collision surface 14 was reflected in a direction opposite to the discharge direction, so that the powder concentration near the collision surface became extremely high. Therefore, the supply ratio of the powder raw material is 10 kg /
If the time is exceeded, fusion, agglomerates, and coarse particles begin to occur on the collision member, and the fusion may clog the outlet 13 of the acceleration tube or the classifier. Therefore, the pulverization throughput is 10
It had to be reduced to Kg, which was the limit of the grinding capacity.

比較例2 実施例1と同様な粉体原料を第3図に示す従来の衝突
式気流粉砕機で粉砕した。該粉砕機において、加速管3
に対し垂直である平面状衝突面14を有する衝突部材4を
用いて、実施例1と同様にノズル2から吹き出される圧
縮空気は、8.0Kg/cm2で粉砕した。衝突面14に衝突した
粉体原料は、吐出方向と対向する方向に反射されるため
に、衝突面付近の粉体濃度は著しく高くなり、さらに、
衝撃力は、大きくなったために衝突部材上で、融着、凝
集物、粗粒子が生じはじめ、融着物が加速管出口13や分
級機を詰まらせ、粉砕機能を達成することができなくな
ってしまった。
Comparative Example 2 The same powdery raw material as in Example 1 was pulverized by a conventional impingement airflow pulverizer shown in FIG. In the crusher, the acceleration tube 3
The compressed air blown out from the nozzle 2 was crushed at 8.0 kg / cm 2 in the same manner as in Example 1 by using the collision member 4 having the planar collision surface 14 perpendicular to the compressed air. Since the powder raw material colliding with the collision surface 14 is reflected in a direction opposite to the discharge direction, the powder concentration near the collision surface becomes extremely high, and further,
Since the impact force increased, fusion, agglomerates, and coarse particles began to form on the collision member, and the fusion clogged the accelerating tube outlet 13 and the classifier, making it impossible to achieve the pulverizing function. Was.

比較例3 実施例1と同様な粉体原料を、第4図及び第5図に示
す衝突式気流粉砕機で粉砕した。該粉砕機において45度
の衝突面を有する衝突部材を用いて、実施例1と同様に
粉砕したところ、衝突面に衝突した粉体原料は、比較例
1に比べ、加速管出口13から離れる方向へ反射されるの
で融着及び凝集物は生じなかった。しかし、衝突する際
に、衝撃力が弱くなるため、粉砕効率が悪く、重量平均
粒径12μmの細粉は、1時間当り約10Kgしか得られなか
った。
Comparative Example 3 A powdery raw material similar to that of Example 1 was pulverized by the impingement airflow pulverizer shown in FIGS. When the pulverizer was pulverized in the same manner as in Example 1 using a collision member having a 45-degree collision surface, the powder material that collided with the collision surface was more distant from the accelerating tube outlet 13 than in Comparative Example 1. No fusing or agglomeration occurred due to reflection to the surface. However, the impact force was weakened at the time of collision, so that the pulverization efficiency was poor, and only about 10 kg of fine powder having a weight average particle diameter of 12 μm was obtained per hour.

実施例1乃至3及び比較例1乃至3の結果を下記第1
表に示す。
The results of Examples 1 to 3 and Comparative Examples 1 to 3
It is shown in the table.

実施例4 粉体原料として下記のものを使用した。 Example 4 The following were used as powder raw materials.

上記処方の混合物よりなるトナー原料を約180℃で約
1.0時間溶融混練後、冷却して固化し、固形物をハンマ
ーミルで100〜1000μの粒子に粗粉砕したものを粉体原
料とした。
The toner raw material consisting of the mixture of the above formulation is
After melt-kneading for 1.0 hour, the mixture was cooled and solidified, and the solid was roughly pulverized into particles of 100 to 1000 μm with a hammer mill to obtain a powder raw material.

投入口1から10.5Kg/時の割合で供給し、ノズル2か
ら8.0Kgf/cm2の圧縮空気を導入し、頂角(θ)120゜の
傾斜の付いた円錐形状の衝突面を有する衝突部材を具備
した第1図及び第2図に示す衝突式気流粉砕機にて粉砕
し、粉砕された粉体を分級機24にて細粉と粗粉に分級し
た。細粉として、重量平均粒径約12μmの粉体が1時間
当り10.5Kgの割合で収集された。
The compressed air was supplied from the inlet 1 at a rate of 10.5 kg / hour, the compressed air of 8.0 kgf / cm2 was introduced from the nozzle 2, and the collision member having a cone-shaped collision surface with a vertical angle (θ) of 120 ° was inclined. The pulverized powder was crushed by a collision type air current crusher shown in FIGS. 1 and 2 and the crushed powder was classified into fine powder and coarse powder by a classifier 24. As fine powder, a powder having a weight average particle size of about 12 μm was collected at a rate of 10.5 kg per hour.

実施例5 実施例4と同様な粉体原料を、頂角(θ)160゜の傾
斜の付いた円錐形状の衝突面を有する衝突部材を具備し
た第1図に示す衝突式気流粉砕機を用いて、実施例4と
同様に粉砕したところ、重量平均粒径約12μmの細粉が
1時間当り9.8Kgの割合で収集された。
Example 5 The same powdery raw material as in Example 4 was obtained by using an impingement type air-flow pulverizer shown in FIG. 1 equipped with an impingement member having a conical impingement surface having an apex angle (θ) of 160 °. Then, when the powder was pulverized in the same manner as in Example 4, fine powder having a weight average particle size of about 12 μm was collected at a rate of 9.8 kg per hour.

比較例4 実施例4と同様な粉体原料を、6.0Kgf/cm2の圧縮空気
を導入した第3図に示す衝突式気流粉砕機で粉砕したと
ころ、重量平均粒径約12μmの細紛が1時間当り7kgし
か収集されなかった。
Comparative Example 4 The same powdery raw material as in Example 4 was pulverized by a collision airflow pulverizer shown in FIG. 3 into which compressed air of 6.0 kgf / cm 2 was introduced. Fine powder having a weight average particle size of about 12 μm was obtained. Only 7 kg was collected per hour.

比較例5 実施例4と同様な粉体原料を、8.0Kgf/cm2の圧縮空気
を導入した第3図に示す衝突式気流粉砕機で粉砕したと
ころ、衝突部材上で融着、凝集物、粗粒子が生じはじ
め、融着物が加速管出口13が分級機を詰まらせ、粉砕機
能を達成することができなくなった。
Comparative Example 5 The same powdery raw material as in Example 4 was pulverized by a collision type air flow pulverizer shown in FIG. 3 into which compressed air of 8.0 kgf / cm 2 was introduced. Coarse particles began to form, and the fused material clogged the classifier at the outlet 13 of the accelerating tube, making it impossible to achieve the pulverizing function.

比較例6 実施例4と同様な粉体原料を、8.0Kgf/cm2の圧縮空気
を導入した第4図及び第5図に示す衝突式気流粉砕機で
粉砕したところ、重量平均粒径約12μmの細粉が1時間
当り5.6Kgしか収集されなかった。
Comparative Example 6 The same powdery raw material as in Example 4 was pulverized by a collision type air-flow pulverizer shown in FIGS. 4 and 5 into which 8.0 kgf / cm 2 of compressed air was introduced. Only 5.6 kg of fines per hour were collected.

実施例4乃至6及び比較例4乃至6の結果を下記第2
表に示す。
The results of Examples 4 to 6 and Comparative Examples 4 to 6
It is shown in the table.

[発明の効果] 以上説明したように、衝突部材先端の形状を特定の円
錐形状とし、この衝突面に粉体原料をたたきつけるた
め、6.5Kg/cm2以上の高圧縮気体を投入しても、粉砕時
における融着、凝集物、粗粒子等の発生を妨げ、装置の
安定した運転を可能にする。その上、粉体原料の二次衝
突時まで、強い衝撃力が保てる。そのために、熱可塑性
樹脂材料を原料とし、6.5Kg/cm2以上の高圧縮気体を利
用して従来の粉砕能力を著しく向上することができる。
[Effect of the Invention] As described above, the shape of the tip of the collision member is a specific conical shape, and in order to strike the powder material on the collision surface, even if a highly compressed gas of 6.5 kg / cm 2 or more is injected, It prevents fusion, agglomerates, coarse particles, and the like during pulverization, and enables stable operation of the apparatus. In addition, a strong impact force can be maintained until the secondary collision of the powder material. Therefore, the conventional pulverizing ability can be remarkably improved by using a thermoplastic resin material as a raw material and using a highly compressed gas of 6.5 kg / cm 2 or more.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、衝突部材が円錐形状を有する本発明に使用し
た衝突式気流粉砕機の断面及び粉砕・分級工程を概略的
に示した図であり、第2図は第1図に示す粉砕機のA−
B面における断面を概略的に示した図である。 第3図は、衝突部材の衝突面が加速管の軸方向に対して
垂直である、比較例としての衝突式気流粉砕機の断面及
び粉砕・分級工程を概略的に示した図である。 第4図は、衝突部材の衝突面が加速管の軸方向に対し
て、上方に45゜傾斜している、比較例としての衝突式気
流粉砕機の断面及び粉砕・分級工程を概略的に示した図
であり、第5図は、第4図に示す衝突式気流粉砕機のA
−B図における断面を概略的に示した図である。 1……粉体原料投入口 2……圧縮気体供給ノズル 3……加速管、4……衝突部材 5……排出口、6……粉砕室壁 7……粉体原料、8……粉砕室 11……粉体機壁、13……加速管出口 14……衝突面、24……分級機 a……加速管出口〜衝突部材間距離 b……衝突部材直径 c……衝突部材〜粉砕室壁の最短距離
FIG. 1 is a diagram schematically showing a cross section and a pulverizing / classifying process of an impingement type air current pulverizer used in the present invention in which an impinging member has a conical shape, and FIG. 2 is a pulverizer shown in FIG. A-
It is the figure which showed roughly the cross section in the B side. FIG. 3 is a diagram schematically showing a cross section and a pulverizing / classifying step of a collision type air flow pulverizer as a comparative example in which a collision surface of a collision member is perpendicular to an axial direction of an acceleration tube. FIG. 4 schematically shows a cross section and a pulverizing / classifying process of a collision type air flow pulverizer as a comparative example in which the collision surface of the collision member is inclined upward by 45 ° with respect to the axial direction of the acceleration tube. FIG. 5 is a perspective view of the collision type airflow pulverizer A shown in FIG.
It is the figure which showed roughly the cross section in -B figure. DESCRIPTION OF SYMBOLS 1 ... Powder raw material input port 2 ... Compressed gas supply nozzle 3 ... Acceleration tube 4 ... Collision member 5 ... Discharge port 6 ... Pulverizing chamber wall 7 ... Powder raw material 8 ... Pulverizing chamber 11: Powder machine wall, 13: Accelerator tube outlet 14: Collision surface, 24: Classifier a ... Distance between accelerator tube outlet and collision member b: Collision member diameter c: Collision member to grinding chamber Shortest distance of the wall

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B02C 19/06 G03G 9/08──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) B02C 19/06 G03G 9/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加速管内で高圧気体により熱可塑性樹脂を
含む粉体原料を加速し、該加速管出口から該粉体原料を
吐出し、加速管出口に対向して粉砕室内に設けられてい
る衝突部材の衝突面に該粉体原料を衝突させて粉砕する
粉砕方法において、 該加速管は、加速管の軸方向に垂直な断面積が加速管出
口方向に向かって順次大きくなっている管通路を有し、 該加速管内に供給する高圧気体は、6.5kg/cm2以上の圧
縮気体であり、 該管通路で加速され、加速管出口から吐出された該粉体
原料を先端部分の頂角が120゜〜170゜の円錐形状の衝突
面を有する衝突部材に衝突させて粉砕し、衝突後の粉体
を実質的に全周方向に分散させ、分散した粉体を粉砕室
壁に二次衝突させてさらに粉砕することを特徴とする粉
砕方法。
1. A powder material containing a thermoplastic resin is accelerated by a high-pressure gas in an acceleration tube, and the powder material is discharged from an outlet of the acceleration tube. In a pulverization method for pulverizing the raw material by colliding the powder material with a collision surface of a collision member, the accelerating tube has a pipe passage in which a cross-sectional area perpendicular to an axial direction of the accelerating tube increases gradually toward an accelerating tube outlet direction. The high-pressure gas supplied into the accelerating tube is a compressed gas of 6.5 kg / cm 2 or more, and the powder raw material accelerated in the tube passage and discharged from the accelerating tube outlet is apex angle at the tip portion. Crushed by colliding with a collision member having a cone-shaped collision surface of 120 ° to 170 °, dispersing the powder after the collision substantially in all circumferential directions, and dispersing the dispersed powder on the wall of the grinding chamber. A crushing method characterized by further crushing by collision.
【請求項2】該粉砕原料は、100〜1000μmの粒径を有
していることを特徴とする請求項(1)記載の粉砕方
法。
2. The pulverizing method according to claim 1, wherein said pulverizing raw material has a particle size of 100 to 1000 μm.
JP1117401A 1989-05-12 1989-05-12 Grinding method Expired - Fee Related JP2805332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1117401A JP2805332B2 (en) 1989-05-12 1989-05-12 Grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1117401A JP2805332B2 (en) 1989-05-12 1989-05-12 Grinding method

Publications (2)

Publication Number Publication Date
JPH02298364A JPH02298364A (en) 1990-12-10
JP2805332B2 true JP2805332B2 (en) 1998-09-30

Family

ID=14710738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1117401A Expired - Fee Related JP2805332B2 (en) 1989-05-12 1989-05-12 Grinding method

Country Status (1)

Country Link
JP (1) JP2805332B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110354967A (en) * 2019-07-22 2019-10-22 泉州市泉港区伟昌晟贸易有限公司 A kind of plastic pellet shredder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455593B (en) * 2022-01-25 2023-04-07 苏州锦艺新材料科技股份有限公司 Silica micropowder grading processing production equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664754U (en) * 1979-10-20 1981-05-30
JPH0315143Y2 (en) * 1987-06-18 1991-04-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110354967A (en) * 2019-07-22 2019-10-22 泉州市泉港区伟昌晟贸易有限公司 A kind of plastic pellet shredder

Also Published As

Publication number Publication date
JPH02298364A (en) 1990-12-10

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
KR920009291B1 (en) Collision type gas current pulverizer and method for pulverizing powders
JPH0549349B2 (en)
JP2805332B2 (en) Grinding method
JP2654989B2 (en) Powder grinding method
JP2759499B2 (en) Powder grinding method
JP3114040B2 (en) Collision type air crusher
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JP3283728B2 (en) Crusher
JP2663046B2 (en) Collision type air flow crusher and crushing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP3102902B2 (en) Collision type supersonic jet crusher
JP2566158B2 (en) Collision airflow crusher
JP2704787B2 (en) Powder material grinding method
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JPH0651129B2 (en) Collision type airflow crusher and crushing method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2663041B2 (en) Collision type air crusher
JP2525230B2 (en) Collision airflow crusher
JPH0330845A (en) Method for pulverizing powder
JPH03296446A (en) Impact type jet grinder and grinding method
JPH02298365A (en) Grinding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees