JPH0326350A - Collision type air grinder - Google Patents

Collision type air grinder

Info

Publication number
JPH0326350A
JPH0326350A JP1160956A JP16095689A JPH0326350A JP H0326350 A JPH0326350 A JP H0326350A JP 1160956 A JP1160956 A JP 1160956A JP 16095689 A JP16095689 A JP 16095689A JP H0326350 A JPH0326350 A JP H0326350A
Authority
JP
Japan
Prior art keywords
degrees
collision
angle
acceleration tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1160956A
Other languages
Japanese (ja)
Inventor
Masakichi Kato
政吉 加藤
Satoshi Mitsumura
三ツ村 聡
Hitoshi Kanda
仁志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1160956A priority Critical patent/JPH0326350A/en
Publication of JPH0326350A publication Critical patent/JPH0326350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance treating capacity by specifying the spreading angle of an acceleration pipe and also forming the collision face of a collision member into a hexagonal pyramid shape which has a specified angle for the direction of the acceleration pipe. CONSTITUTION:An acceleration pipe 2 is formed of a monotonic diffuser which has a spreading angle theta not smaller than 7 degrees and not larger than 9 degrees. A collision member 6 is formed into a pyramid shape whose collision face is regulated to an angle not smaller than 55 degrees and smaller than 90 degrees for the acceleration pipe. Thereby when resin and substance having tackiness are ground, melt sticking, a coagulated material and coarse particles are not caused. Therefore rise of dust concn. at a time of grinding is enabled and throughput of pulverization can be increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジェット気流(高圧気体)を用いた衝突式気
流粉砕機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an impingement type air flow crusher using a jet stream (high pressure gas).

[従来の技術] ジェット気流を用いた衝突式気流粉砕機は、ジェット気
流に被粉砕物を載せ粒子混合気流とし、加速管の出口よ
り噴射させ、この粒子混合気流を加速管の出口前方に設
けた衝突部材の衝突面に衝突させて、その衝撃力により
前期被粉砕物を粉砕せんとするものである。以下に、そ
の詳細を第7,8図に基づいて説明する。
[Prior art] A collision-type air flow crusher using a jet stream places the material to be crushed on the jet stream to form a particle mixed air stream, injects it from the outlet of an accelerating tube, and places this particle mixed air stream in front of the outlet of the accelerating tube. The object is caused to collide with the collision surface of a collision member, and the object to be crushed is crushed by the impact force. The details will be explained below based on FIGS. 7 and 8.

高圧気体供給ノズル13を接続した加速管l2の出口l
4に対向して衝突部材16を設け、前記加速管12に供
給した高圧気体の流動により、加速管l2の中途に連通
させた被粉砕物供給口l1から加速管l2の内部に被粉
砕物を吸引し、これを高圧気体とともに噴射して衝突部
材l6の衝突面に衝突させ、その衝撃によって粉砕する
ようにしたものである。そして、被粉砕原料を所望の粒
度に粉砕するために使用する場合には、被粉砕物供給口
l1と排出口17の間に分級機を配して閉回路とし、分
級機に被粉砕原料を供給し、その粗粉を被粉砕物供給口
11から供給し、粉砕を行い、その粉砕物を排出口l7
から分級機に戻すようにして再度分級するようにしてあ
り、その微粉が、所望の粒度の微粉砕物となる。
Outlet l of acceleration tube l2 connected to high-pressure gas supply nozzle 13
A collision member 16 is provided opposite to the acceleration tube 12, and by the flow of the high-pressure gas supplied to the acceleration tube 12, the material to be crushed is transported into the inside of the acceleration tube 12 from the material supply port 11 communicated with the midway of the acceleration tube 12. This is sucked and injected together with high-pressure gas to collide with the collision surface of the collision member 16, and the impact causes it to be pulverized. When the raw material to be crushed is used to crush the raw material to a desired particle size, a classifier is arranged between the raw material supply port 11 and the discharge port 17 to form a closed circuit, and the raw material to be crushed is fed to the classifier. The coarse powder is supplied from the material to be crushed supply port 11, the material is pulverized, and the pulverized material is discharged from the discharge port 17.
Then, the powder is returned to the classifier and classified again, and the resulting fine powder becomes a finely ground product with a desired particle size.

