JPH0360749A - Collision type air grinder - Google Patents

Collision type air grinder

Info

Publication number
JPH0360749A
JPH0360749A JP19605189A JP19605189A JPH0360749A JP H0360749 A JPH0360749 A JP H0360749A JP 19605189 A JP19605189 A JP 19605189A JP 19605189 A JP19605189 A JP 19605189A JP H0360749 A JPH0360749 A JP H0360749A
Authority
JP
Japan
Prior art keywords
powder
collision plate
collision
raw material
acceleration tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19605189A
Other languages
Japanese (ja)
Inventor
Yusuke Yamada
祐介 山田
Satoshi Mitsumura
三ッ村 聡
Masakichi Kato
政吉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19605189A priority Critical patent/JPH0360749A/en
Publication of JPH0360749A publication Critical patent/JPH0360749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To efficiently grind powder contg. resin and substance having tackiness by beating the powder of a raw material on a collision plate by compressed air co grind it and allowing the ground raw material to flow along the guide part of the collision place and allowing this ground raw material to secondarily collide against the wall of a grinding chamber. CONSTITUTION:An acceleration pipe 3 for carrying and accelerating powder by high-pressure gas is provided in a grinding chamber. A collision plate 4 for grinding powder ejected from the acceleration pipe 3 by impulsive force is provided oppositely to the output of the acceleration pipe 3 in the grinding chamber. A projecting part is provided to the center of the surface of the collision place 4 and thereby powder flown together with the high pressure air from the acceleration pipe 3 is dispersed to the other direction. Furthermore, a guide part is provided to the edge side part of the collision plate 4. The flow direction of flown powder is regulated by this guide part. Thereby the flown powder is allowed to efficiently and secondarily collide against the wall 6 of the grinding chamber without drastically lowering kinetic energy. As a result, powder incorporating resin or substance having tackiness efficiently is ground without causing generation of welding, an aggregate and coarse grains.

Description

【発明の詳細な説明】 [技術分野] 本発明はジェット気流(高圧気体)を用いた衝突式気流
粉砕機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an impingement type air flow crusher using a jet stream (high pressure gas).

[背景技術] ジェット気流を用いた衝突式気流粉砕機は、ジェット気
流に原料粉体を載せ、これを衝突板に衝突させ、そのt
j’Jl力により粉砕せんとするものである。
[Background Art] A collision-type air-flow crusher using a jet stream places raw material powder on a jet stream, causes it to collide with a collision plate, and then
It is intended to be crushed by j'Jl force.

従来、かかる粉砕機における衝突板としては、第7図及
び第8図に示すように、原料粉体を載せたジェット気流
方向つまり加速管に対し、直角あるいは45°傾斜によ
る平板状のものが用いられてきた。
Conventionally, as shown in FIGS. 7 and 8, the collision plate used in such a crusher is a flat plate that is perpendicular to or inclined at 45 degrees to the jet stream direction, that is, the acceleration tube, on which the raw material powder is placed. I've been exposed to it.

第7図の状態図に基づいて更に説明すれば、分級機から
の粗な原料粉体は、投入口1より加速管3に供給され、
ノズル2から吹き出されるジェット気流によって、原料
粉体は衝突板4にたたきつけられ、その衝撃力で粉砕さ
れ、排出口5より系外に排出される。第8図の場合も同
様である。なお、第2図は、第7図及び第8図中のB−
B ’線における断面図を示す。
To further explain based on the state diagram in FIG. 7, the coarse raw material powder from the classifier is supplied to the acceleration tube 3 from the input port 1,
The raw material powder is struck against the collision plate 4 by the jet stream blown out from the nozzle 2, is pulverized by the impact force, and is discharged from the system through the discharge port 5. The same applies to the case of FIG. In addition, FIG. 2 shows B- in FIGS. 7 and 8.
A cross-sectional view taken along line B' is shown.

しかしながら、上記従来例では、衝突板は平板状で加速
管に対して、直角又は45°傾斜であるために次の様な
欠点があった。
However, in the above-mentioned conventional example, the collision plate is flat and is perpendicular or inclined at 45 degrees with respect to the acceleration tube, and therefore has the following drawbacks.

