JP3093343B2 - Collision type air flow crusher and powder material crushing method - Google Patents

Collision type air flow crusher and powder material crushing method

Info

Publication number
JP3093343B2
JP3093343B2 JP03190348A JP19034891A JP3093343B2 JP 3093343 B2 JP3093343 B2 JP 3093343B2 JP 03190348 A JP03190348 A JP 03190348A JP 19034891 A JP19034891 A JP 19034891A JP 3093343 B2 JP3093343 B2 JP 3093343B2
Authority
JP
Japan
Prior art keywords
powder
collision
tube
acceleration tube
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03190348A
Other languages
Japanese (ja)
Other versions
JPH0531391A (en
Inventor
聡 三ッ村
一彦 小俣
仁志 神田
康秀 後関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP03190348A priority Critical patent/JP3093343B2/en
Publication of JPH0531391A publication Critical patent/JPH0531391A/en
Application granted granted Critical
Publication of JP3093343B2 publication Critical patent/JP3093343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ジェット気流(高圧気
体)を用いた衝突式気流粉砕機及び粉体原料の粉砕方法
に関し、特に、電子写真法による画像形成方法に用いら
れるトナーまたはトナー用着色樹脂粉体を効率良く生成
するための衝突式気流粉砕機及び粉体原料の粉砕方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impingement type air flow pulverizer using a jet air flow (high-pressure gas) and a method for pulverizing a powder material, and more particularly, to a toner or a toner used in an electrophotographic image forming method. The present invention relates to an impingement airflow pulverizer for efficiently producing a colored resin powder and a method of pulverizing a powder raw material.

【0002】[0002]

【従来の技術】ジェット気流を用いた衝突式気流粉砕機
は、ジェット気流で粉体原料を搬送し、粉体原料を衝突
部材に衝突させ、その衝撃力により粉砕するものであ
る。
2. Description of the Related Art A collision-type airflow pulverizer using a jet airflow conveys a powdery raw material by a jet airflow, collides the powdery raw material with a collision member, and pulverizes the material by the impact force.

【0003】以下に、その詳細を図9に基づいて説明す
る。
The details will be described below with reference to FIG.

【0004】圧縮気体供給ノズル2を接続した加速管1
3の出口14に対向して衝突部材16を設け、前記加速
管13に供給した高圧気体の流動により、加速管13の
中途に連通させた粉体原料供給口1から加速管13の内
部に粉体原料15を吸引し、これを高圧気体とともに噴
射して衝突部材16の衝突面に衝突させ、その衝撃によ
って粉砕するようにしたものである。そして、粉体原料
15を所望の粒度に粉砕するために使用する場合には、
粉体原料供給口1と排出口9の間に分級機を配して閉回
路とし、分級機に粉体原料15を供給し、その粗粉を粉
体原料供給口1から供給し、粉砕を行い、その粉砕物を
排出口9から分級機に戻すようにして再度分級するよう
にしてあり、その微粉が所望の粒度の微粉砕物となる。
Acceleration tube 1 connected to compressed gas supply nozzle 2
A collision member 16 is provided opposite to the outlet 14 of the accelerating tube 3, and the flow of the high-pressure gas supplied to the accelerating tube 13 causes powder to flow into the inside of the accelerating tube 13 from the powder raw material supply port 1 connected to the middle of the accelerating tube 13. The body material 15 is sucked, injected together with a high-pressure gas to collide with the collision surface of the collision member 16, and is crushed by the impact. And, when used to pulverize the powder raw material 15 to a desired particle size,
A classifier is arranged between the powder material supply port 1 and the discharge port 9 to form a closed circuit, the powder material 15 is supplied to the classifier, the coarse powder is supplied from the powder material supply port 1, and pulverization is performed. Then, the pulverized material is returned to the classifier through the discharge port 9 and classified again, and the fine powder becomes a finely pulverized material having a desired particle size.

【0005】しかしながら、上記従来例では、加速管1
3内に吸引導入された粉体原料15を高圧気流中で充分
に分散させることは困難であることから、加速管出口1
4から噴出する粉流は粉塵濃度の濃い流れとうすい流れ
に分離してしまう。
[0005] However, in the above conventional example, the acceleration tube 1
Since it is difficult to sufficiently disperse the powdered raw material 15 sucked into the inside 3 in a high-pressure air stream, the acceleration tube outlet 1
The powder stream ejected from 4 is separated into a stream having a high dust concentration and a stream having a small dust concentration.

【0006】そのため、対向する衝突面17にあたる粉
流は、部分的(局所的)なものとなり、効率が低下し、
処理能力の低下を引き起こす。また、このような状態で
処理能力を大きくしようとすれば、更に粉塵濃度が部分
的に高くなるため、効率がより低下し、特に樹脂含有物
では衝突面17上で融着物が発生し、好ましくない。
Therefore, the powder flow hitting the opposing collision surface 17 becomes partial (local), and the efficiency is reduced.
Causes reduction in processing capacity. In addition, if the processing capacity is to be increased in such a state, the dust concentration is further increased partially, so that the efficiency is further reduced. Absent.

【0007】その上、粗粒を多く含む粉体原料7を加速
管13内に吸引導入させると、粉体原料供給口1の吸込
能力が低下し、その結果、処理能力の低下を引き起こ
す。
In addition, when the powder raw material 7 containing a large amount of coarse particles is sucked and introduced into the acceleration tube 13, the suction capacity of the powder raw material supply port 1 is reduced, and as a result, the processing capacity is reduced.

【0008】加速管13内部での粒子の粉砕の効率を上
げるために、加速管出口14の手前側に二次高圧ガスを
噴出せしめる高圧ガス給送管を設けた粉砕管が特公昭4
6−22778号公報で提案されている。これは加速管
13内部での衝突を促進させることを意図しており、加
速管13内でのみ粉砕を行うような粉砕機には有用な手
段であるが、衝突部材16に衝突させて粉砕を行う衝突
式気流粉砕機では、有用な方法ではない。なぜならば、
加速管13内で衝突を促進させるために二次高圧ガスを
導入すれば、圧縮気体供給ノズル2から導入される高圧
気体による搬送気流が阻害され、加速管出口14から噴
出する粉流の速度が低下してしまう。そのため衝突部材
16に衝突する衝撃力が低下し、粉砕効率が低下してし
まい好ましくない。
In order to increase the efficiency of pulverization of particles inside the accelerating tube 13, a pulverizing tube provided with a high-pressure gas feed pipe for injecting a secondary high-pressure gas at a position before the accelerating tube outlet 14 is disclosed in Japanese Patent Publication No. Sho.
It has been proposed in JP-A-6-22778. This is intended to promote collision inside the acceleration tube 13 and is a useful means for a pulverizer that performs pulverization only inside the acceleration tube 13. It is not a useful method in the impingement type air current pulverizer. because,
If a secondary high-pressure gas is introduced to accelerate the collision in the accelerating tube 13, the carrier airflow due to the high-pressure gas introduced from the compressed gas supply nozzle 2 is obstructed, and the speed of the powder flow ejected from the accelerating tube outlet 14 is reduced. Will drop. Therefore, the impact force colliding with the collision member 16 decreases, and the crushing efficiency decreases, which is not preferable.

【0009】一方、従来かかる粉砕機における衝突部材
の衝突面は、図9及び図10に示すように、粉体原料を
載せた高圧気流方向(加速管の軸方向)に対し垂直ある
いは傾斜(例えば45°)している平面状のものが用い
られてきた(特開昭57−50554号公報及び特開昭
58−143853号公報参照)。
On the other hand, as shown in FIGS. 9 and 10, the collision surface of the collision member in such a conventional crusher is perpendicular or inclined (for example, in the direction of the high-pressure airflow on which the powder material is placed (axial direction of the acceleration tube)). 45 °) has been used (see JP-A-57-50554 and JP-A-58-143853).

【0010】しかしながら、図9のように加速管13の
軸方向と垂直な衝突面17の場合、加速管出口14から
吹き出される粉体原料15と衝突面17で反射される粉
砕物とが衝突面17の近傍で共存する割合が高く、その
ため、衝突面17近傍での粉体(粉体原料及び粉砕物)
濃度が高くなり、粉砕効率が良くない。
However, in the case of the collision surface 17 perpendicular to the axial direction of the acceleration tube 13 as shown in FIG. 9, the powder material 15 blown out from the acceleration tube outlet 14 and the pulverized material reflected by the collision surface 17 collide. The ratio of coexistence near the surface 17 is high, so that the powder (powder raw material and pulverized material) near the collision surface 17
The concentration is high and the grinding efficiency is not good.

【0011】さらに、衝突面17における一次衝突が主
体であり、粉砕室内壁8との二次衝突を有効に利用して
いるとはいえない。さらに、熱可塑性樹脂を粉砕すると
きには、衝突時の局部発熱により融着及び凝集物が発生
し易く、装置の安定した運転が困難になり、粉砕能力低
下の原因となる。そのために、粉体原料濃度を高くして
使用することが困難であった。
Further, the primary collision at the collision surface 17 is mainly performed, and it cannot be said that the secondary collision with the inner wall 8 of the crushing chamber is effectively used. Furthermore, when pulverizing a thermoplastic resin, fusion and agglomerates are liable to be generated due to local heat generation at the time of collision, which makes stable operation of the apparatus difficult and causes reduction in pulverization ability. Therefore, it has been difficult to use the powder raw material at a high concentration.

【0012】また、図10の粉砕機においては、衝突面
27が加速管13の軸方向に対して傾斜しているため
に、衝突面27近傍の粉体濃度は図9の粉砕機と比較し
て低くなるが、高圧気流による衝突力が分散されて低下
する。さらに、粉砕室内壁8との二次衝突を有効に利用
しているとはいえない。例えば、図10に示す如く、衝
突面27の角度が加速管に対し45°傾斜のものでは、
熱可塑性樹脂を粉砕するときに上記のような問題点は少
ない。しかしながら、衝突する際に粉砕に使われる衝撃
力が小さく、さらに粉砕室内壁8との二次衝突による粉
砕が少ないので粉砕能力は、図9の粉砕機と比較して1
/2〜1/1.5に粉砕能力が落ちる。
In the crusher shown in FIG. 10, since the collision surface 27 is inclined with respect to the axial direction of the acceleration tube 13, the powder concentration near the collision surface 27 is smaller than that of the crusher shown in FIG. However, the collision force due to the high-pressure airflow is dispersed and decreases. Furthermore, it cannot be said that the secondary collision with the inner wall 8 of the crushing chamber is effectively used. For example, as shown in FIG. 10, when the angle of the collision surface 27 is 45 ° with respect to the acceleration tube,
There are few problems as described above when pulverizing a thermoplastic resin. However, since the impact force used for crushing at the time of collision is small and crushing due to secondary collision with the crushing chamber inner wall 8 is small, the crushing ability is 1 compared with the crusher of FIG.
The crushing ability falls to / 2 to 1 / 1.5.

【0013】それ故、粉砕効率の良好な粉砕機及び粉砕
方法が待望されている。
Therefore, a pulverizer and a pulverization method with good pulverization efficiency are demanded.

【0014】一方、電子写真法による画像形成方法に用
いられるトナーまたはトナー用着色樹脂粉体は、通常結
着樹脂及び着色剤または磁性粉を少なくとも含有してい
る。トナーは、潜像担持体に形成された静電荷像を現像
し、形成されたトナー像は普通紙またはプラスチックフ
ィルムの如き転写材へ転写され、加熱定着手段、圧力ロ
ーラ定着手段または加熱加圧ローラ定着手段の如き定着
装置によって転写材上のトナー像は転写材に定着され
る。したがって、トナーに使用される結着樹脂は、熱及
び/または圧力が付加されると塑性変形する特性を有す
る。
On the other hand, a toner or a colored resin powder for a toner used in an image forming method by an electrophotographic method usually contains at least a binder resin and a colorant or a magnetic powder. The toner develops the electrostatic charge image formed on the latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or a plastic film, and is heated and fixed by a fixing unit, a pressure roller, or a heating and pressing roller. The toner image on the transfer material is fixed to the transfer material by a fixing device such as a fixing unit. Therefore, the binder resin used for the toner has a property of being plastically deformed when heat and / or pressure is applied.

【0015】現在、トナーまたはトナー用着色樹脂粉体
は、結着樹脂及び着色剤または磁性粉(必要により、さ
らに第三成分を含有)を少なくとも含有する混合物を溶
融混練し、溶融混練物を冷却し、冷却物を粉砕し、粉砕
物を分級して調製される。冷却物の粉砕は、通常、機械
的衝撃式粉砕機により粗粉砕(または中粉砕)され、次
いで粉砕粗粉をジェット気流を用いた衝突式気流粉砕機
で微粉砕しているのが一般的である。
At present, a toner or a colored resin powder for a toner is prepared by melt-kneading a mixture containing at least a binder resin and a colorant or a magnetic powder (and further containing a third component as necessary), and cooling the melt-kneaded product. Then, the cooled product is pulverized, and the pulverized product is classified. The crushing of the cooled product is generally performed by coarse pulverization (or medium pulverization) by a mechanical impact pulverizer, and then finely pulverized by a collision type air pulverizer using a jet stream. is there.

【0016】かかる場合、従来の図9に示すような衝突
式気流粉砕機及び粉砕方式では、処理能力を更に向上さ
せようとすれば、加速管13に設けられる粉体原料供給
口1に吸引不足が起こり、又は、衝突面17上で融着物
が発生し、安定生産が行えない。そのため、電子写真法
による画像形成方法に用いられるトナーまたはトナー用
着色樹脂粉体を更に効率良く生成するため、上記問題点
を解決した、効率のよい衝突式気流粉砕機及び粉砕方法
が望まれている。
In such a case, in the conventional collision-type airflow pulverizer and the pulverization method as shown in FIG. 9, if the processing capacity is to be further improved, the powder material supply port 1 provided in the accelerating tube 13 has insufficient suction. Occurs, or a fusion product is generated on the collision surface 17, and stable production cannot be performed. Therefore, in order to more efficiently generate a toner or a colored resin powder for a toner used in an image forming method by an electrophotographic method, an efficient collision-type airflow pulverizer and a pulverization method that solve the above-mentioned problems are desired. I have.

【0017】[0017]

【発明が解決しようとする課題】本発明の目的は、上記
問題点が解消された効率のよい衝突式気流粉砕機及び粉
体原料の粉砕方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an efficient impingement type air current pulverizer and a method for pulverizing a powdery raw material in which the above problems are solved.

【0018】本発明の目的は、熱可塑性樹脂を主体とす
る粉体を効率良く粉砕する衝突式気流粉砕機及び粉体原
料の粉砕方法を提供することにある。
An object of the present invention is to provide an impinging airflow pulverizer for efficiently pulverizing a powder mainly composed of a thermoplastic resin and a method of pulverizing a powder raw material.

【0019】本発明の目的は、熱可塑性樹脂を主体とす
る粉体を効率良く粉砕する衝突式気流粉砕機及び粉体原
料の粉砕方法を提供することにある。
An object of the present invention is to provide an impinging airflow pulverizer for efficiently pulverizing a powder mainly composed of a thermoplastic resin and a method of pulverizing a powder raw material.

【0020】本発明の目的は、加熱加圧ローラ定着手段
を有する複写機及びプリンタに使用されるトナーまたは
トナー用着色樹脂粒子を効率良く生成し得る衝突式気流
粉砕機及び粉体原料の粉砕方法を提供することにある。
An object of the present invention is to provide an impingement airflow pulverizer capable of efficiently producing toner or colored resin particles for a toner used in a copier and a printer having a heating and pressing roller fixing means, and a method of pulverizing a powder material. Is to provide.

【0021】本発明の目的は、平均粒径20〜2000
μmを有する樹脂粒子を平均粒径3〜15μmに効率良
く微粉砕し得る衝突式気流粉砕機及び粉体原料の粉砕方
法を提供することにある。
The object of the present invention is to provide an average particle size of 20 to 2000.
An object of the present invention is to provide an impingement airflow pulverizer capable of efficiently pulverizing resin particles having an average particle diameter of 3 to 15 μm and a method of pulverizing a powder raw material.

【0022】本発明の目的は、加速管出口から分散良く
粉体を噴出させ、加速管内での凝集粉を防ぐことによ
り、効率良く粉砕する衝突式気流粉砕機及び粉体原料の
粉砕方法を提供することにある。
An object of the present invention is to provide a collision-type airflow pulverizer for efficiently pulverizing a powdery material by jetting powder from the outlet of the accelerating tube with good dispersion and preventing agglomeration of powder in the accelerating tube. Is to do.

【0023】本発明の目的は、加速管出口から噴射され
て衝突部材の衝突面に衝突した粉体原料がさらに粉砕室
内壁にさらに衝突する二次衝突を効果的に行なうことの
できる衝突式気流粉砕機及び粉体原料の粉砕方法を提供
することにある。
An object of the present invention is to provide a collision type air flow capable of effectively performing a secondary collision in which the powder material injected from the outlet of the acceleration tube and colliding with the collision surface of the collision member further collides with the inner wall of the crushing chamber. An object of the present invention is to provide a pulverizer and a method for pulverizing a powder raw material.

【0024】[0024]

【課題を解決するための手段及び作用】本発明は、高圧
気体により粉体原料を搬送加速するための加速管、粉砕
室及び該加速管より噴出する粉体原料を衝突力により粉
砕するための衝突部材を具備し、該衝突部材を加速管出
口に対向して粉砕室内に設けた衝突式気流粉砕機におい
て、該加速管に粉体原料を供給するための複数の粉体原
料供給口を設け、該粉体原料を該複数の粉体原料供給口
から分散させて該加速管内に供給し、該粉体原料供給口
と該加速管出口との間に該加速管内に二次空気を導入す
るための加速管二次空気導入口を設け、該二次空気導入
口の加速管の中心軸に対する傾斜角(ψ)が 10°≦ψ≦80° を満足し、該二次空気導入口の加速管の中心軸に垂直な
断面に対する傾斜角(ρ)が 10°≦ρ≦80° を満足し、該衝突部材の衝突面の先端部分が頂角110
°以上180°未満の錐体形状であることを特徴とする
衝突式気流粉砕機に関する。
SUMMARY OF THE INVENTION The present invention is directed to an accelerating tube and a pulverizing chamber for conveying and accelerating a powder material by a high-pressure gas, and a pulverizing device for pulverizing the powder material ejected from the accelerating tube by an impact force. A collision-type airflow pulverizer provided with a collision member and provided in the pulverizing chamber with the collision member facing the outlet of the acceleration tube, wherein a plurality of powder material supply ports for supplying powder material to the acceleration tube are provided. Dispersing the powder material from the plurality of powder material supply ports and supplying the powder material into the acceleration tube, and introducing secondary air into the acceleration tube between the powder material supply port and the acceleration tube outlet. And a tilt angle () of the secondary air inlet with respect to the center axis of the acceleration tube satisfies 10 ° ≦ ψ ≦ 80 °, and the secondary air inlet is accelerated. The inclination angle (ρ) with respect to a cross section perpendicular to the central axis of the tube satisfies 10 ° ≦ ρ ≦ 80 °, and the collision Top collision surface tip portion of the wood angle 110
The present invention relates to a collision-type airflow pulverizer having a cone shape of not less than 180 ° and less than 180 °.

【0025】本発明は、加速管内で高圧気体により粉体
原料を搬送加速し、粉砕室内に加速管出口から粉体原料
を噴出させ、対向する衝突部材に衝突させて粉砕する粉
砕原料の粉砕方法において、粉体原料を該加速管に設け
た複数の粉体原料供給口から分散させて該加速管内に導
入し、該加速管の粉体原料供給口と加速管出口との間に
設けた加速管二次空気導入口から該加速管内に二次空気
導入し、その導入方向が加速管の中心軸に対する傾斜角
(ψ)を10°≦ψ≦80°とし、加速管の中心軸に垂
直な断面に対する傾斜角(ρ)を10°≦ρ≦80°と
して、衝突面の先端部分が頂角110°以上180°未
満の錐体形状を有する衝突部材に粉体原料を衝突させて
粉砕し、衝突後の粉砕物をさらに粉砕室内壁に二次衝突
させて粉体原料を粉砕することを特徴とする粉体原料の
粉砕方法に関する。
According to the present invention, there is provided a method of pulverizing a raw material, wherein the raw material is conveyed and accelerated by a high-pressure gas in an accelerating tube, and the raw material is ejected from an outlet of the accelerating tube into a pulverizing chamber, and collided with an opposing collision member. In the above, the powder raw material is dispersed from a plurality of powder raw material supply ports provided in the acceleration pipe and introduced into the acceleration pipe, and an acceleration provided between the powder raw material supply port of the acceleration pipe and the acceleration pipe outlet is provided. Secondary air is introduced into the accelerating tube from the tube secondary air inlet, and its introduction direction is set at an inclination angle (ψ) with respect to the central axis of the accelerating tube of 10 ° ≦ ψ ≦ 80 ° and perpendicular to the central axis of the accelerating tube. When the inclination angle (ρ) with respect to the cross section is set to 10 ° ≦ ρ ≦ 80 °, the powder raw material collides with the collision member having a cone shape having a vertex angle of 110 ° or more and less than 180 ° to pulverize the powder material, The ground material after collision is further collided with the inner wall of the grinding chamber to pulverize the powder material. To a method of grinding the powder material, characterized in that.

【0026】本発明の衝突式気流粉砕機及び粉体原料の
粉砕方法によれば、被粉体原料である粉体を効率良く高
速気流を利用して数μmのオーダーまで粉砕することが
できる。
According to the collision type air current pulverizer and the method of pulverizing the powder raw material of the present invention, the powder as the raw material to be powdered can be efficiently pulverized to the order of several μm by utilizing the high-speed air flow.

【0027】特に、熱可塑性樹脂の粉体または熱可塑性
樹脂を主成分とする粉体を効率良く、高速気流を利用し
て数μmのオーダまで粉砕することができる。
In particular, a thermoplastic resin powder or a powder containing a thermoplastic resin as a main component can be efficiently pulverized to a size of several μm by utilizing a high-speed air flow.

【0028】ここで、本発明を添付図面に基づいて詳細
に説明する。図1は、本発明の衝突式気流粉砕機の概略
的断面図及び該粉砕機を使用した粉砕工程及び分級機に
よる分級工程を組み合せた粉砕方法のフローチャートを
示した図である。粉砕されるべき粉体原料15は、加速
管3に設けられた粉体原料投入口1より、加速管3に供
給される。加速管3には圧縮空気の如き圧縮気体が圧縮
気体供給ノズル2から導入されており、加速管3に供給
された粉体原料15は、瞬時に加速されて、高速度を有
するようになる。高速度で加速管出口4から粉砕室5に
吐出された粉体原料15は、衝突部材6の衝突面7に衝
突して粉砕される。
Now, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of a collision type air current pulverizer of the present invention and a flow chart of a pulverization method combining a pulverization step using the pulverizer and a classification step using a classifier. The powder raw material 15 to be pulverized is supplied to the acceleration tube 3 from the powder raw material inlet 1 provided in the acceleration tube 3. Compressed gas such as compressed air is introduced into the acceleration tube 3 from the compressed gas supply nozzle 2, and the powder raw material 15 supplied to the acceleration tube 3 is instantaneously accelerated to have a high speed. The powdery raw material 15 discharged from the acceleration pipe outlet 4 into the pulverizing chamber 5 at a high speed collides with the collision surface 7 of the collision member 6 and is pulverized.

【0029】本発明は、図1のC−C′部断面である図
2に示すように、加速管3に対した複数個の粉体原料投
入口1を設け、加速管3の複数個の粉体原料投入口1と
加速管出口4との間に二次空気導入口11を設け、二次
空気を加速管3に導入することにより、加速管3内の粉
体を分散し、加速管出口4から粉体をより均一に噴出さ
せ、衝突部材6の対向する衝突面7に効率よく衝突させ
ることで粉砕効率を従来より向上させることができる。
粉砕されるべき粉体原料15は図1において加速管3の
上方に設けられた7つの粉体原料供給口1より、粉体原
料15を分散させて加速管3に供給される。加速管3に
は、圧縮空気の如き圧縮気体が圧縮気体供給ノズル2か
ら導入されており、加速管3に供給された粉体原料15
は瞬時に加速されて、高速度を有するようになる。高速
度で加速管出口4から粉砕室51に吐出された粉体原料
15は衝突部材6の衝突面7に衝突して粉砕される。ま
た、かかる粉砕機において、加速管3の粉体原料供給口
1と加速管出口4との間に二次空気導入口11を設け、
二次空気を加速管3に導入することにより、粉体原料供
給口1の吸引能力を向上させ、加速管3内の粉体原料1
5を分散し、加速管出口4から粉体原料15をより均一
に噴出させ、対向する衝突部材6の衝突面7に効率良く
衝突させることにより粉砕性を従来より向上することが
できる。ここで、導入される二次空気は、加速管3内を
高速移動する粉体原料15の凝集を解きほぐし、分散さ
せるために寄与している。また、加速管3内で加速気体
流速分布の遅い部分である加速管内壁に沿う流れを加速
する効果がある。
According to the present invention, as shown in FIG. 2, which is a cross section taken along the line CC 'in FIG. A secondary air inlet 11 is provided between the powder material input port 1 and the acceleration tube outlet 4, and the secondary air is introduced into the acceleration tube 3 to disperse the powder in the acceleration tube 3. The powder is more uniformly ejected from the outlet 4 and efficiently collides with the opposing collision surface 7 of the collision member 6, so that the pulverization efficiency can be improved as compared with the related art.
The powder raw material 15 to be pulverized is dispersed and supplied to the acceleration pipe 3 from seven powder raw material supply ports 1 provided above the acceleration pipe 3 in FIG. A compressed gas such as compressed air is introduced from the compressed gas supply nozzle 2 into the accelerating tube 3, and the powder raw material 15
Is instantaneously accelerated to have a high speed. The powdery raw material 15 discharged from the acceleration pipe outlet 4 into the pulverizing chamber 51 at a high speed collides with the collision surface 7 of the collision member 6 and is pulverized. In such a crusher, a secondary air inlet 11 is provided between the powder raw material supply port 1 of the acceleration tube 3 and the acceleration tube outlet 4.
By introducing the secondary air into the acceleration tube 3, the suction capacity of the powder material supply port 1 is improved, and the powder material 1 in the acceleration tube 3 is improved.
5 are dispersed, the powder raw material 15 is more uniformly ejected from the acceleration tube outlet 4 and efficiently collided with the collision surface 7 of the opposing collision member 6, so that the pulverizability can be improved as compared with the related art. Here, the introduced secondary air contributes to break up and disperse the agglomeration of the powder raw material 15 moving at high speed in the acceleration tube 3. In addition, there is an effect of accelerating the flow along the inner wall of the acceleration tube, which is the portion where the acceleration gas flow velocity distribution is slow in the acceleration tube 3.

【0030】図5及び図6に加速管の拡大側面図を示す
ことにより、より詳細に説明する。導入される二次空気
の導入方法については、鋭意検討を重ねた結果、次のよ
うな結論に到達した。
This will be described in more detail by showing enlarged side views of the acceleration tube in FIGS. As a result of intensive studies on the method of introducing the introduced secondary air, the following conclusions were reached.

【0031】即ち、二次空気の導入の位置については、
図8において粉体原料投入口1と加速管出口4との距離
をx,粉体原料投入口1と二次空気導入口11との距離
をyとした場合、xとyが
That is, regarding the position of the introduction of the secondary air,
In FIG. 8, when the distance between the powder material inlet 1 and the acceleration tube outlet 4 is x, and the distance between the powder material inlet 1 and the secondary air inlet 11 is y, x and y are

【0032】[0032]

【外3】 を満たした時良好な結果が得られた。[Outside 3] When the condition was satisfied, good results were obtained.

【0033】また、二次空気導入口11の導入角度につ
いては、加速管の軸方向に対する角度をψ(図5)とし
た時、ψが10°≦ψ≦80°、より好ましくは20°
≦ψ≦80°の条件を満たし、さらに、加速管の中心軸
に垂直な断面方向に対する角度をρ(図6)とした時、
ρが10°≦ρ≦80°、より好ましくは20°≦ρ≦
80°の条件を満たした場合に、良好な粉砕結果が得ら
れた。
Regarding the angle of introduction of the secondary air introduction port 11, assuming that the angle with respect to the axial direction of the acceleration tube is ψ (FIG. 5), ψ is 10 ° ≦ ψ ≦ 80 °, more preferably 20 °.
When the condition of ≤ψ≤80 ° is satisfied and the angle with respect to the cross-sectional direction perpendicular to the central axis of the accelerating tube is ρ (FIG. 6),
ρ is 10 ° ≦ ρ ≦ 80 °, more preferably 20 ° ≦ ρ ≦
When the condition of 80 ° was satisfied, good pulverization results were obtained.

【0034】また、導入される二次空気の風量について
は、圧縮気体供給ノズル2から導入される高圧気体によ
る搬送気流の風量をaNm3/min、二次空気導入口
から導入される二次空気の総風量をbNm3/minと
した時、
Regarding the flow rate of the secondary air introduced, the flow rate of the carrier airflow by the high-pressure gas introduced from the compressed gas supply nozzle 2 is set to aNm 3 / min, and the secondary air introduced from the secondary air introduction port is set. When the total air volume of bNm 3 / min is

【0035】[0035]

【外4】 を満足する条件下で粉砕を行った場合に良好な結果が得
られた。
[Outside 4] When pulverization was carried out under the conditions satisfying the above conditions, good results were obtained.

【0036】本発明における技術思想は、圧縮気体供給
ノズルから導入される高圧気体による搬送気流に粉体原
料を投入し、加速管出口から噴出させ、対向する衝突部
材面に衝突させて粉砕を行う衝突式気流粉砕機におい
て、加速管内での粉体の分散状態が粉砕効率に影響を及
ぼすのではないかという考え方に基づいている。すなわ
ち、加速管から供給される粉体原料は、凝集した状態で
加速管に流入するため、加速管内の分散が不充分とな
り、そのため加速管出口から噴出する時、粉塵濃度にバ
ラツキが生じ、衝突部材面を有効に利用できず、粉砕効
率が低下するものと考えた。この現象は粉砕処理量が大
きくなるほど顕著になる。
The technical idea of the present invention is to pulverize a powdery raw material by feeding a powdery raw material into a carrier airflow by a high-pressure gas introduced from a compressed gas supply nozzle, ejecting the raw material from an acceleration tube outlet, and colliding with an opposing collision member surface. In the collision type air current pulverizer, it is based on the idea that the dispersion state of the powder in the acceleration tube may affect the pulverization efficiency. That is, the powder raw material supplied from the accelerating tube flows into the accelerating tube in an agglomerated state, and thus the dispersion in the accelerating tube becomes insufficient. It was considered that the member surface could not be used effectively, and that the grinding efficiency was reduced. This phenomenon becomes more conspicuous as the amount of pulverization increases.

【0037】そこで、本発明者らは、これを解決するた
めに、複数の粉体原料投入口を設けることと二次空気の
導入を考え出した。二次空気を高圧気体による搬送気流
を阻害しないで、粉体原料を分散させるように加速管に
導入するという考えに基づいて、本発明に到った。かか
る二次空気としては、高圧縮気体、常圧気体のいずれを
用いてもよい。二次空気導入口にバルブの如き開閉装置
を取り付け、導入風量を制御することは非常に好まし
い。
The present inventors have conceived of providing a plurality of powder material inlets and introducing secondary air to solve this problem. The present invention has been made based on the idea that the secondary air is introduced into the accelerating tube so as to disperse the powder raw material without disturbing the flow of the carrier air by the high-pressure gas. As the secondary air, either a highly compressed gas or a normal pressure gas may be used. It is very preferable to attach an opening / closing device such as a valve to the secondary air inlet to control the amount of introduced air.

【0038】また、加速管の円周方向のどの位置に何本
導入口を取り付けるかは、粉体原料、目標粒子径等によ
り適宜設定すればよい。図7に一例として、加速管の円
周方向に二次空気導入口を8ケ所取り付けた場合の図6
におけるB−B′視断面図を示す。この場合、8ケ所か
らどのような配分で二次空気を導入するかは適宜設定す
ればよい。また加速管の断面は円形に限定されるもので
はない。
The number of inlets to be installed at which position in the circumferential direction of the accelerating tube may be appropriately set according to the powder material, the target particle diameter, and the like. FIG. 6 shows an example in which eight secondary air inlets are attached in the circumferential direction of the acceleration tube as an example in FIG.
FIG. In this case, what distribution of the secondary air is introduced from the eight locations may be set as appropriate. The cross section of the accelerating tube is not limited to a circular shape.

【0039】加速管出口4の内径は、通常10〜100
mmを有し、衝突部材6の直径よりも小さい内径を有す
ることが好ましい。
The inner diameter of the acceleration tube outlet 4 is usually 10 to 100
mm and an inner diameter smaller than the diameter of the collision member 6.

【0040】加速管出口4と衝突部材6の先端部との距
離は、衝突部材6の直径の0.3倍乃至3倍が好まし
い。0.3倍未満では、過粉砕が生じる傾向があり、3
倍を越える場合は、粉砕効率が低下する傾向がある。
The distance between the acceleration tube outlet 4 and the tip of the collision member 6 is preferably 0.3 to 3 times the diameter of the collision member 6. If it is less than 0.3 times, excessive pulverization tends to occur, and 3
If it exceeds twice, the crushing efficiency tends to decrease.

【0041】一方、図1の粉砕機において、衝突面7が
頂角110°以上180°未満、好ましくは160°近
傍を有する円錐形状を有しているので、粉砕された粉砕
物は実質的に全周方向に分散され、粉砕室内壁8と二次
衝突を起こし、さらに粉砕される。図8は、図1に示す
衝突式気流粉砕機のA−A′面における視断面を概略的
に示した図であり、衝突面7で衝突した後の粉砕物の分
散状態を模式的に示している。図8からは、本発明の気
流式粉砕機では、粉砕室内壁8における粉砕物の二次衝
突が有効に利用されていることが知見される。さらに、
本発明の粉砕機においては、図1に示す如く衝突面7で
粉砕物が良好に衝突部材の径方向に拡散されるので、粉
砕室内壁8が広く二次衝突に利用される。そのため、衝
突面7の近傍における(被)粉砕物の濃度が濃くならな
いので、粉砕の処理能率を向上させることができ、衝突
面7における(被)粉砕物の融着を良好に抑制すること
が可能である。
On the other hand, in the crusher shown in FIG. 1, the collision surface 7 has a conical shape having an apex angle of 110 ° or more and less than 180 °, preferably near 160 °, so that the crushed material is substantially The particles are dispersed in the entire circumferential direction, cause secondary collision with the inner wall 8 of the grinding chamber, and are further ground. FIG. 8 is a diagram schematically showing a sectional view taken along the plane AA ′ of the collision-type airflow pulverizer shown in FIG. 1, and schematically shows a dispersion state of the pulverized material after collision at the collision surface 7. ing. From FIG. 8, it is found that in the airflow pulverizer of the present invention, the secondary collision of the pulverized material on the inner wall 8 of the pulverization chamber is effectively used. further,
In the crusher of the present invention, the crushed material is favorably diffused in the radial direction of the colliding member at the colliding surface 7 as shown in FIG. 1, so that the inner wall 8 of the crushing chamber is widely used for secondary collision. Therefore, the concentration of the (crushed) material in the vicinity of the collision surface 7 does not increase, so that the processing efficiency of the grinding can be improved, and the fusion of the (crushed) material on the collision surface 7 can be suppressed well. It is possible.

【0042】粉砕室5に導入された粉体原料15は、衝
突面7における一次の衝突による粉砕が行われ、次いで
粉砕室内壁8における二次の衝突による粉砕がさらに行
われ、場合により、粉砕された粉砕物は排出口9に搬送
されるまでに粉砕室内壁8及び衝突部材6の側面との三
次(及び四次)の衝突によりさらに粉砕される。排出口
9から排出された粉砕物は固定壁式気流分級機の如き分
級機で細粉と粗粉とに分級される。分級された細粉は粉
砕製品として取り出される。分級された粗粉は、新たに
投入される粉体原料15とともに粉体原料供給口1に投
入される。
The powder raw material 15 introduced into the pulverizing chamber 5 is pulverized by primary collision at the collision surface 7 and then pulverized by secondary collision at the inner wall 8 of the pulverizing chamber. The crushed material is further crushed by tertiary (and quaternary) collision with the crushing chamber wall 8 and the side surface of the collision member 6 before being conveyed to the discharge port 9. The pulverized material discharged from the discharge port 9 is classified into fine powder and coarse powder by a classifier such as a fixed wall type air classifier. The classified fine powder is taken out as a crushed product. The classified coarse powder is supplied to the powder material supply port 1 together with the newly supplied powder material 15.

【0043】他の例として図3及び図4に加速管3に2
つ及び4つの粉体原料供給口1を設けた断面図(図1の
C−C′部断面)を示す。また、加速管3の断面は円形
に限定されるものではない。
As another example, FIG. 3 and FIG.
FIG. 1 is a cross-sectional view (cross-section taken along the line CC ′ in FIG. 1) in which one and four powder material supply ports 1 are provided. The cross section of the acceleration tube 3 is not limited to a circular shape.

【0044】なお、本発明における衝突式気流粉砕機の
粉砕室5は図1に示す箱型に限定されるものではない。
The crushing chamber 5 of the impingement type air current crusher according to the present invention is not limited to the box type shown in FIG.

【0045】以上説明したように、本発明の装置及び方
法によれば、加速管内の粉体原料の分散が良好になるこ
とで、衝突部材の衝突面に効率良く衝突し、粉砕効率が
向上する。即ち、従来の粉砕機に比べ、処理能力が向上
し、また、同一処理能力では得られる製品の粒子径をよ
り小さくできる。
As described above, according to the apparatus and method of the present invention, the powder material in the acceleration tube is dispersed well, so that the powder material collides efficiently with the collision surface of the collision member, and the pulverization efficiency is improved. . That is, as compared with the conventional pulverizer, the processing capacity is improved, and the particle size of the obtained product can be made smaller with the same processing capacity.

【0046】また、従来例では、粉体原料が凝集した状
態で、衝突部材の衝突面に衝突するため、特に熱可塑性
樹脂を主体とする粉体を原料とした場合、融着物を発生
し易かったが、本発明によれば、分散された状態で、衝
突部材の衝突面に衝突するため、融着物を発生しにく
い。
Further, in the conventional example, since the powder raw material collides with the collision surface of the collision member in an agglomerated state, particularly when a powder mainly composed of a thermoplastic resin is used as the raw material, a fused material is easily generated. However, according to the present invention, the dispersed material collides with the collision surface of the collision member, so that a fusion product is not easily generated.

【0047】さらに、従来例では粉体原料が凝集してい
るため、過粉砕を生じ易く、そのため得られる粉砕品の
粒度分布が幅広のものとなるという問題があったが、本
発明によれば、過粉砕を防止でき、粒度分布のシャープ
な粉砕品が得られる。
Further, in the conventional example, since the powder raw materials are agglomerated, excessive pulverization is liable to occur, and therefore, there is a problem that the particle size distribution of the obtained pulverized product is broad, but according to the present invention, In addition, over-pulverization can be prevented and a pulverized product having a sharp particle size distribution can be obtained.

【0048】さらに、二次空気を効率良く導入すること
で、粉体原料入口での空気の吸込能力が向上し、そのた
め、粉体原料の加速管内での搬送能力が向上し、粉砕処
理量を従来より高めることができる。本発明の装置及び
方法は粒径が小さくなる程、効果が顕著になる。
Further, by efficiently introducing the secondary air, the ability of sucking air at the inlet of the powder raw material is improved, so that the capacity of conveying the powder raw material in the accelerating tube is improved, and the amount of the pulverization processing is reduced. It can be higher than before. The effect of the apparatus and method of the present invention becomes more remarkable as the particle diameter becomes smaller.

【0049】さらに、従来例では、加速管出口から噴射
されて衝突部材の衝突面に衝突した粉体原料は、加速管
出口から噴射された粉体原料とが共存する割合が高く粉
体濃度が高くなり粉砕効率が良くなかったが、本発明に
よれば、衝突部材の衝突面は先端が頂角110°以上1
80°未満の錐体形状であることから衝突面に衝突後の
粉砕物は粉砕室内壁側に反射するため粉体濃度が高くな
ることがなく或いは少なく粉砕効率が向上する。
Further, in the conventional example, the powder raw material injected from the outlet of the acceleration tube and colliding with the collision surface of the collision member has a high proportion of the powder raw material injected from the outlet of the acceleration tube and has a high powder concentration. However, according to the present invention, the tip of the collision surface of the collision member has an apex angle of 110 ° or more and 1
Since the conical shape is less than 80 °, the pulverized material that has collided with the collision surface is reflected on the inner wall side of the pulverization chamber, so that the powder concentration does not increase or the pulverization efficiency is improved.

【0050】さらに、衝突面に衝突後の粉砕物は粉砕室
内壁に衝突する二次衝突が効果的に行なわれるため粉砕
効率はさらに向上する。
Further, the crushed material after colliding with the colliding surface is effectively subjected to secondary collision colliding with the inner wall of the crushing chamber, so that the crushing efficiency is further improved.

【0051】[0051]

【実施例】【Example】

実施例1 ポリエステル樹脂 100重量部(重量平均分子量(M
w)=50,000, Tg=60℃ フタロシアニン系顔料 6重量部 低分子量ポリエチレン 2重量部 負荷電性制御剤 2重量部(アゾ系金属錯体)
Example 1 100 parts by weight of a polyester resin (weight average molecular weight (M
w) = 50,000, Tg = 60 ° C. Phthalocyanine pigment 6 parts by weight Low molecular weight polyethylene 2 parts by weight Negative charge control agent 2 parts by weight (azo metal complex)

【0052】上記原料をヘンシェルミキサーにて混合
し、混合物を得た。次にこの混合物をエクストルーダー
にて約180℃で溶融混練した後、冷却して固化し、溶
融混練物の冷却物をハンマーミルで100〜1000μ
mの粒子に粗粉砕した。この粗粉砕物を粉体原料7と
し、図1、2、5、6、7及び8に示す粉砕機及びフロ
ーで粉砕を行った。粉砕された粉体を細粉と粗粉とに分
級するための分級手段としては、固定壁式風力分級機を
使用した。
The above raw materials were mixed with a Henschel mixer to obtain a mixture. Next, the mixture is melted and kneaded at about 180 ° C. in an extruder, and then cooled and solidified.
The particles were coarsely pulverized into m particles. This coarsely pulverized product was used as a powder raw material 7 and pulverized by a pulverizer and a flow shown in FIGS. 1, 2, 5, 6, 7, and 8. As a classification means for classifying the pulverized powder into fine powder and coarse powder, a fixed wall type air classifier was used.

【0053】ここで、衝突式気流粉砕機は、加速管3の
出口4の内径が25mmであり、図5及び図6において x=80mm,y=45mm,ψ=45°,ρ=40° 二次空気導入口11…円周方向に8か所 の条件を満たしており、衝突部材6が直径60mmの酸
化アルミニウム系セラミックで形成された円柱状で、衝
突面7の先端部が頂角160°を有する円錐形状を有し
ていた。加速管3の中心軸と衝突部材6の先端とは一致
していた。加速管出口4から衝突面7までの最近接距離
は60mmであり、衝突部材6と粉砕室内壁8との最近
接距離は18mmであった。
Here, in the impingement type air current pulverizer, the inner diameter of the outlet 4 of the acceleration tube 3 is 25 mm, and in FIGS. 5 and 6, x = 80 mm, y = 45 mm, ψ = 45 °, ρ = 40 ° The next air inlet 11 satisfies eight conditions in the circumferential direction, the collision member 6 is a columnar member made of aluminum oxide ceramic having a diameter of 60 mm, and the tip of the collision surface 7 has a vertex angle of 160 °. And a conical shape having The center axis of the accelerating tube 3 was coincident with the tip of the collision member 6. The closest distance from the acceleration tube outlet 4 to the collision surface 7 was 60 mm, and the closest distance between the collision member 6 and the inner wall 8 of the crushing chamber was 18 mm.

【0054】衝突式気流粉砕機の圧縮気体供給ノズルか
ら流量6.4Nm3/min(圧力6.0kg/cm2
の圧縮空気を導入し、図2に示す粉体原料供給口1から
48kg/時間の割合で粉体原料15を供給した。粉砕
された粉体原料15は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び粉体原料供給口1より粉体
原料15と共に加速管3に投入した。二次空気は図7に
おけるA,B,C,D,E,F,G及びHの8ケ所か
ら、各0.1Nm3/min(5.0kg/cm2)の圧
縮空気を導入した。
A flow rate of 6.4 Nm 3 / min (pressure 6.0 kg / cm 2 ) from the compressed gas supply nozzle of the impingement type air flow pulverizer.
, And the powder raw material 15 was supplied at a rate of 48 kg / hour from the powder raw material supply port 1 shown in FIG. The pulverized powder material 15 was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the acceleration tube 3 together with the powder material 15 from the powder material supply port 1. As the secondary air, compressed air of 0.1 Nm 3 / min (5.0 kg / cm 2 ) was introduced from each of eight locations A, B, C, D, E, F, G and H in FIG.

【0055】[0055]

【外5】 [Outside 5]

【0056】この結果、細粉として体積平均粒径7.5
μm(コールターカウンターによる測定)の粉砕粉体が
48kg/時間の割合で収集された。また、6時間の連
続運転を行っても融着物の発生は全くなかった。
As a result, the fine powder had a volume average particle size of 7.5.
Pulverized powder of μm (measured by a Coulter counter) was collected at a rate of 48 kg / hour. Further, even after the continuous operation for 6 hours, no fused product was generated.

【0057】尚、トナーの粒度分布は種々の方法によっ
て測定できるが、本実施例においてはコールターカウン
ターを用いて行った。
The particle size distribution of the toner can be measured by various methods. In this embodiment, the measurement was performed using a Coulter counter.

【0058】すなわち、測定装置としてはコールターカ
ウンターTA−II型(コールター社製)を用い、個数
分布、体積分布を出力するインターフェイス(日科機
製)及びCX−1パーソナルコンピュータ(キヤノン
製)を接続し、電解液は1級塩化ナトリウムを用いて1
%NaCl水溶液を調製する。測定法としては前記電解
水溶液100〜150ml中に分散剤として界面活性
剤、好ましくはアルキルベンゼンスルホン酸塩を0.1
〜5ml加え、更に測定試料を2〜20mg加える。試
料を懸濁した電解液は超音波分散器で約1〜3分間分散
処理を行い、前記コールターカウンターTA−II型に
より、アパチャーとして100μmアパチャーを用い
て、個数を基準として2〜40μmの粒子の粒度分布を
測定して、それから本実施例に係るところの値を求め
た。
That is, a Coulter Counter TA-II type (manufactured by Coulter) was used as a measuring device, and an interface (manufactured by Nikkaki) for outputting the number distribution and volume distribution and a CX-1 personal computer (manufactured by Canon) were connected. The electrolyte is 1 grade using primary sodium chloride.
% NaCl aqueous solution is prepared. As a measuring method, a surfactant, preferably an alkylbenzene sulfonate, is used as a dispersant in 100 to 150 ml of the electrolytic aqueous solution.
Add 5 ml, and then add 2-20 mg of the measurement sample. The electrolytic solution in which the sample was suspended was subjected to a dispersion treatment for about 1 to 3 minutes with an ultrasonic disperser, and the Coulter Counter TA-II was used, and a 100 μm aperture was used as an aperture. The particle size distribution was measured and then the values according to this example were determined.

【0059】実施例2 実施例1で用いた粉体原料を、加速管出口4の内径が2
5mmであり図5及び図6において x=80mm,y=45mm,ψ=45°,ρ=45° 二次空気導入口…円周方向に8か所 の条件を満たしており、衝突部材6が直径60mmの酸
化アルミニウム系セラミックスで形成された円柱状で衝
突面7の先端が頂角120°を有する円錐形状を有して
いた。加速管3の中心軸と衝突部材6の先端とは一致し
ていた。加速管出口4から衝突面7までの最近接距離は
60mmであり、衝突部材6と粉砕室内壁8との最近接
距離は18mmであった。
Example 2 The powder material used in Example 1 was mixed with
5 and FIG. 5 and FIG. 6, x = 80 mm, y = 45 mm, ψ = 45 °, ρ = 45 ° Secondary air inlet port: The condition of eight places in the circumferential direction is satisfied. The tip of the collision surface 7 had a conical shape having a vertex angle of 120 ° in a columnar shape made of an aluminum oxide ceramic having a diameter of 60 mm. The center axis of the accelerating tube 3 was coincident with the tip of the collision member 6. The closest distance from the acceleration tube outlet 4 to the collision surface 7 was 60 mm, and the closest distance between the collision member 6 and the inner wall 8 of the crushing chamber was 18 mm.

【0060】衝突式気流粉砕機の圧縮気体供給ノズルか
ら6.4Nm3/min(6kgf/cm2)の圧縮空気
を導入し、二次空気は、図7におけるA,B,C,D,
E,F,G及びHの8か所から各0.1Nm3/min
(5kgf/cm2)の圧縮空気を導入し、図3に示す
粉体原料供給口1から40kg/時間の割合で粉体原料
15を供給した。粉砕された粉体原料15は分級機に運
ばれ、細粉は分級粉体として取り除き、粗粉は再び粉体
原料供給口1より粉体原料15と共に加速管3に投入し
た。
Compressed air of 6.4 Nm 3 / min (6 kgf / cm 2 ) was introduced from the compressed gas supply nozzle of the impingement type air flow pulverizer, and the secondary air was A, B, C, D, and D in FIG.
0.1 Nm 3 / min from E, F, G and H
(5 kgf / cm 2 ) of compressed air was introduced, and powder raw material 15 was supplied at a rate of 40 kg / hour from the powder raw material supply port 1 shown in FIG. The pulverized powder material 15 was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the acceleration tube 3 together with the powder material 15 from the powder material supply port 1.

【0061】この結果、細粉として体積平均粒径7.5
μm(コールターカウンターによる測定)の粉砕粉体が
40kg/時間の割合で収集された。また、6時間の連
続運転を行っても融着物の発生は全くなかった。
As a result, the fine powder had a volume average particle size of 7.5.
Pulverized powder of μm (measured by a Coulter counter) was collected at a rate of 40 kg / hour. Further, even after the continuous operation for 6 hours, no fused product was generated.

【0062】実施例3 実施例1で用いた粉体原料を、加速管出口4の内径が2
5mmであり、図5及び図6において x=80mm,y=45mm,ψ=45°,ρ=45° 二次空気導入口…円周方向に8か所 の条件を満たしており、衝突部材6が直径60mmの酸
化アルミニウム系セラミックスで形成された円柱状で衝
突面7の先端が頂角120°を有する円錐形状を有して
いた。加速管3の中心軸と衝突部材6の先端とは一致し
ていた。加速管出口4から衝突面7までの最近接距離は
60mmであり、衝突部材6と粉砕室内壁8との最近接
距離は18mmであった。
Example 3 The powder raw material used in Example 1 was mixed with
5 and 6, x = 80 mm, y = 45 mm, ψ = 45 °, ρ = 45 ° secondary air inlet port. The condition of eight places in the circumferential direction is satisfied. Was made of an aluminum oxide-based ceramic having a diameter of 60 mm, and had a conical shape with the tip of the collision surface 7 having an apex angle of 120 °. The center axis of the accelerating tube 3 was coincident with the tip of the collision member 6. The closest distance from the acceleration tube outlet 4 to the collision surface 7 was 60 mm, and the closest distance between the collision member 6 and the inner wall 8 of the crushing chamber was 18 mm.

【0063】衝突式気流粉砕機の圧縮気体供給ノズルか
ら6.4Nm3/min(6kgf/cm2)の圧縮空気
を導入し、二次空気は、図7におけるA,B,C,D,
E,F,G及びHの8か所から各0.1Nm3/min
(5kgf/cm2)の圧縮空気を導入し、図4に示す
粉体原料供給口1から45kg/時間の割合で粉体原料
15を供給した。粉砕された粉体原料15は分級機に運
ばれ、細粉は分級粉体として取り除き、粗粉は再び粉体
原料供給口1より粉体原料15と共に加速管3に投入し
た。
Compressed air of 6.4 Nm 3 / min (6 kgf / cm 2 ) was introduced from the compressed gas supply nozzle of the impingement type air flow crusher, and the secondary air was A, B, C, D, and D in FIG.
0.1 Nm 3 / min from E, F, G and H
(5 kgf / cm 2 ) of compressed air was introduced, and powder raw material 15 was supplied at a rate of 45 kg / hour from the powder raw material supply port 1 shown in FIG. The pulverized powder material 15 was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the acceleration tube 3 together with the powder material 15 from the powder material supply port 1.

【0064】この結果、細粉として体積平均粒径7.5
μm(コールターカウンターによる測定)の粉砕粉体が
45kg/時間の割合で収集された。また、6時間の連
続運転を行っても融着物の発生は全くなかった。
As a result, the fine powder had a volume average particle size of 7.5.
Pulverized powder of μm (measured by a Coulter counter) was collected at a rate of 45 kg / hour. Further, even after the continuous operation for 6 hours, no fused product was generated.

【0065】比較例1 実施例1で用いた粉砕原料を、図9に示す従来の衝突式
粉砕機で粉砕した。該粉砕機において、衝突部材6の先
端の衝突面17は加速管12の軸方向に対して垂直であ
る平面であり、加速管出口14の内径は25mmであ
る。加速管12には、圧縮気体供給ノズル2から7.2
Nm3/min(6kgf/cm2)の圧縮気体を供給
し、細粉(粉砕製品)が重量平均粒径7.5μmになる
よう分級機を設定し粉砕を行った。衝突面17に衝突し
た粉砕物は、加速管からの吐出方向と対向する方向に反
射されるために、衝突面近傍の粉砕物と粉体原料との存
在濃度は著しく高くなった。そのため粉体原料の供給割
合が4.5kg/時間を超えると、衝突部材16の衝突
面17上で、融着、凝集物が生じはじめ、融着物が粉砕
室内や分級機を詰まらせる場合があった。従って、粉砕
処理量を1時間当たり15kgに低下させることを余儀
なくされ、これが粉砕能力の限界となった。
Comparative Example 1 The pulverized raw material used in Example 1 was pulverized by a conventional collision type pulverizer shown in FIG. In the crusher, the collision surface 17 at the tip of the collision member 6 is a plane perpendicular to the axial direction of the acceleration tube 12, and the inside diameter of the acceleration tube outlet 14 is 25 mm. The accelerating tube 12 has a compressed gas supply nozzle 2
A compressed gas of Nm 3 / min (6 kgf / cm 2 ) was supplied, and pulverization was performed by setting a classifier so that the fine powder (pulverized product) had a weight average particle size of 7.5 μm. Since the pulverized material colliding with the collision surface 17 is reflected in a direction opposite to the discharge direction from the accelerating tube, the concentration of the pulverized material and the powder raw material near the collision surface became extremely high. Therefore, if the supply rate of the powder raw material exceeds 4.5 kg / hour, fusion and agglomerates will start to occur on the collision surface 17 of the collision member 16, and the fusion may clog the grinding chamber or the classifier. Was. Therefore, it was necessary to reduce the pulverization throughput to 15 kg per hour, which was the limit of the pulverization ability.

【0066】また、重量平均粒径11μmの細粉(粉砕
製品)が得られるように粉砕を行った場合、粉体原料の
供給割合が9kg/時間を超えると、衝突部材16の衝
突面17上で融着、凝集物が生じはじめ、これが粉砕能
力の限界となった。
When pulverization is performed so as to obtain a fine powder (pulverized product) having a weight average particle diameter of 11 μm, if the supply rate of the powder raw material exceeds 9 kg / hour, the powder material is crushed on the collision surface 17 of the collision member 16. , Agglomerates and aggregates began to form, which became the limit of the crushing ability.

【0067】比較例2 実施例1で用いた粉体原料を、図10に示す衝突式気流
粉砕機を用いて比較例1と同様に粉砕した。該粉砕機
は、衝突部材6の先端の衝突面27が加速管12の軸方
向に対して45°の傾斜を有する平面であることを除い
ては、全て比較例1で用いた粉砕機と同じである。
Comparative Example 2 The powder raw material used in Example 1 was pulverized in the same manner as in Comparative Example 1 using a collision type air current pulverizer shown in FIG. All the pulverizers are the same as the pulverizers used in Comparative Example 1, except that the collision surface 27 at the tip of the collision member 6 is a plane having an inclination of 45 ° with respect to the axial direction of the acceleration tube 12. It is.

【0068】衝突面に衝突した粉砕物は、比較例1に比
べ、加速管出口14から離れる方向へ反射されるので衝
突部材26の衝突面27上には融着及び凝集物は生じな
かった。しかし、衝突する際に、衝撃力が弱くなるた
め、粉砕効率が悪く、重量平均粒径7.5μmの細粉
(粉砕製品)は、1時間当り約15kgしか得られなか
った。
The pulverized material colliding with the collision surface was reflected in a direction away from the acceleration tube outlet 14 as compared with Comparative Example 1, so that no fusion or agglomerate was generated on the collision surface 27 of the collision member 26. However, at the time of collision, the impact force was weakened, so that the pulverizing efficiency was poor, and only about 15 kg of fine powder (pulverized product) having a weight average particle size of 7.5 μm was obtained per hour.

【0069】また、重量平均粒径11μmの細粉(粉砕
製品)を得る場合には、1時間当り約9kgしか得られ
なかった。
When a fine powder (pulverized product) having a weight average particle size of 11 μm was obtained, only about 9 kg was obtained per hour.

【0070】以上により得られた実施例1乃至3及び比
較例1及び2の結果を表1に示す。
Table 1 shows the results of Examples 1 to 3 and Comparative Examples 1 and 2 obtained as described above.

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【発明の効果】以上述べたように、本発明の衝突式気流
粉砕機及び粉体原料の粉砕方法によれば、高圧気体によ
り粉体原料を搬送加速するための加速管、粉砕室及び加
速管より噴出する粉体原料を衝突力により粉砕するため
の衝突部材を具備した粉砕機において、加速管に複数の
粉体原料供給口を設けることにより、粉体原料を分散さ
せて加速管内に供給させ、なおかつ、二次空気をスパイ
ラル状に導入させて粉体原料の吸引能力を高めさらに分
散良く加速管内から噴出させ、衝突部材の衝突面に効率
よく被粉砕物が衝突するので粉砕効率が向上する。
As described above, according to the impingement type air current pulverizer and the method for pulverizing a powder raw material of the present invention, the accelerating tube, the pulverizing chamber and the accelerating tube for conveying and accelerating the powder raw material by the high-pressure gas are used. In a pulverizer equipped with a collision member for pulverizing a powder material to be spouted by a collision force, a plurality of powder material supply ports are provided in an acceleration tube so that the powder material is dispersed and supplied into the acceleration tube. In addition, the secondary air is spirally introduced to enhance the suction capability of the powder raw material, and the secondary air is jetted out of the accelerating tube with good dispersion, so that the crushed object collides with the collision surface of the collision member efficiently, so that the crushing efficiency is improved. .

【0073】さらに、衝突部材の衝突面の形状を特定の
錐体形状にすることにより、被粉砕物粉砕時における融
着、凝集物の発生を防げ、装置の安定した運転を可能に
する。その上、粉砕物が粉砕室内壁へ強く二次衝突する
ために、従来の粉砕能力を著しく向上することができ
る。
Further, by setting the shape of the collision surface of the collision member to a specific cone shape, it is possible to prevent fusion and generation of agglomerates when the material to be pulverized is pulverized, thereby enabling stable operation of the apparatus. In addition, since the pulverized material strongly collides with the inner wall of the pulverization chamber, the conventional pulverization ability can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の衝突式粉砕機の概略的断面図及び該粉
砕機と分級機を組合せた粉体原料の粉砕方法のフローチ
ャートの一例を示した図である。
FIG. 1 is a schematic cross-sectional view of a collision type pulverizer of the present invention and an example of a flowchart of a pulverizing method of a powder raw material in which the pulverizer and a classifier are combined.

【図2】粉体原料供給口の一具体例を示す図1及び図5
のC−C′視断面図である。
FIGS. 1 and 5 show one specific example of a powder material supply port.
5 is a cross-sectional view taken along the line CC ′.

【図3】粉体原料供給口の一具体例を示す図1及び図5
のC−C′視断面図である。
FIGS. 1 and 5 show a specific example of a powder material supply port.
5 is a cross-sectional view taken along the line CC ′.

【図4】粉体原料供給口の一具体例を示す図1及び図5
のC−C′視断面図である。
FIGS. 1 and 5 show a specific example of a powder material supply port.
5 is a cross-sectional view taken along the line CC ′.

【図5】粉砕室内を表す図1のA−A′視断面図であ
る。
FIG. 5 is a sectional view taken along the line AA ′ of FIG. 1 showing the grinding chamber.

【図6】本発明の衝突式粉砕機の加速管を示す断面図で
ある。
FIG. 6 is a sectional view showing an acceleration tube of the collision type crusher of the present invention.

【図7】本発明の衝突式粉砕機の加速管を示す断面図で
ある。
FIG. 7 is a sectional view showing an acceleration tube of the collision type crusher of the present invention.

【図8】二次空気供給口を示す図5及び図6のB−B′
視断面図である。
FIG. 8 is a BB ′ of FIGS. 5 and 6 showing a secondary air supply port.
FIG.

【図9】従来例の衝突式粉砕機の概略的断面図及び粉砕
方法のフローチャートを示した図である。
FIG. 9 is a schematic cross-sectional view of a conventional collision type pulverizer and a flow chart of a pulverization method.

【図10】従来例の衝突式粉砕機の概略的断面図及び粉
砕方法のフローチャートを示した図である。
FIG. 10 is a schematic sectional view of a conventional collision type pulverizer and a flow chart of a pulverization method.

【符号の説明】[Explanation of symbols]

1 粉体原料供給口 2 圧縮気体供給ノズル 3 加速管 4 加速管出口 5 粉砕室 6 衝突部材 7 衝突面 8 粉砕室内壁 9 排出口 11 二次空気供給口 13 加速管 14 加速管出口 15 粉体原料 16 衝突部材 17 衝突面 26 衝突部材 27 衝突面 DESCRIPTION OF SYMBOLS 1 Powder material supply port 2 Compressed gas supply nozzle 3 Acceleration pipe 4 Acceleration pipe outlet 5 Crushing chamber 6 Collision member 7 Collision surface 8 Crushing chamber inner wall 9 Discharge port 11 Secondary air supply port 13 Acceleration pipe 14 Acceleration pipe outlet 15 Powder Raw material 16 collision member 17 collision surface 26 collision member 27 collision surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後関 康秀 東京都大田区下丸子3丁目30番2号キヤ ノン株式会社内 (56)参考文献 特開 平3−109951(JP,A) 特開 平4−150957(JP,A) 実開 昭62−95749(JP,U) (58)調査した分野(Int.Cl.7,DB名) B02C 19/00 B02C 19/06 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhide Goseki 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-A-3-109951 (JP, A) JP-A Heisei 4-150957 (JP, A) Japanese Utility Model 62-95749 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B02C 19/00 B02C 19/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高圧気体により粉体原料を搬送加速する
ための加速管、粉砕室及び該加速管より噴出する粉体原
料を衝突力により粉砕するための衝突部材を具備し、該
衝突部材を加速管出口に対向して粉砕室内に設けた衝突
式気流粉砕機において、該加速管に粉体原料を供給する
ための複数の粉体原料供給口を設け、該粉体原料を該複
数の粉体原料供給口から分散させて該加速管内に供給
し、該粉体原料供給口と該加速管出口との間に該加速管
内に二次空気を導入するための加速管二次空気導入口を
設け、該二次空気導入口の加速管の中心軸に対する傾斜
角(ψ)が 10°≦ψ≦80° を満足し、該二次空気導入口の加速管の中心軸に垂直な
断面に対する傾斜角(ρ)が 10°≦ρ≦80° を満足し、該衝突部材の衝突面の先端部分が頂角110
°以上180°未満の錐体形状であることを特徴とする
衝突式気流粉砕機。
An accelerating tube for conveying and accelerating a powder material by a high-pressure gas, a pulverizing chamber, and a collision member for pulverizing the powder material spouted from the accelerating tube by an impact force are provided. In a collision-type air-flow pulverizer provided in a pulverizing chamber opposite to an acceleration tube outlet, a powder raw material is supplied to the acceleration tube.
A plurality of powder material supply port for, the plurality of the powder material
Dispersed from the number of powder material supply ports and supplied into the acceleration tube
And, the pressurized-speed tube between the powder material supply port and the pressurized-speed tube outlet
An accelerating tube secondary air inlet for introducing secondary air therein is provided, and an inclination angle (ψ) of the secondary air inlet with respect to a center axis of the accelerating tube satisfies 10 ° ≦ ψ ≦ 80 °, The inclination angle (ρ) of the secondary air inlet with respect to the cross section perpendicular to the central axis of the acceleration tube satisfies 10 ° ≦ ρ ≦ 80 °, and the tip of the collision surface of the collision member has a vertex angle of 110 °.
A collision type air current pulverizer characterized by having a cone shape of not less than 180 ° and less than 180 °.
【請求項2】 加速管に設けられた粉体原料供給口と加
速管出口との距離をx,粉体原料供給口と加速管に設け
られた加速管二次空気導入口との距離をyとした場合、
xとyが、 【外1】 を満足することを特徴とする請求項1記載の衝突式気流
粉砕機。
2. The distance between the powder material supply port provided in the acceleration tube and the acceleration tube outlet is x, and the distance between the powder material supply port and the acceleration tube secondary air introduction port provided in the acceleration tube is y. Then,
x and y are 2. The impingement airflow pulverizer according to claim 1, wherein the following formula is satisfied.
【請求項3】 加速管内で高圧気体により粉体原料を搬
送加速し、粉砕室内に加速管出口から粉体原料を噴出さ
せ、対向する衝突部材に衝突させて粉砕する粉砕原料の
粉砕方法において、粉体原料を該加速管に設けた複数の
粉体原料供給口から分散させて該加速管内に導入し、該
加速管の粉体原料供給口と加速管出口との間に設けた加
速管二次空気導入口から該加速管内に二次空気導入し、
その導入方向が加速管の中心軸に対する傾斜角(ψ)を
10°≦ψ≦80°とし、加速管の中心軸に垂直な断面
に対する傾斜角(ρ)を10°≦ρ≦80°として、衝
突面の先端部分が頂角110°以上180°未満の錐体
形状を有する衝突部材に粉体原料を衝突させて粉砕し、
衝突後の粉砕物をさらに粉砕室内壁に二次衝突させて粉
体原料を粉砕することを特徴とする粉体原料の粉砕方
法。
3. A method of pulverizing a raw material, wherein the raw material is conveyed and accelerated by a high-pressure gas in an accelerating tube, the raw material is ejected from an outlet of the accelerating tube into a pulverizing chamber, and collided with an opposing collision member. The powder material is dispersed from a plurality of powder material supply ports provided in the acceleration tube and introduced into the acceleration tube, and an acceleration tube provided between the powder material supply port and the acceleration tube outlet of the acceleration tube is provided. Secondary air is introduced into the acceleration tube from a secondary air inlet,
The introduction direction is such that the inclination angle (中心) with respect to the central axis of the acceleration tube is 10 ° ≦ ψ ≦ 80 °, and the inclination angle (ρ) with respect to a cross section perpendicular to the central axis of the acceleration tube is 10 ° ≦ ρ ≦ 80 °, The tip portion of the collision surface is crushed by crushing the powder material against a collision member having a cone shape with a vertex angle of 110 ° or more and less than 180 °,
A pulverizing method for a powdery raw material, wherein the pulverized material after the collision is further collided with the inner wall of the pulverizing chamber to pulverize the powdery raw material.
【請求項4】 加速管に導入される被粉砕物を搬送加速
する高圧気体の風量をaNm3/min、加速管に導入
される二次空気の風量をbNm3/minとした場合、
aとbが 【外2】 を満足する条件下で粉砕することを特徴とする請求項3
記載の粉体原料の粉砕方法。
4. When the flow rate of a high-pressure gas for transporting and accelerating an object to be ground introduced into an acceleration pipe is aNm3 / min, and the flow rate of secondary air introduced into the acceleration pipe is bNm3 / min,
a and b The pulverization is performed under a condition satisfying the following condition.
A pulverization method for the powder raw material according to the above.
JP03190348A 1991-07-30 1991-07-30 Collision type air flow crusher and powder material crushing method Expired - Fee Related JP3093343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03190348A JP3093343B2 (en) 1991-07-30 1991-07-30 Collision type air flow crusher and powder material crushing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03190348A JP3093343B2 (en) 1991-07-30 1991-07-30 Collision type air flow crusher and powder material crushing method

Publications (2)

Publication Number Publication Date
JPH0531391A JPH0531391A (en) 1993-02-09
JP3093343B2 true JP3093343B2 (en) 2000-10-03

Family

ID=16256704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03190348A Expired - Fee Related JP3093343B2 (en) 1991-07-30 1991-07-30 Collision type air flow crusher and powder material crushing method

Country Status (1)

Country Link
JP (1) JP3093343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199994B2 (en) * 2019-02-19 2023-01-06 キヤノン株式会社 Toner manufacturing method

Also Published As

Publication number Publication date
JPH0531391A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
KR920009291B1 (en) Collision type gas current pulverizer and method for pulverizing powders
JP3114040B2 (en) Collision type air crusher
JPH0549349B2 (en)
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP2654989B2 (en) Powder grinding method
JP2704777B2 (en) Collision type air flow crusher and crushing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2704787B2 (en) Powder material grinding method
JP2805332B2 (en) Grinding method
JP3102902B2 (en) Collision type supersonic jet crusher
JP2759499B2 (en) Powder grinding method
JP3313922B2 (en) Crusher
JP3101786B2 (en) Collision type air crusher
JPH03296446A (en) Impact type jet grinder and grinding method
JP2663041B2 (en) Collision type air crusher
JPH0386257A (en) Collision-type jet pulverizer and crushing method
JPH07289933A (en) Grinder
JPH0651130B2 (en) Collision type airflow crusher and crushing method
JPH08182938A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000620

LAPS Cancellation because of no payment of annual fees