JPH0326349A - Grinding method for powder - Google Patents

Grinding method for powder

Info

Publication number
JPH0326349A
JPH0326349A JP1160955A JP16095589A JPH0326349A JP H0326349 A JPH0326349 A JP H0326349A JP 1160955 A JP1160955 A JP 1160955A JP 16095589 A JP16095589 A JP 16095589A JP H0326349 A JPH0326349 A JP H0326349A
Authority
JP
Japan
Prior art keywords
collision
powder
raw material
pulverization
acceleration tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1160955A
Other languages
Japanese (ja)
Inventor
Satoshi Mitsumura
三ツ村 聡
Masakichi Kato
政吉 加藤
Hitoshi Kanda
仁志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1160955A priority Critical patent/JPH0326349A/en
Publication of JPH0326349A publication Critical patent/JPH0326349A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To desirably enhance the grinding and treating capacity by specifying the apex angle of the tip part in the collision face of a collision member and also regulating the spreading angle of an acceleration pipe to a specified region. CONSTITUTION:When a powdery raw material is supplied from a charging port 1, it is accelerated by compressed air blown out through a nozzle 2 and discharged into a grinding chamber 8 from the outlet 13 of an acceleration pipe and furthermore struck on a collision face 14. The ground powdery raw material is smoothly carried to a classifier 24 from a discharge port 5. Fine powder is removed as classified powder and coarse powder is charged together with the powdery raw material form the charging port 1 again. The collision faces of respective collision members 4 are formed into an oblique conical shape which has a constant apex angle phi not smaller than 110 deg. and smaller than 180 deg.. Thereby the collided powdery raw material is dispersed to the whole circumferential direction and allowed to secondarily collide against the opposite grinding wall and thereby grinding capacity is enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジェット気流(高圧気体)を用いた衝突式気
流粉砕機で粉体原料を粉砕する方法であり、特に、電子
写真法による画像形成方法に用いられるトナーまたはト
ナー用着色樹脂粉体を効率良く生成する粉体の粉砕方法
に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is a method for pulverizing powder raw materials with an impact-type air-flow pulverizer using a jet stream (high-pressure gas). The present invention relates to a powder pulverization method for efficiently producing toner or colored resin powder for toner used in a forming method.

[従来の技術] ジェット気流を用いた衝突式気流粉砕機は、ジェット気
流で粉体原料を搬送し、粉体原料を衝突部材に衝突させ
、その衝撃力により粉砕するものである。
[Prior Art] A collision-type air current pulverizer using a jet stream conveys a powder raw material by a jet stream, collides the powder raw material with a collision member, and crushes it by the impact force.

従来、かかる粉砕機における衝突部材の衝突面l4は、
第6図及び第7図に示すように、粉体原料を乗せたジェ
ット気流方向(加速管の軸方向)に対し垂直あるいは傾
斜(例えば45゜)している平面状のものが用いられて
きた(特開昭57−50554号公報及び特開昭58−
143853号公報参照)。
Conventionally, the collision surface l4 of the collision member in such a crusher is
As shown in Figures 6 and 7, a flat type that is perpendicular or inclined (for example, 45 degrees) to the direction of the jet stream carrying the powder raw material (the axial direction of the accelerator tube) has been used. (JP-A-57-50554 and JP-A-58-
(See Publication No. 143853).

第6図の粉砕機において粗いね径を有する粉休原料は、
投入口上より加速管3に供給され、ジェットノズル2か
ら吹き出されるジェット気流によって、粉体原料は衝突
部材4の衝突面14にたたきつけられ、その衝撃力で粉
砕され、排出口5より粉砕室外に排出される。しかしな
がら、衝突面l4が加速管3の軸方向と垂直な場合、ジ
ェットノズル2から吹き出される原料粉体と衝突面14
で反射される粉体とが衝突面14の近傍で共存する割合
が高く、そのため、衝突面l4近傍の粉体濃度が高くな
るために、粉砕効率が良くない。さらに、衝突面14に
おける一次衝突が主体であり、粉砕室壁6との二次衝突
を有効に利用しているとはいえない。さらに、衝突面の
角度が加速管3に対し垂直の粉砕機では、粉体原料が熱
可塑性樹脂である材料を粉砕するときに、衝突時の局部
発熱により融着及び凝集物が発生し易く、装置の安定し
た運転が困難に6る。そのため、粉砕衝撃力を向上させ
ようとしても、6. 5kg/cm2以上の高圧縮気体
を用いることはできなくなる。
In the crusher shown in Figure 6, the powdered raw material with a coarse thread diameter is
The powder raw material is supplied to the accelerating tube 3 from above the input port, and is struck by the jet air stream blown out from the jet nozzle 2 against the collision surface 14 of the collision member 4, is crushed by the impact force, and is discharged from the discharge port 5 to the outside of the crushing chamber. be discharged. However, when the collision surface l4 is perpendicular to the axial direction of the acceleration tube 3, the raw material powder blown out from the jet nozzle 2 and the collision surface 14
There is a high proportion of the powder reflected by the collision surface 14 coexisting in the vicinity of the collision surface 14, and as a result, the powder concentration near the collision surface 14 becomes high, resulting in poor pulverization efficiency. Furthermore, the primary collision is mainly at the collision surface 14, and it cannot be said that the secondary collision with the crushing chamber wall 6 is effectively utilized. Furthermore, in a crusher where the angle of the collision surface is perpendicular to the acceleration tube 3, when crushing a material whose powder raw material is a thermoplastic resin, fusion and agglomerates are likely to occur due to local heat generation at the time of collision. Stable operation of the equipment becomes difficult6. Therefore, even if you try to improve the crushing impact force, 6. It becomes impossible to use highly compressed gas of 5 kg/cm2 or more.

ところで、電子写真法による画像形成方法に用いられる
トナーまたはトナー用着色樹脂粉体は、通常結着樹脂及
び着色剤または磁性粉を少なくとも含有している。かか
るトナーは、潜像担持体に形成された静電荷像を現像し
、形成されたトナー像は普通紙またはプラスチックフィ
ルムの如き転写材へ転写され、加熱定着手段,圧カロー
ラ定着手段または加熱加圧ローラ定着手段の如き定着装
置によって転写材上のトナー像は転写材に定着される。
Incidentally, toner or colored resin powder for toner used in an electrophotographic image forming method usually contains at least a binder resin and a colorant or magnetic powder. Such toner develops an electrostatic charge image formed on a latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or plastic film, and is then transferred to a transfer material such as a heat fixing means, a pressure roller fixing means, or a heat pressure roller fixing means. The toner image on the transfer material is fixed to the transfer material by a fixing device such as a roller fixing means.

従って、トナーに使用される結着樹脂は、熱及び/また
は圧力が付加されると塑性変形する特性を有する。現在
、トナーまたはトナー用着色樹脂粉休は、結着樹脂及び
着色剤または磁性粉(必要により、さらに第三成分を含
有)を少なくとも含有する混合物を溶融混練し、溶融混
線物を冷却し、冷却物を粉砕し、粉砕物を分級して調製
される。冷却物の粉砕は、通常、機械的衝撃式粉砕機に
より粗粉砕(または中粉砕)される過程を経て、この粉
砕で得られた粗粉をジェット気流を用いた衝突式気流粉
砕機で微粉砕する。しかしながら、被粉砕物濃度を高く
し、7.0kg/cm2以上の高圧縮気体を使用して微
粉砕することは困難であった。
Therefore, the binder resin used in the toner has the property of being plastically deformed when heat and/or pressure is applied. Currently, toner or colored resin powder for toner is produced by melt-kneading a mixture containing at least a binder resin and a colorant or magnetic powder (further containing a third component if necessary), cooling the molten mixture, and then cooling it. It is prepared by crushing a substance and classifying the crushed substance. The pulverization of cooled materials usually involves coarse pulverization (or medium pulverization) using a mechanical impact pulverizer, and then the coarse powder obtained by this pulverization is finely pulverized using an impact type airflow pulverizer that uses a jet stream. do. However, it has been difficult to increase the concentration of the material to be pulverized and to perform pulverization using highly compressed gas of 7.0 kg/cm2 or more.

第7図の粉砕機において、衝突面l4が加速管3の軸方
向に対して傾斜しているために、衝突面l4近傍の粉休
濃度は第6図の粉砕機と比較して低くなるが粉砕圧が分
散されて低下する。さらに、粉砕室壁6との二次衝突を
有効に利用しているとはいえない。
In the crusher shown in FIG. 7, since the collision surface l4 is inclined with respect to the axial direction of the acceleration tube 3, the powder concentration near the collision surface l4 is lower than that in the crusher shown in FIG. The crushing pressure is dispersed and reduced. Furthermore, it cannot be said that the secondary collision with the crushing chamber wall 6 is effectively utilized.

第7図及び第8図に示す如く、衝突面14の角度が加速
管に対し45゜傾斜のものでは、熱可塑性樹脂を粉砕す
るときに上記のような問題点は少ない。しかしながら、
衝突する際に粉砕に使われる衝撃力が小さく、さらに粉
砕室壁6との二次衝突による粉砕が少ないので、第6図
の粉砕機と比較して1/2〜1/1. 5に粉砕能力が
落ちる。
As shown in FIGS. 7 and 8, when the collision surface 14 is inclined at an angle of 45 degrees with respect to the acceleration tube, the above-mentioned problems occur less when crushing thermoplastic resin. however,
Since the impact force used for pulverization during collision is small, and there is less pulverization due to secondary collision with the pulverizing chamber wall 6, the crusher is 1/2 to 1/1 as large as the pulverizer shown in FIG. The crushing ability drops to 5.

従って、被粉砕物原料特に、熱可塑性樹脂を含む材料を
粉砕するときに粉砕効率が良好であり、6. 5kg/
cm”以上の高圧縮気体を利用しても粉砕能力が向上で
きる粉砕方法が待望されている。
Therefore, the pulverization efficiency is good when pulverizing raw materials to be pulverized, especially materials containing thermoplastic resins, and 6. 5kg/
There is a long-awaited pulverization method that can improve the pulverization ability even when using highly compressed gas of 1.5 cm or more.

[発明が解決しようとする課題] 本発明の目的は、上記問題点、さらには、前記従来例に
おいて、加速管の拡がり角θが6.5゜以下であり狭い
ため、高圧気体流量を増加した場合、加速管内で圧力損
失が生じるため、目的とする微粉砕処理能力の向上が図
れないという欠点等が解消された粉砕方法を提供するこ
とにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned problems, and furthermore, in the conventional example, since the accelerator tube has a narrow divergence angle θ of 6.5° or less, it is possible to increase the high-pressure gas flow rate. It is an object of the present invention to provide a pulverization method that eliminates the drawback that the desired pulverization processing capacity cannot be improved due to pressure loss occurring in the acceleration tube.

すなわち、熱可塑性樹脂等を含む材料を粉砕する場合で
も、被粉砕物濃度を下げることなく高圧縮気体(例えば
6. 5kg/cm”以上)を利用して粉砕できる粉体
の粉砕方法を提供することにある。
In other words, the present invention provides a method for pulverizing powder that can be pulverized using highly compressed gas (for example, 6.5 kg/cm" or more) without reducing the concentration of the material to be pulverized, even when pulverizing materials containing thermoplastic resin or the like. There is a particular thing.

また、粉砕時における融着.凝集物,粗粒子等の発生が
なく、装置の安定した運転を可能にする粉体の粉砕方法
を提供することにある。
Also, fusion during crushing. The object of the present invention is to provide a method for pulverizing powder that does not generate aggregates, coarse particles, etc. and enables stable operation of an apparatus.

[課題を解決するための手段及び作用]本発明の特徴と
するところは、高圧気体により粉体を搬送加速する加速
管と、該加速管より噴出する粉体を衝撃力により粉砕す
るための衝突部材を加速管出口に相対して粉砕室内に設
けてなる衝突式気流粉砕機を用いた粉砕において、前記
衝突部材の衝突面先端部分の頂角が110゜以上180
゜未満の斜円錐又は斜錐形状を成したものを用い、前記
加速管の拡がり角度を7゜以上9゜以下として、前記高
圧気体の圧力を6. 5kg/cm2以上にして粉砕す
る粉体の粉砕方法にある。
[Means and effects for solving the problems] The present invention is characterized by an acceleration tube that conveys and accelerates powder using high-pressure gas, and a collision that uses impact force to crush the powder ejected from the acceleration tube. In pulverization using a collision type airflow pulverizer in which a member is provided in a pulverizer chamber facing the outlet of an accelerating tube, the apex angle of the tip portion of the collision surface of the collision member is 110° or more and 180°.
An oblique cone or an oblique conical shape with a diameter of less than 6 degrees is used, the expansion angle of the acceleration tube is set to 7 degrees or more and 9 degrees or less, and the pressure of the high-pressure gas is set to 6. There is a method for pulverizing powder to a particle size of 5 kg/cm2 or more.

また、前記粉体の原料として、熱可塑性樹脂を含む材料
を用いる粉体の粉砕方法にある。
The present invention also provides a method of pulverizing powder using a material containing a thermoplastic resin as a raw material for the powder.

すなわち、本発明は、6. 5Kg/cm2以上の高圧
気体により被粉砕物を搬送加速する加速管を有し、該加
速管の出口より噴射される高圧気体と被粉砕物の粒子混
合気流を該加速管出口に相対して設けた衝突部材の衝突
面に衝突させ粉砕するようにした衝突式気流粉砕機にお
いて、前記加速管の拡がり角度θを7゜以上9゜以下と
することで、気流の速度を低下させることなく、加速管
内での圧力損失を低減し、また第1図〜第4図に示すよ
うに、衝突面の頂角が110゜以上18o゜未満の斜円
錐又は斜錐形状の衝突部材を設けることにより、該衝突
面に衝突した被粉砕物を全周方向に分散させ対向する粉
砕室壁と二次衝突を生じさせることで微粉砕処理能力を
向上させ、6. 5kg/cm2以上の高圧気体を加速
管から投入しても、熱可塑性樹脂材料及び粉砕された粉
体の融着が抑制され、凝集物及び粗粒子の生成が少ない
粉砕方法を提供することを可能にしたものである。
That is, the present invention provides 6. It has an acceleration tube that conveys and accelerates the material to be crushed by high pressure gas of 5 kg/cm2 or more, and a mixed air flow of the high pressure gas and particles of the material to be crushed is injected from the outlet of the acceleration tube and is provided opposite to the outlet of the acceleration tube. In the collision type airflow crusher, which crushes the collision member by colliding with the collision surface of the collision member, by setting the expansion angle θ of the acceleration tube to 7° or more and 9° or less, acceleration can be achieved without reducing the speed of the airflow. The pressure loss within the pipe is reduced, and as shown in Figs. 6. Improving the pulverization capacity by dispersing the object to be crushed that collided with the collision surface in the circumferential direction and causing a secondary collision with the opposing crushing chamber wall; 6. It is possible to provide a pulverization method in which fusion of the thermoplastic resin material and the pulverized powder is suppressed even when high-pressure gas of 5 kg/cm2 or more is injected from the accelerator tube, and the generation of aggregates and coarse particles is small. This is what I did.

以下、本発明を図面に基づいて説明する。Hereinafter, the present invention will be explained based on the drawings.

第1図〜第5図は、本発明の一実施例を示す概略図であ
り、第2図は第1図の要部の拡大図、図中加速管3は第
6図及び第7図に示す従来例の衝突式気流粉砕機同様、
高圧気体供給ノズル2を接続しており、加速管3の出口
13に対向して衝突部材4を設けてある。加速管3は、
拡がり角度θが7゜以上9゜以下の単調拡大管である。
1 to 5 are schematic diagrams showing one embodiment of the present invention. FIG. 2 is an enlarged view of the main part of FIG. 1, and the accelerating tube 3 in the figure is shown in FIGS. Similar to the conventional impingement type air flow crusher shown in the figure,
A high-pressure gas supply nozzle 2 is connected thereto, and a collision member 4 is provided opposite the outlet 13 of the acceleration tube 3. The acceleration tube 3 is
It is a monotonically expanding tube with an expansion angle θ of 7° or more and 9° or less.

さらに拡がり角度θを7.5゜以上8.5゜以下の範囲
にすれば微粉砕処理能力向上に優れ最適である。次に前
記実施例の作用について説明する。衝突式気流粉砕機の
微粉砕処理能力を向上させるためには、粉砕に供する衝
撃力を与える圧縮気体流量を増加させ、気体流の圧力を
増加させることが有効である。しかし、従来の衝突式気
流粉砕機のように拡がり角度θが7゜未渦の加速管の場
合には、加速管内で圧力損失が生じてしまい、圧縮気体
流量と圧力の増加分の能力まで微粉砕能力を向上させる
ことができない。一方拡がり角度θが96を越え7 る加速管の場合には、加速管の角度が拡がるにつれて、
加速管出口13の断面積が大きくなり、逆に、加速管か
ら噴射される粒子混合気流の速度が低下してしまうため
、圧縮気体の圧力の増加分の能力まで微粉砕能力を向上
させることはできない。従って、上述のごとき範囲を除
いた7゜以上9゜以下の拡がり角度θを有する加速管が
、微粉砕処理能力の向上に最も適しているものである。
Furthermore, if the spreading angle θ is in the range of 7.5° or more and 8.5° or less, it is optimal because it improves the pulverization processing capacity. Next, the operation of the above embodiment will be explained. In order to improve the pulverization processing capacity of an impingement type air flow pulverizer, it is effective to increase the flow rate of compressed gas that provides the impact force for pulverization and to increase the pressure of the gas flow. However, in the case of an accelerator tube with a non-vortex spread angle θ of 7°, such as in a conventional impingement type air flow crusher, pressure loss occurs within the accelerator tube, and the ability to increase the compressed gas flow rate and pressure is slightly reduced. Unable to improve crushing ability. On the other hand, in the case of an accelerating tube whose divergence angle θ exceeds 96, as the angle of the accelerating tube widens,
The cross-sectional area of the accelerating tube outlet 13 increases, and conversely, the speed of the particle mixture air flow injected from the accelerating tube decreases, so it is impossible to improve the pulverization ability to the extent that the pressure of the compressed gas increases. Can not. Therefore, an accelerating tube having a divergence angle θ of 7° or more and 9° or less, excluding the above-mentioned range, is most suitable for improving the pulverization processing capacity.

[実施例] 以下、実施例,比較例にて本発明を詳述する。[Example] The present invention will be explained in detail below using Examples and Comparative Examples.

笈癒豊ユ 添付図面の第1図〜第3図及び第5図に示す衝突式気流
粉砕機を使用して粉体の粉砕を行った。
The powder was pulverized using an impact type air flow pulverizer shown in FIGS. 1 to 3 and 5 of the accompanying drawings.

粉砕された粉体を細粉と粗粉とを分級するための分級手
段として固定壁式風力分級機を使用した。
A fixed wall type wind classifier was used as a classification means for classifying the pulverized powder into fine powder and coarse powder.

衝突式気流粉砕機は、直径(b)が60mmの酸化アル
ミニウム系セラミックで形成された円柱状の衝突部材4
を有し、衝突部材4の先端部としては、頂角 (ψ) 
110゜と160゜を有する斜円錐形状2種類を用いた
。粉砕室8の内壁はセラミックコートされていた。加速
管出口13の内径は2 5mmであり、加速管出口l3
から衝突面14までの最近接距離(a)は60mmであ
り、衝突部材4と粉砕室壁6との最近接距離(c)は2
0mmであった。衝突式気流粉砕機のA−A′面におけ
る断面は、第5図に示すU字形を有していた。衝突部材
4の左右及び下方の粉砕室壁6との距離は、20〜約4
0mmであった。
The collision type air flow crusher has a cylindrical collision member 4 made of aluminum oxide ceramic with a diameter (b) of 60 mm.
The tip of the collision member 4 has an apex angle (ψ)
Two types of oblique conical shapes having angles of 110° and 160° were used. The inner wall of the crushing chamber 8 was coated with ceramic. The inner diameter of the acceleration tube outlet 13 is 25 mm, and the acceleration tube outlet l3
The closest distance (a) from the collision surface 14 to the collision surface 14 is 60 mm, and the closest distance (c) between the collision member 4 and the crushing chamber wall 6 is 2.
It was 0 mm. The cross section of the impingement type air flow crusher along the plane AA' had a U-shape as shown in FIG. The distance between the collision member 4 and the left and right and lower crushing chamber walls 6 is from 20 to about 4
It was 0 mm.

さらに、高圧気体供給ノズルの内径(d1)が11mm
であり、加速管出口13の内径(d2)が29mmであ
り、加速管3の全長(L)が133mmであり、加速管
の拡がり角度 (θ)が7.7゜を有する形状であった
Furthermore, the inner diameter (d1) of the high pressure gas supply nozzle is 11 mm.
The acceleration tube outlet 13 had an inner diameter (d2) of 29 mm, the overall length (L) of the acceleration tube 3 was 133 mm, and the acceleration tube had a divergence angle (θ) of 7.7°.

一方、原料7としては、下記のものを使用した。On the other hand, as the raw material 7, the following was used.

上記処方の混合物よりなるトナー原料を約180℃で約
1.0時間溶融混線後、冷却して固化9 1 0 し、溶融混線物の冷却物をハンマーミルで100〜10
00μmの粒子に粗粉砕したものを粉体原料とした。
The toner raw material consisting of the mixture of the above formulation is melted and mixed at about 180°C for about 1.0 hours, then cooled and solidified to a temperature of 910, and the cooled mixture of the melted and mixed mixture is heated in a hammer mill to a temperature of 100 to 100.
The powder material was coarsely ground into particles of 00 μm and used as a powder raw material.

投入口1から粉体原料が43kg/Hrの割合で供給さ
れると、ノズル2から吹き出される圧縮空気(8. 0
kgf/cm2)によって、加速管3内で粉体原料は加
速され、加速管出口13から粉砕室8内に吐出され、粉
体原料7は衝突面14にたたきつけられ、その衝撃力で
粉砕された。それと共に前記傾斜が付いた斜円錐形状の
衝突面l4により、衝突した粉体原料は全周方向に分散
し、対向する粉砕室壁6と、二次衝突し、そこで更に粉
砕された。
When the powder raw material is supplied from the input port 1 at a rate of 43 kg/Hr, compressed air (8.0 kg/Hr) is blown out from the nozzle 2.
kgf/cm2), the powder raw material is accelerated in the acceleration tube 3 and discharged from the acceleration tube outlet 13 into the crushing chamber 8, and the powder raw material 7 is struck against the collision surface 14 and crushed by the impact force. . At the same time, the colliding powder raw material was dispersed in the entire circumferential direction by the oblique cone-shaped collision surface l4 and secondly collided with the opposing crushing chamber wall 6, where it was further crushed.

粉砕された粉体原料は排出口5からスムーズに分級機2
4に運ばれ、細粉は分級粉体として取り除かれ、粗粉は
再び投入口1より粉体原料と共に投入された。この結果
、細粉として重量平均粒径1 2pmの粉砕粉休が44
kg/Hrの割合で収集された。
The crushed powder raw material is smoothly transferred to the classifier 2 from the discharge port 5.
4, the fine powder was removed as classified powder, and the coarse powder was again input from the input port 1 together with the powder raw material. As a result, 44 pieces of crushed powder with a weight average particle size of 12 pm were used as fine powder.
Collected at the rate of kg/Hr.

このように、各々の衝突部材4の衝突面は一定の頂角 
(ψ)の付いた斜円錐形状をしているため、衝突した粉
体原料は全周方向に分赦し、対向する粉砕壁と二次衝突
した。そのため、衝突部材付近での融着、凝集物、粗粒
子が生じず、粉体濃度の上昇がなく、さらに二次衝突す
るために、従来より粉砕能力が非常に高くなることが確
認された。
In this way, the collision surface of each collision member 4 has a constant apex angle.
Since it has an oblique conical shape with (ψ), the colliding powder raw material is dispersed in the entire circumferential direction and causes a secondary collision with the opposing crushing wall. Therefore, it has been confirmed that fusion, agglomerates, and coarse particles do not occur near the collision member, and there is no increase in powder concentration, and furthermore, because of secondary collision, the crushing capacity is much higher than before.

実1u運l 実施例lと同様な粉体原料を第4図に示す頂角(ψ) 
110゜と160゜の各々の傾斜の付いた2種類の斜錐
形状の衝突面を有する衝突部材を用いて、実施例1と同
様に粉砕したところ、粉砕時の衝突面付近での粉塵濃度
が上昇せずかつ二次衝突するために実施例1と同様、従
来より粉砕能力が非常に高くなることが確認された。粉
体原料の投入量は、処理量に応じて調製した。
The apex angle (ψ) of the same powder raw material as in Example 1 is shown in Fig. 4.
When pulverization was performed in the same manner as in Example 1 using a collision member having two types of oblique cone-shaped collision surfaces with inclinations of 110° and 160°, the dust concentration near the collision surface during pulverization was as follows. As in Example 1, it was confirmed that the crushing capacity was much higher than that of the conventional method because of the secondary collision without rising. The amount of powder raw material input was adjusted according to the amount to be processed.

X五班旦 実施例lと同様な粉体原料を第1図に示す頂角(ψ)1
70゜の傾斜の付いた斜円錐形状の衝突面を有する衝突
部材を用いて実施例lと同様に粉砕したところ、粉砕時
の衝突面付近での粉塵濃度が上昇せず、かつ二次衝突す
るために従来より粉砕11 12 能力が非常に高くなることが確認された。
The apex angle (ψ) 1 of the same powder raw material as in Example 1 shown in FIG.
When pulverization was performed in the same manner as in Example 1 using a collision member having an oblique cone-shaped collision surface with an inclination of 70°, the dust concentration near the collision surface during pulverization did not increase, and secondary collisions occurred. Therefore, it was confirmed that the crushing capacity was much higher than that of the conventional method.

L校明ユ 実施例lと同様な粉体原料を第6図に示す従来の衝突式
気流粉砕機で粉砕した。該粉砕機において、加速管3に
対し垂直である平面状衝突面l4を有する衝突部材4を
用いて、実施例lと同様に粉砕した。
A powder raw material similar to that in Example 1 was pulverized using a conventional impingement type air flow pulverizer shown in FIG. In this pulverizer, the material was pulverized in the same manner as in Example 1 using the collision member 4 having a planar collision surface 14 perpendicular to the acceleration tube 3.

かかる衝突式気流粉砕機は、高圧気体供給ノズルの内径
(dI)が9mmであり、加速管出口l3の内径(d2
)が24mmであり、加速管3の全長(L)が153m
mであり、加速管の拡がり角度(θ)が5.6゜の形状
を有し、加速管3から吹き出される圧縮空気は、6. 
0kgf/cm”で粉砕した。衝突面l4に衝突した扮
体原料は、吐出方向と対向する方向に反射されるために
、衝突面付近の粉体濃度は著しく高くなった。そのため
、粉体原料の供給割合がlokg/Hrを超えると、衝
突部材上で、融着、凝集物、粗粒子が生じはじめ、融着
物が加速管出口13や分級機を詰まらせる場合があった
。従って、粉砕処理量を1時間当り10kgに低下させ
ることを余儀なくされ、これが粉砕能力の限界となった
In this collision type air flow crusher, the inner diameter (dI) of the high-pressure gas supply nozzle is 9 mm, and the inner diameter (d2) of the acceleration tube outlet l3 is 9 mm.
) is 24 mm, and the total length (L) of the accelerator tube 3 is 153 m.
m, the expansion angle (θ) of the acceleration tube is 5.6 degrees, and the compressed air blown out from the acceleration tube 3 is 6.
0 kgf/cm''. The powder material that collided with the collision surface l4 was reflected in the direction opposite to the discharge direction, so the powder concentration near the collision surface became extremely high. When the supply rate exceeds 100 kg/Hr, fusion, agglomerates, and coarse particles begin to occur on the collision member, and the fused substances sometimes clog the accelerator tube outlet 13 and the classifier. The amount had to be reduced to 10 kg per hour, which was the limit of the grinding capacity.

比較員ユ 実施例lと同様な粉体原料を第6図に示す従来の衝突式
気流粉砕機で粉砕した。該粉砕機において、加速管3に
対し垂直である平面状衝突面14を有する衝突部材4を
用いて、実施例1と同様に粉砕した。
Comparative Example 1 A powder raw material similar to that of Example 1 was pulverized using a conventional impingement air flow pulverizer shown in FIG. In this pulverizer, the material was pulverized in the same manner as in Example 1 using the collision member 4 having a planar collision surface 14 perpendicular to the acceleration tube 3.

かかる衝突式気流粉砕機は、高圧気体供給ノズルの内径
(d,)が11mmであり、加速管出口13の内径(d
2)が24mmであり、加速管3の全長(L)が133
mmであり、加速管の拡がり角度(θ)が5.6゜の形
状を有し、加速管3から吹き出される圧縮空気は、8.
 0kgf/cm2で粉砕した。衝突面l4に衝突した
粉体原料は吐出方向と対向する方向に反射されるために
、衝突面付近の粉体濃度は著しく高くなり、さらに、衝
撃力は大きくなったために衝突部材上で融着,凝集物,
粗粒子が生じはじめ、融着物が加速管出口13や分級機
を詰まらせ、粉砕機能を達或することができなくなって
しまった。
In this collision type air flow crusher, the inner diameter (d,) of the high-pressure gas supply nozzle is 11 mm, and the inner diameter (d,) of the acceleration tube outlet 13 is 11 mm.
2) is 24 mm, and the total length (L) of the accelerator tube 3 is 133 mm.
mm, the expansion angle (θ) of the accelerating tube is 5.6°, and the compressed air blown out from the accelerating tube 3 is 8.6 mm.
It was pulverized at 0 kgf/cm2. The powder raw material that collided with the collision surface l4 is reflected in the direction opposite to the discharge direction, so the powder concentration near the collision surface becomes significantly high.Furthermore, the impact force becomes large, so that it fuses on the collision member. , aggregate,
Coarse particles began to form, and the fused materials clogged the accelerator tube outlet 13 and the classifier, making it impossible to achieve the pulverizing function.

比較皿旦 13 1 4 実施例1と同様な粉体原料を第6図に示す従来の衝突式
気流粉砕機で粉砕した。該粉砕機において、加速管3に
対し垂直である平面状衝突面14を有する衝突部材4を
用いて、実施例lと同様に粉砕した。
Comparative Plate 13 1 4 The same powder raw material as in Example 1 was pulverized using a conventional impingement type air flow pulverizer shown in FIG. In the crusher, the material was crushed in the same manner as in Example 1 using the collision member 4 having a planar collision surface 14 perpendicular to the acceleration tube 3.

かかる衝突式気流粉砕機は、高圧気体供給ノズルの内径
(d1)が9mmであり、加速管出口13の内径(d2
)が24mmであり、加速管3の全長(Llが1531
IllI1であり、加速管の拡がり角度(θ)が5.6
゜の形状を有し、加速管3から吹き出される圧縮空気は
、8. Okgf/cm”で粉砕した。衝突面l4に衝
突した粉体原料は吐出方向と対向する方向に反射される
ために、衝突面付近の粉体濃度は著しく高くなり、さら
に、衝撃力は大き′くなったために衝突部材上で融着,
凝集物,粗粒子が生じはじめ、融着物が加速管出口13
や分級機を詰まらせ、粉砕機能を達或することができな
くなってしまった。
In this collision type air flow crusher, the inner diameter (d1) of the high-pressure gas supply nozzle is 9 mm, and the inner diameter (d2) of the acceleration tube outlet 13 is 9 mm.
) is 24 mm, and the total length of the accelerator tube 3 (Ll is 1531
IllI1, and the expansion angle (θ) of the accelerator tube is 5.6
The compressed air blown out from the acceleration tube 3 has a shape of 8. The powder raw material that collided with the collision surface l4 is reflected in the direction opposite to the discharge direction, so the powder concentration near the collision surface becomes extremely high, and furthermore, the impact force is large. fused on the collision member due to
Agglomerates and coarse particles begin to form, and fused materials reach the acceleration tube outlet 13.
It clogged the machine and classifier, making it unable to perform its pulverizing function.

L校坦1 実施例1と同様な粉体原料を、第7図及び第8図に示す
従来の衝突式気流粉砕機で粉砕した。
L powder 1 A powder raw material similar to that in Example 1 was pulverized using a conventional impingement type air flow pulverizer shown in FIGS. 7 and 8.

該粉砕機において45゜の衝突面を有する衝突部材を用
いて、比較例2と同様に粉砕したところ、衝突面に衝突
した粉体原料は比較例2に比べ、加速管出口l3から離
れる方向へ反射されるので融着及び凝集物は生じなかっ
た。しかし、衝突する際に、衝撃力が弱くなるため、粉
砕効率が悪く、重量平均粒径12pmの細粉は、1時間
当り約9Kg シか得られなかった。
When pulverization was performed in the same manner as in Comparative Example 2 using a collision member having a collision surface of 45° in the crusher, the powder raw material that collided with the collision surface moved in the direction away from the acceleration tube outlet l3 compared to Comparative Example 2. Since it was reflected, no fusion or agglomeration occurred. However, since the impact force becomes weak during the collision, the pulverization efficiency is poor, and only about 9 kg of fine powder with a weight average particle size of 12 pm can be obtained per hour.

以上実施例1〜3及び比較例1〜4の結果を下記第l表
に示す。
The results of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table I below.

(以下余白) l5 1 6 実W 粉休原料として下記のものを使用した。(Margin below) l5 1 6 Real W The following materials were used as raw materials.

上記処方の混合物よりなるトナー原料を約180℃で約
1.0時間溶融混線後、冷却して固化し、固形物をハン
マーミルで100〜l000#Lmの粒子に粗粉砕した
ものを粉体原料とした。
A toner raw material consisting of a mixture of the above formulation is melted and mixed at about 180°C for about 1.0 hours, cooled and solidified, and the solid material is coarsely ground into particles of 100 to 1000 #Lm using a hammer mill as a powder raw material. And so.

投入口1から粉体原料を14. 5kg/Hrの割合で
供給し、ノズル2から8.0kgf/cm”の圧縮空気
を導入し、高圧気体供給ノズルの内径(d1)が1 1
mmであり、加速管出口l3の内径(d2)が29mm
であり、全長(L)が133mm 1拡がり角度(θ)
が7.rの形状の加速管と第3図に示す頂角(ψ)1l
O゜と160゜の各々の傾斜の付いた2種類の斜円錐形
状の衝突面を有する衝突部材を具備した第1図及び第2
図に示一注一 比較例1の粉砕機の処理能力を1とした
14. Powder raw material from input port 1. 5 kg/Hr, compressed air of 8.0 kgf/cm" was introduced from nozzle 2, and the inner diameter (d1) of the high pressure gas supply nozzle was 1 1
mm, and the inner diameter (d2) of the acceleration tube outlet l3 is 29 mm.
, total length (L) is 133mm 1 spread angle (θ)
is 7. r-shaped accelerator tube and apex angle (ψ) 1l shown in Fig. 3
Figures 1 and 2 are equipped with collision members having two types of oblique cone-shaped collision surfaces with inclinations of 0° and 160°.
Note 1: The processing capacity of the pulverizer of Comparative Example 1 was set to 1.

1 8 す衝突式気流粉砕機にて粉砕し、粉砕された粉体を分級
機24にて細粉と粗粉に分級した。細粉として重量平均
粒径12ILmの粉体が1時間当り15.8Kgの割合
で収集された。
The powder was pulverized using a collision type air flow pulverizer 18, and the pulverized powder was classified into fine powder and coarse powder using a classifier 24. Fine powder with a weight average particle size of 12 ILm was collected at a rate of 15.8 kg per hour.

K凰豊j 実施例4と同様な粉体原料を、第4図に示す頂角 (ψ
)110゜と160゜各々の傾斜の付いた2種類の斜円
錐形状の衝突面を有する衝突部材を具備した第1図に示
す衝突式気流粉砕機を用いて実施例4と同様に粉砕した
ところ、重量平均粒径約12pmの細粉が1時間当り1
5、8Kgの割合で収集された。
The same powder raw material as in Example 4 was prepared at the apex angle (ψ
) Grinding was performed in the same manner as in Example 4 using the collision type air flow mill shown in Fig. 1, which was equipped with a collision member having two types of oblique cone-shaped collision surfaces with inclinations of 110° and 160°, respectively. , fine powder with a weight average particle size of about 12 pm per hour
They were collected at a rate of 5.8 kg.

粉体原料の投入量は、処理量に応じて、調整した。The amount of powder raw material input was adjusted depending on the amount to be processed.

実JL[糺旦 実施例4と同様な粉体原料を、第3図に示す頂角 (ψ
)170゜の傾斜の付いた斜円錐形状の衝突面を有する
衝突部材を具備した第1図に示す衝突式気流粉砕機を用
いて、実施例4と同様に粉砕したところ、重量平均粒径
約12pmの細粉が1時間当り14. 7Kgの割合で
収集された。
The same powder raw material as in Example 4 was prepared at the apex angle (ψ
) When pulverization was performed in the same manner as in Example 4 using the impingement type air flow pulverizer shown in FIG. 12pm fine powder per hour. Collected at the rate of 7Kg.

比(0引旦 実施例4と同様な粉体原料を、第6図に示す衝突式気流
粉砕機で比較例lと同様に粉砕したところ、重量平均粒
径約12pmの細粉が1時間当り7kgしか収集されな
かった。
When the same powder raw material as in Example 4 was pulverized in the same manner as in Comparative Example 1 using the impingement air flow pulverizer shown in Fig. 6, a fine powder with a weight average particle size of about 12 pm was produced per hour. Only 7 kg was collected.

比較員1 実施例4と同様な粉体原料を、第6図に示す衝突式気流
粉砕機で比較例2と同様に粉砕したところ、衝突面l4
に衝突した粉休原料は吐出方向と対向する方向に反射さ
れるために、衝突面付近の粉体濃度は著しく高くなり、
さらに衝撃力は大きくなったために衝突部材上で融着,
凝集物,粗粒子が生じはじめ、融着物が加速管出口13
や分級機を詰まらせ粉砕機能を達成することができなく
なってしまった。
Comparison 1 When the same powder raw material as in Example 4 was pulverized in the same manner as in Comparative Example 2 using the collision type air flow pulverizer shown in FIG.
The powdered material that collides with the powder is reflected in the direction opposite to the discharge direction, so the powder concentration near the collision surface becomes significantly high.
Furthermore, as the impact force became larger, fusion occurred on the collision member.
Agglomerates and coarse particles begin to form, and fused materials reach the acceleration tube outlet 13.
It clogged the classifier and made it impossible to achieve the crushing function.

比(l』ユ 実施例4と同様な粉体原料を、第6図に示す衝突式気流
粉砕機で比較例3と同様に粉砕したところ、衝突面14
に衝突した粉体原料は吐出方向と対向する方向に反射さ
れるために、衝突面付近の粉1 9 2 0 休濃度は著しく高くなり、さらに衝撃力は大きくなった
ために衝突部材上で融着,凝集物,粗粒子が生じはじめ
、融着物が加速管出口13や分級機を詰まらせ粉砕機能
を達成することができなくなってしまった。
Ratio (l) When the same powder raw material as in Example 4 was pulverized in the same manner as in Comparative Example 3 using the collision type air flow pulverizer shown in FIG.
The powder raw material collided with the collided member is reflected in the direction opposite to the discharge direction, so the concentration of powder 1920 near the collided surface becomes significantly high, and the impact force increases, causing fusion on the collided member. , aggregates, and coarse particles began to form, and the fused materials clogged the accelerating tube outlet 13 and the classifier, making it impossible to achieve the pulverizing function.

比10牝旦 実施例4と同様な粉体原料を第7図及び第8図に示す衝
突式気流粉砕機で比較例4と同様に粉砕したところ、重
量平均粒径約12pmの細粉が1時間当り6kg L,
か収集されなかった。
Ratio 10 When the same powder raw material as in Example 4 was pulverized in the same manner as in Comparative Example 4 using the collision type air flow pulverizer shown in FIGS. 7 and 8, fine powder with a weight average particle size of about 12 pm was 6kg L per hour,
or not collected.

以上、実施例4〜6及び比較例5〜8の結果を下記第2
表に示す。
The results of Examples 4 to 6 and Comparative Examples 5 to 8 are summarized in the second section below.
Shown in the table.

(以下余白) 2l ー注一 比較例5の粉砕機の処理能力を1とした。(Margin below) 2l -Note 1: The processing capacity of the crusher in Comparative Example 5 was set to 1.

22 [発明の効果] 以上説明したように、加速管の拡がり角θを7゜以上9
″以下にすること、衝突板面の先端部分の頂角を110
゜以上180゜未満になる斜円錐形状又は斜錐形状とす
ることで、熱可塑性樹脂を含む粉体原料は6. 5kg
/cm”以上の高圧縮気体を投入しても、粉砕時におけ
る融着,凝集物,粗粒子等が発生せず、装置の安定した
運転を可能にし、さらに、装置を大きくすることなく、
従来の粉砕能力を著しく向上することができる。
22 [Effect of the invention] As explained above, when the divergence angle θ of the accelerator tube is set to 7° or more, 9
'' or less, and the apex angle of the tip of the collision plate surface is 110
By forming the powder raw material containing a thermoplastic resin into an oblique conical shape or an oblique conical shape with an angle of at least 180°, 6. 5kg
Even if a highly compressed gas of 1/cm" or more is injected, no fusion, agglomerates, or coarse particles are generated during pulverization, allowing stable operation of the equipment.Furthermore, the equipment can be operated stably without increasing the size of the equipment.
The conventional crushing capacity can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、衝突部材が斜円錐形状又は斜錐形
状を有する本発明に使用した衝突式気流粉砕機の断面及
び粉砕・分級工程を概略的に示した図であり、第3図及
び第4図は、本発明に使用した、斜円錐形状及び、斜錐
形状である衝突部材の先端を示した図である。第5図は
第1図に示す粉砕機のA−A’面における断面を概略的
に示した図である。 第6図は、衝突部材の衝突面が加速管の軸方向に対して
垂直である、比較例としての衝突式気流粉砕機の断面及
び粉砕・分級工程を概略的に示した図である。 第7図は、衝突部材の衝突面が加速管の軸方向に対して
、上方に45゜傾斜している、比較例としての衝突式気
流粉砕機の断面及び粉砕・分級工程を概略的に示した図
であり、第8図は第7図に示す衝突式気流粉砕機のB−
B’面における断面を概略的に示した図である。 l・・・粉体原料投入口 2・・・圧縮気体供給ノズル 3・・・加速管 4・・・衝突部材 5・・・排出口 6・・・粉砕室壁 7・・・粉体原料 8・・・粉砕室 l3・・・加速管出口 14・・・衝突面 23 2 4 24・・・分級機 ψ・・・衝突部材頂角 θ・・・加速管拡がり角度 d,・・・高圧気体供給ノズル内径 d2・・・加速管出口内径 L・・・加速管全長
1 and 2 are diagrams schematically showing the cross section and the crushing/classifying process of the collision type air flow crusher used in the present invention, in which the collision member has an oblique conical shape or a conical conical shape, and FIG. 4 and 4 are diagrams showing the oblique conical shape and the tip of the oblique conical collision member used in the present invention. FIG. 5 is a diagram schematically showing a cross section of the crusher shown in FIG. 1 taken along the line AA'. FIG. 6 is a diagram schematically showing a cross section and a crushing/classifying process of a collision type air flow crusher as a comparative example in which the collision surface of the collision member is perpendicular to the axial direction of the accelerator tube. Figure 7 schematically shows the cross section and crushing/classifying process of a collision type airflow crusher as a comparative example, in which the collision surface of the collision member is inclined upward at 45 degrees with respect to the axial direction of the accelerator tube. FIG. 8 is a diagram showing the B-
It is a figure which schematically showed the cross section in B' plane. l...Powder raw material input port 2...Compressed gas supply nozzle 3...Acceleration tube 4...Collision member 5...Outlet port 6...Crushing chamber wall 7...Powder raw material 8 ...Crushing chamber l3...Acceleration tube outlet 14...Collision surface 23 2 4 24...Classifier ψ...Collision member apex angle θ...Acceleration tube expansion angle d,...High pressure gas Supply nozzle inner diameter d2...Acceleration tube outlet inner diameter L...Acceleration tube total length

Claims (2)

【特許請求の範囲】[Claims] (1)高圧気体により粉体を搬送加速する加速管と、該
加速管より噴出する粉体を衝撃力により粉砕するための
衝突部材を加速管出口に相対して粉砕室内に設けてなる
衝突式気流粉砕機を用いた粉砕において、前記衝突部材
の衝突面先端部分の頂角が110゜以上180゜未満の
斜円錐又は斜錐形状を成したものを用い、前記加速管の
拡がり角度を7゜以上9゜以下として、前記高圧気体の
圧力を6.5kg/cm^2以上にして粉砕することを
特徴とする粉体の粉砕方法。
(1) Collision type consisting of an acceleration tube that conveys and accelerates powder using high-pressure gas, and a collision member that crushes the powder ejected from the acceleration tube by impact force in the crushing chamber opposite the acceleration tube outlet. In the pulverization using an air flow pulverizer, the colliding member has an oblique conical or oblique conical shape with an apex angle of 110° or more and less than 180° at the tip of the colliding surface, and the accelerator tube has a spreading angle of 7°. A method for pulverizing powder, characterized in that the pulverization is carried out at a pressure of 6.5 kg/cm^2 or more, with the angle being 9° or less.
(2)前記粉体の原料として、熱可塑性樹脂を含む材料
を用いることを特徴とする請求項1記載の粉体の粉砕方
法。
(2) The method for pulverizing powder according to claim 1, characterized in that a material containing a thermoplastic resin is used as a raw material for the powder.
JP1160955A 1989-06-26 1989-06-26 Grinding method for powder Pending JPH0326349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160955A JPH0326349A (en) 1989-06-26 1989-06-26 Grinding method for powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160955A JPH0326349A (en) 1989-06-26 1989-06-26 Grinding method for powder

Publications (1)

Publication Number Publication Date
JPH0326349A true JPH0326349A (en) 1991-02-04

Family

ID=15725808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160955A Pending JPH0326349A (en) 1989-06-26 1989-06-26 Grinding method for powder

Country Status (1)

Country Link
JP (1) JPH0326349A (en)

Similar Documents

Publication Publication Date Title
US5358183A (en) Pneumatic pulverizer and process for producing toner
US4930707A (en) Pneumatic pulverizer and pulverizing method
JPH0549349B2 (en)
JP3114040B2 (en) Collision type air crusher
JP2759499B2 (en) Powder grinding method
JP2654989B2 (en) Powder grinding method
JPH0326349A (en) Grinding method for powder
JP2805332B2 (en) Grinding method
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JPH0330845A (en) Method for pulverizing powder
JP2566158B2 (en) Collision airflow crusher
JP2663046B2 (en) Collision type air flow crusher and crushing method
JPH02298365A (en) Grinding method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JPH0386257A (en) Collision-type jet pulverizer and crushing method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2525230B2 (en) Collision airflow crusher
JP2759500B2 (en) Collision type air crusher
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP2704787B2 (en) Powder material grinding method
JP2663041B2 (en) Collision type air crusher
JPH03109951A (en) Collision type air flow grinder and grinding method
JPH0326350A (en) Collision type air grinder
JPH03296446A (en) Impact type jet grinder and grinding method