(1)衝突板の角度が加速管に対し直角のものでは、樹
脂や粘着性のあるものを粉砕した時に、衝突時の局部発
熱により融着・凝集物・粗粒子等が発生し、装置の安定
した運転が困難になり、粉砕能力の低下の原因となる。
(1) If the angle of the collision plate is perpendicular to the accelerator tube, when resin or sticky materials are crushed, the local heat generated at the time of collision will generate fusion, agglomerates, coarse particles, etc., and the equipment will be damaged. This makes stable operation difficult and causes a decrease in crushing capacity.

その為に、ある粉塵濃度以上は使う事ができない。Therefore, it cannot be used above a certain dust concentration.

(2)衝突板の角度が加速管に対し、45°傾斜のもの
では、樹脂や粘着性のあるものを粉砕した時に上記の様
な欠点は少ない。しかし、衝突する際に粉砕に使われる
衝撃力が小さく粉砕能力は、直角の衝突板の1/2〜1
/1.5に能力が落ちる。
(2) If the angle of the collision plate is inclined at 45 degrees with respect to the acceleration tube, the above-mentioned drawbacks will be less likely when crushing resin or sticky materials. However, the impact force used for crushing during collision is small, and the crushing capacity is 1/2 to 1/2 that of a right-angled collision plate.
The ability drops to /1.5.

[発明の目的] 本発明の目的は、上記の様な問題点を解決して、樹脂や
粘着性のあるものを含有する粉体を、融着や凝集物・粗
粒子の発生を生じずに、効率よく粉砕する粉砕機を提供
することにある。
[Object of the Invention] The object of the present invention is to solve the above-mentioned problems and to process powders containing resins and adhesives without causing fusion, agglomerates, or coarse particles. The purpose of the present invention is to provide a grinder that grinds efficiently.

[発明の概要] 即ち、本発明は、高圧気体により粉体を搬送加速する加
速管と、該加速管より噴出する粉体を衝撃力により粉砕
するための衝突板を加速管出口に相対して粉砕室内に設
けてなる衝突式気流粉砕機において、粉体が衝突板面よ
り実質上全周方向に分散することにより該粉体が粉砕室
の対向する壁と効率良く二次衝突し、且つ粉砕するよう
に、前記衝突板の衝突板面の中央に凸部を有し、縁辺は
凹形状の曲面で形成されるガイド部を持つことを特徴と
している。
[Summary of the Invention] That is, the present invention provides an acceleration tube that conveys and accelerates powder using high-pressure gas, and a collision plate that crushes the powder ejected from the acceleration tube by impact force, which is arranged opposite to the outlet of the acceleration tube. In a collision type airflow crusher installed in a crushing chamber, the powder is dispersed in substantially the entire circumferential direction from the collision plate surface, so that the powder efficiently collides with the opposing wall of the crushing chamber, and is crushed. In this way, the collision plate has a convex portion at the center of the collision plate surface, and an edge thereof has a guide portion formed of a concave curved surface.

[発明の詳細な説明] 本発明によれば、樹脂や粘着性のあるものを粉砕した時
に発生する融着・凝集物・粗粒子による粉砕能力の低下
を解決するために、第1図、第2図、第3図、第4図、
第5図、第6図に示すような形状にした。
[Detailed Description of the Invention] According to the present invention, in order to solve the problem of deterioration in crushing ability due to fusion, agglomerates, and coarse particles that occur when resins and sticky materials are crushed, Figure 2, Figure 3, Figure 4,
It was shaped as shown in FIGS. 5 and 6.

こうすることにより、樹脂や粘着性のあるものを粉砕し
た時に、衝突板の角度が加速管に対し90°のものに生
じる融着・凝集物・粗粒子は生じず、粉砕時の粉塵濃度
の上昇が可能になった。
By doing this, when resin or sticky materials are crushed, fusion, agglomerates, and coarse particles that occur when the angle of the collision plate is 90 degrees to the accelerator tube will not occur, and the dust concentration during crushing will be reduced. It was possible to rise.

更に、このような衝突板を用いることにより、衝突板に
衝突して粉砕され且つ分散良くはねかえった粉体を粉砕
室に二次衝突せしめ、より粉砕効率を上昇させることが
可能になった。又、加速管と衝突板の距離及び衝突板と
粉砕室壁の距離を限定する事により、より効率の良い二
次衝突により粉砕が可能になり、衝突板の角度が加速管
に対して90”のものより実質上20〜70%の粉砕能
力の向上が図れた。
Furthermore, by using such a collision plate, it has become possible to cause the powder that collides with the collision plate and is crushed and bounced back with good dispersion to collide with the crushing chamber for a secondary collision, thereby further increasing the crushing efficiency. . In addition, by limiting the distance between the accelerating tube and the collision plate and the distance between the collision plate and the crushing chamber wall, it is possible to crush by more efficient secondary collision, and the angle of the collision plate is 90" with respect to the accelerating tube. The crushing capacity was substantially improved by 20 to 70% compared to that of the previous example.