[発明が解決しようとする課題] しかしながら、上記従来例では、加速管の拡がり角θが
6.5度以下であり狭いため、高圧気体流量を増加した
場合、加速管内で圧力損失が生じ、目的とする微粉砕処
理能力の向上が図れないという欠点があった。
[Problems to be Solved by the Invention] However, in the conventional example described above, the divergence angle θ of the accelerator tube is 6.5 degrees or less, which is narrow, so when the high-pressure gas flow rate is increased, a pressure loss occurs in the accelerator tube, and the purpose The drawback was that it was not possible to improve the pulverization capacity.

また、従来例では、衝突部材の衝突面として第7図及び
第8図に示すように、被粉砕物を載せた粒子混合気流方
向、つまり加速管に対し直角あるいは45度傾斜による
平板状のものが用いられており、次のような欠点があっ
た。
In addition, in the conventional example, as shown in FIGS. 7 and 8, the collision surface of the collision member is a flat plate that is perpendicular to or inclined at 45 degrees to the direction of the particle mixture airflow carrying the object to be crushed, that is, the acceleration tube. has been used, and has the following drawbacks:

(1)衝突面の角度が加速管に対して直角のものでは、
樹脂や粘着性のあるものを粉砕した時には、衝突時の局
部発熱により融着・凝集物・粗粒子等が発生し、装置の
安定した運転が困難になり、粉砕能力の低下の原因とな
る。その為に、ある粉塵濃度以上は使うことができない
(1) If the angle of the collision surface is perpendicular to the acceleration tube,
When pulverizing resin or sticky materials, local heat generation during collision generates fusion, agglomerates, coarse particles, etc., making stable operation of the device difficult and causing a reduction in pulverizing capacity. Therefore, it cannot be used above a certain dust concentration.

(2)衝突面の角度が加速管に対し45度傾斜のもので
は、樹脂や粘着性のあるものを粉砕した時には、上記の
様な欠点は少ない。しかし、衝突する際に粉砕に使われ
る衝撃力が小さく粉砕能力は、直角の衝突面の場合に比
べ172〜l/1. 5に落ちる。
(2) When the angle of the collision surface is inclined at 45 degrees with respect to the acceleration tube, the above-mentioned drawbacks are less likely to occur when crushing resin or sticky materials. However, the impact force used for pulverization during collision is small, and the pulverization capacity is 172 to 1/1.1. It falls to 5.

本発明の目的は、上記のような問題点を解決して、効率
よく粉砕する衝突式気流粉砕機を提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide an impingement-type air flow mill that efficiently grinds.

[課題を解決するための手段(及び作用)]本発明の特
徴とするところは、少なくとも高圧気体により被粉砕物
を搬送加速する加速管と、該加速管出口に相対して設け
た衝突部材の衝突面とを有した衝突式気流粉砕機におい
て、前記加速管の拡がり角度θが7度以上9度以下であ
り、かつ、前記衝突部材の衝突面が前記加速管方向に対
して、55度以上90度未満の傾斜をもつ正六角錐、六
角錐、斜六角錐のいずれかの形状である衝突式気流粉砕
機にある。すなわち本発明は、樹脂や粘着性のあるもの
を含有する粉体を粉砕した時に融着,凝集物,粗粒子等
の発生を生じず、かつ、粉体が衝突面より実質上、全周
方向に分散し、粉砕室の対向する壁と効率良く二次衝突
を生じ、より粉砕効率を向上させることを可能にしたも
のである。
[Means for Solving the Problems (and Effects)] The present invention is characterized by at least an acceleration tube that transports and accelerates the material to be crushed by high-pressure gas, and a collision member provided opposite to the outlet of the acceleration tube. In the collision type air flow crusher having a collision surface, the expansion angle θ of the acceleration tube is 7 degrees or more and 9 degrees or less, and the collision surface of the collision member is 55 degrees or more with respect to the direction of the acceleration tube. The impingement air flow crusher has the shape of a regular hexagonal pyramid, a hexagonal pyramid, or an oblique hexagonal pyramid with an inclination of less than 90 degrees. In other words, the present invention prevents the generation of fusion, agglomerates, coarse particles, etc. when powder containing resin or sticky material is pulverized, and the powder is pulverized substantially from the collision surface in the entire circumferential direction. This makes it possible to further improve the grinding efficiency by dispersing the particles into the grinding chamber and efficiently causing secondary collisions with the opposing walls of the grinding chamber.

以下、図面に基づいて本発明を詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図乃至第6図は、本発明の一実施例を示す概略図で
あり、第2図は第1図の要部の拡大図、第3図は第1図
のA−A’線における断面図、第4図は衝突部材6(正
六角錐形状)を示す投影図、第5図及び第6図は衝突部
材6の変形例(六角錐,斜六角錐形状)を示す投影図で
ある。
1 to 6 are schematic diagrams showing one embodiment of the present invention, FIG. 2 is an enlarged view of the main part of FIG. 1, and FIG. A sectional view and FIG. 4 are projection views showing the collision member 6 (regular hexagonal pyramid shape), and FIGS. 5 and 6 are projection diagrams showing modifications of the collision member 6 (hexagonal pyramid shape, oblique hexagonal pyramid shape).

第1.2図において、加速管2は第7図に示す従来例の
衝突式気流粉砕機同様、高圧気体供給ノズル3を接続し
ており、加速管2の出口4に対向して衝突部材6を設け
てある。加速管2は、拡がり角度θが7度以上9度以下
の単調拡大管である。さらに拡がり角度θを7.5度以
上8.5度以下の範囲にすれば微粉砕処理能力向上に優
れ最適である。次に前記実施例の作用について説明する
In FIG. 1.2, the acceleration tube 2 is connected to a high-pressure gas supply nozzle 3, similar to the conventional collision type air flow crusher shown in FIG. is provided. The accelerator tube 2 is a monotonically expanding tube with an expansion angle θ of 7 degrees or more and 9 degrees or less. Furthermore, if the spreading angle θ is in the range of 7.5 degrees or more and 8.5 degrees or less, it is optimal because it improves the pulverization processing capacity. Next, the operation of the above embodiment will be explained.

衝突式気流粉砕機の微粉砕処理能力を向上させるために
は、粉砕に供する衝撃力を与える高圧気体流量を増加さ
せることが有効であるが、従来の衝突式気流粉砕機のよ
うに拡がり角度θが7度未満の加速管の場合には、加速
管内で圧力損失が生じてしまい、目的とする(高圧気体
流量の増加分の)能力まで微粉砕能力を向上させること
ができない。一方、拡がり角度θが9度を越える加速管
の場合には、加速管の角度が拡がるにつれて、加速管出
口4の断面積が大きくなり、逆に、加速管から噴射され
る粒子混合気流の速度が低下してしまうため、微粉砕能
力の向上には供さない。従って、上述のごとき範囲を除
いた7度以上9度以下の拡がり角度θを有する加速管が
、微粉砕処理能力の向上に最も適したものとなる。
In order to improve the pulverization processing capacity of an impingement-type airflow pulverizer, it is effective to increase the flow rate of high-pressure gas that provides the impact force for pulverization. In the case of an accelerating tube where the angle is less than 7 degrees, a pressure loss occurs within the accelerating tube, and the pulverization ability cannot be improved to the desired ability (according to the increase in the flow rate of high-pressure gas). On the other hand, in the case of an accelerating tube with a divergence angle θ exceeding 9 degrees, as the angle of the accelerating tube widens, the cross-sectional area of the accelerating tube outlet 4 increases, and conversely, the velocity of the particle mixture flow injected from the accelerating tube increases. is not used to improve the pulverization ability. Therefore, an accelerating tube having a divergence angle θ of 7 degrees or more and 9 degrees or less, excluding the above-mentioned range, is most suitable for improving the pulverization processing capacity.

また、衝突部材6は、第1図乃至第6図に示すように、
衝突面を加速管に対し55度以上90度未満にした角錐
形状にすることにより、樹脂や粘着性のあるものを粉砕
した時に、衝突面の角度が加速管に対し90度のものに
生じる融着・凝集物・粗粒子は生じず、粉砕時の粉塵濃
度の上昇が可能になった。
Further, the collision member 6, as shown in FIGS. 1 to 6,
By making the collision surface into a pyramid shape with an angle of 55 degrees or more and less than 90 degrees with respect to the acceleration tube, when resin or sticky materials are crushed, the fusion that occurs when the collision surface angle is 90 degrees with respect to the acceleration tube can be reduced. No deposits, agglomerates, or coarse particles were formed, making it possible to increase the dust concentration during grinding.

更に、このような衝突面を用いることにより、衝突面に
衝突して粉砕され且つ分散良くはねかえった粉体を粉砕
室に二次衝突せしめ、より粉砕効率を上昇させることが
可能になった。又、加速管と衝突部材との距離及び衝突
部材と粉砕室壁との距離を限定することにより、より効
率の良い二次衝突による粉砕が可能になり、衝突面の角
度が加速管に対して90度で平面のものより実質上粉砕
能力の向上が図れた。
Furthermore, by using such a collision surface, it has become possible to cause the powder that collides with the collision surface and is crushed and bounced back with good dispersion to collide into the crushing chamber for a secondary collision, further increasing the crushing efficiency. . In addition, by limiting the distance between the accelerating tube and the collision member and the distance between the collision member and the crushing chamber wall, more efficient crushing by secondary collision is possible, and the angle of the collision surface with respect to the accelerating tube is At 90 degrees, the crushing ability was substantially improved compared to the flat one.

[実施例] 以下、実施例及び比較例に基づいて本発明を詳細に説明
する。
[Examples] Hereinafter, the present invention will be described in detail based on Examples and Comparative Examples.

上記処方の混合物よりなるトナー材料を加熱混練し、そ
れを冷却し固化した後ハンマーミルで100〜1000
#Lmの粒子に粗粉砕したものを被粉砕物原料とし、 d .=11mm,  d 2=29mm,  L =
 133mm,θ=7.7度 (第2図参照) の加速管及び、 第4図に示す加速管に対して角度ψが55度と80度の
傾斜をもつ正六角錐形状の衝突部材を有する各々の粉砕
機に6. Okgf/cm”の加圧エアーを供給して上
記トナー材料を体積平均径12門に微粉砕したところ、
従来例(比較例1)に比べて、4.0倍の処理能力であ
った。
A toner material consisting of a mixture of the above formulation is heated and kneaded, and after cooling and solidifying, a hammer mill is used to give a powder of 100-1000
Coarsely pulverized into particles of #Lm as the raw material for the material to be pulverized; d. =11mm, d2=29mm, L=
133 mm, θ = 7.7 degrees (see Figure 2), and a regular hexagonal pyramid-shaped collision member with angles ψ of 55 degrees and 80 degrees with respect to the acceleration tube shown in Figure 4. 6. When the above-mentioned toner material was pulverized to a volume average diameter of 12 particles by supplying pressurized air of 100 kgf/cm,
The processing capacity was 4.0 times that of the conventional example (Comparative Example 1).

笈五盟ユ 実施例1で用いたトナー被粉砕物原料を、d l++ 
11mm,  d*= 29mm,  L= 133m
m,θ=7.7度 の加速管及び、 第5図に示す六角錐状の衝突部材(ψ・最小75度,最
大80度)を有した粉砕機で、実施例1と同様の条件に
して体積平均径12μmに微粉砕したところ、従来例に
比べて4.0倍の処理能力であった。
The raw material of the toner to be crushed used in Example 1 was d l++
11mm, d*= 29mm, L= 133m
The same conditions as in Example 1 were carried out using a pulverizer equipped with an accelerator tube with m, θ = 7.7 degrees and a hexagonal pyramid-shaped collision member (ψ, minimum 75 degrees, maximum 80 degrees) shown in Fig. 5. When the powder was pulverized to a volume average diameter of 12 μm, the processing capacity was 4.0 times that of the conventional example.

及息璽旦 実施例1で用いたトナー被粉砕物原料を、d+s 11
mm,  dz” 29mm,  L= 133mm,
θ=7.7度 の加速管及び、 第6図に示す斜六角錐状の衝突部材(ψ・最小55度,
最大80度)を有した粉砕機で、実施例1と同様の条件
にして体積平均径12戸mに微粉砕したところ、従来例
に比べて3.8倍の処理能力であった。
The raw material of the toner to be crushed used in Example 1 was d+s 11
mm, dz” 29mm, L= 133mm,
Accelerator tube with θ = 7.7 degrees and oblique hexagonal pyramid-shaped collision member shown in Fig. 6 (ψ min. 55 degrees,
When the material was pulverized to a volume average diameter of 12 m using a pulverizer having a maximum angle of 80 degrees under the same conditions as in Example 1, the throughput was 3.8 times that of the conventional example.

11 ′ 実施例lで用いたトナー被粉砕物原料を第7図に示す従
来の微粉砕機で体積平均径l2μmに微粉砕した。ここ
で記した従来の微粉砕機の構成は、d + =9mm.
   d2;24mm, L = 153mm,θ =
5.6度 の加速管及び加速管方向に対して垂直である平面型衝突
部材から或る。このときの処理能力は、これ以上速く処
理を行うと、融着物が生じ、被粉砕物供給口1や分級機
を詰まらせてしまう限界の処理能力である。
11' The toner raw material to be ground used in Example 1 was pulverized to a volume average diameter of 12 μm using a conventional pulverizer shown in FIG. The configuration of the conventional pulverizer described here is d + =9 mm.
d2; 24mm, L = 153mm, θ =
It consists of a 5.6 degree acceleration tube and a planar impact member that is perpendicular to the acceleration tube direction. The processing capacity at this time is at the limit, where if the processing is carried out faster than this, fused materials will be generated and clog the material supply port 1 and the classifier.

L校班ス 実施例1で用いたトナー被粉砕物原料を同様の条件で、 d+ = 11mm,  cL =29+++m, L
 = 133mmθ =7.7度 の加速管及び加速管方向に対して垂直である平面型衝突
部材を有する粉砕機で体積平均径12μmに微粉砕した
ところ、従来例(比較例1)と同じく、融着物の発生が
観られ、その処理能力(融着物が生じない限界)は比較
例1に比べて、1.3倍であった。
The raw material for the toner to be crushed used in Example 1 for Group L was prepared under the same conditions as d+ = 11 mm, cL = 29 +++ m, L
= 133 mm θ = 7.7 degrees When finely pulverized to a volume average diameter of 12 μm using a pulverizer having an acceleration tube and a flat collision member perpendicular to the direction of the acceleration tube, the melt The formation of kimono was observed, and the processing capacity (the limit at which no fused material was generated) was 1.3 times that of Comparative Example 1.

以上、実施例1乃至3及び比較例1,2の結果を下記第
1表に示す。
The results of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1 below.

(以下余白) 9 10 第  1 表 (※) 比較例1を1.0(基準)とする。(Margin below) 9 10 Part 1 table (*) Comparative Example 1 is set to 1.0 (standard).

(※※)これ以上速く処理を行うと、融着物が生じると
いう限界の処理能力で1.0(基準)とする。
(※※) 1.0 (standard) is set at the limit of processing capacity, as fused materials will occur if processing is performed faster than this.

上記処方の混合物よりなるトナー材料を加熱混練し、そ
れを冷却し固化した後ハンマーミルで100〜1000
pmの粒子に粗粉砕したものを被粉砕物原料とし、実施
例1と同じ粉砕機を用い同様の条件で、上記トナー材料
を体積平均径12μmに微粉砕したところ、従来例(比
較例3)に比べて1.7倍の処理能力であった。
A toner material consisting of a mixture of the above formulation is heated and kneaded, and after cooling and solidifying, a hammer mill is used to give a powder of 100-1000
The toner material was coarsely pulverized to pm particles as the material to be pulverized, and the above toner material was pulverized to a volume average diameter of 12 μm using the same pulverizer as in Example 1 under the same conditions.Conventional Example (Comparative Example 3) The processing capacity was 1.7 times that of the previous one.

笈凰班1 実施例4で用いたトナー被粉砕物原料を実施例2と同じ
粉砕機を用い、同様の条件で、体積平均径12pmに微
粉砕したところ、従来例(比較例3)に比べて1.7倍
の処理能力であった。
Kouou Group 1 The raw material for toner to be crushed used in Example 4 was finely pulverized to a volume average diameter of 12 pm using the same pulverizer as in Example 2 under the same conditions, and compared to the conventional example (Comparative Example 3) The processing capacity was 1.7 times higher.

え腹員1 実施例4で用いたトナー被粉砕物原料を実施例3と同じ
粉砕機を用い、同様の条件で、体積平均径12pmに微
粉砕したところ、従来例に比べて1.6倍の処理能力で
あった。
Material 1 The raw material for toner to be crushed used in Example 4 was finely pulverized to a volume average diameter of 12 pm using the same pulverizer as in Example 3 under the same conditions, and the result was 1.6 times that of the conventional example. processing capacity.

3′1 実施例4で用いたトナー被粉砕物原料を同様の条件で、
比較例lで用いた従来の微粉砕機で体積11 l2 平均径l2μmに微粉砕した。
3'1 The raw material of the toner to be crushed used in Example 4 was treated under the same conditions.
It was pulverized to a volume of 11 l2 and an average diameter of 12 μm using the conventional pulverizer used in Comparative Example 1.

比較盟1 実施例4で用いたトナー被粉砕物原料を、比較例2と同
じ粉砕機を用い、同様の条件で、体積平均径12pmに
微粉砕したところ、比較例3に比べて1.5倍の処理能
力であった。
Comparison 1 The raw material for toner pulverization used in Example 4 was pulverized to a volume average diameter of 12 pm using the same pulverizer as in Comparative Example 2 and under the same conditions. It had twice the processing power.

以上、実施例4乃至6及び比較例3.4の結果を下記第
2表に示す。
The results of Examples 4 to 6 and Comparative Examples 3.4 are shown in Table 2 below.

第  2  表 [発明の効果] 以上説明したように、加速管の拡がり角θを7度以上9
度以下にすること、かつ、衝突板の形状を特定の角錐及
び斜角錐形状とすることにより、粉体原料粉砕時におけ
る融着,凝集物,粗粒子等の発生を妨げ、装置の安定し
た運転を可能にする。さらに、装置を大きくすることな
く、微粉砕処理量を増加することを可能にする。
Table 2 [Effects of the invention] As explained above, when the divergence angle θ of the accelerator tube is set to 7 degrees or more, 9
By making the impact plate less than 100% and making the shape of the collision plate into a specific pyramidal or oblique pyramidal shape, the generation of fusion, agglomerates, coarse particles, etc. during the crushing of powder raw materials is prevented, and stable operation of the equipment is achieved. enable. Furthermore, it is possible to increase the throughput of pulverization without increasing the size of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は、本発明を実施した微粉砕機の概略
図で、第2図は第1図の要部の断面図,第3図は第1図
のA−A’断面図、第4図乃至第6図は衝突部材の投影
図である。また、第7図及び第8図は従来例を示す概略
図である。 11一被粉砕物供給口 12一加速管 13一高圧気体供給ノズル 14一加速管出口 15一粉砕室 1 3 1 4 6,l6一衝突部材 7,17一排出口
1 to 6 are schematic diagrams of a pulverizer embodying the present invention, FIG. 2 is a sectional view of the main part of FIG. 1, and FIG. 3 is a sectional view taken along line AA' in FIG. 1. , FIGS. 4 to 6 are projection views of the collision member. Moreover, FIGS. 7 and 8 are schematic diagrams showing conventional examples. 11 - Material to be crushed supply port 12 - Acceleration pipe 13 - High pressure gas supply nozzle 14 - Acceleration pipe outlet 15 - Grinding chamber 1 3 1 4 6, l6 - Collision member 7, 17 - Discharge port

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも高圧気体により被粉砕物を搬送加速す
る加速管と、該加速管出口に相対して設けた衝突部材の
衝突面とを有した衝突式気流粉砕機において、前記加速
管の拡がり角度θが7度以上9度以下であり、かつ、前
記衝突部材の衝突面が前記加速管方向に対して55度以
上90度未満の傾斜をもつ正六角錐、六角錐、斜六角錐
のいずれかの形状であることを特徴とする衝突式気流粉
砕機。
(1) In a collision type air flow crusher having at least an acceleration tube that conveys and accelerates the material to be crushed by high-pressure gas, and a collision surface of a collision member provided opposite to the outlet of the acceleration tube, the expansion angle of the acceleration tube Any one of a regular hexagonal pyramid, a hexagonal pyramid, and an oblique hexagonal pyramid, in which θ is 7 degrees or more and 9 degrees or less, and the collision surface of the collision member has an inclination of 55 degrees or more and less than 90 degrees with respect to the acceleration tube direction. A collision type air flow crusher characterized by its shape.
JP1160956A 1989-06-26 1989-06-26 Collision type air grinder Pending JPH0326350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160956A JPH0326350A (en) 1989-06-26 1989-06-26 Collision type air grinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160956A JPH0326350A (en) 1989-06-26 1989-06-26 Collision type air grinder

Publications (1)

Publication Number Publication Date
JPH0326350A true JPH0326350A (en) 1991-02-04

Family

ID=15725826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160956A Pending JPH0326350A (en) 1989-06-26 1989-06-26 Collision type air grinder

Country Status (1)

Country Link
JP (1) JPH0326350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475593B1 (en) 2000-02-03 2002-11-05 Eidai Kako Co., Ltd. Floor mat
CN103767832A (en) * 2014-01-17 2014-05-07 国家电网公司 Multifunctional stretcher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475593B1 (en) 2000-02-03 2002-11-05 Eidai Kako Co., Ltd. Floor mat
CN103767832A (en) * 2014-01-17 2014-05-07 国家电网公司 Multifunctional stretcher

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
JPH0326350A (en) Collision type air grinder
JP3114040B2 (en) Collision type air crusher
JP2759500B2 (en) Collision type air crusher
JP3219955B2 (en) Collision type air crusher
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JPH02111459A (en) Colliding type gas stream pulverizer
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP2654989B2 (en) Powder grinding method
JP2525230B2 (en) Collision airflow crusher
JP3283728B2 (en) Crusher
JP3219918B2 (en) Crusher
JP2566158B2 (en) Collision airflow crusher
JP2759499B2 (en) Powder grinding method
JP3101786B2 (en) Collision type air crusher
JP2805332B2 (en) Grinding method
JP3119100B2 (en) Collision type air crusher
JP3313922B2 (en) Crusher
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH03109951A (en) Collision type air flow grinder and grinding method
JPH0360749A (en) Collision type air grinder
JPH03296446A (en) Impact type jet grinder and grinding method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JPH0326349A (en) Grinding method for powder
JPH08299833A (en) Collision type air flow crusher