JPH0549349B2 - - Google Patents

Info

Publication number
JPH0549349B2
JPH0549349B2 JP63276165A JP27616588A JPH0549349B2 JP H0549349 B2 JPH0549349 B2 JP H0549349B2 JP 63276165 A JP63276165 A JP 63276165A JP 27616588 A JP27616588 A JP 27616588A JP H0549349 B2 JPH0549349 B2 JP H0549349B2
Authority
JP
Japan
Prior art keywords
collision
collision member
powder
colored resin
resin powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63276165A
Other languages
Japanese (ja)
Other versions
JPH01254266A (en
Inventor
Mayumi Ooshiro
Satoshi Mitsumura
Masakichi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63276165A priority Critical patent/JPH01254266A/en
Priority to US07/271,917 priority patent/US4930707A/en
Publication of JPH01254266A publication Critical patent/JPH01254266A/en
Publication of JPH0549349B2 publication Critical patent/JPH0549349B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ジエツト気流(高圧気体)を用いた
衝突式気流粉砕機及び粉砕方法に関する。 特に、電子写真法による画像形成方法に用いら
れるトナーまたはトナー用着色樹脂粉体を効率良
く生成するための衝突式気流粉砕機及び粉砕方法
に関する。 [従来の技術] 電子写真法による画像形成方法に用いられるト
ナーまたはトナー用着色樹脂粉体は、通常結着樹
脂及び着色剤または磁性粉を少なくとも含有して
いる。トナーは、潜像担持体に形成された静電荷
像を現像し、形成されたトナー像は普通紙または
プラスチツクフイルムの如き転写材へ転写され、
加熱定着手段、圧力ローラ定着手段または加熱加
圧ローラ定着手段の如き定着装置によつて転写材
上のトナー像は転写材に定着される。したがつ
て、トナーに使用される結着樹脂は、熱及び/ま
たは圧力が付加されると塑性変形する特性を有す
る。 現在、トナーまたはトナー用着色樹脂粉体は、
結着樹脂及び着色剤または磁性粉(必要により、
さらに第三成分を含有)を少なくとも含有する混
合物を溶融混練し、溶融混練物を冷却し、冷却物
を粉砕し、粉砕物を分級して調製される。冷却物
の粉砕は、通常、機械的衝撃式粉砕機により粗粉
砕(または中粉砕)され、次いで粉砕粗粉をジエ
ツト気流を用いた衝突式気流粉砕機で微粉砕して
いる。 ジエツト気流を用いた衝突式気流粉砕機は、ジ
エツト気流に粉体原料を搬送し、粉体原料を衝突
部材に衝突させ、その衝撃力により粉砕するもの
である。 従来、かかる粉砕機における衝突部材の衝突面
14は、第5図、第6図及び第8図に示すよう
に、粉体原料を乗せたジエツト気流方向(加速管
の軸方向)に対し垂直あるいは傾斜(例えば45°)
している平面状のものが用いられてきた(特開昭
57−50554号公報及び特開昭58−143853号公報参
照)。 第5図の粉砕機において粗い粒径を有する粉体
原料は、投入口1より加速管3に供給され、ジエ
ツトノズル2から吹き出されるジエツト気流によ
つて、粉体原料は衝突部材4の衝突面14にたた
きつけられ、その衝撃力で粉砕され、排出口5よ
り粉砕室外に排出される。しかしながら、衝突面
14が加速管3の軸方向と垂直な場合、ジエツト
ノズル2から吹き出される原料粉体と衝突面14
で反射される粉体とが衝突面14の近傍で共存す
る割合が高く、そのため、衝突面14近傍の粉体
濃度が高くなるために、粉砕効率が良くない。さ
らに、衝突面14における一次衝突が主体であ
り、粉砕室壁6との二次衝突を有効に利用してい
るとはいえない。さらに、衝突面の角度が加速管
3に対し垂直の粉砕機では、熱可塑性樹脂を粉砕
するときに、衝突時の局部発熱により融着及び凝
集物が発生しやすく、装置の安定した運転が困難
になり、粉砕能力低下の原因となる。そのため
に、粉体濃度を高くして使用することが困難であ
つた。 第6図の粉砕機において、衝突面14が加速管
3の軸方向に対して傾斜しているために、衝突面
14近傍の粉体濃度は第5図の粉砕機と比較して
低くなるが粉砕圧が分散されて低下する。さら
に、粉砕室壁6との二次衝突を有効に利用してい
るとはいえない。 第6図及び第7図に示す如く、衝突面14の角
度が加速管に対し45°傾斜のものでは、熱可塑性
樹脂を粉砕するときの上記のような問題点を少な
い。しかしながら、衝突するさいに粉砕に使われ
る衝撃力が小さく、さらに粉砕室壁6との二次衝
突による粉砕が少ないので粉砕能力は、第4図の
粉砕機と比較して1/2〜1/1.5に粉砕能力が落ち
る。 第8図の粉砕機において、衝突面14が加速管
の軸方向に対して下方に傾斜しているので、衝突
面14近傍の粉体濃度は第5図の粉砕機と比較し
て低くなる。さらに、粉砕室壁6との二次衝突を
有効に利用してはいるが、第9図に示す如く、粉
砕室壁6との二次衝突が下方壁面しか実質的に利
用されていない。そのため、さらに粉砕効率の良
好な粉砕機及び粉砕方法が待望されている。 [発明の目的] 本発明の目的は、上記問題点が解消された衝突
式気流粉砕機及び粉砕方法を提供することにあ
る。 本発明の目的は、熱可塑性樹脂を主体とする粉
体を効率良く粉砕する衝突式気流粉砕機及び粉砕
方法を提供することにある。 本発明の目的は、粉体室内における粉体原料及
び粉砕された粉体の融着が発生しにくい衝突式気
流粉砕機及び粉砕方法を提供することにある。 本発明の目的は、粉体原料の処理量を増加した
場合でも、粉体原料及び粉砕された粉体の融着が
抑制され、凝集物及び粗粒子の生成が少ない衝突
式気流粉砕機を提供することにある。 本発明の目的は、ポリエステル樹脂またはスチ
レン系樹脂(例えば、スチレン−アクリル酸エス
テル共重合体またはスチレン−メタクリル酸エス
テル共重合体)の如き熱可塑性樹脂を主体とする
粉体原料を効率良く粉砕し得る衝突式気流粉砕機
を提供することにある。 本発明の目的は、加熱加圧ローラ定着手段を有
する複写機及びプリンタに使用されるトナーまた
はトナー用着色樹脂粒子を効率良く生成し得る衝
突式気流粉砕機を提供することにある。 本発明の目的は、平均粒径30〜1000μmを有す
る樹脂粒子を平均粒径5〜15μmに効率良く微粉
砕し得る衝突式気流粉砕機を提供することにあ
る。 [発明の概要] 本発明は、高圧気体により着色樹脂粉体を搬送
加速するための加速管と、粉砕室と、該加速管よ
り噴出する着色樹脂粉体を衝突力により粉砕する
ための衝突部材とを具備し、 該加速管は、加速管の軸方向に垂直な断面積が
加速管出口方向に向つて順次大きくなつている管
通路を有し、 該衝突部材は加速管出口に対向して粉砕室内に
設けられており、着色樹脂粉体が該衝突部材の衝
突面で粉砕され、衝突後に実質上全周方向に分散
され且つ分散された該着色樹脂粉体が粉砕室壁と
二次衝突するように、前記衝突部材の衝突面の先
端部分が頂角120乃至170°を有する円錐形状を有
し、 加速管出口の内径は、衝突部材の直径bよりも
小さい内径10〜100mmを有し、 加速管出口と衝突部材の先端部との距離aは、
衝突部材の直径bの0.5倍乃至2倍を有し、 衝突部材と粉砕室壁との最短距離cが衝突部材
の直径の0.1倍乃至1倍に設定されている ことを特徴とする衝突式気流粉砕機に関する。 さらに、本発明は、加速管内で高圧気体により
着色樹脂粉体を搬送し、着色樹脂粉体を加速し、
粉砕室内に加速管出口から着色樹脂粉体を吐出
し、加速管出口に対向して粉砕室内に設けられて
いる衝突部材の衝突面に衝突させて着色樹脂粉体
を粉砕する粉砕方法において、 該加速管は加速管の軸方向に垂直な断面積が加
速管出口方向に向つて順次大きくなつている管通
路を有し、 加速管出口の内径は、衝突部材の直径bよりも
小さい内径10〜100mmを有し、 加速管出口と衝突部材の先端部との距離aは、
衝突部材の直径bの0.5倍乃至2倍を有し、 衝突部材と粉砕室壁との最短距離cが衝突部材
の直径の0.1倍乃至1倍に設定されており、該管
通路で加速され、加速管出口から吐出された着色
樹脂粉体を衝突面の先端部分が頂角120乃至170°
を有する円錐形状を有する衝突部材に衝突させて
粉砕し、衝突後の着色樹脂粉体をさらに粉砕室壁
に二次衝突させて粉砕する ことを特徴とする着色樹脂粉体の粉砕方法に関す
る。 [発明の具体的説明] 本発明の衝突式気流粉砕機は、熱可塑性樹脂の
粉体または熱可塑性樹脂を主成分とする粉体を効
率良く、高速気流を利用して数μmのオーダまで
粉砕することができる。 本発明を添付図面に基づいて説明する。第1図
は、本発明の気流式粉砕機の概略的断面図及び該
粉砕機を使用した粉砕工程及び分級機による分級
工程を組み合せた粉砕方法のフローチヤートを示
した図である。粉砕されるべき粉体原料7は、加
速管3の上方の粉砕機壁11に設けられた粉体原
料投入口1より、加速管3に供給される。加速管
3には圧縮空気の如き圧縮気体が圧縮気体供給ノ
ズル2から導入されており、加速管3に供給され
た粉体原料7は、瞬時に加速されて、高速度を有
するようになる。高速度で加速管出口13から粉
砕室8に吐出された粉体原料7は、衝突部材4の
衝突面14に衝突して粉砕される。第1図の粉砕
機において、衝突面14が頂角120°を有する円錐
形状を有しているので、粉砕された粉体は実質的
に全周方向に分散され、粉砕室壁6と二次衝突を
おこし、さらに粉砕される。第2図は、第1図に
示す衝突式気流粉砕機のA−B面における断面を
概略的に示した図であり、衝突面14で衝突した
後の粉体の分散状態で模式的に示している。第2
図からは、本発明の気流式粉砕機では、粉砕室壁
6における粉体の二次衝突が有効に利用されてい
ることが知見される。さらに、本発明の粉砕機に
おいては、第14図に示す如く衝突面14で粉体
が良好に衝突部材の軸方向に拡散されるので、粉
砕室壁6が広く二次衝突に利用される。そのた
め、衝突面14の近傍における粉体の濃度が濃く
ならないので、粉体の処理能率を向上させること
ができ、衝突面14における粉体の融着を良好に
抑制することが可能である。 粉砕室8に導入された粉体は、衝突面14にお
ける1次の衝突による粉砕がおこなわれ、次いで
粉砕室壁6における二次の衝突による粉砕がさら
におこなわれ、場合により、粉砕された粉体は排
出口5に搬送されるまでに粉砕室壁6との三次
(および四次)の衝突によりさらに粉砕される。
排出口5から排出された粉体は固定壁式気流分級
機の如き分級機24で細粉と粗粉とに分級され
る。分級された細粉はそのままで製品として使用
されるか、または、必要により、さらに分級され
て製品として使用される。分級された粗粉は、新
たに投入される粉体原料とともに粉体原料投入口
1に投入される。 粉砕された粉体が電子写真用現像剤のトナーま
たはトナー用着色樹脂粒子として使用される場合
について、さらに説明する。 トナーは、平均粒径5〜20μmを有する粉体で
構成される。トナーは、トナー用着色樹脂粒子そ
のものから形成される場合もあるし、トナー用着
色樹脂粒子とシリカの如き添加剤とから形成され
る場合もある。トナー用着色樹脂粒子は、結着樹
脂と着色剤または磁性粉とから構成され、必要に
より、荷電制御剤及び/またはオフセツト防止剤
の如き添加剤がさらに含有されている。結着樹脂
としては、ガラス転移点Tgが50〜120℃のスチレ
ン系樹脂、エポキシ樹脂またはポリエステル系樹
脂が使用される。着色剤としては、カーボンブラ
ツク、ニグロシン系染料またはフタロシアニン系
顔料の如き各種染料または顔料が使用される。磁
性粉としては、鉄、マグネタイト、フエライトの
如き磁界によつて磁化される金属または金属酸化
物の粉体が使用される。 結着樹脂及び着色剤(または磁性粉)の混合物
は、溶融混練され、溶融混練物は冷却され、冷却
物は粗粉砕または中粉砕され、平均粒径30〜
1000μmの粉体原料が調製される。粉体原料投入
口1から投入された粉体原料は、3〜10Kgf/cm2
の圧力を有する圧縮空気が供給される加速管3内
で瞬時に加速され、300〜400m/秒の高速を有す
るようになる。300〜400m/秒の高速を有する粉
体原料は加速管出口13から粉砕室8に吐出され
る。衝突部材4は、摩耗されやすいので、酸化ア
ルミナの如きセラミツクまたはステンレス鋼の基
体の表面にセラミツクを溶射してセラミツクコー
トしたものが使用される。同様に、粉砕室壁は、
表面が少なくともセラミツクで形成されているこ
とが好ましい。 衝突部材4は、円柱または多角柱の形状を有
し、円柱の場合は、通常40〜500mmの直径bを有
するものが使用される。衝突部材4の加速管出口
13に対向する先端部は、円錐形状を有する。衝
突部材4の先端部は、頂角110乃至175°(好ましく
は、120°乃至170°)を有している。円錐の頂角
110°未満では、粉砕時の衝撃力が小さく、粉体効
率が低下し、一方、円錐の頂角が175°を越える場
合は、衝突部材表面に粉体原料が融着しやすく、
そのため粉体の処理量を増すことが困難である。 加速管出口13の内径は、通常10〜100mmを有
し、衝突部材4の直径bよりも小さい内径を有す
ることが好ましい。衝突部材4の衝突面14の先
端と加速管3の中心軸とは、実質的に一致させる
(ずれが10mm以内)のが、粉砕の均一化という点
で好ましい。 加速管出口13と衝突部材4の先端部との距離
aは、衝突部材4の直径bの0.5倍乃至2倍が好
ましい。0.5倍未満では、過粉砕が生じる傾向が
あり、2倍を越える場合は、粉砕効率が低下する
傾向がある。 衝突部材4と粉砕室壁6との最短距離cは、衝
突部材4の直径bの0.1倍乃至1倍であることが
好ましい。0.1倍未満では、過粉砕が生じやすく、
さらに粉体の流動がスムーズにいかない傾向があ
る。一方、1倍を越える場合は、粉砕効率が低下
する傾向がある。粉体が二次衝突する粉砕室壁6
の形状は、第2図に示す如きU字形を有している
ことが粉体の融着防止及び粉砕の均一化の点で好
ましい。粉砕室壁6の形状は、第15図に示す如
き、長方形または正方形でも実施可能であるが、
第2図に示すU字形の場合と比較して、粉体の融
着が生じやすい。 第12図は、本発明の別な態様を有する衝突式
気流粉砕機であり、粉砕された粉体の排出口が衝
突部材4の軸方向に設けられている。 第3図及び第4図は、円錐部分の頂角が160°ま
たは170°を有する粉砕機を示した図である。 本発明の衝突式気流粉砕機を使用した場合第5
図に示す粉砕機の粉砕効率を1とすると約1.2乃
至約3.3の粉砕効率を達成することが可能である。 以下、実施例及び比較例に基づいて本発明を詳
細に説明する。 実施例 1 添付図面の第1図及び第2図に示す衝突式気流
粉砕機を使用して粉体の粉砕をおこなつた。粉砕
された粉体を細粉と粗粉とを分級するための分級
手段として固定壁式風力分級機を使用した。 衝突式気流粉砕機は、直径bが60mmの酸化アン
モニウム系セラミツクで形成された円柱状の衝突
部材4を有し、衝突部材4の先端部は、頂角120°
を有する円錐形状を有していた。粉砕室8の内壁
はセラミツクコートされていた。加速管出口13
の内径は25mmであり、加速管3の中心軸と衝突部
材4の先端とは一致していた。加速管出口13か
ら衝突面14までの最近接距離aは60mmであり、
衝突部材4と粉砕室壁6との最近接距離cは20mm
であつた。衝突式気流粉砕機のA−B面における
断面は、第2図に示すU字形を有していた。衝突
部材4の左右及び下方の粉砕室壁6との距離は、
20〜約40mmであつた。 原料7として下記のものを使用した。 ポリエステル樹脂 100重量部 (重量平均分子量(Mw)=50000;Tg=60℃) フタロシアニン系顔料 6重量部 低分子量ポリエチレン 2重量部 負荷電性制御剤 2重量部 (アゾ系金属錯体) 上記処方の混合物よりなるトナー原料を約180
℃で約1.0時間溶融混練後、冷却して固化し、溶
融混練物の冷却物をハンマーミルで100〜1000μ
の粒子に粗粉砕したものを粉体原料とした。 投入口1から粉体原料が30Kg/時間の割合で供
給されると、ノズル2から吹き出される圧縮空気
(6Kgf/cm2)によつて、加速管3内で粉体原料
は加速され、加速管出口13から粉砕室8内に吐
出され、粉体原料7は衝突面14にたたきつけら
れ、その衝撃力で粉砕された。それと共に120度
の傾斜が付いた円錐形状の衝突面14により、衝
突した粉体原料は全周方向に分散し、対向する粉
砕室壁6と、二次衝突し、そこで更に粉砕され
た。 粉砕された粉体原料は排出口5からスムーズに
分級機24に運ばれ、細粉は分級粉体として取り
除かれ、粗粉は再び投入口1より粉体原料と共に
投入された。細粉として重量平均粒径12μmの粉
砕粉体が30Kg/時の割合で収集された。 このように、衝突部材4の衝突面は頂角θ120度
の傾斜の付いた円錐形状をしているため、衝突し
た粉体原料は全周方向に分散し、対向する粉砕壁
と二次衝突した。そのため、衝突部材付近での融
着、凝集物、粗粒子が生じないために、粉体濃度
が上昇せず、さらに二次衝突するために、従来よ
り粉砕能力が非常に高くなることが確認された。 実施例 2 実施例1と同様な粉体原料を第3図に示す頂角
θ160度の傾斜の付いた円錐形状の衝突面を有する
衝突部材を用いて、実施例1と同様に粉砕したと
ころ、粉砕時の衝突面付近での粉塵濃度が上昇せ
ずかつ二次衝突するために実施例1と同様、従来
より粉砕能力が非常に高くなることが確認され
た。粉体原料の投入量は、処理量に応じて調製し
た。 実施例 3 実施例1と同様な粉体原料を第4図に示す頂角
θ170度の傾斜の付いた円錐形状の衝突面を有する
衝突部材を用いて実施例1と同様に粉砕したとこ
ろ、粉砕時の衝突面付近での粉塵濃度が上昇せ
ず、かつ二次衝突するために従来より粉砕能力が
非常に高くなることが確認された。 比較例 1 実施例1と同様な粉体原料を第5図に示す従来
の衝突式気流粉砕機で粉砕した。該粉砕機におい
て、加速管3に対し垂直である平面状衝突面14
を有する衝突部材4を用いて、実施例1と同様に
粉砕した。衝突面14に衝突した粉体原料は、吐
出方向と対向する方向に反射されるために、衝突
面付近の粉体濃度は著しく高くなつた。そのた
め、粉体原料の供給割合が10Kg/時間を超える
と、衝突部材上で、融着、凝集物、粗粒子が生じ
はじめ、融着物が加速管出口13や分級機を詰ま
らせる場合があつた。従つて、粉砕処理量を1時
間当り10Kgに低下させることを余儀なくされ、こ
れが粉砕能力の限界となつた。 比較例 2 実施例1と同様な粉体原料を、第6図及び第7
図に示す衝突式気流粉砕機で粉砕した。該粉砕機
において45度の衝突面を有する衝突部材を用い
て、実施例1と同様に粉砕したところ、衝突面に
衝突した粉体原料は、比較例1に比べ、加速管出
口13から離れる方向へ反射されるので融着及び
凝集物は生じなかつた。しかし、衝突する際に、
衝撃力が弱くなるため、粉砕効率が悪く、重量平
均粒径12μmの細粉は、1時間当り約10Kgしか得
られなかつた。 比較例 3 実施例1と同様な粉体原料を、第10図及び第
11図に示す衝突式気流粉砕機で粉砕した。該粉
砕機において、頂角θ90度の傾斜の付いた円錐形
状の衝突面を有する衝突部材を用いて、実施例1
と同様に粉砕したところ、衝突面に衝突した粉体
原料は、後方に分散されるので、融着及び凝集物
が生じなかつた。しかし、衝突する際に衝撃力が
弱くなるため、粉砕効率が悪く、重量平均粒径
12μmの細粉は、1時間当り約10Kgしか得られな
かつた。 比較例 4 実施例1と同様な粉体原料を、第8図及び第9
図に示す衝突式気流粉砕機で粉砕した。該粉砕機
において、45度の衝突面を有する衝突部材を用い
て実施例1と同様に粉砕したところ、融着及び凝
集物が生じなかつた。しかしながら、衝突する際
に衝撃力が弱くなること及び粉砕室壁との二次衝
突の利用がいまだ不充分なために、重量平均粒径
12μmの細粉は、1時間当り約1.1Kgしか得られな
かつた。 実施例1乃至3及び比較例1乃至4の結果を下
記第1表に示す。
[Industrial Application Field] The present invention relates to an impingement type air flow crusher and a crushing method using jet air flow (high pressure gas). In particular, the present invention relates to an impingement type air current pulverizer and a pulverization method for efficiently producing toner or colored resin powder for toner used in an electrophotographic image forming method. [Prior Art] Toner or colored resin powder for toner used in an electrophotographic image forming method usually contains at least a binder resin and a colorant or magnetic powder. The toner develops the electrostatic charge image formed on the latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or plastic film.
The toner image on the transfer material is fixed to the transfer material by a fixing device such as a heat fixing means, a pressure roller fixing means, or a heat pressure roller fixing means. Therefore, the binder resin used in the toner has the property of plastically deforming when heat and/or pressure is applied. Currently, toner or colored resin powder for toner is
Binder resin and colorant or magnetic powder (if necessary,
Furthermore, it is prepared by melt-kneading a mixture containing at least a third component), cooling the melt-kneaded product, pulverizing the cooled product, and classifying the pulverized product. The refrigerant is usually pulverized by coarse (or medium) pulverization using a mechanical impact pulverizer, and then the coarse pulverized powder is pulverized by an impingement air flow pulverizer using a jet air flow. An impingement-type air-flow pulverizer using a jet air flow conveys a powder raw material in a jet air flow, causes the powder raw material to collide with a collision member, and is pulverized by the impact force. Conventionally, as shown in FIGS. 5, 6, and 8, the collision surface 14 of the collision member in such a crusher is perpendicular to the jet airflow direction (the axial direction of the accelerator tube) carrying the powder raw material, or Tilt (e.g. 45°)
(Japanese Patent Application Laid-Open No.
57-50554 and JP-A-58-143853). In the crusher shown in FIG. 5, the powder raw material having a coarse particle size is supplied to the acceleration tube 3 from the input port 1, and the powder raw material is crushed by the jet airflow blown out from the jet nozzle 2 to the collision surface of the collision member 4. 14, is crushed by the impact force, and is discharged to the outside of the crushing chamber from the discharge port 5. However, when the collision surface 14 is perpendicular to the axial direction of the acceleration tube 3, the raw material powder blown out from the jet nozzle 2 and the collision surface 14
There is a high proportion of the powder reflected by the collision surface 14 coexisting in the vicinity of the collision surface 14, and as a result, the powder concentration near the collision surface 14 becomes high, resulting in poor pulverization efficiency. Furthermore, the primary collision is mainly at the collision surface 14, and it cannot be said that the secondary collision with the crushing chamber wall 6 is effectively utilized. Furthermore, in a crusher where the angle of the collision surface is perpendicular to the acceleration tube 3, when crushing thermoplastic resin, fusion and agglomerates are likely to occur due to local heat generation at the time of collision, making it difficult to operate the device stably. This causes a decrease in crushing capacity. Therefore, it has been difficult to use the powder at a high concentration. In the crusher of FIG. 6, since the collision surface 14 is inclined with respect to the axial direction of the acceleration tube 3, the powder concentration near the collision surface 14 is lower than that of the crusher of FIG. The crushing pressure is dispersed and reduced. Furthermore, it cannot be said that the secondary collision with the crushing chamber wall 6 is effectively utilized. As shown in FIGS. 6 and 7, when the angle of the collision surface 14 is inclined at 45 degrees with respect to the acceleration tube, the above-mentioned problems when crushing thermoplastic resin are reduced. However, the impact force used for crushing during collision is small, and there is less crushing due to secondary collision with the crushing chamber wall 6, so the crushing capacity is 1/2 to 1/2 compared to the crusher shown in Fig. 4. The crushing ability drops to 1.5. In the pulverizer shown in FIG. 8, since the collision surface 14 is inclined downward with respect to the axial direction of the accelerator tube, the powder concentration near the collision surface 14 is lower than that in the pulverizer shown in FIG. 5. Furthermore, although the secondary collision with the crushing chamber wall 6 is effectively utilized, as shown in FIG. 9, the secondary collision with the crushing chamber wall 6 is substantially only utilized on the lower wall surface. Therefore, a crusher and a crushing method with even better crushing efficiency are desired. [Object of the Invention] An object of the present invention is to provide an impingement-type air current pulverizer and a pulverizing method in which the above-mentioned problems are solved. An object of the present invention is to provide an impingement type air flow mill and a milling method for efficiently milling powder mainly composed of thermoplastic resin. An object of the present invention is to provide an impingement type air flow mill and a milling method in which fusion of powder raw materials and milled powder in a powder chamber is less likely to occur. An object of the present invention is to provide an impingement type air flow mill that suppresses the fusion of the powder raw material and the pulverized powder and generates fewer aggregates and coarse particles even when the throughput of the powder raw material is increased. It's about doing. An object of the present invention is to efficiently crush powder raw materials mainly composed of thermoplastic resins such as polyester resins or styrene resins (for example, styrene-acrylic ester copolymers or styrene-methacrylic ester copolymers). The purpose of the present invention is to provide an impingement type airflow crusher. SUMMARY OF THE INVENTION An object of the present invention is to provide an impingement type air current crusher that can efficiently produce toner or colored resin particles for toner used in copying machines and printers having heating and pressure roller fixing means. An object of the present invention is to provide an impingement type air flow mill that can efficiently pulverize resin particles having an average particle size of 30 to 1000 μm to an average particle size of 5 to 15 μm. [Summary of the Invention] The present invention provides an acceleration tube for transporting and accelerating colored resin powder with high-pressure gas, a crushing chamber, and a collision member for crushing the colored resin powder ejected from the acceleration tube by collision force. The acceleration tube has a pipe passage whose cross-sectional area perpendicular to the axial direction of the acceleration tube gradually increases toward the exit of the acceleration tube, and the collision member faces the exit of the acceleration tube. The colored resin powder is provided in the crushing chamber, and the colored resin powder is crushed by the collision surface of the collision member, and after the collision, it is dispersed in substantially the entire circumferential direction, and the dispersed colored resin powder causes a secondary collision with the crushing chamber wall. so that the tip of the collision surface of the collision member has a conical shape with an apex angle of 120 to 170°, and the inner diameter of the acceleration tube outlet has an inner diameter of 10 to 100 mm, which is smaller than the diameter b of the collision member. , The distance a between the accelerator tube outlet and the tip of the collision member is
A collision type airflow characterized in that the diameter b of the collision member is 0.5 to 2 times, and the shortest distance c between the collision member and the wall of the crushing chamber is set to 0.1 to 1 time the diameter of the collision member. Regarding the crusher. Furthermore, the present invention conveys colored resin powder with high pressure gas in an acceleration tube to accelerate the colored resin powder,
In a pulverization method, colored resin powder is discharged from an accelerating tube outlet into a pulverizing chamber, and the colored resin powder is pulverized by colliding with a collision surface of a collision member provided in the pulverizing chamber opposite to the accelerating tube outlet. The acceleration tube has a pipe passage whose cross-sectional area perpendicular to the axial direction of the acceleration tube gradually increases toward the exit of the acceleration tube, and the inside diameter of the exit of the acceleration tube is smaller than the diameter b of the collision member. 100mm, and the distance a between the accelerator tube outlet and the tip of the collision member is
The diameter b of the collision member is 0.5 to 2 times, the shortest distance c between the collision member and the crushing chamber wall is set to 0.1 to 1 time the diameter of the collision member, and the particle is accelerated in the pipe passage. The tip of the collision surface of the colored resin powder discharged from the accelerator tube outlet has an apex angle of 120 to 170°.
The present invention relates to a method for pulverizing colored resin powder, characterized in that the colored resin powder is pulverized by colliding with a collision member having a conical shape, and the colored resin powder after the collision is further pulverized by secondary collision with a wall of a pulverizing chamber. [Detailed Description of the Invention] The collision type airflow crusher of the present invention efficiently crushes thermoplastic resin powder or powder mainly composed of thermoplastic resin to the order of several μm using high-speed airflow. can do. The present invention will be explained based on the accompanying drawings. FIG. 1 is a diagram showing a schematic cross-sectional view of the pneumatic pulverizer of the present invention and a flowchart of a pulverization method that combines a pulverization process using the pulverizer and a classification process using a classifier. The powder raw material 7 to be crushed is supplied to the acceleration tube 3 from the powder raw material input port 1 provided in the crusher wall 11 above the acceleration tube 3 . Compressed gas such as compressed air is introduced into the acceleration tube 3 from the compressed gas supply nozzle 2, and the powder raw material 7 supplied to the acceleration tube 3 is instantly accelerated to have a high velocity. The powder raw material 7 discharged from the acceleration tube outlet 13 into the crushing chamber 8 at high speed collides with the collision surface 14 of the collision member 4 and is crushed. In the crusher shown in FIG. 1, since the collision surface 14 has a conical shape with an apex angle of 120°, the crushed powder is dispersed substantially in the entire circumferential direction, and the crushing chamber wall 6 and the secondary It causes a collision and is further shattered. FIG. 2 is a diagram schematically showing a cross section along the A-B plane of the collision type air flow crusher shown in FIG. ing. Second
From the figure, it can be seen that in the air flow type crusher of the present invention, the secondary collision of powder on the crushing chamber wall 6 is effectively utilized. Furthermore, in the crusher of the present invention, the powder is well spread in the axial direction of the collision member on the collision surface 14 as shown in FIG. 14, so that the crushing chamber wall 6 is widely utilized for secondary collisions. Therefore, since the concentration of powder near the collision surface 14 does not become high, the powder processing efficiency can be improved, and it is possible to satisfactorily suppress the fusion of powder at the collision surface 14. The powder introduced into the crushing chamber 8 is crushed by a first collision on the collision surface 14, and then further crushed by a second collision on the crushing chamber wall 6, and in some cases, the crushed powder is is further crushed by tertiary (and quaternary) collisions with the crushing chamber wall 6 before being conveyed to the discharge port 5.
The powder discharged from the outlet 5 is classified into fine powder and coarse powder by a classifier 24 such as a fixed wall air classifier. The classified fine powder can be used as a product as it is, or if necessary, it can be further classified and used as a product. The classified coarse powder is charged into the powder raw material input port 1 together with the newly input powder raw material. A case in which the pulverized powder is used as a toner of an electrophotographic developer or colored resin particles for toner will be further described. The toner is composed of powder having an average particle size of 5 to 20 μm. The toner may be formed from toner colored resin particles themselves, or may be formed from toner colored resin particles and an additive such as silica. The colored resin particles for toner are composed of a binder resin and a colorant or magnetic powder, and may further contain additives such as a charge control agent and/or an offset prevention agent, if necessary. As the binder resin, a styrene resin, an epoxy resin, or a polyester resin having a glass transition point Tg of 50 to 120° C. is used. As the coloring agent, various dyes or pigments such as carbon black, nigrosine dyes or phthalocyanine pigments are used. As the magnetic powder, powder of metal or metal oxide, such as iron, magnetite, and ferrite, which is magnetized by a magnetic field, is used. The mixture of binder resin and colorant (or magnetic powder) is melt-kneaded, the melt-kneaded product is cooled, and the cooled material is coarsely or medium-pulverized to have an average particle size of 30 to
A 1000 μm powder raw material is prepared. The powder raw material input from the powder raw material input port 1 is 3 to 10 kgf/cm 2
The compressed air having a pressure of The powder raw material having a high speed of 300 to 400 m/sec is discharged into the grinding chamber 8 from the acceleration tube outlet 13. Since the collision member 4 is easily worn out, it is made of ceramic such as alumina oxide or stainless steel and is coated with ceramic by thermal spraying on the surface of the base. Similarly, the grinding chamber walls are
Preferably, the surface is made of at least ceramic. The collision member 4 has a cylindrical or polygonal cylindrical shape, and in the case of a cylindrical cylinder, one having a diameter b of usually 40 to 500 mm is used. The tip of the collision member 4 facing the acceleration tube outlet 13 has a conical shape. The tip of the collision member 4 has an apex angle of 110° to 175° (preferably 120° to 170°). apex angle of cone
If the apex angle of the cone is less than 110°, the impact force during crushing will be small and the powder efficiency will decrease. On the other hand, if the apex angle of the cone exceeds 175°, the powder raw material will easily fuse to the surface of the collision member.
Therefore, it is difficult to increase the throughput of powder. The acceleration tube outlet 13 usually has an inner diameter of 10 to 100 mm, and preferably has an inner diameter smaller than the diameter b of the collision member 4. It is preferable that the tip of the collision surface 14 of the collision member 4 and the central axis of the acceleration tube 3 are substantially aligned (with a deviation of 10 mm or less) from the viewpoint of uniform pulverization. The distance a between the acceleration tube outlet 13 and the tip of the collision member 4 is preferably 0.5 to 2 times the diameter b of the collision member 4. If it is less than 0.5 times, over-pulverization tends to occur, and if it exceeds 2 times, the grinding efficiency tends to decrease. The shortest distance c between the collision member 4 and the crushing chamber wall 6 is preferably 0.1 to 1 times the diameter b of the collision member 4. If it is less than 0.1 times, over-grinding tends to occur.
Furthermore, the powder tends not to flow smoothly. On the other hand, if it exceeds 1, the pulverization efficiency tends to decrease. Grinding chamber wall 6 with which powder collides secondary
It is preferable to have a U-shape as shown in FIG. 2 from the viewpoint of preventing the powder from adhering and making the grinding uniform. The shape of the crushing chamber wall 6 can be rectangular or square as shown in FIG.
Compared to the U-shaped case shown in FIG. 2, fusion of powder is more likely to occur. FIG. 12 shows a collision type airflow crusher having another aspect of the present invention, in which a discharge port for crushed powder is provided in the axial direction of the collision member 4. FIGS. 3 and 4 show a crusher in which the apex angle of the conical portion is 160° or 170°. When using the collision type air flow crusher of the present invention, the fifth
If the crushing efficiency of the crusher shown in the figure is 1, it is possible to achieve a crushing efficiency of about 1.2 to about 3.3. Hereinafter, the present invention will be explained in detail based on Examples and Comparative Examples. Example 1 Powder was pulverized using an impingement type air flow pulverizer shown in FIGS. 1 and 2 of the accompanying drawings. A fixed wall type wind classifier was used as a classification means to classify the pulverized powder into fine powder and coarse powder. The collision type air flow crusher has a cylindrical collision member 4 made of ammonium oxide ceramic with a diameter b of 60 mm, and the tip of the collision member 4 has an apex angle of 120°.
It had a conical shape. The inner wall of the crushing chamber 8 was coated with ceramic. Accelerator tube outlet 13
The inner diameter of the accelerator tube 3 was 25 mm, and the central axis of the accelerator tube 3 and the tip of the collision member 4 coincided. The closest distance a from the acceleration tube outlet 13 to the collision surface 14 is 60 mm,
The closest distance c between the collision member 4 and the crushing chamber wall 6 is 20 mm.
It was hot. The cross section of the impingement type air flow crusher along plane A-B had a U-shape as shown in FIG. The distances between the collision member 4 and the left and right and lower crushing chamber walls 6 are as follows:
It was 20 to about 40 mm. The following material was used as raw material 7. Polyester resin 100 parts by weight (Weight average molecular weight (Mw) = 50000; Tg = 60°C) Phthalocyanine pigment 6 parts by weight Low molecular weight polyethylene 2 parts by weight Negative charge control agent 2 parts by weight (Azo metal complex) Mixture of the above formulation Approximately 180 toner raw materials
After melting and kneading for about 1.0 hours at °C, it is cooled and solidified.
The powder was coarsely ground into particles and used as a powder raw material. When the powder raw material is supplied from the input port 1 at a rate of 30 kg/hour, the powder raw material is accelerated in the acceleration tube 3 by compressed air (6 kgf/cm 2 ) blown out from the nozzle 2. The powder raw material 7 was discharged from the tube outlet 13 into the crushing chamber 8, and struck against the collision surface 14, and was crushed by the impact force. At the same time, due to the conical collision surface 14 with an inclination of 120 degrees, the collided powder raw material was dispersed in the entire circumferential direction and secondarily collided with the opposing crushing chamber wall 6, where it was further crushed. The pulverized powder raw material was smoothly conveyed to the classifier 24 from the discharge port 5, the fine powder was removed as classified powder, and the coarse powder was again input from the input port 1 together with the powder raw material. Ground powder with a weight average particle size of 12 μm was collected as fine powder at a rate of 30 Kg/hour. In this way, since the collision surface of the collision member 4 has a conical shape with an inclination of an apex angle of θ120 degrees, the collided powder raw material is dispersed in the entire circumferential direction and causes a secondary collision with the opposing crushing wall. . Therefore, since no fusion, agglomerates, or coarse particles occur near the collision member, the powder concentration does not increase, and furthermore, due to secondary collisions, it has been confirmed that the crushing capacity is much higher than before. Ta. Example 2 The same powder raw material as in Example 1 was pulverized in the same manner as in Example 1 using a collision member having a conical collision surface with an inclined apex angle of θ 160 degrees as shown in FIG. As in Example 1, it was confirmed that the dust concentration near the collision surface during crushing did not increase and secondary collisions occurred, so that the crushing capacity was much higher than that of the conventional example. The amount of powder raw material input was adjusted according to the amount to be processed. Example 3 The same powder raw material as in Example 1 was pulverized in the same manner as in Example 1 using a collision member having an inclined conical collision surface with an apex angle of 170 degrees as shown in FIG. It was confirmed that the dust concentration near the collision surface does not increase during the collision, and because secondary collisions occur, the crushing capacity is much higher than before. Comparative Example 1 The same powder raw material as in Example 1 was pulverized using a conventional impingement type air flow pulverizer shown in FIG. In the crusher, a planar impact surface 14 that is perpendicular to the acceleration tube 3
The material was crushed in the same manner as in Example 1 using the collision member 4 having the following. Since the powder raw material that collided with the collision surface 14 was reflected in a direction opposite to the discharge direction, the powder concentration near the collision surface became significantly high. Therefore, when the powder raw material supply rate exceeds 10 kg/hour, fusion, agglomerates, and coarse particles begin to form on the collision member, and the fused materials sometimes clog the acceleration tube outlet 13 and the classifier. . Therefore, it was necessary to reduce the grinding throughput to 10 kg per hour, which became the limit of the grinding capacity. Comparative Example 2 The same powder raw material as in Example 1 was used in Figs. 6 and 7.
It was pulverized using the impingement type air flow pulverizer shown in the figure. When pulverization was performed in the same manner as in Example 1 using a collision member having a collision surface of 45 degrees in the crusher, the powder raw material that collided with the collision surface was moved in a direction away from the acceleration tube outlet 13 compared to Comparative Example 1. No fusion or agglomeration occurred because the light was reflected to However, when colliding,
Since the impact force was weak, the pulverization efficiency was poor, and only about 10 kg of fine powder with a weight average particle size of 12 μm could be obtained per hour. Comparative Example 3 The same powder raw material as in Example 1 was pulverized using an impingement type air flow pulverizer shown in FIGS. 10 and 11. In the crusher, a collision member having a conical collision surface with an inclination of an apex angle of 90 degrees was used, and Example 1
When the material was pulverized in the same manner as above, the powder raw material that collided with the collision surface was dispersed backwards, so that no fusion or agglomeration occurred. However, since the impact force is weak during collision, the crushing efficiency is poor, and the weight average particle size
Only about 10 kg of 12 μm fine powder was obtained per hour. Comparative Example 4 The same powder raw material as in Example 1 was prepared in Figs. 8 and 9.
It was pulverized using the impingement type air flow pulverizer shown in the figure. When pulverization was performed in the same manner as in Example 1 using a collision member having a 45-degree collision surface in the pulverizer, no fusion or agglomerates were formed. However, the weight average particle size
Only about 1.1 kg of 12 μm fine powder was obtained per hour. The results of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 1 below.

【表】 実施例 4 粉体原料として下記のものを使用した。 スチレンアクリル酸ブチル 100重量部 (Mw=200000;Tg=60℃) 磁性粉 60重量部 (マグネタイト、平均粒径0.3μ) 低分子量ポリエチレン 2重量部 負荷電性制御剤 2重量部 上記処方の混合物よりなるトナー原料を約180
℃で約1.0時間溶融混練後、冷却して固化し、固
形物をハンマーミルで100〜1000μの粒子に粗粉
砕したものを粉体原料とした。 投入口1から粉体原料を9.1Kg/時の割合で供
給し、ノズル2から6Kgf/cm2の圧縮空気を導入
し、第1図及び第2図に示す衝突式気流粉砕機に
て粉砕し、粉砕された粉体を分級機24にて細粉
と粗粉に分級した。細粉として、重量平均粒径
12μmの粉体が1時間当り9.1Kgの割合で収集され
た。 実施例 5 実施例4と同様な粉体原料を、頂角θ160度の傾
斜の付いた円錐形状の衝突面を有する衝突部材を
具備した第3図に示す衝突式気流粉砕機を用いて
実施例4と同様に粉砕したところ、重量平均粒径
約12μmの細粉が1時間当り9.8Kgの割合で収集さ
れた。粉体原料は投入量は、処理量に応じて、調
整した。 実施例 6 実施例4と同様な粉体原料を、頂角θ170度の傾
斜の付いた円錐形状の衝突面を有する衝突部材を
具備した第4図に示す衝突式気流粉砕機を用い
て、実施例4と同様に粉砕したところ、重量平均
粒径約12μmの細粉が1時間当り8.4Kgの割合で収
集された。 比較例 5 実施例4と同様な粉体原料を、第5図に示す衝
突式気流粉砕機で粉砕したところ、重量平均粒径
約12μmの細粉が1時間当り7Kgしか収集されな
かつた。 比較例 6 実施例4と同様な粉体原料を、第6図及び第7
図に示す衝突式気流粉砕機で粉砕したところ重量
平均粒径約12μmの細粉が1時間当り4.2Kgしか収
集されなかつた。 比較例 7 実施例4と同様な粉体原料を、第10図及び第
11図に示す衝突式気流粉砕機で粉砕したところ
重量平均粒径約12μmの細粉が1時間当り7.7Kgの
割合でしか収集されなかつた。 実施例4乃至6及び比較例5乃至7の結果を下
記第2表に示す。
[Table] Example 4 The following materials were used as powder raw materials. Styrene butyl acrylate 100 parts by weight (Mw=200000; Tg=60℃) Magnetic powder 60 parts by weight (magnetite, average particle size 0.3μ) Low molecular weight polyethylene 2 parts by weight Negative charge control agent 2 parts by weight From the mixture of the above formulation Approximately 180 toner raw materials
After melt-kneading for about 1.0 hours at °C, the mixture was cooled and solidified, and the solid material was coarsely ground into particles of 100 to 1000 μm using a hammer mill, which was used as a powder raw material. Powder raw material was supplied at a rate of 9.1 kg/hour from the input port 1, compressed air of 6 kgf/cm 2 was introduced from the nozzle 2, and the material was pulverized by the collision type air flow crusher shown in Figures 1 and 2. The pulverized powder was classified into fine powder and coarse powder by a classifier 24. As a fine powder, weight average particle size
12 μm powder was collected at a rate of 9.1 Kg per hour. Example 5 The same powder raw material as in Example 4 was produced using an impact type air flow mill shown in FIG. When the material was pulverized in the same manner as in 4, fine powder with a weight average particle size of approximately 12 μm was collected at a rate of 9.8 kg per hour. The amount of powder raw material input was adjusted according to the amount to be processed. Example 6 The same powder raw material as in Example 4 was used in the collision type air flow mill shown in FIG. When pulverized in the same manner as in Example 4, fine powder with a weight average particle size of about 12 μm was collected at a rate of 8.4 kg per hour. Comparative Example 5 When the same powder raw material as in Example 4 was pulverized using an impingement type air flow pulverizer shown in FIG. 5, only 7 kg of fine powder with a weight average particle diameter of about 12 μm was collected per hour. Comparative Example 6 The same powder raw material as in Example 4 was prepared in Figs. 6 and 7.
When the material was pulverized using the impingement air flow pulverizer shown in the figure, only 4.2 kg of fine powder with a weight average particle size of approximately 12 μm was collected per hour. Comparative Example 7 When the same powder raw material as in Example 4 was pulverized using the collision type airflow pulverizer shown in Figs. 10 and 11, fine powder with a weight average particle diameter of about 12 μm was produced at a rate of 7.7 kg per hour. only was collected. The results of Examples 4 to 6 and Comparative Examples 5 to 7 are shown in Table 2 below.

【表】 実施例 7 第12図及び第13図に示す衝突式気流粉砕機
で粉体原料を粉砕した。 加速管出口から衝突面までの距離aは50mmであ
り、衝突部材の直径bは60mmであり、衝突面から
粉砕室壁までの距離cは20mmであり、衝突面の頂
角θは160度であつた。 さらに、粉砕室壁の形状は円形であり、排出口
5は、衝突部材の軸方向に設けた。 粉体原料として下記のものを使用した。 スチレン−アクリル酸エステル樹脂 100重量部 マグネタイト 60重量部 低分子量ポリエチレン 2重量部 負荷電性制御剤 2重量部 上記処方の混合物よりなるトナー原料を約180
℃で約1.0時間溶融混練後、冷却して固化しハン
マーミルで100〜1000μの粒子に粗粉砕したもの
を粉体原料とした。 投入口1から粉体原料が供給されると、ノズル
2から吹きだされる圧縮空気によつて、粉体原料
は衝突部材4の衝突面にたたきつけられ、その衝
撃力で粉砕された。それと共にこの衝突部材4の
衝突面は、160度の傾斜がついた円錐形状をして
いて、衝突した粉体原料を全周方向に分散し、対
向する粉砕室壁6と、二次衝突し、そこで更に粉
砕された。 粉砕された粉体原料は排出口5からスムーズに
分級機に運ばれ、細粉は製品として取り除かれ、
粗粉は再び投入口1より粉体原料と共に投入され
た。 融着・凝集物・粗粒が生じないために粉砕能力
がおとろえず、粉砕時の粉体濃度の上昇が可能に
なり、二次衝突時まで強い衝撃力が保てた。総合
して、衝突面が加速管に対して垂直のものと比較
して、80〜100%の粉砕効率の向上が図れた。 実施例 8 第14図及び第15図に示す衝突式気流粉砕機
で実施例7と同様の粉体原料を粉砕した。 実施例8は実施例7と同様に、融着・凝集物・
粗粒が生じないために粉砕能力がおとろえず、粉
砕時の粉体濃度の上昇が可能となり、二次衝突時
まで強い衝撃力が保てた。総合して、衝突面が加
速管に対して垂直のものと比較して、20〜50%の
粉砕効率の向上が図れた。 [発明の効果] 以上説明したように、衝突部材先端の形状を特
定の円錐形状とすることにより、粉体原料粉砕時
における融着、凝集物、粗粒子等の発生を防げ、
装置の安定した運転を可能にする。その上、粉体
原料の二次衝突時まで強い衝撃力が保てる。その
ために従来の粉砕能力を著しく向上することがで
きる。
[Table] Example 7 A powder raw material was pulverized using an impact type air flow pulverizer shown in FIGS. 12 and 13. The distance a from the accelerator tube outlet to the collision surface is 50 mm, the diameter b of the collision member is 60 mm, the distance c from the collision surface to the crushing chamber wall is 20 mm, and the apex angle θ of the collision surface is 160 degrees. It was hot. Furthermore, the shape of the crushing chamber wall was circular, and the discharge port 5 was provided in the axial direction of the collision member. The following materials were used as powder raw materials. Styrene-acrylic acid ester resin 100 parts by weight Magnetite 60 parts by weight Low molecular weight polyethylene 2 parts by weight Negative charge control agent 2 parts by weight Approximately 180 parts of toner material consisting of the mixture of the above formulation was used.
After melting and kneading for about 1.0 hours at °C, the mixture was cooled and solidified, and coarsely ground into particles of 100 to 1000 μm using a hammer mill, which was used as a powder raw material. When the powder raw material is supplied from the input port 1, the powder raw material is struck against the collision surface of the collision member 4 by the compressed air blown out from the nozzle 2, and is pulverized by the impact force. At the same time, the collision surface of this collision member 4 has a conical shape with an inclination of 160 degrees, and disperses the collided powder raw material in the entire circumferential direction, causing a secondary collision with the opposing crushing chamber wall 6. , where it was further shattered. The crushed powder raw material is smoothly conveyed to the classifier from the discharge port 5, and the fine powder is removed as a product.
The coarse powder was again charged from the input port 1 together with the powder raw material. Since fusion, agglomerates, and coarse particles do not occur, the crushing ability does not decrease, making it possible to increase the powder concentration during crushing, and maintaining strong impact force until secondary collision. Overall, the crushing efficiency was improved by 80 to 100% compared to the case where the collision surface is perpendicular to the accelerator tube. Example 8 The same powder raw material as in Example 7 was pulverized using the collision type air flow pulverizer shown in FIGS. 14 and 15. In Example 8, similar to Example 7, fusion, aggregates,
Since coarse particles are not produced, the crushing ability does not decrease, making it possible to increase the powder concentration during crushing, and maintaining a strong impact force until the time of secondary collision. Overall, the crushing efficiency was improved by 20 to 50% compared to the case where the collision surface is perpendicular to the accelerator tube. [Effects of the Invention] As explained above, by forming the tip of the collision member into a specific conical shape, it is possible to prevent the occurrence of fusion, agglomerates, coarse particles, etc. during pulverization of powder raw materials.
Enables stable operation of equipment. Moreover, strong impact force can be maintained until the secondary collision of powder raw materials. Therefore, the conventional crushing capacity can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、衝突部材の円錐形状の衝突面の頂角
が120°を有する本発明の衝突式気流粉砕機の断面
及び粉砕・分級工程を概略的に示した図であり、
第2図は第1図に示す粉砕機のA−B面における
断面を概略的に示した図である。第3図及び第4
図は、衝突部材の円錐形状の衝突面の頂角が160°
または170°を有する本発明の衝突式気流粉砕機の
断面及び粉砕・分級工程を概略的に示した図であ
る。第5図は、衝突部材の衝突面が加速管の軸方
向に対して垂直である、比較例としての衝突式気
流粉砕機の断面及び粉砕・分級工程を概略的に示
した図である。第6図は、衝突部材の衝突面が加
速管の軸方向に対して、上方に45°傾斜している、
比較例としての衝突式気流粉砕機の断面及び粉
砕・分級工程を概略的に示した図であり、第7図
は、第6図に示す衝突式気流粉砕機のA−B面に
おける断面を概略的に示した図である。第8図
は、衝突部材の衝突面が加速管の軸方向に対し
て、下方に45°傾斜している、比較例としての衝
突式気流粉砕機の断面及び粉砕・分級工程を概略
的に示した図であり、第9図は、第8図に示す衝
突式気流粉砕機のA−B面における断面を概略的
に示した図である。第10図は、衝突部材の円錐
形状の衝突面の頂角が90°を有する。比較例とし
ての衝突式気流粉砕機の断面及び粉砕・分級工程
を概略的に示した図であり、第11図は、第10
図に示す衝突式気流粉砕機のA−B面における断
面を概略的に示した図である。第12図乃至第1
5図は、本発明の別な態様の衝突式気流粉砕機の
断面及び粉砕・分級工程を概略的に示した図であ
る。 1……粉体原料投入口、2……圧縮気体供給ノ
ズル、3……加速管、4……衝突部材、5……排
出口、6……粉砕室壁、7……粉体原料、8……
粉砕室、11……粉砕機壁、13……加速管出
口、14……衝突面、24……分級機、{a……
加速管出口〜衝突部材間距離、b……衝突部材直
径、c……衝突部材〜粉砕室壁の最短距離}。
FIG. 1 is a diagram schematically showing the cross section and the crushing/classifying process of the collision type air flow crusher of the present invention, in which the conical collision surface of the collision member has an apex angle of 120°,
FIG. 2 is a diagram schematically showing a cross section of the crusher shown in FIG. 1 along the line A-B. Figures 3 and 4
The figure shows that the apex angle of the conical collision surface of the collision member is 160°.
It is a diagram schematically showing the cross section of the collision type air flow crusher of the present invention having an angle of 170° and the crushing/classifying process. FIG. 5 is a diagram schematically showing a cross section and a crushing/classifying process of a collision type air flow crusher as a comparative example, in which the collision surface of the collision member is perpendicular to the axial direction of the accelerator tube. FIG. 6 shows that the collision surface of the collision member is inclined upward at 45° with respect to the axial direction of the accelerator tube.
FIG. 7 is a diagram schematically showing a cross section and a crushing/classifying process of an impingement type air flow crusher as a comparative example, and FIG. 7 is a diagram schematically showing a cross section of the collision type air flow crusher shown in FIG. FIG. Figure 8 schematically shows the cross section and crushing/classifying process of a collision type airflow crusher as a comparative example, in which the collision surface of the collision member is inclined downward at 45 degrees with respect to the axial direction of the accelerating tube. FIG. 9 is a diagram schematically showing a cross section of the collision type air flow crusher shown in FIG. 8 along the line A-B. In FIG. 10, the apex angle of the conical collision surface of the collision member is 90°. FIG. 11 is a diagram schematically showing the cross section and the crushing/classifying process of an impact type air flow crusher as a comparative example; FIG.
FIG. 2 is a diagram schematically showing a cross section of the collision type air flow crusher shown in the figure, taken along the line A-B. Figures 12 to 1
FIG. 5 is a diagram schematically showing the cross section and the crushing/classifying process of another embodiment of the collision type air flow crusher of the present invention. DESCRIPTION OF SYMBOLS 1... Powder raw material input port, 2... Compressed gas supply nozzle, 3... Accelerator tube, 4... Collision member, 5... Discharge port, 6... Grinding chamber wall, 7... Powder raw material, 8 ……
Grinding chamber, 11...Crusher wall, 13...Acceleration tube outlet, 14...Collision surface, 24...Classifier, {a...
Distance between the acceleration tube outlet and the collision member, b...The diameter of the collision member, c...The shortest distance between the collision member and the crushing chamber wall}.

Claims (1)

【特許請求の範囲】 1 高圧気体により着色樹脂粉体を搬送加速する
ための加速管と、粉砕室と、該加速管より噴出す
る着色樹脂粉体を衝突力により粉砕するための衝
突部材とを具備し、 該加速管は、加速管の軸方向に垂直な断面積が
加速管出口方向に向つて順次大きくなつている管
通路を有し、 該衝突部材は加速管出口に対向して粉砕室内に
設けられており、着色樹脂粉体が該衝突部材の衝
突面で粉砕され、衝突後に実質上全周方向に分散
され且つ分散された該着色樹脂粉体が粉砕室壁と
二次衝突するように、前記衝突部材の衝突面の先
端部分が頂角120乃至170°を有する円錐形状を有
し、 加速管出口の内径は、衝突部材の直径bよりも
小さい内径10〜100mmを有し、 加速管出口と衝突部材の先端部との距離aは、
衝突部材の直径bの0.5倍乃至2倍を有し、 衝突部材と粉砕室壁との最短距離cが衝突部材
の直径の0.1倍乃至1倍に設定されている ことを特徴とする衝突式気流粉砕機。 2 加速管内で高圧気体により着色樹脂粉体を搬
送し、着色樹脂粉体を加速し、粉砕室内に加速管
出口から着色樹脂粉体を吐出し、加速管出口に対
向して粉砕室内に設けられている衝突部材の衝突
面に衝突させて着色樹脂粉体を粉砕する粉砕方法
において、 該加速管は加速管の軸方向に垂直な断面積が加
速管出口方向に向つて順次大きくなつている管通
路を有し、 加速管出口の内径は、衝突部材の直径bよりも
小さい内径10〜100mmを有し、 加速管出口と衝突部材の先端部との距離aは、
衝突部材の直径bの0.5倍乃至2倍を有し、 衝突部材と粉砕室壁との最短距離cが衝突部材
の直径の0.1倍乃至1倍に設定されており、該管
通路で加速され、加速管出口から吐出された着色
樹脂粉体を衝突面の先端部分が頂角120乃至170°
を有する円錐形状を有する衝突部材に衝突させて
粉砕し、衝突後の着色樹脂粉体をさらに粉砕室壁
に二次衝突させて粉砕する ことを特徴とする着色樹脂粉体の粉砕方法。
[Claims] 1. An acceleration tube for transporting and accelerating colored resin powder with high-pressure gas, a crushing chamber, and a collision member for crushing the colored resin powder ejected from the acceleration tube by collision force. The accelerating tube has a pipe passage whose cross-sectional area perpendicular to the axial direction of the accelerating tube gradually increases toward the outlet of the accelerating tube, and the collision member is arranged in the crushing chamber opposite to the outlet of the accelerating tube. The colored resin powder is pulverized by the collision surface of the collision member, and after the collision, the colored resin powder is dispersed in substantially the entire circumferential direction, and the dispersed colored resin powder causes a secondary collision with the wall of the pulverization chamber. The tip of the collision surface of the collision member has a conical shape with an apex angle of 120 to 170°, and the acceleration tube outlet has an inner diameter of 10 to 100 mm, which is smaller than the diameter b of the collision member. The distance a between the tube outlet and the tip of the collision member is
A collision type airflow characterized in that the diameter b of the collision member is 0.5 to 2 times, and the shortest distance c between the collision member and the wall of the crushing chamber is set to 0.1 to 1 time the diameter of the collision member. Crusher. 2. The colored resin powder is conveyed by high pressure gas in the acceleration tube, the colored resin powder is accelerated, and the colored resin powder is discharged from the acceleration tube outlet into the crushing chamber. In the pulverization method of pulverizing the colored resin powder by colliding it against the collision surface of a collision member, the acceleration tube is a tube whose cross-sectional area perpendicular to the axial direction of the acceleration tube gradually increases toward the exit direction of the acceleration tube. The acceleration tube outlet has an inner diameter of 10 to 100 mm smaller than the collision member diameter b, and the distance a between the acceleration tube outlet and the tip of the collision member is:
The diameter b of the collision member is 0.5 to 2 times, the shortest distance c between the collision member and the crushing chamber wall is set to 0.1 to 1 time the diameter of the collision member, and the particle is accelerated in the pipe passage. The tip of the collision surface of the colored resin powder discharged from the accelerator tube outlet has an apex angle of 120 to 170°.
1. A method for pulverizing colored resin powder, which comprises colliding the powder with a collision member having a conical shape to crush it, and pulverizing the colored resin powder after the collision by secondly colliding with a wall of a pulverizing chamber.
JP63276165A 1987-11-18 1988-11-02 Impact type air crusher and crushing method Granted JPH01254266A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63276165A JPH01254266A (en) 1987-11-18 1988-11-02 Impact type air crusher and crushing method
US07/271,917 US4930707A (en) 1987-11-18 1988-11-16 Pneumatic pulverizer and pulverizing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28963887 1987-11-18
JP62-289638 1987-11-18
JP63276165A JPH01254266A (en) 1987-11-18 1988-11-02 Impact type air crusher and crushing method

Publications (2)

Publication Number Publication Date
JPH01254266A JPH01254266A (en) 1989-10-11
JPH0549349B2 true JPH0549349B2 (en) 1993-07-26

Family

ID=17745827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63276165A Granted JPH01254266A (en) 1987-11-18 1988-11-02 Impact type air crusher and crushing method

Country Status (1)

Country Link
JP (1) JPH01254266A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3133100B2 (en) * 1991-03-08 2001-02-05 株式会社リコー Collision type supersonic jet crusher
DE69222480T2 (en) * 1991-07-16 1998-03-05 Canon Kk Pneumatic impact mill
JP3101416B2 (en) * 1992-05-08 2000-10-23 キヤノン株式会社 Collision type airflow pulverizer and method for producing toner for electrostatic image development
US5447275A (en) * 1993-01-29 1995-09-05 Canon Kabushiki Kaisha Toner production process
US5934575A (en) * 1996-12-27 1999-08-10 Canon Kabushiki Kaisha Pneumatic impact pulverizer and process for producing toner
US7866581B2 (en) 2004-02-10 2011-01-11 Kao Corporation Method of manufacturing toner
CN108043257A (en) * 2015-06-30 2018-05-18 吴小再 Raw material of mix-compound fertilizer mixing arrangement and its method of work
CN106269139B (en) * 2016-09-29 2018-07-06 西南科技大学 A kind of method for improving airflow milling Particle Acceleration performance
CN112138826A (en) * 2019-06-26 2020-12-29 西南科技大学 Method for preparing high-length-diameter-ratio fibrous superfine powder
WO2022106573A1 (en) * 2020-11-20 2022-05-27 Basf Se Jet mill

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315143Y2 (en) * 1987-06-18 1991-04-03

Also Published As

Publication number Publication date
JPH01254266A (en) 1989-10-11

Similar Documents

Publication Publication Date Title
US4930707A (en) Pneumatic pulverizer and pulverizing method
US5358183A (en) Pneumatic pulverizer and process for producing toner
KR920009291B1 (en) Collision type gas current pulverizer and method for pulverizing powders
JPH0549349B2 (en)
JP3114040B2 (en) Collision type air crusher
JP2654989B2 (en) Powder grinding method
JP2805332B2 (en) Grinding method
JP2759499B2 (en) Powder grinding method
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP2704787B2 (en) Powder material grinding method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP3102902B2 (en) Collision type supersonic jet crusher
JP2663041B2 (en) Collision type air crusher
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH0386257A (en) Collision-type jet pulverizer and crushing method
JPH0326349A (en) Grinding method for powder
JPH02298365A (en) Grinding method
JP3138379B2 (en) Method for producing toner for developing electrostatic images
JPH0330845A (en) Method for pulverizing powder
JP2566158B2 (en) Collision airflow crusher

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 16