中央の凸部が存在することにより、加速管から噴射され
る粉体及びエアーはすみやかに全周方向へ分散されるの
で融着が発生しにくく、かつ効率のいい粉砕がなされる
。凸部は上記の目的を達成する形状であればよく、第1
図〜6図に限定されるものではない。
Due to the presence of the central convex portion, the powder and air injected from the accelerating tube are quickly dispersed in the entire circumferential direction, making it difficult for fusion to occur and achieving efficient pulverization. The convex portion may have any shape as long as it achieves the above purpose, and the first
The present invention is not limited to those shown in FIGS.

縁辺部については上記凸部との組合わせで加速管の噴射
方向と直角ではない傾斜を有することにより、中央で全
周方向へ分散された粉体とエアーをその運動エネルギー
を大幅に減殺せずに効率よく、粉砕室壁へ衝突せしめ、
更に効率のよい粉砕が可能になる。このためには、縁辺
部は噴射ノズルの噴射方向に対して95°〜135°に
設定することが望ましく、より好ましくは100〜13
0°でより好ましい結果が得られる。90’に近くなる
につれ融着は生じやすく135°に近くなるにつれ、直
接衝突板に衝突せしめたときの衝撃が小さくなることに
より、処理能力が低下するのでその処理する材料にあり
、上記の角度は選定する。
The edge part, in combination with the above-mentioned convex part, has an inclination that is not perpendicular to the injection direction of the accelerator tube, so that the kinetic energy of the powder and air dispersed in the entire circumferential direction at the center is not significantly reduced. to efficiently collide with the wall of the grinding chamber,
Even more efficient pulverization becomes possible. To this end, it is desirable that the edge be set at an angle of 95° to 135° with respect to the injection direction of the injection nozzle, more preferably 100° to 13°.
More favorable results are obtained at 0°. As the angle approaches 90', fusion tends to occur, and as the angle approaches 135°, the impact when directly colliding with the collision plate becomes smaller, resulting in a decrease in processing capacity. are selected.

本発明の効果は粉砕する粉体の目的粒度が細かいほど効
果があり、20μ以下、より好ましくは12μ以下、よ
り好ましくは8μ以下で顕著な効果が得られる。
The effect of the present invention is more effective as the target particle size of the powder to be crushed becomes finer, and remarkable effects are obtained when the particle size is 20μ or less, more preferably 12μ or less, and even more preferably 8μ or less.

又、縁辺部を断面からみたとき、この斜面は直線でもよ
いが、上記の角度内に入るような凹面状曲面でより粉砕
室への衝突角度を95°〜135°の範囲で規制するこ
とで、より好ましい効果が得られる。
Also, when the edge section is viewed from a cross section, this slope may be a straight line, but it is better to use a concave curved surface that falls within the above angle to limit the angle of impact on the crushing chamber within the range of 95° to 135°. , a more favorable effect can be obtained.

[実施例] 叉凰里ユ 第1図、第2図及び第3図は本発明の第1の実施例を示
し、第1図は本発明の原料粉体粉砕時の特徴を最も良く
表わした状態図であり、第2図は、第1図のA−A ’
線における断面図である。
[Example] Figures 1, 2, and 3 show the first example of the present invention, and Figure 1 best represents the characteristics of the raw material powder pulverization of the present invention. FIG. 2 is a state diagram, and FIG.
FIG.

第1図において、1は粉砕機への粉体原料投入口、2は
粉体原料粉砕時に使用する圧縮空気の供給ノズル、3は
粉体を圧縮空気により加速する加速管、4は加速管出口
に相対して設けられた衝突板、5は粉砕された粉体と空
気を排出する排出口、6は粉砕室壁である。又、第3図
は、衝突板4の形状を示す断面図である。
In Fig. 1, 1 is the powder raw material input port to the crusher, 2 is the compressed air supply nozzle used when pulverizing the powder raw material, 3 is the acceleration tube that accelerates the powder with compressed air, and 4 is the acceleration tube outlet 5 is a discharge port for discharging the crushed powder and air, and 6 is a wall of the crushing chamber. Further, FIG. 3 is a sectional view showing the shape of the collision plate 4. As shown in FIG.

ここで、 スチレン−アクリル酸ブチル樹脂  100重量部マグ
ネタイト            60重量部低分子量
ポリエチレン         2重量部負荷電性制御
剤           2重量部上記処方の混合物よ
りなるトナー原料を約taO℃で約1.0時間溶融混線
後、冷却して固化しハンマーミルで100〜1000μ
の粒子に粗粉砕したものを原料粉体とした。
Here, 100 parts by weight of styrene-butyl acrylate resin 60 parts by weight of magnetite 2 parts by weight of low molecular weight polyethylene 2 parts by weight of negative charge control agent After that, it is cooled and solidified to a thickness of 100 to 1000μ with a hammer mill.
The raw material powder was obtained by coarsely pulverizing the powder into particles.

投入口1から原料粉体が供給されるとノズル2が吹き出
される圧縮空気によって原料粉体は衝突板4にたたきつ
けられ、その衝撃力で粉砕される。それとともにこの衝
突板4は中央に凸面形状を有しており、衝突して原料粉
体は、中央から縁辺に向かってなめらかな曲面で構成さ
れたガイド部に沿って流れ、対向する粉砕室壁6と二次
衝突し、そこで更に粉砕される。
When the raw material powder is supplied from the input port 1, the raw material powder is struck against the collision plate 4 by the compressed air blown out from the nozzle 2, and is pulverized by the impact force. At the same time, this collision plate 4 has a convex shape in the center, and the raw material powder collides with it and flows along a guide part constituted by a smooth curved surface from the center toward the edge, facing the crushing chamber wall. 6 and is further shattered there.

粉砕された原料粉体は排出口5からスムーズに分級機に
運ばれ、細かくなったものは製品として取り除かれ、ま
だ粗いものは再び投入口1より原料粉体と共に投入され
る。
The pulverized raw material powder is smoothly conveyed to the classifier through the discharge port 5, the fine powder is removed as a product, and the coarse powder is fed back into the classifier from the input port 1 together with the raw material powder.

このように衝突板4は第3図に示すような形状を用いる
と、衝突した原料粉体は全周方向に分散してはねかえり
対向する粉砕室壁と二次衝突する。このために衝突板付
近での粉塵濃度が上昇しなくなり、融着・凝集物・粗粒
子が生じないために粉砕効率は劣えず、シャープな粒度
分布を持った製品が得られ、粉体能力が向上することが
確認された。
When the collision plate 4 has the shape shown in FIG. 3 in this way, the raw material powder that collides with it is dispersed in the entire circumferential direction, bounces off, and secondarily collides with the opposing wall of the crushing chamber. As a result, the dust concentration near the collision plate does not increase, and fusion, agglomerates, and coarse particles do not occur, so the pulverization efficiency is not inferior, and a product with a sharp particle size distribution can be obtained, and the powder capacity is was confirmed to improve.

実施例2 第4図は本発明の第2の実施例を示す衝突板形状を示し
たものであり、凸部を偏心させた衝突板である。この衝
突板を用いて実施例1で用いたトナー材料を実施例1と
同様に粉砕したところ、実施例1と同様な効果を得た。
Embodiment 2 FIG. 4 shows the shape of a collision plate according to a second embodiment of the present invention, which is a collision plate having an eccentric convex portion. When the toner material used in Example 1 was crushed using this collision plate in the same manner as in Example 1, the same effects as in Example 1 were obtained.

実施例3 第5図は本発明の第3の実施例を示す斜凸面形状の衝突
板でありこの衝突板を用いて実施例1で用いたトナー材
料を、実施例1と同様に粉砕したところ実施例1よりや
や粉砕能力が劣るが実施例2と同様な結果が得た。
Example 3 FIG. 5 shows a collision plate with an oblique convex shape showing a third example of the present invention. Using this collision plate, the toner material used in Example 1 was crushed in the same manner as in Example 1. Although the crushing ability was slightly inferior to that of Example 1, similar results to those of Example 2 were obtained.

X亘里1 第6図は本発明の第4の実施例を示す凸部に球面を有し
た衝突板であり、この衝突板を用いて実施例1で用いた
トナー材料を実施例1と同様に粉砕したところ、衝突板
面に衝突する際に凸部が球面形状を有しているため衝撃
力が弱くなり粉砕能は大幅に低下した。したがって、衝
突板面は、凸部が球面形状のものより実施例1のような
形状の方が好ましい。
XWari 1 FIG. 6 shows a collision plate having a spherical convex portion showing a fourth embodiment of the present invention, and using this collision plate, the toner material used in Example 1 can be prepared in the same manner as in Example 1. When the material was pulverized, since the convex portion had a spherical shape when it collided with the collision plate surface, the impact force was weakened and the pulverization ability was significantly reduced. Therefore, it is preferable for the collision plate surface to have a shape as in Example 1 rather than one in which the convex portion is spherical.

比較例1 実施例1で用いたトナー材料を第7図に示したような従
来の加速管3に対して垂直である平板型衝突板を用いて
、実施例1と同様に粉砕したところ、トナー材料を10
μmにするための粉砕能力は、実施例1と比較して0.
7倍低下した。
Comparative Example 1 When the toner material used in Example 1 was pulverized in the same manner as in Example 1 using a flat plate type collision plate perpendicular to the conventional acceleration tube 3 as shown in FIG. 10 ingredients
The crushing ability to reduce the particle size to μm was 0.0 mm compared to Example 1.
It decreased by 7 times.

比較例2 実施例1で用いたトナー材料を第8図に示したような従
来の加速管3に対して45°である平板型衝突板を用い
て実施例1と同様に粉砕したところ、衝突板面に衝突す
る際に衝撃力が弱くなるため粉砕能力は、比較例1より
低下する。
Comparative Example 2 When the toner material used in Example 1 was pulverized in the same manner as in Example 1 using a flat plate type collision plate that was angled at 45 degrees with respect to the conventional acceleration tube 3 as shown in FIG. The crushing ability is lower than that of Comparative Example 1 because the impact force becomes weaker when colliding with the plate surface.

以上述べた各側を次表に記載する。Each side mentioned above is listed in the table below.

(1)−これ以上速く処理を行うと、融着物が生じると
いう限界を処理能力1としている。
(1) - Processing capacity 1 is the limit at which fused materials will occur if processing is performed faster than this.

以上説明したように衝突板の形状を中央に曲面もしくは
その類似形状の凸部を有し、縁辺には凹形状の曲面もし
くはその類似形状のガイド部を持たせることにより原料
粉砕時における融着・凝集物・粗粒子等の発生を防げ、
装置の安定した運転を可能にし、さらに、二次衝突時ま
で強い衝撃力が保てる。そのため従来の粉砕能力を20
〜70%向上させることができる。また衝突板は円柱状
のみならず多角形状でも同様な結果が得られた。
As explained above, the shape of the collision plate is such that the center has a convex portion with a curved surface or a similar shape, and the edges have a concave curved surface or a guide portion with a similar shape to prevent fusion during raw material crushing. Prevents the generation of aggregates, coarse particles, etc.
This enables stable operation of the device and also maintains strong impact force until a secondary collision occurs. Therefore, the conventional crushing capacity has been increased to 20
It can be improved by ~70%. Furthermore, similar results were obtained when the collision plate was not only cylindrical but also polygonal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施例を示し、第1図は本
発明の原料粉体粉砕時の特徴を最も良く表わす状態図で
あり、第2図は第1図のA−A ’線及び第7図、第8
図のB−B’線における断面図である。第3図〜第6図
は本発明の実施例を示し、第3図はなめらかな曲面をも
つ凸面形状の衝突板、第4図は凸部の頂点を偏心させた
偏心凸面形状の衝突板、第5図は加速管に対し、傾斜を
もたせた斜凸面形状の衝突板、第6図は凸部に球状にも
たせた球状凸面形状の衝突板の説明図である。 第7図、第8図は従来例を示し、第7図は衝突板の角度
が加速管に対し、90”のもの、第8図は衝突板の角度
が加速管に対し、45°傾斜のものの説明図である。 1・・・粉体原料投入口    5・・・排出口2・・
・圧縮空気の供給ノズル 6・・・粉砕室壁3・・・加
速管 7・・・原料粉体 4・・・衝突板
1 and 2 show examples of the present invention, FIG. 1 is a state diagram that best represents the characteristics of the raw material powder pulverization of the present invention, and FIG. 2 is a diagram showing A-A in FIG. ' line and Figures 7 and 8
It is a sectional view taken along the line BB' in the figure. Figures 3 to 6 show embodiments of the present invention, in which Figure 3 shows a convex collision plate with a smooth curved surface, Figure 4 shows an eccentric convex collision plate with the apex of the convex part eccentric; FIG. 5 is an explanatory diagram of an impingement plate having a convex oblique surface that is inclined with respect to the acceleration tube, and FIG. 6 is an explanatory view of an impingement plate having a spherical convex shape having a spherical convex portion. Figures 7 and 8 show conventional examples. Figure 7 shows a case where the angle of the collision plate is 90" with respect to the acceleration tube, and Figure 8 shows a case where the angle of the collision plate is inclined at 45 degrees with respect to the acceleration tube. It is an explanatory diagram of things. 1... Powder raw material input port 5... Outlet port 2...
・Compressed air supply nozzle 6...Crushing chamber wall 3...Acceleration tube 7...Raw material powder 4...Collision plate

Claims (3)

【特許請求の範囲】[Claims] (1)高圧気体により粉体を搬送加速する加速管と、該
加速管より噴出する粉体を衝撃力により粉砕するための
衝突板を加速管出口に相対して粉砕室内に設けてなる衝
突式気流粉砕機において、前記衝突板の衝突板面の中央
に は、加速管から高圧エアとともに飛来する粉体を他方向
に分散する凸部を有し、かつ、衝突板の縁辺部には飛来
する粉体の流れ方向を規制することにより大幅に運動エ
ネルギーを減殺することなく、効率よく粉砕室壁に二次
衝突せしめるガイド部を有することを特徴とする衝突式
気流粉砕機。
(1) Collision type consisting of an acceleration tube that conveys and accelerates powder using high-pressure gas, and a collision plate that crushes the powder ejected from the acceleration tube by impact force in the crushing chamber opposite the acceleration tube outlet. In the air flow pulverizer, the collision plate has a convex part in the center of the collision plate surface that disperses the powder flying in the other direction along with the high-pressure air from the acceleration tube, and the edge part of the collision plate has a convex part that disperses the powder flying in the other direction. An impingement type air flow crusher characterized by having a guide portion that efficiently causes secondary collision with the wall of a crushing chamber by regulating the flow direction of the powder without significantly reducing kinetic energy.
(2)衝突板の中央の凸部が曲面もしくはその類似形状
であることを特徴とする請求項第1項に記載の衝突式気
流粉砕機。
(2) The collision type air flow crusher according to claim 1, wherein the convex portion at the center of the collision plate has a curved surface or a similar shape.
(3)衝突板の縁辺のガイド部の角度θが95゜以上1
35゜未満で、凹形状の曲面、もしくはその類似形状で
あることを特徴とした請求項第1項に記載の衝突式気流
粉砕機。
(3) The angle θ of the guide part on the edge of the collision plate is 95° or more1
The impingement type air flow crusher according to claim 1, characterized in that the angle is less than 35 degrees, and the impingement type air flow crusher has a concave curved surface or a similar shape.
JP19605189A 1989-07-27 1989-07-27 Collision type air grinder Pending JPH0360749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19605189A JPH0360749A (en) 1989-07-27 1989-07-27 Collision type air grinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19605189A JPH0360749A (en) 1989-07-27 1989-07-27 Collision type air grinder

Publications (1)

Publication Number Publication Date
JPH0360749A true JPH0360749A (en) 1991-03-15

Family

ID=16351380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19605189A Pending JPH0360749A (en) 1989-07-27 1989-07-27 Collision type air grinder

Country Status (1)

Country Link
JP (1) JPH0360749A (en)

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
JP3114040B2 (en) Collision type air crusher
JP3182039B2 (en) Crusher
JP3283728B2 (en) Crusher
JP2654989B2 (en) Powder grinding method
JPH0360749A (en) Collision type air grinder
JP2805332B2 (en) Grinding method
JP2566158B2 (en) Collision airflow crusher
JP2759499B2 (en) Powder grinding method
JP2759500B2 (en) Collision type air crusher
JP2525230B2 (en) Collision airflow crusher
JP3313922B2 (en) Crusher
JP3101786B2 (en) Collision type air crusher
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP3308802B2 (en) Toner manufacturing method and toner manufacturing system
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP3219918B2 (en) Crusher
JPH0326350A (en) Collision type air grinder
JPH08182937A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH03109951A (en) Collision type air flow grinder and grinding method
JPH07289933A (en) Grinder
JP3016402B2 (en) Collision type air crusher
JPH0651129B2 (en) Collision type airflow crusher and crushing method
JPH08299833A (en) Collision type air flow crusher
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner