JPH08182938A - Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same - Google Patents
Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the sameInfo
- Publication number
- JPH08182938A JPH08182938A JP6337618A JP33761894A JPH08182938A JP H08182938 A JPH08182938 A JP H08182938A JP 6337618 A JP6337618 A JP 6337618A JP 33761894 A JP33761894 A JP 33761894A JP H08182938 A JPH08182938 A JP H08182938A
- Authority
- JP
- Japan
- Prior art keywords
- collision
- pressure gas
- pulverized
- toner
- high pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Developing Agents For Electrophotography (AREA)
- Disintegrating Or Milling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ジェット気流(高圧気
体)を用い、被粉砕物である粉体原料を粉砕する衝突式
気流粉砕機、及び該粉砕機を使用する静電荷像現像用ト
ナー製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a collision type air flow pulverizer for pulverizing a powder raw material which is an object to be pulverized by using a jet air flow (high pressure gas), and an electrostatic charge image developing toner using the pulverizer. It relates to a manufacturing method.
【0002】[0002]
【従来の技術】ジェット気流を用いた衝突式気流粉砕機
では、ジェット気流で粉体原料を搬送して加速管出口よ
り噴出させ、この粉体原料を加速管出口前方の出口に対
向して設けられている衝突部材に衝突させ、その衝撃力
により粉体原料の粉砕を行う。図6に示す従来例のジェ
ット気流を用いた衝突式気流粉砕機に基づいて、以下に
その詳細を説明する。該衝突式気流粉砕機は、図6に示
した様に、高圧気体供給ノズル22を接続した加速管2
3の出口24に対向した位置に衝突部材25が設けられ
ており、加速管23に供給した高圧気体の流動により、
加速管23の中途に連通されている被粉砕物供給口21
から加速管23内部に吸引されてくる粉体原料を、高圧
気体と共に加速管23の出口24から噴射し、衝突部材
25の衝突面26に衝突させ、その衝撃によって粉砕す
る。2. Description of the Related Art In a collision type air flow crusher using a jet air stream, a powder raw material is conveyed by a jet air stream and ejected from an accelerating pipe outlet, and the powder raw material is provided in front of an accelerating pipe outlet. The powder material is crushed by the impact force of the impact material. The details will be described below based on the conventional collision type airflow crusher using a jet airflow shown in FIG. As shown in FIG. 6, the collision type airflow crusher has an accelerating pipe 2 to which a high pressure gas supply nozzle 22 is connected.
The collision member 25 is provided at a position facing the outlet 24 of No. 3, and by the flow of the high-pressure gas supplied to the acceleration tube 23,
The crushed material supply port 21 connected to the middle of the accelerating pipe 23
The powder raw material sucked into the inside of the accelerating pipe 23 is jetted from the outlet 24 of the accelerating pipe 23 together with the high-pressure gas, collides against the collision surface 26 of the collision member 25, and is crushed by the impact.
【0003】しかしながら、上記した様に、従来例の衝
突式気流粉砕機では被粉砕物供給口21が加速管23の
途中に連通されている為、下記の様な問題を生じてい
る。即ち、加速管23内に吸引導入された粉体原料は、
被粉砕物供給口21通過直後に、高圧気体供給ノズルよ
り噴出する高圧気流により加速管出口方向に向かって流
路を急激に変更しながら分散急加速されるが、この状態
において、粉体原料中、比較的粗粒子のものはその慣性
力の影響から加速管低流部を、又、比較的微粒子のもの
は加速管高流部を通過しており、粉体原料が高圧気流中
に十分均一に分散されず、粉体原料濃度の高い流れと低
い流れに分離したままの状態で、粉体原料が加速管23
に対向する衝突部材に部分的に集中して衝突することに
なり、粉砕効率の低下、処理能力の低下を引き起こして
いる。更に、衝突面に衝突して粉砕された粉砕物は、粉
砕室の内壁に二次(或いは三次)衝突して更に粉砕され
るが、上記従来例では粉砕室の形状が箱形である為、効
率的な二次衝突が行われず、微粉砕処理能力の向上が図
れないという欠点があった。However, as described above, in the conventional collision type airflow crusher, the crushed object supply port 21 is communicated with the accelerating pipe 23, so that the following problems occur. That is, the powder raw material sucked and introduced into the acceleration tube 23 is
Immediately after passing through the crushed material supply port 21, the high-pressure gas jet from the high-pressure gas supply nozzle rapidly accelerates dispersion while rapidly changing the flow path toward the accelerating pipe outlet direction. The relatively coarse particles pass through the low flow part of the acceleration tube due to the influence of the inertial force, and the relatively fine particles pass through the high flow part of the acceleration tube, and the powder raw material is sufficiently uniform in the high pressure air flow. The powder raw material is not dispersed in the powder and is separated into a flow having a high concentration of the powder raw material and a flow having a low concentration of the powder raw material.
The collision member is partially concentrated and collides with the collision member, which causes reduction in pulverization efficiency and reduction in processing capacity. Further, the pulverized product crushed by colliding with the collision surface is further crushed by secondary (or tertiary) collision with the inner wall of the crushing chamber, but in the above conventional example, the crushing chamber has a box shape, There is a drawback that efficient secondary collision does not occur and the fine pulverization processing capacity cannot be improved.
【0004】一方、従来かかる粉砕機における衝突部材
の衝突面は、図6及び図7に示す様に、被粉砕物を乗せ
た原料粉体粒子の混合気流方向、つまり加速管に対し直
角或いは傾斜(例えば、図7に示す様に45°の角度)
している平板状のものが用いられており(特開昭57−
50554号公報及び特開昭58−143853号公報
参照)、次の様な欠点を有していた。On the other hand, the collision surface of the collision member in the conventional crusher, as shown in FIGS. 6 and 7, is in the direction of the mixed air flow of the raw material powder particles on which the material to be crushed is placed, that is, at right angles or inclination to the acceleration tube. (For example, an angle of 45 ° as shown in FIG. 7)
The flat plate is used (Japanese Patent Laid-Open No. 57-
No. 50554 and Japanese Patent Laid-Open No. 58-143853), there are the following drawbacks.
【0005】図6に示す様な加速管23の軸方向と垂直
な衝突面26を有する粉砕機の場合には、加速管出口2
4から吹き出される被粉砕物と衝突面26で反射される
粉砕物とが衝突面26の近傍で共存する割合が高く、こ
の為、衝突面26近傍での粉体(被粉砕物及び粉砕物)
濃度が高くなり、粉砕効率がよくない。又、図7に示す
様な粉砕機においては、衝突面26が加速管23の軸方
向に対して傾斜している為に、衝突面26近傍の粉体濃
度は図6の粉砕機と比較して低くなるが、高圧気流によ
る衝突力は分散されて低下する。更に、粉砕室側壁28
との二次衝突を有効に利用しているとはいえない。例え
ば、図7に示す如き、衝突面26の角度が加速管に対し
45度傾斜のものでは、熱可塑性樹脂を粉砕するときに
上記の様な問題は少ないが、衝突する際に粉砕に使われ
る衝撃力が小さく、更に粉砕室側壁28との二次衝突に
よる粉砕が少ないので、粉砕能力は図6の粉砕機と比較
して1/2〜1/1.5に落ちる。In the case of a crusher having a collision surface 26 perpendicular to the axial direction of the acceleration tube 23 as shown in FIG. 6, the acceleration tube outlet 2
The pulverized material blown out from No. 4 and the pulverized material reflected by the collision surface 26 coexist in the vicinity of the collision surface 26 at a high rate. Therefore, the powder (the pulverized material and the pulverized material in the vicinity of the collision surface 26 is present. )
The concentration is high and the pulverization efficiency is not good. Further, in the crusher as shown in FIG. 7, since the collision surface 26 is inclined with respect to the axial direction of the acceleration tube 23, the powder concentration in the vicinity of the collision surface 26 is smaller than that in the crusher shown in FIG. However, the collision force due to the high pressure air flow is dispersed and decreases. Further, the crushing chamber side wall 28
It cannot be said that the secondary collision with is effectively used. For example, as shown in FIG. 7, when the collision surface 26 has an angle of 45 degrees with respect to the accelerating tube, the above problems are less likely to occur when the thermoplastic resin is crushed, but it is used for crushing when the collision occurs. Since the impact force is small and the crushing by the secondary collision with the side wall 28 of the crushing chamber is small, the crushing ability is reduced to 1/2 to 1 / 1.5 as compared with the crusher of FIG.
【0006】上記問題点が解消された衝突式気流粉砕機
として、実開平1−148740号公報及び特開平1−
254266号公報のものが提案されている。前者で
は、図9及び図10に示す様に、衝突部材の原料衝突面
26を加速管の軸芯に対して直角に配置し、その原料衝
突面に円錐形の突起物31を設けることによって衝突面
での反射流を防止することが提案されている。又、後者
では、図8に示す様に、衝突部材の衝突面の先端部分を
特定の円錐形状とすることにより、衝突面近傍の粉体濃
度を低くし、粉砕室側壁28と効率よく二次衝突する様
にすることが提案されている。上記の様に粉砕機の、特
に衝突面の形状を改良して構成することで、従来の問題
点はかなり改善されてきているが、未だ充分ではなく、
又、最近のニーズとして、より微細な粉砕処理物が望ま
れており、更に粉砕効率及び粉砕処理物の品質が良好な
粉砕方法の開発が待望されている。As a collision type air flow crusher in which the above problems have been solved, Japanese Utility Model Laid-Open No. 148740/1989 and Japanese Unexamined Patent Publication No.
The one disclosed in Japanese Patent No. 254266 has been proposed. In the former case, as shown in FIGS. 9 and 10, the raw material collision surface 26 of the collision member is arranged at right angles to the axis of the accelerating tube, and a conical projection 31 is provided on the raw material collision surface to cause collision. It has been proposed to prevent reflected flow at the surface. In the latter case, as shown in FIG. 8, the tip portion of the collision surface of the collision member has a specific conical shape to reduce the powder concentration in the vicinity of the collision surface, and the secondary side efficiently with the crushing chamber side wall 28. It has been proposed to have a collision. As described above, the conventional problems have been considerably improved by improving the shape of the crusher, especially the shape of the collision surface, but it is still not sufficient.
Further, as a recent need, a finer pulverized product is desired, and further development of a pulverization method which is excellent in pulverization efficiency and quality of the pulverized product is desired.
【0007】一方、電子写真法による画像形成方法に用
いられるトナー又はトナー用着色樹脂粉体は、通常、少
なくとも結着樹脂及び着色剤を含有し、場合によっては
磁性粉を含有している。かかる組成を有するトナーは、
潜像担持体に形成された静電荷像を現像し、形成された
トナー像は、普通紙又はプラスチックフィルムの如き転
写材へと転写される。そして転写材上のトナー像は、加
熱定着手段、圧力ローラ定着手段又は加熱加圧ローラ定
着手段の如き定着装置によって転写材上に定着される。
従って、トナーに使用される結着樹脂は、熱や圧力が付
加されると塑性変形する特性を有している。On the other hand, the toner or the colored resin powder for toner used in the image forming method by electrophotography usually contains at least a binder resin and a colorant, and in some cases, magnetic powder. The toner having such a composition is
The electrostatic image formed on the latent image carrier is developed, and the formed toner image is transferred to a transfer material such as plain paper or a plastic film. Then, the toner image on the transfer material is fixed on the transfer material by a fixing device such as heat fixing means, pressure roller fixing means, or heat pressure roller fixing means.
Therefore, the binder resin used for the toner has a characteristic of being plastically deformed when heat or pressure is applied.
【0008】現在、例えばトナーを製造する方法として
は、先ず、少なくとも結着樹脂及び着色剤、必要により
磁性粉(更に必要により第三成分を含有)を含有する混
合物を溶融混練し、次に、得られる溶融混練物を冷却し
た後、冷却物を粉砕し、更に得られた粉砕物を分級して
調製されている。この際の冷却物の粉砕方法としては、
通常、機械式衝撃式粉砕機により粗粉砕(又は中粉砕)
し、次いで得られた粉砕粗粉をジェット気流を用いた衝
突式気流粉砕機で微粉砕するのが一般的である。かかる
場合に、図6に示す様な従来の衝突式気流粉砕機及び粉
砕方式を用いたのでは、処理能力を更に向上させようと
すれば、加速管23に設けられる粉体原料供給口で吸引
不足が起こり、或いは衝突面26上で融着物が発生し、
安定生産が行えないという問題があった。この為、電子
写真法による画像形成方法に用いられるトナー或いはト
ナー用着色樹脂粉体を更に効率よく製造する為に、より
優れた衝突式気流粉砕機が望まれていた。At present, for example, as a method for producing a toner, first, a mixture containing at least a binder resin and a colorant, and optionally a magnetic powder (and optionally a third component) is melt-kneaded, and then, It is prepared by cooling the obtained melt-kneaded product, pulverizing the cooled product, and classifying the obtained pulverized product. At this time, as a method for pulverizing the cooled material,
Usually, coarse crushing (or medium crushing) by mechanical impact crusher
Then, the obtained coarse pulverized powder is generally finely pulverized by a collision type air flow pulverizer using a jet air flow. In such a case, if the conventional collision type airflow crusher and crushing method as shown in FIG. 6 are used, if the processing capacity is to be further improved, suction is performed at the powder raw material supply port provided in the acceleration tube 23. Shortage occurs, or a fusion substance is generated on the collision surface 26,
There was a problem that stable production could not be performed. Therefore, in order to more efficiently manufacture the toner or the colored resin powder for toner used in the image forming method by electrophotography, a more excellent collision type airflow crusher has been desired.
【0009】[0009]
【発明が解決しようとしている課題】従って、本発明の
目的は、上記の様な従来技術の問題点を解消し、粉体原
料を更に効率よく粉砕することが出来る新規な衝突式気
流粉砕機を提供することにある。又、本発明の別の目的
は、上記の様な従来技術の問題点を解決し、静電荷像現
像用トナーを効率よく粉砕し得る効率のよいトナー製造
方法を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a novel collision type air flow crusher capable of crushing powder raw materials more efficiently. To provide. Another object of the present invention is to solve the above-mentioned problems of the prior art and to provide an efficient toner production method capable of efficiently pulverizing an electrostatic charge image developing toner.
【0010】[0010]
【課題を解決するための手段】上記の目的は下記の本発
明によって達成される。即ち、本発明は、高圧気体によ
り粉体原料を搬送加速する為の加速管と、該加速管から
噴出させた粉体原料を衝突させて粉砕する為の加速管出
口開口面に対向して設けられた衝突部材と、該衝突部材
が内設されている粉砕室とを有する衝突式気流粉砕機に
おいて、該粉砕室の側壁に二次空気導入口を設けること
を特徴とする衝突式気流粉砕機、及びこれを用いた静電
荷像現像用トナー製造方法である。The above object can be achieved by the present invention described below. That is, the present invention is provided so as to face an acceleration tube for accelerating the powder raw material by high-pressure gas and an acceleration pipe outlet opening surface for colliding and crushing the powder raw material ejected from the acceleration tube. Collision type airflow crusher having a secondary air introduction port on a side wall of the crushing chamber, the collision type airflow crusher having a collision member and a crushing chamber in which the collision member is provided. And a method for producing a toner for developing an electrostatic charge image using the same.
【0011】[0011]
【作用】本発明者は、従来技術の問題点を解決すべく鋭
意研究の結果、衝突式気流粉砕機を、加速管出口から噴
出された粉体を衝突部材の衝突面に衝突させる際に、衝
撃力を低下させることなく衝突面の局部的摩耗の発生を
防ぐことが出来る構造とし、且つ粉砕室内の上部空間領
域における渦流の発生をなくし、気流の乱れを極力抑
え、更に衝突面に衝突した粉体原料が更に粉砕室内壁に
衝突する多次衝突を効果的に行うことの出来る構造とす
ることによって、粉砕効率が大幅に向上することを知見
して本発明に至った。又、上記構成を有する衝突式気流
粉砕機を用いれば、熱や圧力が付加されると塑性変形す
る特性を有するトナーに使用される結着樹脂を微粉砕す
る場合にも、粉体原料をより効率よく粉砕することが出
来る為、静電荷像現像用トナーの製造効率を格段に向上
させることが出来る。As a result of earnest research to solve the problems of the prior art, the present inventor has found that when the collision type air flow crusher collides the powder ejected from the outlet of the acceleration tube with the collision surface of the collision member, It has a structure that can prevent local abrasion of the collision surface without reducing the impact force, and eliminates the generation of vortex in the upper space area of the crushing chamber, suppresses the turbulence of the air flow as much as possible, and collides with the collision surface. The present invention has been accomplished by finding that the pulverization efficiency is significantly improved by providing a structure capable of effectively performing multiple collisions in which the powder raw material collides with the inner wall of the pulverization chamber. Further, by using the collision type airflow crusher having the above-mentioned configuration, even when finely pulverizing the binder resin used for the toner having the characteristic of being plastically deformed when heat or pressure is applied, the powder raw material Since the toner can be efficiently pulverized, the production efficiency of the toner for developing an electrostatic charge image can be significantly improved.
【0012】[0012]
【好ましい実施態様】次に、好ましい実施態様を添付図
面に基づいて説明し、本発明を更に詳細に説明する。図
1は、本発明の衝突式気流粉砕機の概略断面図を示し、
同時に、該粉砕機を使用した場合の原料の粉砕工程、更
には粉砕された粉砕物を分級機によって分級する分級工
程を組み合わせた場合における原料粉体の流れを示した
図である。図2は、図1の衝突式気流粉砕機の部分の拡
大断面図を示し、図3は、図1のA−A線における加速
管スロート部2と高圧気体噴出ノズル部3を示す拡大断
面図であり、図4は図1のB−B線における高圧気体供
給口7と高圧気体チャンバー8を示す断面図であり、図
5は図1のC−C線における粉砕室13と衝突部材11
とを示す断面図である。The preferred embodiments will now be described with reference to the accompanying drawings to explain the present invention in more detail. FIG. 1 shows a schematic cross-sectional view of the collision type airflow crusher of the present invention,
At the same time, it is a diagram showing the flow of the raw material powder in the case of combining the raw material pulverizing step in the case of using the pulverizer and further the classification step of classifying the pulverized pulverized product by the classifier. 2 shows an enlarged cross-sectional view of a portion of the collision type airflow crusher of FIG. 1, and FIG. 3 shows an enlarged cross-sectional view of the accelerating pipe throat portion 2 and the high-pressure gas jet nozzle portion 3 taken along the line AA of FIG. 4 is a cross-sectional view showing the high-pressure gas supply port 7 and the high-pressure gas chamber 8 along the line BB in FIG. 1, and FIG. 5 is the crushing chamber 13 and the collision member 11 along the line C-C in FIG.
It is sectional drawing which shows and.
【0013】図2に示した本発明の衝突式気流粉砕機に
ついて説明すると、該粉砕機は、高圧気体により被粉砕
物を搬送加速する為の加速管1と、加速管出口開口面に
対向して設けられている衝突面を有する衝突部材11と
を有し、加速管1がラバルノズル状をなし、該加速管1
のスロート部2の上流に高圧気体噴出ノズル3を配し、
該高圧気体噴出ノズル3の外壁と加速管1のスロート部
2の内壁との間に被粉砕物供給口5が設けられ、更に、
該加速管1の出口に接続して設けられている粉砕室13
の軸方向断面形状が、円形状を有している。The collision-type airflow crusher of the present invention shown in FIG. 2 will be described. The crusher faces an accelerating tube 1 for accelerating the object to be crushed by high-pressure gas and an accelerating tube outlet opening surface. And a collision member 11 having a collision surface, and the acceleration tube 1 has a Laval nozzle shape.
The high-pressure gas jet nozzle 3 is arranged upstream of the throat section 2 of
A pulverized material supply port 5 is provided between the outer wall of the high-pressure gas ejection nozzle 3 and the inner wall of the throat portion 2 of the acceleration tube 1, and further,
Grinding chamber 13 connected to the outlet of the acceleration tube 1
Has a circular cross section in the axial direction.
【0014】上記の様な構造を有する本発明の衝突式気
流粉砕機において、被粉砕物供給筒6より供給された被
粉砕物は、中心軸を鉛直方向に配設したラバルノズル形
状をなす加速管1の加速管スロート部2の内壁と、中心
が加速管1の中心軸と同軸上にある高圧気体噴出ノズル
3の外壁との間で形成された被粉砕物供給口5へ到達す
る。一方、高圧気体は、高圧気体供給口7より導入され
高圧気体チャンバー8を経て、一本、更に好ましくは複
数本の高圧気体導入管9を通り、高圧気体噴出ノズル3
より加速管出口10方向に向かって急激に膨脹しながら
噴出する。この時、加速管スロート部2の近傍で発生す
るエゼクター効果により、被粉砕物はこれと共存してい
る気体に同伴されながら、被粉砕物供給口5より加速管
出口10方向に向けて吸引され、加速管スロート部2に
おいて高圧気体と均一に混合されながら急加速し、加速
管出口10に対向配置されている衝突部材11の衝突面
に、粉塵濃度の偏りなく均一な固気混合気流の状態で衝
突する。衝突時に発生する衝撃力は、十分分散された個
々の粒子(被粉砕物)に与えられる為、効率のよい粉砕
が出来る。In the collision type airflow crusher of the present invention having the above-mentioned structure, the crushed substance supplied from the crushed substance supply cylinder 6 is an acceleration tube having a Laval nozzle shape with its central axis arranged in the vertical direction. The crushed material supply port 5 is formed between the inner wall of the accelerating tube throat portion 2 and the outer wall of the high-pressure gas jet nozzle 3 whose center is coaxial with the central axis of the accelerating tube 1. On the other hand, the high-pressure gas is introduced from the high-pressure gas supply port 7, passes through the high-pressure gas chamber 8, and passes through one, more preferably a plurality of high-pressure gas introduction pipes 9, and the high-pressure gas ejection nozzle 3
It jets while expanding rapidly toward the acceleration tube outlet 10. At this time, due to the ejector effect generated in the vicinity of the accelerating pipe throat portion 2, the crushed substance is sucked toward the accelerating pipe outlet 10 from the crushed substance supply port 5 while being entrained in the gas coexisting with the crushed substance. In the accelerating tube throat portion 2, the high-pressure gas is uniformly mixed and rapidly accelerated, and the collision surface of the collision member 11 arranged opposite to the accelerating tube outlet 10 is in a state of a uniform solid-gas mixture air flow with no uneven dust concentration. Clash with. Since the impact force generated at the time of collision is given to the sufficiently dispersed individual particles (objects to be crushed), efficient crushing can be performed.
【0015】更に、本発明の衝突式気流粉砕機では、こ
のときに、粉砕室13内に二次空気導入口19から二次
空気を導入させ、該衝突面より上側の粉砕室13の空間
領域における渦流の発生をなくし、気流の乱れを極力抑
え、効果的に衝突を起こさせる。従って、衝突時に発生
する衝撃力が、充分に分散した個々の粒子(被粉砕物)
に与えられ、非常に効率のよい粉砕が出来る。更に、衝
突部材11の衝突面で粉砕された粉砕物は、粉砕室13
内に二次空気導入口19から導入された二次空気によっ
て、分散した個々の粒子を保ちつつ粉砕室壁15と衝突
部材11表面の間で衝突が繰り返される為、より粉砕効
率が上昇する。そして、粉砕物は、衝突部材11後方に
配置された粉砕物出口14より排出される。Further, in the collision type airflow crusher of the present invention, at this time, the secondary air is introduced into the crushing chamber 13 from the secondary air introducing port 19, and the space region of the crushing chamber 13 above the collision surface is introduced. Eliminates the generation of eddy currents, suppresses turbulence of the air flow as much as possible, and effectively causes collisions. Therefore, the impact force generated at the time of collision is such that the individual particles (ground objects) are well dispersed.
It is possible to pulverize very efficiently. Furthermore, the crushed material crushed on the collision surface of the collision member 11 is
The secondary air introduced from the secondary air introduction port 19 repeatedly collides between the crushing chamber wall 15 and the surface of the collision member 11 while maintaining the dispersed individual particles, so that the pulverization efficiency is further increased. Then, the crushed material is discharged from the crushed material outlet 14 arranged behind the collision member 11.
【0016】粉砕室13内に設けられる衝突部材11の
衝突面は、図2に示した様に、突出している突出中央部
16と、該突出中央部の周囲に突出中央部16で粉砕さ
れた被粉砕物の一次粉砕物を更に衝突により粉砕する為
の外周衝突面17を有しているのが好ましい。又、図2
に示した様に、加速管1の中心軸を鉛直方向に配置し、
該加速管の内壁と高圧気体噴出ノズル3の外壁間から被
粉砕物である粉体原料を供給せしめる構造とすれば、高
圧気体の噴出方向と被粉砕物の供給方向が同一方向とな
る為、被粉砕物を、粉塵濃度による偏りがない均一な状
態で、噴出する高圧気流中に分散させることが出来る。
この結果、加速管1の出口から粉砕室13に噴出された
被粉砕物は、先ず、衝突部材の衝突面上の突出中央部1
6の表面で一次粉砕された後、外周衝突面17で二次粉
砕され、その後更に粉砕室側壁15で三次粉砕される。As shown in FIG. 2, the collision surface of the collision member 11 provided in the crushing chamber 13 is crushed at the protruding central portion 16 and the protruding central portion 16 around the protruding central portion. It is preferable to have an outer peripheral collision surface 17 for further crushing the primary crushed material to be crushed by collision. Moreover, FIG.
As shown in, arrange the central axis of the acceleration tube 1 in the vertical direction,
If the structure is such that the powder material that is the object to be crushed is supplied between the inner wall of the accelerating tube and the outer wall of the high-pressure gas injection nozzle 3, the high-pressure gas is jetted in the same direction as the object to be crushed. It is possible to disperse the crushed object in the jetting high-pressure air stream in a uniform state without deviation due to the dust concentration.
As a result, the object to be crushed ejected from the outlet of the acceleration tube 1 into the crushing chamber 13 firstly has the protruding central portion 1 on the collision surface of the collision member.
After primary pulverization on the surface of No. 6, secondary pulverization is performed on the outer peripheral collision surface 17, and then tertiary pulverization is further performed on the pulverization chamber side wall 15.
【0017】この時、衝突部材11の衝突面に突出して
いる突出中央部16の頂角α(°)と、外周衝突面17
の加速管1の中心軸の垂直面に対する傾斜角β(°)
が、下記の関係を満足する時に、非常に効率よく粉砕が
行われるので好ましい。 0<α<90、β>0、 30≦α+2β≦90At this time, the apex angle α (°) of the protruding central portion 16 protruding on the collision surface of the collision member 11 and the outer peripheral collision surface 17
Angle β (°) with respect to the vertical plane of the central axis of the acceleration tube 1
However, when the following relationship is satisfied, the pulverization is performed very efficiently, which is preferable. 0 <α <90, β> 0, 30 ≦ α + 2β ≦ 90
【0018】即ち、α≧90の時は、突出中央部16の
表面で一次粉砕された粉砕物の反射流が、加速管1から
噴出する固気混合流の流れを乱すことになる為、好まし
くない。又、β=0のとき、即ち、図6に示した様に外
周衝突面17が固気混合流に対して直角の場合には、外
周衝突面17での反射流が固気混合流に向かって流れる
為、固気混合流の乱れを生じ好ましくない。β=0のと
きには、外周衝突面17上での粉体濃度が大きくなり過
ぎ、熱可塑性樹脂粉体、或いは熱可塑性樹脂を主成分と
する粉体を原料とした場合に、外周衝突面17上で融着
物及び凝集物を生じ易く、装置の安定した運転が困難と
なる為、好ましくない。That is, when α ≧ 90, it is preferable that the reflected flow of the pulverized material that has been primary pulverized on the surface of the protruding central portion 16 disturbs the flow of the solid-gas mixture flow ejected from the acceleration tube 1. Absent. Further, when β = 0, that is, when the outer peripheral collision surface 17 is perpendicular to the solid-gas mixture flow as shown in FIG. 6, the reflected flow at the outer peripheral collision surface 17 is directed toward the solid-gas mixture flow. Flow in a solid-gas mixture flow, which is not preferable. When β = 0, the powder concentration on the outer peripheral collision surface 17 becomes too large, and when thermoplastic resin powder or powder containing a thermoplastic resin as a main component is used as the raw material, It is not preferable because fused substances and aggregates are likely to be generated and stable operation of the apparatus becomes difficult.
【0019】又、α及びβが、α+2β<30の時に
は、突出中央部16表面での一次粉砕の衝撃力が弱めら
れる為、粉砕効率の低下を招き好ましくない。α及びβ
が、α+2β>90のときには、外周衝突部17での反
射流が固気混合流の下流側に流れる為、粉砕室側壁15
での三次粉砕の衝撃力が弱くなり、粉砕効率の低下を引
き起こし好ましくない。以上述べたように、α、βが 0<α<90、β>0 30≦α+2β≦90 を満たす時に、図2に示すごとく、一次、二次、三次粉
砕が効率良く行われ、粉砕効率を向上させることができ
る。更に、α及びβが下記の関係を満足する場合には、
衝突板表面での二次粉砕及び粉砕室側壁での三次粉砕の
衝突が弱くなることなく、粉砕効率が更に向上する為、
より好ましい。 10<α<80で且つ 5<β<40Further, when α and β are α + 2β <30, the impact force of the primary crushing on the surface of the protruding central portion 16 is weakened, so that the crushing efficiency is lowered, which is not preferable. α and β
However, when α + 2β> 90, the reflection flow at the outer peripheral collision portion 17 flows to the downstream side of the solid-gas mixture flow, so that the crushing chamber side wall 15
The impact force of the third pulverization is weakened and the pulverization efficiency is lowered, which is not preferable. As described above, when α and β satisfy 0 <α <90, β> 0 30 ≦ α + 2β ≦ 90, as shown in FIG. 2, the primary, secondary, and tertiary pulverization is efficiently performed, and the pulverization efficiency is improved. Can be improved. Furthermore, when α and β satisfy the following relationship,
Since the collision of the secondary pulverization on the surface of the collision plate and the tertiary pulverization on the side wall of the pulverization chamber are not weakened, the pulverization efficiency is further improved,
More preferable. 10 <α <80 and 5 <β <40
【0020】[0020]
【実施例】次に、実施例を挙げて本発明を更に詳細に説
明する。 実施例1 ・スチレン−ブチルアクリレート−ジビニルベンゼン共重合体(モノマー重合 重量比80.0/19.0/1.0Mw、分子量35万) 100重量部 ・磁性酸化鉄(平均粒径0.18μm) 100重量部 ・ニグロシン 2重量部 ・低分子量エチレン−プロピレン共重合体 4重量部 先ず、上記処方の材料を、ヘンシェルミキサーFM−7
5型(三井三池化工機(株)製)でよく混合した後、1
50℃に設定した2軸混練機PCM−30型(池貝鉄工
(株)製)にて混練した。得られた混練物を冷却し、ハ
ンマーミルにて1mm以下に粗粉砕し、トナー粉砕原料
を得た。得られた粉砕原料を、図1に示す本発明の衝突
式気流粉砕機を用いて粉砕した。鉛直線を基準とした加
速管の長軸方向の傾きは実質的に0°で行った。粉砕条
件としては、先ず、定量供給機にて粉砕原料を50.0
Kg/hr.の割合で強制渦流式の分級機に供給して分
級し、分級された粗粉を衝突式気流粉砕機に導入して、
圧力0.59MPa(G)、6.0Nm3/minの圧
縮空気を用いて粉砕した。本実施例では粉砕後、再度分
級機に循環する閉回路粉砕を行った。このとき、粉砕室
に二次空気を0.7Nm3/min、0.29MPaで
導入した。その結果、分級された細粉製品として、重量
平均径8.1μmのトナー用微粉砕品を得た。上記の粉
砕は、融着物の発生がなく、安定した運転をすることが
出来た。EXAMPLES Next, the present invention will be described in more detail with reference to examples. Example 1-Styrene-butyl acrylate-divinylbenzene copolymer (monomer polymerization weight ratio 80.0 / 19.0 / 1.0 Mw, molecular weight 350,000) 100 parts by weight-Magnetic iron oxide (average particle size 0.18 μm) 100 parts by weight Nigrosine 2 parts by weight Low molecular weight ethylene-propylene copolymer 4 parts by weight First, the ingredients of the above formulation were applied to a Henschel mixer FM-7.
Mix well with a 5 type (Mitsui Miike Kakoki Co., Ltd.), then mix 1
Kneading was performed with a twin-screw kneader PCM-30 type (manufactured by Ikegai Tekko KK) set at 50 ° C. The obtained kneaded product was cooled and roughly pulverized to 1 mm or less with a hammer mill to obtain a toner pulverized raw material. The obtained pulverized raw material was pulverized using the collision type airflow pulverizer of the present invention shown in FIG. The inclination of the acceleration tube in the long axis direction with respect to the vertical line was substantially 0 °. As for the crushing condition, first, the crushing raw material is 50.0
Kg / hr. Is supplied to a forced vortex type classifier at the ratio of, and the classified coarse powder is introduced into a collision type airflow crusher,
The powder was pulverized using compressed air having a pressure of 0.59 MPa (G) and 6.0 Nm 3 / min. In the present example, after crushing, closed circuit crushing was carried out by circulating the crusher again into the classifier. At this time, secondary air was introduced into the crushing chamber at 0.7 Nm 3 / min and 0.29 MPa. As a result, a finely pulverized product for toner having a weight average diameter of 8.1 μm was obtained as a classified fine powder product. The above-mentioned pulverization did not generate a fused substance, and could be operated stably.
【0021】上記で得られた微粉砕品、又はトナーの粒
度分布は、種々の方法によって測定することが出来る
が、本発明においては、コールターカウンターを用いて
測定を行った。即ち、装置としては、コールターカウン
ターTA−II或はコールターマルチサイザーII(コール
ター社製)を用いる。電解液には、1級塩化ナトリウム
で約1%NaCl水溶液を調製して用いる。例えば、商
品名ISOTON−II(コールターサイエンティフィッ
クジャパン社製)を使用することが出来る。粒度分布の
具体的な測定方法としては、前記電解水溶液100〜1
50ml中に、先ず、分散剤として界面活性剤、好まし
くはアルキルベンゼンスルホン酸塩を0.1〜5ml加
え、更にこの中に測定試料を2〜20mg加える。試料
を懸濁させた電解液を、超音波分散器で約1〜3分間分
散処理をして測定用の試料を作製する。これを前記測定
装置により、アパーチャーとして100μmアパーチャ
ーを用いて、トナーの体積、個数を測定した後、体積分
布と個数分布とを算出する。そして、体積分布から、重
量基準の重量平均粒径(D4)(各チャンネルの中央値
をチャンネル毎の代表値とする)を求め、個数分布から
個数基準の長さ平均粒径(D1)を求め、及び体積分布
から重量基準の粗粉量(20.2μm以上)を求め、更
に個数分布から個数基準の微粉個数(6.35μm以
下)を夫々求めた。The particle size distribution of the finely pulverized product or toner obtained above can be measured by various methods, but in the present invention, it was measured using a Coulter counter. That is, as a device, Coulter Counter TA-II or Coulter Multisizer II (manufactured by Coulter) is used. As the electrolytic solution, an approximately 1% NaCl aqueous solution is prepared using primary sodium chloride and used. For example, the brand name ISOTON-II (manufactured by Coulter Scientific Japan Co.) can be used. As a specific measuring method of the particle size distribution, the electrolytic aqueous solution 100 to 1 is used.
First, 0.1 to 5 ml of a surfactant, preferably an alkylbenzene sulfonate, is added as a dispersant to 50 ml, and 2 to 20 mg of a measurement sample is further added thereto. The electrolytic solution in which the sample is suspended is dispersed by an ultrasonic disperser for about 1 to 3 minutes to prepare a sample for measurement. The volume and number of the toner are measured by using the measuring device with a 100 μm aperture as the aperture, and then the volume distribution and the number distribution are calculated. Then, a weight-based weight average particle diameter (D4) (the median value of each channel is set as a representative value for each channel) is obtained from the volume distribution, and a number-based length average particle diameter (D1) is obtained from the number distribution. , And the volume-based coarse powder amount (20.2 μm or more) was obtained, and the number-based fine powder number (6.35 μm or less) was also obtained from the number distribution.
【0022】実施例2 実施例1と同様のトナー粉砕原料を用い、図1に示す衝
突式気流粉砕機を用いて粉砕した。該衝突式気流粉砕機
は実施例1で用いたのと同様の構成のものを用いた。本
実施例の場合は、定量供給機にて粉砕原料を34Kg/
hr.の割合で強制渦流式の分級機に供給し、分級され
た粗粉を衝突式気流粉砕機に導入し、圧力0.59MP
a(G)、6.0Nm3/minの圧縮空気を用いて粉
砕した。その後、再度分級機に循環して閉回路粉砕を行
った。このとき、粉砕室に二次空気を0.7Nm3/m
in、0.29MPaで導入した。その結果、分級され
た細粉として、重量平均径6.0μmのトナー用微粉砕
品を得た。本実施例においても、粉砕の際に融着物の発
生はなく、安定した運転が出来た。Example 2 The same toner pulverization raw material as in Example 1 was used and pulverization was performed using the collision type air flow pulverizer shown in FIG. The collision type airflow crusher used had the same structure as that used in Example 1. In the case of this embodiment, the crushed raw material is 34 kg /
hr. Is supplied to a forced vortex type classifier at a ratio of 100%, and the classified coarse powder is introduced into a collision type airflow crusher at a pressure of 0.59MP.
a (G) was pulverized using compressed air of 6.0 Nm 3 / min. Then, it was circulated through the classifier again to carry out closed circuit pulverization. At this time, the secondary air is 0.7 Nm 3 / m in the crushing chamber.
In, 0.29 MPa was introduced. As a result, a finely pulverized product for toner having a weight average diameter of 6.0 μm was obtained as classified fine powder. Also in the present example, no stable deposit was generated during pulverization, and stable operation was possible.
【0023】比較例1 実施例1と同様のトナー粉砕原料を用い、図6に示す従
来の衝突式気流粉砕機を用いて粉砕した。該衝突式気流
粉砕機は、衝突面の形状が加速管の長軸方向に対して垂
直な平面状のものである。又、粉砕室の形状は箱形のも
のを用いた。先ず、定量供給機にて粉砕原料を18.0
Kg/hr.の割合で強制渦流式の分級機に供給し、分
級された粗粉を上記の衝突式気流粉砕機に導入し、圧力
0.59MPa(G)、6.0Nm3/minの圧縮空
気を用いて粉砕した後、再度分級機に循環して閉回路粉
砕を行った。その結果、分級された細粉として重量平均
径8.3μmのトナー用微粉砕品を得た。本比較例の場
合、供給量を18.0Kg/hr.以上に増やすと、得
られる細粉の重量平均径が大きくなり、又、衝突部材上
で粉砕物の融着、凝集物、粗粒子が生じはじめ、融着物
が加速管の原料投入口を詰まらせる場合があり、安定し
た運転が出来なかった。Comparative Example 1 The same toner pulverization raw material as in Example 1 was used to pulverize with a conventional collision type air flow pulverizer shown in FIG. The collision type airflow crusher has a plane of collision surface which is perpendicular to the long axis direction of the acceleration tube. The shape of the crushing chamber was a box. First, 18.0 of pulverized raw material was fed with a constant quantity feeder.
Kg / hr. To the forced vortex type classifier, and the classified coarse powder is introduced into the collision type airflow crusher described above, and compressed air with a pressure of 0.59 MPa (G) and 6.0 Nm 3 / min is used. After crushing, it was circulated through the classifier again for closed circuit crushing. As a result, a finely pulverized product for toner having a weight average diameter of 8.3 μm was obtained as classified fine powder. In the case of this comparative example, the supply amount was 18.0 Kg / hr. If the amount is increased above, the weight average diameter of the fine powder obtained will be large, and fusion, agglomerates, and coarse particles of the pulverized material will begin to form on the collision member, and the fusion material will clog the raw material inlet of the acceleration tube. In some cases, stable driving was not possible.
【0024】比較例2 実施例1と同様のトナー粉砕原料を用い、図7に示す従
来の衝突式気流粉砕機を用いて粉砕した。該衝突式気流
粉砕機は、衝突部材の原料衝突面が加速管の軸芯に対し
て直角(β=0°)であり、且つその原料衝突面に頂角
50°(α=50°)の円錐状の突起を設けたものであ
る。又、粉砕室の形状は箱型である。定量供給機にて粉
砕原料を22Kg/hr.の割合で強制渦流式の分級機
に供給し、分級された粗粉を上記した衝突式気流粉砕機
に導入し、圧力0.59MPa(G)、6.0Nm3/
minの圧縮空気を用いて粉砕した後、再度分級機に循
環して閉回路粉砕を行った。その結果、分級された細粉
として、重量平均径8.2μmのトナー用微粉砕品を得
た。本比較例の場合、供給量を22Kg/hr.以上に
増やすと得られる細粉の重量平均径が大きくなった。
尚、粗大融着物の発生は認められなかったが、1時間運
転した後、衝突部材を点検したところ、原料衝突面にう
っすらと粉砕物の融着物の層が付着しているのが確認さ
れた。Comparative Example 2 The same toner pulverization raw material as in Example 1 was used to pulverize using a conventional collision type air flow pulverizer shown in FIG. In the collision type airflow pulverizer, the raw material collision surface of the collision member is at a right angle (β = 0 °) to the axis of the accelerating tube, and the raw material collision surface has an apex angle of 50 ° (α = 50 °). It is provided with a conical projection. The crushing chamber has a box shape. The pulverized raw material was supplied at a constant amount of 22 Kg / hr. Is supplied to the forced vortex type classifier at a ratio of, and the classified coarse powder is introduced into the above-mentioned collision type airflow crusher, and the pressure is 0.59 MPa (G), 6.0 Nm 3 /
After crushing with compressed air of min, it was circulated through the classifier again to carry out closed circuit crushing. As a result, a finely pulverized product for toner having a weight average diameter of 8.2 μm was obtained as classified fine powder. In the case of this comparative example, the supply amount was 22 Kg / hr. By increasing the amount above, the weight average diameter of the fine powder obtained increased.
Although no generation of a coarse fusion product was observed, when the collision member was inspected after operating for 1 hour, it was confirmed that a layer of the fusion product of the pulverized material was slightly attached to the raw material collision surface. .
【0025】比較例3 実施例1と同様のトナー粉砕原料を用い、図8に示す従
来の衝突式気流粉砕機を用いて粉砕した。該衝突式気流
粉砕機の構成は、比較例1で用いたものと同様である。
定量供給機にて粉砕原料を8.0Kg/hr.の割合で
強制渦流式の分級機に供給し、分級された粗粉を上記の
衝突式気流粉砕機に導入し、圧力0.59MPa
(G)、6.0Nm3/minの圧縮空気を用いて粉砕
した後、再度分級機に循環して閉回路粉砕を行った。そ
の結果、分級された細粉として、重量平均径6.4μm
のトナー用微粉砕品を得た。本比較例の場合は、供給量
を8.0Kg/hr.以上に増やすと、得られる細粉の
重量平均径が大きくなり、又、衝突部材上で粉砕物の融
着、凝集物、粗粒子が生じ始め、融着物が加速管の原料
投入口を詰まらせる場合があり、安定した運転が出来な
かった。Comparative Example 3 The same toner pulverization raw material as in Example 1 was used to pulverize with a conventional collision type air flow pulverizer shown in FIG. The structure of the collision type airflow crusher is the same as that used in Comparative Example 1.
The pulverized raw material was supplied at a constant amount of 8.0 kg / hr. Is supplied to a forced vortex type classifier at a ratio of, and the classified coarse powder is introduced into the above collision type airflow crusher, and the pressure is 0.59 MPa.
(G) After crushing using 6.0 Nm 3 / min of compressed air, it was circulated through the classifier again to perform closed circuit crushing. As a result, as a classified fine powder, the weight average diameter was 6.4 μm.
To obtain a finely pulverized product for toner. In the case of this comparative example, the supply amount was 8.0 Kg / hr. If the amount is increased above, the weight average diameter of the fine powder obtained becomes large, and fusion of the pulverized material, agglomerates, and coarse particles start to occur on the collision member, and the fusion material clogs the raw material inlet of the acceleration tube. In some cases, stable driving was not possible.
【0026】[0026]
【発明の効果】本発明によれば、加速管から噴射された
十分に分散された固気混合流物が、衝突部材の衝突面に
て粉砕されるとき、粉砕室内に二次空気導入口から二次
空気が導入される為、衝突面より上流側の粉砕室の空間
領域で渦流の発生がなく、気流の乱れを極力抑えて効果
的な衝突をさせることが出来、更に、二次空気の導入に
より、分散した状態の個々の粒子を保ちつつ粉砕室壁と
衝突部材表面の間で衝突を繰り返させ多次粉砕される
為、従来と比べて粉砕効率が大幅に向上した衝突式気流
粉砕機が提供される。又、衝突後の反射流が加速管に向
けて流れず、衝突面上で融着物の発生を有効に防止する
ことが出来る衝突式気流粉砕機が提供される。又、本発
明の上記した優れた衝突式気流粉砕機を使用して静電荷
像現像用トナーを製造すれば、熱や圧力が付加されると
組成変形する特性を有する粉体原料に対しても、効率の
よい粉砕が出来る為、静電荷像現像用トナーの製造効率
が格段に向上する。According to the present invention, when the sufficiently dispersed solid-gas mixture flow injected from the accelerating tube is crushed at the collision surface of the collision member, it is introduced into the crushing chamber from the secondary air inlet. Since the secondary air is introduced, no vortex flow is generated in the space area of the crushing chamber upstream of the collision surface, turbulence of the air flow can be suppressed as much as possible, and an effective collision can be achieved. With the introduction, the collision-type airflow crusher has significantly improved crushing efficiency compared to the conventional one because it repeatedly collides between the crushing chamber wall and the collision member surface while maintaining the dispersed individual particles. Will be provided. Further, there is provided a collision type airflow crusher capable of effectively preventing the generation of a fusion substance on the collision surface because the reflected flow after the collision does not flow toward the acceleration tube. Further, when the toner for developing an electrostatic charge image is produced by using the above-mentioned excellent collision type air flow pulverizer of the present invention, it can be applied to a powder raw material having a characteristic that the composition is deformed when heat or pressure is applied. Since the pulverization can be performed efficiently, the production efficiency of the toner for developing an electrostatic charge image is significantly improved.
【図1】本発明の衝突式気流粉砕機の使用状態を示すフ
ロー図である。FIG. 1 is a flow diagram showing a usage state of a collision type airflow crusher of the present invention.
【図2】図1の衝突式気流粉砕機の部分を拡大した概略
断面図である。FIG. 2 is an enlarged schematic sectional view of a part of the collision type airflow crusher of FIG.
【図3】図1のA−A断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 1;
【図4】図1のB−B断面図である。FIG. 4 is a sectional view taken along line BB of FIG.
【図5】図1のC−C断面図である。5 is a sectional view taken along line CC of FIG.
【図6】従来例の衝突式気流粉砕機を示す概略断面図で
ある。FIG. 6 is a schematic cross-sectional view showing a conventional collision type airflow crusher.
【図7】別の従来例の衝突式気流粉砕機を示す概略断面
図である。FIG. 7 is a schematic cross-sectional view showing another conventional collision type airflow crusher.
【図8】別の従来例の衝突式気流粉砕機を示す概略断面
図である。FIG. 8 is a schematic cross-sectional view showing another conventional collision type airflow crusher.
【図9】別の従来例の衝突式気流粉砕機を示す概略断面
図である。FIG. 9 is a schematic cross-sectional view showing another conventional collision type airflow crusher.
【図10】図9の衝突式気流粉砕機に用いられた衝突部
材の衝突面形状の例を示す概略断面図である。10 is a schematic cross-sectional view showing an example of a collision surface shape of a collision member used in the collision type airflow crusher of FIG.
1、23:加速管 2:加速管スロート部 3:高圧気体噴出ノズル 4:高圧気体噴出ノズルスロート部 5:被粉砕物供給口 6:被粉砕物供給筒 7:高圧気体供給口 8:高圧気体チャンバー 9:高圧気体導入管 10、24:加速管出口 11、25:衝突部材 12:衝突部材支持体 13、30:粉砕室 14、27:粉砕物排出口 15、28:粉砕室側壁 16:突出中央部 17:外周衝突面 18、29:粉体原料 19:二次空気導入口 21:被粉砕物供給口 22:高圧気体供給ノズル 26:衝突面 31:突起物 1, 23: Acceleration tube 2: Acceleration tube throat part 3: High-pressure gas jet nozzle 4: High-pressure gas jet nozzle throat part 5: Ground material supply port 6: Ground material supply cylinder 7: High pressure gas supply port 8: High pressure gas Chamber 9: High-pressure gas introduction pipe 10, 24: Accelerator pipe outlet 11, 25: Collision member 12: Collision member support 13, 30: Crushing chamber 14, 27: Crushed material discharge port 15, 28: Crushing chamber side wall 16: Projection Central part 17: Peripheral collision surface 18, 29: Powder raw material 19: Secondary air introduction port 21: Ground material supply port 22: High pressure gas supply nozzle 26: Collision surface 31: Projection
Claims (2)
為の加速管と、該加速管から噴出させた粉体原料を衝突
させて粉砕する為の加速管出口開口面に対向して設けら
れた衝突部材と、該衝突部材が内設されている粉砕室と
を有する衝突式気流粉砕機において、該粉砕室の側壁に
二次空気導入口を設けることを特徴とする衝突式気流粉
砕機。1. An accelerating pipe for accelerating the powder raw material by high-pressure gas and an accelerating pipe outlet opening surface for colliding and crushing the powder raw material ejected from the accelerating pipe. A collision type airflow crusher having a collision member and a crushing chamber in which the collision member is provided, wherein a secondary air inlet is provided on a side wall of the crushing chamber.
る混合物を溶融混練して混練物とした後、該混練物を冷
却固化し、得られた固化物を粉砕して粉砕物とし、該粉
砕物を衝突式気流粉砕機を用いて更に微粉砕し、得られ
る微粉砕物を用いて静電荷像現像用トナーを製造するト
ナー製造方法において、上記粉砕物を請求項1に記載の
衝突式気流粉砕機を用いて更に微粉砕することを特徴と
する静電荷像現像用トナー製造方法。2. A mixture containing at least a binder resin and a colorant is melt-kneaded to form a kneaded product, and the kneaded product is cooled and solidified, and the solidified product obtained is pulverized into a pulverized product. In a toner manufacturing method for producing a toner for developing an electrostatic charge image using the obtained finely pulverized product, the pulverized product is further pulverized with a collision type air flow pulverizer. A method for producing a toner for developing an electrostatic charge image, which comprises further pulverizing using a pulverizer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6337618A JPH08182938A (en) | 1994-12-28 | 1994-12-28 | Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6337618A JPH08182938A (en) | 1994-12-28 | 1994-12-28 | Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08182938A true JPH08182938A (en) | 1996-07-16 |
Family
ID=18310352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6337618A Pending JPH08182938A (en) | 1994-12-28 | 1994-12-28 | Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08182938A (en) |
-
1994
- 1994-12-28 JP JP6337618A patent/JPH08182938A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3101416B2 (en) | Collision type airflow pulverizer and method for producing toner for electrostatic image development | |
US5435496A (en) | Collision-type gas current pulverizer and method for pulverizing powders | |
JP6255681B2 (en) | Toner manufacturing method and toner manufacturing apparatus | |
JP3114040B2 (en) | Collision type air crusher | |
JPH06230606A (en) | Production of toner and producing equipment system used therefor | |
JP3110965B2 (en) | Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same | |
JPH08182936A (en) | Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same | |
JPH08103685A (en) | Impact type pneumatic pulverizer and production of electrostatic charge image developing toner | |
JP3703256B2 (en) | Collision type airflow crusher and toner manufacturing method | |
JP2663046B2 (en) | Collision type air flow crusher and crushing method | |
JP3093344B2 (en) | Collision type air flow crusher and powder material crushing method | |
JPH08182938A (en) | Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same | |
JP3093343B2 (en) | Collision type air flow crusher and powder material crushing method | |
JP3101786B2 (en) | Collision type air crusher | |
JP2704777B2 (en) | Collision type air flow crusher and crushing method | |
JP3313922B2 (en) | Crusher | |
JPH08117633A (en) | Production of impact pneumatic pulverizer and static charge developing toner | |
JP2704787B2 (en) | Powder material grinding method | |
JP3210132B2 (en) | Method for producing toner for developing electrostatic images | |
JPH06313990A (en) | Production of electrostatic charge image developing toner | |
JPH0321357A (en) | Powder grinding method | |
JPH03296446A (en) | Impact type jet grinder and grinding method | |
JP2663041B2 (en) | Collision type air crusher | |
JPH07181736A (en) | Production of electrostatic charge image developing toner | |
JPH0386257A (en) | Collision-type jet pulverizer and crushing method |