JPH07181736A - Production of electrostatic charge image developing toner - Google Patents

Production of electrostatic charge image developing toner

Info

Publication number
JPH07181736A
JPH07181736A JP5345943A JP34594393A JPH07181736A JP H07181736 A JPH07181736 A JP H07181736A JP 5345943 A JP5345943 A JP 5345943A JP 34594393 A JP34594393 A JP 34594393A JP H07181736 A JPH07181736 A JP H07181736A
Authority
JP
Japan
Prior art keywords
toner
collision
crushing
pulverized
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5345943A
Other languages
Japanese (ja)
Other versions
JP3138379B2 (en
Inventor
Hitoshi Kanda
仁志 神田
Youko Goka
洋子 五箇
Kazuyuki Miyano
和幸 宮野
Satoshi Mitsumura
聡 三ッ村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP05345943A priority Critical patent/JP3138379B2/en
Publication of JPH07181736A publication Critical patent/JPH07181736A/en
Application granted granted Critical
Publication of JP3138379B2 publication Critical patent/JP3138379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To obtain a production method of a toner with good pulverization efficiency and to obtain a production method of a toner excellent in fluidity. CONSTITUTION:In the production method of a electrostatic charge developing toner, a collision type gas flow pulverizing means is a finely pulverizing machine having an accelerating tube to carry and accelerate the material to be pulverized with a high pressure gas and a pulverizing room to finely pulverize the material. The material to be pulverized is supplied and accelerated in the accelerating tube and injected from the exit of the accelerating tube to the pulverizing room. The material is subjected to primary pulverization with a projected part of a colliding member having a colliding surface disposed to facing the aperture of the exit of the accelerating tube. The primarily pulverized material is secondarily pulverized with the outer colliding surface around the projected part. The secondarily pulverized material is further subjected to tertiary pulverization with side walls of the pulverizing room. Then, the pulverized material is circulated in a first gas flow classifying means. The fine powder classified by the first gas flow classifying means is give a rather low impact in short time by a collision gas flow pulverizing means addition to the fine pulverizing process. Then the grain size of the particles are controlled by a second classifying means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真、静電記録、
静電印刷等における静電荷像を現像する為のトナーの製
造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to electrophotography, electrostatic recording,
The present invention relates to a method for producing a toner for developing an electrostatic charge image in electrostatic printing or the like.

【0002】[0002]

【従来の技術】電子写真法、静電写真法、静電印刷法の
如き画像形成方法では静電荷像を現像する為にトナーが
使用される。近年、複写機やプリンター等の高画質化及
び高精細化に伴い、現像剤としてのトナーに要求される
性能も一段と厳しくなってきており、トナーの粒径は小
さくなり、粗粒子が無く且つ微粉の少ないシャープな粒
度分布を有するトナーが要求される様になってきてい
る。
2. Description of the Related Art In image forming methods such as electrophotography, electrostatic photography and electrostatic printing, toner is used to develop an electrostatic charge image. In recent years, as the image quality and definition of copiers and printers have become higher, the performance required for toner as a developer has become more severe, and the particle size of toner has become smaller, and there are no coarse particles and fine particles. There is a growing demand for toners having a sharp particle size distribution with a small number of particles.

【0003】静電荷像現像用トナーの一般的な製造方法
としては、被転写材に定着させる為の結着樹脂、トナー
としての色味を出させる各種着色剤、粒子に電荷を付与
させる為の荷電制御剤、又、特開昭54−42141号
公報や特開昭55−18656号公報に示される様ない
わゆる一成分現像法においては、トナー自身に搬送性等
を付与する為の各種磁性材料を用い、他に必要に応じて
離型剤や流動性付与剤を乾式混合し、しかる後にロール
ミルやエクストルーダー等の汎用混練装置にて溶融混練
し、冷却固化した後にジェット気流式粉砕機や機械衝撃
式粉砕機等の各種粉砕装置により微粉化し、各種風力分
級機により分級を行うことにより、トナーとして必要な
粒径に揃える。これに必要に応じて流動化剤や滑剤等を
乾式混合しトナーとする。又、二成分現像方法に用いる
場合は、各種磁性キャリアとトナーとを混ぜ合せた後、
画像形成に供する。
As a general method for producing a toner for developing an electrostatic image, a binder resin for fixing the toner on a transfer material, various colorants for producing a tint as a toner, and a charge for imparting an electric charge to particles are used. In the so-called one-component developing method as disclosed in JP-A-54-42141 and JP-A-55-18656, charge control agents and various magnetic materials for imparting transportability to the toner itself. In addition to this, if necessary, dry-mix the release agent and fluidity-imparting agent, and then melt-knead with a general-purpose kneading device such as a roll mill or an extruder, cool and solidify, and then jet-jet crusher or machine. Fine particles are pulverized by various crushing devices such as an impact pulverizer, and classified by various air classifiers so that the particle diameters required for the toner are made uniform. If necessary, a fluidizing agent, a lubricant and the like are dry mixed to obtain a toner. When used in a two-component developing method, after mixing various magnetic carriers and toner,
Used for image formation.

【0004】上述の如く、微細粒子であるトナー粒子を
得る為には、従来、図13のフローチャートに示される
方法が一般的に採用されている。粉砕原料であるトナー
粗砕物は、第1分級手段に連続的又は逐次供給されて分
級され、分級された規定粒度以上の粗粒子群を主成分と
する粗粉は粉砕手段に送って粉砕された後、再度第1分
級手段に循環される。
As described above, in order to obtain toner particles which are fine particles, the method shown in the flow chart of FIG. 13 has been generally adopted conventionally. The toner coarsely pulverized material, which is a pulverization raw material, is continuously or sequentially supplied to the first classification means for classification, and the classified coarse powder containing a coarse particle group of a prescribed particle size or more as a main component is sent to the pulverization means for pulverization. Then, it is circulated again to the first classifying means.

【0005】他の規定粒径範囲内の粒子及び規定粒径以
下の粒子を主成分とするトナー微粉砕品は第2分級手段
に送られ、規定粒度を有する粒子群を主成分とする中粉
体と規定粒度以下の粒子群を主成分とする細粉体とに分
級される。粉砕手段としては、各種粉砕装置が用いられ
るが、結着樹脂を主とするトナー粗粉砕物の粉砕には、
図14に示す如きジェット気流を用いたジェット気流式
粉砕機、特に衝突式気流粉砕機が用いられている。
The finely pulverized toner product containing other particles within the specified particle size range and particles having the specified particle size or less as the main component is sent to the second classifying means, and the intermediate powder containing the particle group having the specified particle size as the main component. It is classified into a body and a fine powder whose main component is a particle group having a particle size not larger than a prescribed size. As the pulverizing means, various pulverizing devices are used, but for pulverizing the toner coarsely pulverized product mainly containing the binder resin,
A jet stream type pulverizer using a jet stream as shown in FIG. 14, particularly a collision type air stream pulverizer is used.

【0006】ジェット気流の如き高圧気体を用いた衝突
式気流粉砕機は、ジェット気流で粉砕原料を搬送し、加
速管の出口より噴射し、粉砕原料を加速管の出口の開口
面に対向して設けた衝突部材の衝突面に衝突させて、そ
の衝撃力により粉砕原料を粉砕している。例えば、図1
4に示す衝突式気流粉砕機では、高圧気体供給ノズル2
を接続した加速管3の出口13に対向して衝突部材4を
設け、前記加速管3に供給した高圧気体により、加速管
3の中途に連通させた粉砕原料供給口1から加速管3内
に粉砕原料7を吸引し、粉砕原料7を高圧気体と共に噴
出して衝突部材4の衝突面16に衝突させ、その衝撃に
よって粉砕している。
A collision type air flow pulverizer using a high pressure gas such as a jet air stream conveys a pulverized raw material by a jet air stream and jets it from an outlet of an accelerating pipe to face the opening surface of the outlet of the accelerating pipe. The crushing raw material is crushed by the collision force of the collision member provided and crushed by the impact force. For example, in FIG.
In the collision type air flow crusher shown in FIG.
The collision member 4 is provided so as to face the outlet 13 of the accelerating pipe 3 connected to the accelerating pipe 3, and the high-pressure gas supplied to the accelerating pipe 3 causes the crushing raw material supply port 1 communicated with the accelerating pipe 3 to enter the accelerating pipe 3. The pulverized raw material 7 is sucked, and the pulverized raw material 7 is ejected together with the high-pressure gas to collide with the collision surface 16 of the collision member 4, and the impact is pulverized.

【0007】従来、かかる粉砕機における衝突部材の衝
突面16は、図14及び図15に示す様に、粉砕原料を
乗せたジェット気流方向(加速管の軸方向)に対し垂直
或は傾斜(例えば45°)している平面状のものが用い
られてきた(特開昭57−50554号公報及び特開昭
58−143853号公報参照)。図14の粉砕機にお
いて粗い粒径を有する粉砕原料7は、供給口1より加速
管3に供給され、ジェットノズル2から吹き出されるジ
ェット気流によって、粉砕原料は衝突部材4の衝突面1
6にたたきつけられ、その衝撃力で粉砕され、排出口5
より粉砕室8外に排出される。しかしながら、衝突面1
6が加速管3の軸方向と垂直な場合、ジェットノズル2
から吹き出される原料粉体と衝突面16で反射される粉
体とが衝突面16の近傍で共存する割合が高く、その
為、衝突面16近傍の粉体濃度が高くなる為に粉砕効率
が良くない。
Conventionally, as shown in FIGS. 14 and 15, the collision surface 16 of the collision member in such a crusher is perpendicular or inclined (eg, to the direction of the jet stream of the crushed raw material (axial direction of the accelerating tube)). A flat surface having an angle of 45 ° has been used (see JP-A-57-50554 and JP-A-58-143853). In the crusher shown in FIG. 14, the pulverized raw material 7 having a coarse particle size is supplied to the accelerating pipe 3 through the supply port 1 and is jetted from the jet nozzle 2 so that the pulverized raw material is crushed by the collision surface 1 of the collision member 4.
6 and crushed by the impact force, discharge port 5
Is discharged to the outside of the crushing chamber 8. However, collision surface 1
When 6 is perpendicular to the axial direction of the accelerating tube 3, the jet nozzle 2
The ratio of the raw material powder blown out from the powder and the powder reflected by the collision surface 16 coexisting in the vicinity of the collision surface 16 is high. Therefore, the powder concentration near the collision surface 16 is high and the pulverization efficiency is high. Not good.

【0008】更に衝突面16における一次衝突が主体で
あり、粉砕室壁6との二次衝突を有効に利用していると
は云えない。更に、衝突面の角度が加速管3に対し垂直
な粉砕機では、熱可塑性樹脂を粉砕するときに衝突時の
局部発熱により融着及び凝集物が発生し易く、装置の安
定した運転が困難になり、粉砕能力低下の原因となる。
その為に、粉体濃度を高くして使用することが困難であ
った。図15の粉砕機において、衝突面16が加速管3
の軸方向に対して傾斜している為に、衝突面16近傍の
粉体濃度は図14の粉砕機と比較して低くなるが粉砕圧
が分散されて低下する。更に粉砕室壁6との二次衝突を
有効に利用しているとは云えない。
Further, the primary collision on the collision surface 16 is the main component, and it cannot be said that the secondary collision with the crushing chamber wall 6 is effectively utilized. Further, in a crusher having a collision surface whose angle is perpendicular to the accelerating tube 3, fusion and agglomerates are likely to occur due to local heat generation at the time of crushing the thermoplastic resin, which makes stable operation of the device difficult. And cause a decrease in crushing ability.
Therefore, it was difficult to increase the powder concentration for use. In the crusher shown in FIG. 15, the collision surface 16 is the acceleration tube 3
Since the powder concentration in the vicinity of the collision surface 16 is lower than that of the crusher shown in FIG. 14, since it is tilted with respect to the axial direction of, the crushing pressure is dispersed and decreases. Further, it cannot be said that the secondary collision with the crushing chamber wall 6 is effectively utilized.

【0009】図15に示す如く、衝突面16の角度が加
速管3に対し45°傾斜しているものでは、熱可塑性樹
脂を粉砕するときに上記の様な問題点は少ない。しかし
ながら、衝突する際に粉砕に使われる衝撃力が小さく、
更に粉砕室壁6との二次衝突による粉砕が少ないので粉
砕能力は、図14の粉砕機と比較して1/2〜1/1.
5に粉砕能力が落ちる。上記問題点が解消された衝突式
気流粉砕機として実開平1−148740号公報及び特
開平1−254266号公報が提案されている。実開平
1−148740号公報では、図17に示す様に、衝突
部材4の原料衝突面16を加速管3の軸芯に対して直角
に配置し、その原料衝突面に円錐形の突起14を設ける
ことにより衝突面での反射流を防止することが提案され
ている。
As shown in FIG. 15, when the collision surface 16 is inclined at an angle of 45 ° with respect to the accelerating tube 3, the above problems are less likely to occur when the thermoplastic resin is crushed. However, the impact force used for crushing when colliding is small,
Further, since the crushing due to the secondary collision with the crushing chamber wall 6 is small, the crushing ability is 1/2 to 1/1.
The crushing ability drops to 5. Japanese Patent Laid-Open No. 1-148740 and Japanese Patent Laid-Open No. 1-254266 have been proposed as collision-type airflow crushers in which the above problems have been solved. In Japanese Utility Model Laid-Open No. 1-148740, as shown in FIG. 17, the raw material collision surface 16 of the collision member 4 is arranged at right angles to the axis of the accelerating tube 3, and the conical projection 14 is formed on the raw material collision surface. It has been proposed to prevent the reflected flow on the collision surface by providing it.

【0010】又、特開平1−254266号公報では、
図16に示す様に衝突部材4の衝突面16の先端部分を
特定の円錐形状とすることにより、衝突面近傍の粉体濃
度を低くし、粉砕室壁6と効率良く二次衝突する様にし
た衝突式気流粉砕機が提案されている。上記の様に構成
することで従来の問題点はかなり改善されるが、まだ充
分ではなく、又、最近のニーズとしてより微細な粉砕処
理物が望まれており、更に粉砕効率の良好な微粉砕機が
待望されている。
Further, in Japanese Unexamined Patent Publication No. 1-254266,
As shown in FIG. 16, by making the tip portion of the collision surface 16 of the collision member 4 into a specific conical shape, the powder concentration in the vicinity of the collision surface is lowered, and the secondary collision with the crushing chamber wall 6 is efficiently performed. A collision-type airflow crusher has been proposed. With the above-mentioned constitution, the conventional problems are considerably improved, but it is not sufficient yet, and as a recent need, a finer pulverized product is desired, and further fine pulverization with good pulverization efficiency is desired. The machine is long-awaited.

【0011】例えば、重量平均粒径が8μmであり、且
つ4μm以下の粒子の体積%が1%以下であるトナーを
得る場合には、粗粉域を除去する為の分級機構を備えた
衝突式気流粉砕機の如き粉砕手段で所定の平均粒径まで
原料を粉砕して分級し、粗粉体を除去した後の粉砕物を
別の分級機にかけ、微粉体を除去して所望の中粉体を得
ている。
For example, when a toner having a weight average particle diameter of 8 μm and a volume% of particles of 4 μm or less is 1% or less, a collision type equipped with a classification mechanism for removing a coarse powder region is used. The raw material is pulverized to a predetermined average particle size by a pulverizing means such as an air flow pulverizer, and the coarse powder is removed, and then the pulverized product is subjected to another classifier to remove the fine powder to remove the desired intermediate powder. Is getting

【0012】尚、ここで云う重量平均粒径は、コールタ
ーエレクトロニクス社(米国)製のコールターカウンタ
ーTA−II型で100μmのアパーチャーを用いて測定
したデータである。又、上記ジェット気流を用いた衝突
式気流粉砕機でトナー原料を粉砕すると、トナーは微視
的に見ると鋭く角張った突起部分をその表面に有してい
ることが知られている。
The weight average particle size referred to here is data measured by a Coulter counter TA-II type manufactured by Coulter Electronics Co. (USA) using a 100 μm aperture. It is also known that when toner raw materials are crushed by a collision type airflow crusher using the above jet airflow, the toner has projections that are sharply angled on the surface when viewed microscopically.

【0013】これらの突起部分がトナーの流動性を阻害
する場合があり、流動性が悪いと複写機、ファクシミ
リ、レーザービームプリンター等のトナーホッパー中で
のブリッジ、トナー表面の帯電性不均一、或は複写機、
ファクシミリ、レーザービームプリンター等を長時間使
用する時の画像濃度低下等の現象が発生することが知ら
れており、この様な現象の一因がトナーの流動性の悪さ
にあることが知られている。この問題点を解決する手段
として、特開昭61−61627号公報及び特開昭63
−249155号公報に提案されている様に、トナーを
粉砕しながら球形化する方法が知られている。
These protrusions sometimes impede the fluidity of the toner. If the fluidity is poor, the bridge in the toner hopper of a copying machine, a facsimile machine, a laser beam printer or the like, the non-uniform charging property of the toner surface, or the like. Is a copier,
It is known that a phenomenon such as a decrease in image density occurs when a facsimile, a laser beam printer or the like is used for a long time, and one cause of such a phenomenon is poor fluidity of toner. There is. As means for solving this problem, JP-A-61-61627 and JP-A-63
As proposed in Japanese Patent Publication No. 249155, there is known a method of spheroidizing a toner while pulverizing the toner.

【0014】しかしながら、これらの方法は、高速回転
するローターとライナー間における衝突により粉砕する
方式であるが、この方法では粉砕の限界粒子径がジェッ
ト気流を利用した衝突式気流粉砕機に較べて大きく、そ
の為に細かい粉砕粒子径を所望する場合には効率の低下
が著しい。特に重量平均粒子径が9μm以下のトナー微
粉体を得ようとする場合に効率の低下が著しい。その
為、粉砕の効率が良好で且つ品質に優れた静電荷像現像
用トナーの製造方法が望まれている。
However, these methods are methods of crushing by a collision between a rotor rotating at a high speed and a liner, but in this method, the limit particle size of crushing is larger than that of a collision type airflow crusher using a jet stream. Therefore, when a fine pulverized particle size is desired, the efficiency is remarkably reduced. In particular, when trying to obtain a toner fine powder having a weight average particle diameter of 9 μm or less, the efficiency is remarkably reduced. Therefore, a method for producing a toner for developing an electrostatic charge image, which has good pulverization efficiency and excellent quality, has been desired.

【0015】[0015]

【発明が解決しようとする問題点】本発明の目的は、上
述のトナーの製法上の問題点を克服したトナーの製造方
法を提供することにある。即ち、本発明の目的は、粉砕
効率の良好なトナーの製造方法を提供し、且つ流動性に
優れたトナーの製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a toner manufacturing method which overcomes the above-mentioned problems in the toner manufacturing method. That is, an object of the present invention is to provide a method for producing a toner having good pulverization efficiency and a method for producing a toner having excellent fluidity.

【0016】[0016]

【課題を解決する為の手段】上記目的は以下の本発明に
よって達成される。即ち、本発明は、結着樹脂及び着色
剤を少なくとも含有する混合物を溶融混練し、混練物を
冷却し、冷却物を粉砕手段によって粉砕して粉砕物を
得、得られた粉砕物を気流分級手段で粗粉と細粉とに分
級し、分級された粗粉を衝突式気流粉砕手段により微粉
砕して微粉体を生成し、生成した微粉体から気流分級手
段で微粉を分級し、分級された細粉から静電荷像現像用
トナーを製造する方法において、前記衝突式気流粉砕手
段は、高圧気体により被粉砕物を搬送加速する為の加速
管と、被粉砕物を微粉砕する為の粉砕室とを有する微粉
砕機であって、加速管内に供給され、加速された被粉砕
物を粉砕室内に加速管出口から吐出し、該加速管の出口
の開口面に対向して設けた衝突面を有する衝突部材の突
出部で一次粉砕し、一次粉砕された一次粉砕物を該突出
部の外周に設けられた外周衝突面で二次粉砕し、二次粉
砕された二次粉砕物を更に粉砕室内の側壁で三次粉砕を
行った後、第1気流分級手段に循環し、第1気流分級手
段で分級された微粉体にこの微粉砕工程とは別に、該衝
突式気流粉砕手段より比較的低い衝撃を短時間与えた
後、第2分級手段により粒度を調整することを特徴とす
る静電荷像現像用トナーの製造方法である。
The above object can be achieved by the present invention described below. That is, in the present invention, a mixture containing at least a binder resin and a colorant is melt-kneaded, the kneaded product is cooled, the cooled product is pulverized by a pulverizing means to obtain a pulverized product, and the obtained pulverized product is classified by air flow. The powder is classified into coarse powder and fine powder by means, and the classified coarse powder is finely pulverized by the collision type air flow pulverization means to produce fine powder, and the fine powder is classified by the air flow classification means from the produced fine powder and classified. In the method for producing a toner for developing an electrostatic charge image from fine powder, the collision type airflow pulverizing means comprises an accelerating tube for accelerating and conveying the pulverized object by high pressure gas, and a pulverization for finely pulverizing the pulverized object. A fine pulverizer having a chamber and a colliding surface provided in the accelerating tube for discharging the accelerated object to be crushed into the crushing chamber from an outlet of the accelerating tube and facing the opening surface of the outlet of the accelerating tube. Primary crushed by the protruding portion of the collision member having a primary crushed primary The crushed material is secondly crushed on the outer peripheral collision surface provided on the outer circumference of the projecting portion, and the secondary crushed secondary crushed material is further crushed on the side wall in the crushing chamber, and then circulated to the first air stream classification means. Separately from the fine pulverizing step, the fine powder classified by the first air stream classifying means is subjected to a relatively lower impact than the collision type air stream grinding means for a short time, and then the particle size is adjusted by the second classifying means. And a method for producing an electrostatic charge image developing toner.

【0017】[0017]

【作用】静電荷像現像用トナーを製造する方法におい
て、衝突式気流粉砕手段を、高圧気体により被粉砕物を
搬送加速する為の加速管と、被粉砕物を微粉砕する為の
粉砕室とを有する微粉砕機として、被粉砕物を加速管内
に供給し、加速された被粉砕物を粉砕室内に加速管出口
から吐出し、該加速管の出口の開口面に対向して設けた
衝突面を有する衝突部材の突出部で一次粉砕し、一次粉
砕された一次粉砕物を該突出部の外周に設けられた外周
衝突面で二次粉砕し、二次粉砕された二次粉砕物を更に
粉砕室内の側壁で三次粉砕を行った後、第1気流分級手
段に循環し、第1気流分級手段で分級された微粉体に、
この微粉砕工程とは別に、該衝突式気流粉砕手段より比
較的低い衝撃を短時間与えた後、第2分級手段により粒
度を調整することにより、粉砕効率及び流動性に優れた
トナーを提供することが出来る。
In the method for producing a toner for developing an electrostatic charge image, the collision type air flow crushing means is provided with an accelerating tube for accelerating and conveying the crushed object by the high pressure gas, and a crushing chamber for finely crushing the crushed object. As a fine pulverizer having a crushing object, an object to be crushed is supplied into the accelerating pipe, the accelerated object to be crushed is discharged into the crushing chamber from an outlet of the accelerating pipe, and a collision surface provided opposite to the opening surface of the outlet of the accelerating pipe. Primary crushed by the projecting portion of the collision member having the, secondary crushed primary crushed primary crushed product on the outer peripheral collision surface provided on the outer periphery of the projecting portion, further crushed secondary crushed secondary crushed product After performing tertiary pulverization on the side wall of the room, it is circulated to the first air stream classification means, and into fine powder classified by the first air stream classification means,
Separately from this fine pulverization step, a relatively low impact is applied for a short time from the collision type air flow pulverizing means, and then the particle size is adjusted by the second classifying means to provide a toner having excellent pulverization efficiency and fluidity. You can

【0018】[0018]

【好ましい実施態様】次に好ましい実施態様を示す添付
図面を参照しながら本発明を更に具体的に説明する。図
1は、本発明の製造方法の概要を示すフローチャートの
一例である。本発明において、粉砕原料は第1分級手段
に供給され、第1分級手段において粗粉と細粉に分級さ
れる。粗粉は衝突式気流粉砕手段に導入及び粉砕され、
粉砕後に第1分級手段に循環及び導入される。細粉は、
低衝撃手段により処理された後、第2分級手段によって
分級され、少なくとも規定粒度内の粒度を有する中粉体
と規定粒度以下の粒度を有する微粉体とに分級される。
分級された中粉体は、そのままトナーとして使用される
か、又は疎水性コロイダルシリカの如き添加剤と混合さ
れた後にトナーとして使用される。分級された微粉体
は、粉砕原料を生成する為の溶融混練工程に供給して再
利用するのが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described more concretely with reference to the accompanying drawings showing preferred embodiments. FIG. 1 is an example of a flowchart showing an outline of the manufacturing method of the present invention. In the present invention, the pulverized raw material is supplied to the first classifying means and classified into coarse powder and fine powder in the first classifying means. Coarse powder is introduced and crushed by collision type air flow crushing means,
After pulverization, it is circulated and introduced into the first classification means. Fine powder
After being treated by the low impact means, it is classified by the second classifying means, and is classified into a medium powder having a particle size within at least the specified particle size and a fine powder having a particle size not more than the specified particle size.
The classified intermediate powder is used as a toner as it is, or after being mixed with an additive such as hydrophobic colloidal silica, it is used as a toner. It is desirable that the classified fine powder is supplied to the melt-kneading step for producing the pulverized raw material and reused.

【0019】本発明に用いられる衝突式気流粉砕手段と
して、例えば、図2に示す形式の衝突式気流粉砕機を例
示する。図2において、粉砕されるべき粉砕原料7は、
加速管3の上方の粉砕機壁11に設けられた粉砕原料供
給口1より加速管3に供給される。加速管3には圧縮空
気の如き圧縮気体が圧縮気体供給ノズル2から導入され
ており、加速管3に供給された粉砕原料7は瞬時に加速
されて高速度を有する様になる。高速度で加速管出口1
3から粉砕室8に吐出された粉砕原料7は、衝突部材4
の衝突面に衝突して粉砕される。
As an example of the collision type air flow crushing means used in the present invention, a collision type air flow crusher of the type shown in FIG. 2 is exemplified. In FIG. 2, the crushed raw material 7 to be crushed is
It is supplied to the accelerating pipe 3 from a crushing raw material supply port 1 provided in the crusher wall 11 above the accelerating pipe 3. Compressed gas such as compressed air is introduced into the accelerating tube 3 from the compressed gas supply nozzle 2, and the pulverized raw material 7 supplied to the accelerating tube 3 is instantaneously accelerated to have a high speed. Acceleration tube exit 1 at high speed
The crushing raw material 7 discharged from the crushing chamber 3 into the crushing chamber 8 is
It collides with the collision surface of and is crushed.

【0020】図2の粉砕機において、衝突部材の衝突面
には錐体状の突出している突出中央部14と、該突出中
央部の周囲に突出中央部で粉砕された被粉砕物の一次粉
砕物を更に衝突により粉砕する為の外周衝突面15を有
している。又、粉砕室8には外周衝突面15で二次粉砕
された二次粉砕物を衝突により三次粉砕する為の側壁6
を有している。
In the crusher shown in FIG. 2, a cone-shaped protruding central portion 14 is formed on the collision surface of the collision member, and primary crushing of the object to be crushed around the protruding central portion is carried out at the protruding central portion. It has an outer peripheral collision surface 15 for further crushing an object by collision. Further, the crushing chamber 8 has a side wall 6 for crushing the secondary crushed material secondarily crushed by the outer circumferential collision surface 15 by collision.
have.

【0021】図3に図2の横断平面図を示し更に詳しく
説明する。上記の様に原料衝突面に中央部が突出してい
る錐体状の突起14を設けることにより、加速管3から
噴出された粉砕原料と圧縮空気の固気混合流は、突起1
4の表面で一次粉砕され、更に外周衝突面15で二次粉
砕された後、粉砕室側壁6で三次粉砕される。この時、
衝突部材4の衝突面に突出している突出中央部14の頂
角α(°)と外周衝突面15の加速管の中心軸の垂直面
に対する傾斜角β(°)が 0<α<90、β>0 30≦α+2β≦90 を満足するときに非常に効率よく粉砕が行われる。
FIG. 3 is a cross sectional plan view of FIG. 2 and will be described in more detail. As described above, by providing the cone-shaped projection 14 having the central portion protruding on the raw material collision surface, the solid-gas mixture flow of the pulverized raw material and the compressed air ejected from the acceleration tube 3 is formed by the projection 1.
The surface of No. 4 is subjected to primary crushing, and the peripheral collision surface 15 is subjected to secondary crushing, and then the crushing chamber side wall 6 is subjected to tertiary crushing. This time,
The apex angle α (°) of the protruding central portion 14 projecting on the collision surface of the collision member 4 and the inclination angle β (°) of the outer peripheral collision surface 15 with respect to the vertical plane of the central axis of the acceleration tube are 0 <α <90, β. When> 0 30 ≦ α + 2β ≦ 90 is satisfied, grinding is performed very efficiently.

【0022】α≧90の時は、突起中央部14表面で一
次粉砕された粉砕物の反射流が、加速管3から噴出する
固気混合流の流れを乱すことになり好ましくない。β=
0のとき、即ち、図17に示した様に外周衝突面が固気
混合流に対して直角の場合には、外周衝突面15での反
射流が固気混合流に向かって流れる為、固気混合流の乱
れを生じ好ましくない。又、β=0の時には、外周衝突
面15上での粉体濃度が大きくなり熱可塑性樹脂の粉体
又は熱可塑性樹脂を主成分とする粉体を原料とした場
合、外周衝突面15上で融着物及び凝集物を生じ易い。
かかる融着物が生じた場合には装置の安定した運転が困
難となる。
When α ≧ 90, it is not preferable because the reflected flow of the pulverized material that is primarily pulverized on the surface of the central portion 14 of the protrusion disturbs the flow of the solid-gas mixture flow ejected from the acceleration tube 3. β =
When 0, that is, when the outer peripheral collision surface is at a right angle to the solid-gas mixture flow, as shown in FIG. 17, the reflected flow at the outer peripheral collision surface 15 flows toward the solid-gas mixture flow, and This is not preferable because it causes turbulence in the gas mixture flow. Further, when β = 0, the powder concentration on the outer peripheral collision surface 15 becomes large, and when the powder of the thermoplastic resin or the powder containing the thermoplastic resin as the main component is used as the raw material, Fusing and agglomerates are likely to occur.
When such a fused substance is generated, stable operation of the device becomes difficult.

【0023】又、αとβとがα+2β<30のときに
は、突起表面での一次粉砕の衝撃力が弱められる為、粉
砕効率の低下を招く為好ましくない。又、αとβとがα
+2β>90のときには、外周衝突面での反射流が、固
気混合流の下流側に流れる為粉砕室側壁での三次粉砕の
衝撃力が弱くなり粉砕効率の低下を引き起こす。以上述
べた様に、αとβとが 0<α<90、β>0 30≦α+2β≦90 更に好ましくは 10<α<80 5<β<40 を満たすときに、図3に示す如く一次、二次及び三次粉
砕が効率良く行われ、粉砕効率を向上させることが出来
る。
Further, when α and β are α + 2β <30, the impact force of the primary crushing on the surface of the projections is weakened, and the crushing efficiency is lowered, which is not preferable. Also, α and β are α
When + 2β> 90, the reflected flow on the outer peripheral collision surface flows to the downstream side of the solid-gas mixture flow, so that the impact force of the tertiary pulverization on the side wall of the pulverization chamber is weakened and the pulverization efficiency is reduced. As described above, when α and β satisfy 0 <α <90, β> 0 30 ≦ α + 2β ≦ 90, and more preferably 10 <α <805 5 <β <40, as shown in FIG. The secondary and tertiary pulverization is efficiently performed, and the pulverization efficiency can be improved.

【0024】従来の粉砕機に較べ衝突回数を増やし、且
つより効果的に衝突させることが本発明の特徴であり、
粉砕効率の向上が図れ、及び粉砕時における融着物の発
生を防止することが出来、安定した運転を行うことが出
来る。本発明に用いられる粉砕機の構成は図2に示した
構成に限定されるものではない。図4は本発明に用いら
れる他の好ましい粉砕機の概略断面図であり、図5は図
4のA−A’線における拡大断面図、図6は図4のB−
B’線における断面図である。
It is a feature of the present invention that the number of collisions is increased as compared with the conventional crusher and the collisions are more effective.
It is possible to improve the pulverization efficiency, prevent the generation of a fused substance during pulverization, and perform stable operation. The structure of the crusher used in the present invention is not limited to the structure shown in FIG. FIG. 4 is a schematic sectional view of another preferable crusher used in the present invention, FIG. 5 is an enlarged sectional view taken along the line AA ′ of FIG. 4, and FIG.
It is sectional drawing in a B'line.

【0025】図4の粉砕機について説明すると、高圧気
体により被粉砕物を搬送加速する為の加速管21と、該
加速管出口に対向して設けた衝突面を有する衝突部材3
0を有し、該加速管21がラバルノズル状をなし、該加
速管21のスロート部上流に高圧気体噴出ノズル23を
配し、該高圧気体噴出ノズル23の外壁とスロート部2
2内壁間に被粉砕物供給口24を設け、更に該加速管2
1の出口に接続して設けた粉砕室の軸方向断面形状が円
形状を有している。
Explaining the crusher of FIG. 4, an accelerating tube 21 for conveying and accelerating an object to be crushed by a high-pressure gas, and a collision member 3 having a collision surface provided facing the exit of the accelerating tube.
0, the accelerating pipe 21 has a Laval nozzle shape, a high-pressure gas jet nozzle 23 is arranged upstream of the throat part of the accelerating pipe 21, and the outer wall of the high-pressure gas jet nozzle 23 and the throat part 2 are arranged.
The crushed material supply port 24 is provided between the two inner walls, and the acceleration tube 2
The crushing chamber connected to the outlet of No. 1 has a circular cross section in the axial direction.

【0026】被粉砕物供給筒25より供給された被粉砕
物は、中心軸を鉛直方向に配設したラバルノズル形状を
なす加速管21の加速管スロート部22の内壁と中心が
加速管21の中心軸と同軸上にある高圧気体噴出ノズル
23の外壁との間で形成された被粉砕物供給口24へ到
達する。一方、高圧気体は高圧気体供給口26より導入
され高圧気体チャンバー27を経て、1本好ましくは複
数本の高圧気体導入管28を通り、高圧気体噴出ノズル
23より加速管出口29方向に向かって急激に膨脹しな
がら噴出する。
The crushed material supplied from the crushed material supply cylinder 25 is centered on the inner wall of the accelerating tube throat portion 22 of the accelerating tube 21 having a Laval nozzle shape with its central axis arranged in the vertical direction. It reaches the object to be crushed supply port 24 which is formed between the shaft and the outer wall of the high pressure gas ejection nozzle 23 which is coaxial. On the other hand, the high-pressure gas is introduced from the high-pressure gas supply port 26, passes through the high-pressure gas chamber 27, and passes through one or more high-pressure gas introduction pipes 28, and rapidly from the high-pressure gas ejection nozzle 23 toward the acceleration pipe outlet 29. Gush while expanding to.

【0027】この時、加速管スロート部22の近傍で発
生するエゼクター効果により、被粉砕物はこれと共存し
ている気体に同伴されながら、被粉砕物供給口24より
加速管出口29方向に向けて吸引され、加速管スロート
部22において高圧気流と均一に混合されながら急加速
し、加速管出口29に対向配置された衝突部材30の衝
突面に、粉塵濃度の偏りなく均一な固混合気流の状態で
衝突する。衝突時に発生する衝撃力は、十分分散した個
々の粒子(被粉砕物)に与えられる為、非常に効率の良
い粉砕が出来る。衝突部材30の衝突面にて粉砕された
粉砕物は、更に粉砕室側壁32と衝突部材30の表面と
の間で衝突を繰り返し、より粉砕効率を向上させ、衝突
部材30後方に配設された粉砕物排出口33より排出さ
れる。
At this time, due to the ejector effect generated in the vicinity of the accelerating tube throat portion 22, the crushed material is entrained in the gas coexisting with the crushed material and directed from the crushed material supply port 24 toward the acceleration tube outlet 29. Is rapidly sucked and rapidly accelerated while being uniformly mixed with the high-pressure air flow in the accelerating tube throat portion 22, and the collision surface of the collision member 30 facing the accelerating tube outlet 29 is provided with a uniform solid mixed air flow with no uneven dust concentration. Collide in the state. Since the impact force generated at the time of collision is given to the sufficiently dispersed individual particles (objects to be crushed), crushing can be performed very efficiently. The crushed material crushed on the collision surface of the collision member 30 is repeatedly collided between the side wall 32 of the crushing chamber and the surface of the collision member 30 to improve the pulverization efficiency, and is disposed behind the collision member 30. It is discharged from the crushed material discharge port 33.

【0028】衝突部材30の衝突面には、突出している
突出中央部14と該突出中央部の周囲に突出中央部で粉
砕された被粉砕物の一次粉砕物を更に衝突により粉砕す
る為の外周衝突面15を有している。又、粉砕室34に
は外周衝突面で二次粉砕された二次粉砕物を衝突により
三次粉砕する為の側壁32を有している。図2の粉砕機
と同様に、衝突面上の突起の表面で被粉砕物は一次粉砕
され、更に外周衝突面15で二次粉砕された後、粉砕室
側壁32で三次粉砕される。
On the collision surface of the collision member 30, the projecting central portion 14 and the outer periphery for further crushing the primary crushed material crushed at the projecting central portion around the projecting central portion by further collision. It has a collision surface 15. Further, the crushing chamber 34 has a side wall 32 for thirdly crushing the secondary crushed material crushed secondarily on the outer peripheral collision surface by collision. Similar to the crusher of FIG. 2, the object to be crushed is first crushed on the surface of the protrusion on the collision surface, further crushed secondly on the outer peripheral collision surface 15, and then thirdly crushed on the side wall 32 of the crushing chamber.

【0029】図4の粉砕機では、加速管の中心軸を鉛直
方向に配設し、加速管内壁と高圧気体噴出ノズル外壁管
より被粉砕物を供給せしめ、高圧気体の噴出方向と被粉
砕物の供給方向を同一方向とすることにより、被粉砕物
を粉塵濃度による偏りがない様に均一に噴出する高圧気
流中に分散させることが出来る。本発明に用いられる他
の粉砕機の例を図7及び図8に示す。尚、図8は図7の
C−C’線における断面図である。
In the crusher shown in FIG. 4, the central axis of the accelerating tube is arranged in the vertical direction, and the crushed material is supplied from the inner wall of the accelerating tube and the outer wall tube of the high-pressure gas jet nozzle, and the jetting direction of the high-pressure gas and the crushed article. By making the supply directions of the same in the same direction, it is possible to disperse the pulverized material in the high-pressure air stream that is uniformly ejected so that there is no bias due to the dust concentration. Examples of other crushers used in the present invention are shown in FIGS. 7 and 8. 8 is a sectional view taken along the line CC 'in FIG.

【0030】図7の粉砕機について説明すると、高圧気
体により粉砕原料を搬送加速する為の加速管21と、該
加速管21から噴出する粉体を衝突力により粉砕する為
の衝突面を具備する粉砕室34とを有し、且つ該衝突部
材30が加速管出口に対向して設けられている衝突式気
流粉砕機であって、ラバール形状を有する加速管21の
スロート部36と加速管出口37との間に加速管の全円
周方向の粉砕原料供給口24が設けられており、且つ該
粉砕室断面形状が実質円形状を有し、且つ該衝突部材3
0後方に粉砕物排出口33を設けた衝突式気流粉砕機で
ある。
Explaining the crusher of FIG. 7, it is provided with an accelerating tube 21 for accelerating the crushing raw material by high-pressure gas, and a collision surface for crushing the powder ejected from the accelerating tube 21 by a collision force. A collision type air flow crusher having a crushing chamber 34 and the collision member 30 provided facing the accelerating tube outlet, the throat portion 36 and the accelerating tube outlet 37 of the Laval-shaped accelerating tube 21. Is provided with a crushing raw material supply port 24 in the entire circumferential direction of the acceleration tube, and the crushing chamber has a substantially circular cross-sectional shape, and the collision member 3
It is a collision type airflow crusher having a crushed material discharge port 33 at the rear.

【0031】又、該加速管21の中心軸が鉛直方向を有
し、該衝突部材30の衝突面には、突出している突出中
央部14と該突出中央部の周囲に突出中央部で粉砕され
た被粉砕物の一次粉砕物を更に衝突により粉砕する為の
外周衝突面15を有している。又、粉砕室34には、外
周衝突面で二次粉砕された二次粉砕物を衝突により三次
粉砕する為の側壁32を有している。高圧気体の作用を
説明すると、高圧気体は先ず高圧気体チャンバー27の
左右にある高圧気体供給口27から入り、圧力の変動
等、動脈が均一にされた後、被粉砕物供給筒25の中心
部に設けられたラバルノズル35から加速管21に流入
される。
Further, the central axis of the accelerating tube 21 has a vertical direction, and the collision surface of the collision member 30 is crushed at the protruding central portion 14 and the protruding central portion around the protruding central portion. It further has an outer peripheral collision surface 15 for further crushing the primary crushed material to be crushed by collision. Further, the crushing chamber 34 has a side wall 32 for thirdly crushing the secondary crushed material crushed secondarily on the outer peripheral collision surface by collision. Explaining the action of the high-pressure gas, the high-pressure gas first enters from the high-pressure gas supply ports 27 on the left and right of the high-pressure gas chamber 27, and the arteries are made uniform due to pressure fluctuations and the like, and then the central portion of the pulverized material supply cylinder 25. A Laval nozzle 35 provided in the accelerating pipe 21 flows into the accelerating pipe 21.

【0032】加速管21もラバルノズル35と同様に末
広がりのラバル状の形状を有し、加速管21に流入され
た高圧気体は膨脹しながら超音速領域まで加速される。
その過程で高圧気体は減圧され、加速管21を出たとこ
ろで気体の圧力は粉砕室34の圧力と略同一になる。一
方、円形状の粉砕室34では、出口部33で粉砕室34
内の気体を吸引すると、粉砕室内部に吸引流が発生す
る。そして、この吸引流の作用により衝突部材30の表
面は減圧状態となる。尚、粉砕室の形状はこれに限定さ
れるものではない。
Like the Laval nozzle 35, the accelerating tube 21 also has a Laval shape with a divergent end, and the high-pressure gas flowing into the accelerating tube 21 is accelerated to the supersonic region while expanding.
In the process, the high pressure gas is decompressed, and the pressure of the gas at the exit of the acceleration tube 21 becomes substantially the same as the pressure in the crushing chamber 34. On the other hand, in the circular crushing chamber 34, the crushing chamber 34
When the gas inside is sucked, a suction flow is generated inside the crushing chamber. Then, due to the action of this suction flow, the surface of the collision member 30 is in a reduced pressure state. The shape of the crushing chamber is not limited to this.

【0033】この衝突部材30の表面の減圧作用によ
り、加速管21より出た噴流は更に加速され、衝突部材
30の表面に衝突する。この時、衝突部材30の衝突面
上の突起14の表面で被粉砕物が一次粉砕され、更に外
周衝突面15で二次粉砕された後、粉砕室側壁32で三
次粉砕される。次に、供給される粉砕原料が受ける作用
について説明する。被粉砕物である粉砕原料は、被粉砕
物供給筒25より供給される。供給された粉砕原料は供
給筒下部にある粉砕原料供給口24から、加速管21へ
吸引排出される。原料の吸引排出の原理は、前述した高
圧気体の加速管における膨脹減圧によるエゼクター効果
による。この時、ラバール形状を有する加速管のスロー
ト部と加速管出口との間に加速管の全円周方向に粉砕原
料供給口24を設けている為、高速気流により十分分散
及び加速される。
Due to the depressurizing action of the surface of the collision member 30, the jet flow emitted from the acceleration tube 21 is further accelerated and collides with the surface of the collision member 30. At this time, the object to be crushed is first crushed on the surface of the projection 14 on the collision surface of the collision member 30, further pulverized secondly on the outer peripheral collision surface 15, and then pulverized tertiaryly on the crushing chamber side wall 32. Next, the action of the pulverized raw material supplied will be described. The pulverized raw material, which is the pulverized material, is supplied from the pulverized material supply cylinder 25. The supplied pulverized raw material is sucked and discharged into the accelerating pipe 21 from the pulverized raw material supply port 24 in the lower portion of the supply cylinder. The principle of sucking and discharging the raw material is based on the ejector effect by the expansion and decompression in the accelerating tube of the high pressure gas described above. At this time, since the crushing raw material supply port 24 is provided in the entire circumferential direction of the accelerating tube between the throat portion of the Laval-shaped accelerating tube and the accelerating tube outlet, it is sufficiently dispersed and accelerated by the high-speed air flow.

【0034】尚、粉砕原料供給口24は、全円周方向若
しくは複数個(n≧2)設けることが好ましい。粉砕原
料供給口が1ケ所の場合には、加速管内の原料の分散状
態が偏ったものとなる為に粉砕効率の低下を招き好まし
くない。この様にして加速管21内部に分散されて吸引
された粉砕原料は、被粉砕物供給筒25の中央部に設け
られてるラバルノズル35から放射される高速気流によ
り完全に分散される。
It is preferable that the pulverized material supply port 24 is provided in the entire circumferential direction or in plural (n ≧ 2). If there is only one crushing material supply port, the dispersion state of the material in the accelerating tube will be biased, which will reduce the crushing efficiency and is not preferable. The pulverized raw material thus dispersed and sucked into the accelerating pipe 21 is completely dispersed by the high-speed airflow emitted from the Laval nozzle 35 provided in the central portion of the pulverized material supply cylinder 25.

【0035】次に、分散された粉砕原料は、加速管21
内部を流れる高速気流に乗って加速され、超音速固気混
合流れとなる。この固気混合流れは加速管21を出た後
固気混合噴流となり、前述の噴流と同様の作用を受け衝
突部材30に衝突する。図7の粉砕機では、加速管の中
心軸を鉛直方向に配設し、特定の原料供給方法を有して
おり、被粉砕物である原料粉体がより強く分散されて粉
砕効率を向上させることが出来、優れた粉砕処理能力が
得られる。又、被粉砕物の強分散による粉塵濃度の均一
化により、衝突部材、加速管及び粉砕室における被粉砕
物の局部的な融着や摩耗も、従来の衝突式気流粉砕機に
比べて大幅に低減させることが出来、且つ安定稼動させ
ることが出来る。
Next, the dispersed pulverized raw material is accelerating tube 21.
It is accelerated by the high-speed airflow flowing inside, and becomes a supersonic solid-gas mixture flow. This solid-gas mixture flow becomes a solid-gas mixture jet flow after exiting the accelerating pipe 21, and collides with the collision member 30 by the same action as the aforementioned jet flow. In the crusher of FIG. 7, the central axis of the accelerating tube is arranged in the vertical direction and has a specific raw material supply method, and the raw material powder that is the object to be pulverized is more strongly dispersed to improve the pulverization efficiency. It is possible to obtain excellent pulverization processing capacity. In addition, due to the uniform dispersion of the dust concentration due to the strong dispersion of the crushed material, the local fusion and wear of the crushed material in the collision member, the acceleration tube and the crushing chamber are significantly larger than those of the conventional collision type air flow crusher. It can be reduced and stable operation can be achieved.

【0036】図4及び図7の粉砕機は、図2の構成の粉
砕機に較べて加速管への原料投入方法が異なっており、
加速管中の粉砕原料をより均一に分散させることが出来
る為に、より粉砕効率を向上させることが出来る。尚、
図4及び図7の粉砕機においても、αとβとが 0<α<90、β>0 30≦α+2β≦90 更に好ましくは 10<α<80 5<β<40 を満たすときに、一次、二次及び三次粉砕が効率良く行
われ、粉砕効率を向上させることが出来る。
The grinders shown in FIGS. 4 and 7 are different from the grinder having the structure shown in FIG.
Since the pulverized raw material in the acceleration tube can be dispersed more uniformly, the pulverization efficiency can be further improved. still,
Also in the pulverizers of FIGS. 4 and 7, when α and β satisfy 0 <α <90, β> 0 30 ≦ α + 2β ≦ 90, and more preferably 10 <α <805 5 <β <40, The secondary and tertiary pulverization is efficiently performed, and the pulverization efficiency can be improved.

【0037】前記の粉砕機において、加速管出口の内径
は衝突部材の直径bよりも小さい内径を有することが好
ましい。衝突部材の衝突面に突出している突出中央部の
先端と加速管の中心軸とは、実質的に一致させるのは粉
砕の均一化という点で好ましい。加速管出口と衝突部材
の衝突面端部との距離aは該衝突部材の直径の0.1倍
から2.5倍以下が好ましく、0.2倍から1.0倍が
より好ましい。0.1倍未満では衝突面近傍の粉塵濃度
が高くなり、一方、2.5倍を越える場合には衝撃力が
弱まり、粉砕効率が低下する傾向がある。
In the above crusher, the inner diameter of the acceleration tube outlet is preferably smaller than the diameter b of the collision member. It is preferable that the tip of the protruding central portion protruding from the collision surface of the collision member and the central axis of the acceleration tube substantially coincide with each other from the viewpoint of uniform pulverization. The distance a between the exit of the acceleration tube and the end of the collision surface of the collision member is preferably 0.1 times to 2.5 times or less the diameter of the collision member, and more preferably 0.2 times to 1.0 times. If it is less than 0.1 times, the dust concentration in the vicinity of the collision surface will be high, while if it is more than 2.5 times, the impact force will be weakened and the pulverization efficiency will tend to be reduced.

【0038】又、衝突部材の衝突面端部と粉砕室側壁
(内壁)との最短距離cは、該衝突部材の直径bの0.
1倍から2倍以下が好ましい。0.1倍未満では高圧気
体の通過時の圧力損失が大きく、粉砕効率が低下するの
みならず、粉砕物の流動がスムーズに行かない傾向があ
り、2倍を越える場合は粉砕室側壁での被粉砕物の3次
衝突の効果が減少し、粉砕効率の低下を招く。又、粉砕
室形状は特に限定されるものではなく、衝突部材の衝突
面端部と粉砕室側壁間の距離が上記数値を満足していれ
ばよい。
The shortest distance c between the end of the collision surface of the collision member and the side wall (inner wall) of the crushing chamber is 0.
It is preferably 1 to 2 times or less. If it is less than 0.1 times, the pressure loss during passage of high-pressure gas is large, and not only the pulverization efficiency tends to decrease, but also the flow of the pulverized material tends to not go smoothly. The effect of the third collision of the object to be crushed is reduced, and the crushing efficiency is lowered. The shape of the crushing chamber is not particularly limited as long as the distance between the end of the collision surface of the collision member and the side wall of the crushing chamber satisfies the above numerical value.

【0039】より具体的には、加速管の長さは50〜5
00mmが好ましく、衝突部材の直径は30〜300m
mを有することが好ましい。更に衝突部材の衝突面及び
粉砕室側壁はセラミックで形成されていることが耐久性
の点で好ましい。この様な衝突式気流粉砕手段で粉砕す
ることにより、粉砕機での粉砕能力及び粉砕効率は著し
く向上する。特に、所望の粒子径が小さい程この効果は
顕著になる。特に重量平均粒子径9μm以下トナー微粉
体を製造する場合に有効である。
More specifically, the length of the accelerating tube is 50 to 5
00 mm is preferable, and the diameter of the collision member is 30 to 300 m
It is preferred to have m. Further, it is preferable in terms of durability that the collision surface of the collision member and the side wall of the crushing chamber are made of ceramic. By crushing by such a collision type air flow crushing means, the crushing ability and the crushing efficiency of the crusher are remarkably improved. In particular, this effect becomes more remarkable as the desired particle size is smaller. This is particularly effective when producing a toner fine powder having a weight average particle diameter of 9 μm or less.

【0040】本発明に用いられる第1分級手段として
は、公知の気流分級機が用いられる。例えば、日本ニュ
ーマチック工業社製DS型分級機、ホソカワミクロン社
製ミクロンセパレター、日清エンジニアリング社製ター
ボクラシフアイアー、日本ドナルドソン社製ドナセレッ
ク等が挙げられる。又、低衝撃手段としては、回転する
ローター、ブレード又はハンマーとそれに相対峙するラ
イナーとの間で衝撃を与えるか、又は多数の回転ピン間
で衝撃を与える様な方法が例示し得る。
A known airflow classifier is used as the first classifying means used in the present invention. Examples thereof include DS classifier manufactured by Nippon Pneumatic Mfg. Co., Ltd., Micron Separator manufactured by Hosokawa Micron Co., Ltd., Turbo Classifier made by Nisshin Engineering Co., Ltd. and Dona Selec manufactured by Donaldson Japan. Further, as the low impact means, there can be exemplified a method of giving an impact between a rotating rotor, a blade or a hammer and a liner facing the rotating rotor, or an impact between a large number of rotating pins.

【0041】図9はローターとーライナーの組み合わせ
による低衝撃処理装置の概略断面図である。図中43は
回転軸、44はケーシング、45はライナー、46は送
風羽根、47はローター(ブレード付き)、48は出
口、49は製品取出口、38はリターン路、39は原料
供給口、40は入口、41はジャケット、42はリター
ン閉鎖弁である。回転するローターの先端部の周速は5
0〜200m/sec、好ましくは70〜150m/s
ecであり、又、処理温度は処理原料のガラス転移点−
5℃からガラス転移点−30℃の温度範囲での処理が望
ましい。処理温度が高過ぎると装置内で被粉砕物が溶融
してしまい、低過ぎると粉砕処理が不充分となり好まし
くない。かかる温度範囲にコントロールする為に、ジャ
ケット構造として冷却或は加熱を行う。又は投入する処
理原料と共に冷風或は熱風を導入して温度をコントロー
ルしてもよい。
FIG. 9 is a schematic sectional view of a low-impact treatment device using a combination of a rotor and a liner. In the figure, 43 is a rotary shaft, 44 is a casing, 45 is a liner, 46 is a blower blade, 47 is a rotor (with a blade), 48 is an outlet, 49 is a product outlet, 38 is a return passage, 39 is a raw material supply port, 40 Is an inlet, 41 is a jacket, and 42 is a return closing valve. The peripheral speed of the tip of the rotating rotor is 5
0 to 200 m / sec, preferably 70 to 150 m / s
ec, and the processing temperature is the glass transition point of the processing raw material-
Treatment in the temperature range of 5 ° C to -30 ° C of glass transition is desirable. If the treatment temperature is too high, the material to be pulverized will melt in the device, and if it is too low, the pulverization treatment will be insufficient, which is not preferable. In order to control in such a temperature range, cooling or heating is performed as a jacket structure. Alternatively, the temperature may be controlled by introducing cold air or hot air together with the raw material to be treated.

【0042】図10は図9に示した低衝撃処理装置のラ
イナー45と回転するローター47の位置関係を示した
図である。ライナー45とローター47の間隔とはライ
ナーの内周への突出部の先端を結んで得られる円周とロ
ーターの突出部の軌跡の2つの円周の半径の差を云う。
このローターの代わりにブレードやハンマーでも同様で
ある。
FIG. 10 is a diagram showing the positional relationship between the liner 45 and the rotating rotor 47 of the low impact treatment device shown in FIG. The distance between the liner 45 and the rotor 47 means the difference between the radii of the two circles of the circumference obtained by connecting the tips of the protrusions to the inner circumference of the liner and the locus of the protrusions of the rotor.
The same applies to blades and hammers instead of this rotor.

【0043】ローター、ブレード又はハンマーとライナ
ーとの間隔は、0.5〜10mm程度、好ましくは0.
5〜3mm程度のものでよい結果が得られている。図1
1は別のタイプの低衝撃処理装置の概略断面図である。
該装置は、円筒状のケーシング51とこのケーシング5
1内にケーシング軸と同軸に配置されてローター52と
を備えている。ローター52には複数のブレード53が
設けられている。ライナー54とローターブレード53
との間には適度の広さ(0.5〜10mm、好ましくは
0.5〜3mmの間隙)の空間が存在し処理領域55を
形成している。ケーシング51の上流側には、トナー処
理物56及び流入空気57の供給口58が設けられてい
る。この供給口58の下部には渦巻室59が設けられて
いる。この渦巻室59近傍のローターブレード53に
は、投入処理物56及び/又は流入空気57を処理領域
55内に均等に分配する為のディストリビューター60
が適宜設けられている。
The distance between the rotor, blade or hammer and the liner is about 0.5 to 10 mm, preferably 0.
Good results have been obtained with a thickness of about 5 to 3 mm. Figure 1
FIG. 1 is a schematic sectional view of another type of low impact treatment device.
The apparatus comprises a cylindrical casing 51 and this casing 5
1 and a rotor 52 arranged coaxially with the casing shaft. The rotor 52 is provided with a plurality of blades 53. Liner 54 and rotor blade 53
A space of a suitable width (a gap of 0.5 to 10 mm, preferably 0.5 to 3 mm) is present between and to form the processing region 55. On the upstream side of the casing 51, a toner processing product 56 and a supply port 58 for the inflow air 57 are provided. A swirl chamber 59 is provided below the supply port 58. The rotor blade 53 in the vicinity of the swirl chamber 59 has a distributor 60 for evenly distributing the input processing material 56 and / or the inflowing air 57 in the processing area 55.
Are provided as appropriate.

【0044】ケーシング51の下流側には排出口61が
設けられ、例えば、系外のサイクロン捕集機或はバグフ
ィルター等に接続されている。上記図11の装置におい
て、高速回転するローターブレード53の周速及び処理
温度は図9の装置と同様の範囲で行うことが好ましい。
図9及び図11の装置での低衝撃処理において、処理は
一過性で行ってもよいし、又、滞留時間をコントロール
出来るリサイクルで行ってもよい。これは、処理原料の
物性及び処理の度合いにより適宜設定すればよいが、生
産性を考慮すると、出来るだけ一過性で行える様に条件
設定をすることが好ましい。この様な装置としては、川
崎重工業(株)製「クリプトロン」やターボ工業社製の
「ターボミル」等が採用され得る。
A discharge port 61 is provided on the downstream side of the casing 51, and is connected to, for example, a cyclone collector or a bag filter outside the system. In the apparatus of FIG. 11 described above, it is preferable that the peripheral speed and the processing temperature of the rotor blade 53 that rotates at a high speed be within the same range as the apparatus of FIG.
In the low-impact treatment in the apparatus shown in FIGS. 9 and 11, the treatment may be carried out transiently, or may be carried out by recycling so that the residence time can be controlled. This may be set appropriately depending on the physical properties of the processing raw material and the degree of processing, but considering productivity, it is preferable to set the conditions so that the processing can be performed as transiently as possible. As such a device, "Kryptron" manufactured by Kawasaki Heavy Industries, Ltd., "Turbo Mill" manufactured by Turbo Kogyo Co., Ltd., or the like can be adopted.

【0045】本発明における低衝撃処理の目的は、トナ
ー粒子の球形化ではなく表面特性の改質であるので、装
置内の滞留時間は極めて短く、その時間は夫々のトナー
処理原料の性質及びローターの周速によって異なるが、
例えば、周速200m/secで0.01秒〜2秒であ
り、条件により0.01〜3分程度の間で選択する。従
って、形状やトナーの表面への影響も少なく、粉砕時に
トナーの短径と長径の比が0.60〜0.70のもの
が、処理後に0.65〜0.85程度に変化する程度で
ある。処理後のトナー表面の状態を走査型電子顕微鏡で
観察すると、処理前に比較して形状に大きな変化は見え
ないが、角張った突起部分が減少しているのが認められ
る。
Since the purpose of the low-impact treatment in the present invention is not to make the toner particles spherical but to modify the surface characteristics, the residence time in the apparatus is extremely short, and the time is the nature of the respective toner treatment raw materials and the rotor. Depending on the peripheral speed of
For example, the peripheral speed is 200 m / sec, the time is 0.01 seconds to 2 seconds, and the time is selected from about 0.01 to 3 minutes depending on the conditions. Therefore, there is little influence on the shape and the surface of the toner, and the ratio of the minor axis to the major axis of the toner at the time of pulverization of 0.60 to 0.70 changes to about 0.65 to 0.85 after the treatment. is there. When the state of the toner surface after the treatment is observed with a scanning electron microscope, no large change in the shape can be seen as compared with that before the treatment, but it is recognized that the angular protrusions are reduced.

【0046】この低衝撃処理時間(滞留時間)を、前述
の時間より長くしすぎるとトナーの球形化が促進され、
トナー消費量の増加やクリーニング性の低下に伴うカブ
リの増加等の現象が強くなり、逆に短すぎると表面特性
の改質の効果が弱くなり、トナーの流動性が悪くなると
云う傾向が見られる。本発明に用いられる第2分級手段
としては前述の公知の気流分級機が使用される。特に好
ましく用いられるのは、例えば、図12(断面図)に示
す多分割分級機を具体例の1つとして例示し得る。
If the low impact treatment time (residence time) is made longer than the above-mentioned time, spheroidization of the toner is promoted,
Phenomena such as an increase in toner consumption and an increase in fog due to a decrease in cleaning property become stronger, and on the contrary, if it is too short, the effect of modifying the surface characteristics becomes weak and the fluidity of the toner tends to deteriorate. . The above-mentioned known airflow classifier is used as the second classifying means used in the present invention. Particularly preferably used is, for example, the multi-division classifier shown in FIG. 12 (cross-sectional view) as one of the specific examples.

【0047】図12において、側壁は122及び124
で示される形状を有し、下部壁は125で示される形状
を有し、下部壁123と下部壁125には夫々ナイフエ
ッヂ型の分級エッヂ117及び118を具備し、この分
級エッヂ117及び118により、分級ゾーンは3分画
されている。側壁122の下の部分に分級室に開口する
原料供給ノズル116を設け、該ノズルの底部接線の延
長方向に対して下方に折れ曲がって長楕円弧を描いたコ
アンダブロック126を設ける。分級室上部壁127
は、分級室下部方向にナイフエッヂ型の入気エッヂ11
9を具備し、更に分級室上部には分級室に開口する入気
管114及び115を設けてある。入気管114及び1
15には、ダンパの如き第1気体導入調節手段120、
第2気体導入調節手段121及び静圧計128及び12
9を設けてある。分級エッヂ117及び118、及び入
気エッヂ119の位置は、細粉の種類により、又、所望
の粒径により異なる。分級室底面には夫々の分画域に対
応させて、室内に開口する排出口111、112及び1
13を設けてある。排出口111、112及び113に
は、夫々バルブ手段の如き開閉手段を設けてもよい。
In FIG. 12, the side walls are 122 and 124.
The lower wall has a shape shown by 125, and the lower wall 123 and the lower wall 125 are provided with knife edge type classification edges 117 and 118, respectively. , The classification zone is divided into three. A raw material supply nozzle 116 that opens into the classification chamber is provided in the lower portion of the side wall 122, and a Coanda block 126 that is bent downward in the direction of the extension of the bottom tangent of the nozzle to form an elliptical arc is provided. Upper wall 127 of classification room
Is a knife edge type air intake edge 11 toward the bottom of the classification chamber.
9, and air inlet pipes 114 and 115 that open to the classification chamber are provided above the classification chamber. Air inlet tubes 114 and 1
15 is a first gas introduction adjusting means 120 such as a damper,
Second gas introduction adjusting means 121 and static pressure gauges 128 and 12
9 is provided. The positions of the classification edges 117 and 118 and the inflow edge 119 differ depending on the type of fine powder and the desired particle size. The bottoms of the classification chambers are provided with discharge ports 111, 112 and 1 which are open to the inside of the chamber in correspondence with respective fractionation areas.
13 is provided. The discharge ports 111, 112 and 113 may be provided with opening / closing means such as valve means, respectively.

【0048】細粉供給ノズル116は直角筒部と角錐筒
部とからなり、直角筒部の内径と角錐筒部の最も狭まっ
た箇所の内径の比を20:1〜1:1に設定すると、良
好な導入速度が得られる。以上の様に構成してなる多分
割分級域での分級操作は、例えば、次の様にして行う。
排出口111、112及び113の少なくとも1つを介
して分級域内を減圧し、分級域内に開口する原料供給ノ
ズル116中を該減圧によって流動する気流によって、
流速50〜300m/秒の速度で細粉を細粉供給ノズル
116を介して分級域に供給する。
The fine powder supply nozzle 116 is composed of a right-angled cylinder portion and a pyramidal cylinder portion, and if the ratio of the inner diameter of the right-angled cylinder portion to the inner diameter of the narrowest part of the pyramid cylinder portion is set to 20: 1 to 1: 1, A good introduction rate is obtained. The classification operation in the multi-division classification area configured as described above is performed as follows, for example.
By decompressing the inside of the classification area through at least one of the discharge ports 111, 112 and 113, and by the airflow flowing in the raw material supply nozzle 116 opening in the classification area by the decompression,
Fine powder is supplied to the classification area through the fine powder supply nozzle 116 at a flow rate of 50 to 300 m / sec.

【0049】流速50m/秒未満の速度で細粉を分級域
に供給すると、細粉の凝集を充分にほぐすことが出来に
くく、分級収率及び分級精度の低下を引き起こし易い。
流速300m/秒を超える速度で細粉を分級域に供給す
ると、粒子同士の衝突により粒子が粉砕され易く、微粒
子を生成し易い為に分級収率の低下を引き起こす傾向が
ある。
When the fine powder is supplied to the classification area at a flow rate of less than 50 m / sec, it is difficult to sufficiently loosen the agglomeration of the fine powder, and the classification yield and classification accuracy are likely to deteriorate.
When the fine powder is supplied to the classification area at a flow rate of more than 300 m / sec, the particles tend to be crushed due to collision of the particles with each other, and fine particles are likely to be generated, so that the classification yield tends to be lowered.

【0050】供給された細粉はコアンダ効果によりコア
ンダブロック126の作用と、その際に流入する空気の
如き気体の作用とにより湾曲線130を描いて移動し、
夫々の粒径の大小及び重量の大小に応じて分級される。
粒子の比重が同一であるとすると、大きい粒子(粗粉
体)は気流の外側(即ち分級エッヂ118の左側の第1
分画域)に分級され、中粉体(規定内の粒径の粒子)は
分級エッヂ118と117の間の第2分画域に分級さ
れ、微粉体(規定粒径以下の粒子)は分級エッヂ117
の右側の第3分画域に分級される。分級された粗粉体は
排出口111より排出され、中粉体は排出口112より
排出され、微粉体は排出口113より夫々排出される。
The supplied fine powder moves along the curved line 130 by the action of the Coanda block 126 due to the Coanda effect and the action of gas such as air flowing in at that time,
It is classified according to the size of each particle and the size of the weight.
Assuming that the specific gravity of the particles is the same, the larger particles (coarse powder) are outside the airflow (that is, the first particles on the left side of the classification edge 118).
Classification powder), medium powder (particles with a particle size within the specified range) is classified into a second fractionation area between classification edges 118 and 117, and fine powder (particles with a specified particle size or smaller) is classified. Edge 117
Is classified in the third fraction area on the right side of the. The classified coarse powder is discharged through the discharge port 111, the medium powder is discharged through the discharge port 112, and the fine powder is discharged through the discharge port 113.

【0051】分級域への細粉の導入については、サイク
ロンの吸引力を利用して吸引導入する方法;細粉供給ノ
ズルにインジェクションの如きエアー搬送手段を設け、
サイクロンからの吸引力とインジェクションからの圧縮
空気の力により導入する方法;或は加圧式導入等があ
る。吸引導入或はインジェクションの如きエアー搬送手
段を用いた導入方法の方が装置システムのシール性が、
加圧式導入よりも要求されないので好ましい。
Regarding the introduction of fine powder into the classification area, a method of suction introduction using the suction force of a cyclone; an air transfer means such as injection is provided in the fine powder supply nozzle,
There is a method of introducing by a suction force from a cyclone and a force of compressed air from an injection; The introduction method using an air transfer means such as suction introduction or injection has a better sealing property of the device system.
It is preferable because it is not required to be introduced by pressure.

【0052】第2分級機である多分割分級機としては、
日鉄鉱業社製エルボージェットの如きコアンダブロック
を有し、コアンダ効果を利用した分級手段が挙げられ
る。多分割分級機の分級域を構成する大きさは通常[1
0〜50cm]×[10〜50cm]なので、細粉は
0.1〜0.01秒以下の瞬時に3種以上の粒子群に分
級し得る。多分割分級機が3分画されている場合、多分
割分級機により、細粉は粗粉体(規定粒径以上の粒
子)、中粉体(規定内の粒子径の粒子)及び微粉体(規
定粒径以下の粒子)に分割される。
The multi-division classifier which is the second classifier is as follows:
There is a Coanda block such as Elbow Jet manufactured by Nittetsu Mining Co., Ltd., and a classification means utilizing the Coanda effect can be mentioned. The size of the classification area of a multi-division classifier is usually [1
Since it is 0 to 50 cm] × [10 to 50 cm], the fine powder can be classified into three or more kinds of particle groups in an instant of 0.1 to 0.01 seconds or less. When the multi-division classifier divides into 3 fractions, the multi-division classifier divides the fine powder into coarse powder (particles with a particle size not less than the specified size), medium powder (particles with a particle size within the specification) and fine powder ( The particles are divided into particles of a specified particle size or less).

【0053】その後、粗粉体は排出導管111を通っ
て、捕集サイクロン(図示なし)を介して捕集される。
捕集された粗粉体は粉砕工程に戻して再度粉砕に処する
のが生産効率向上の上で好ましい。中粉体は排出導管1
12を介して系外に排出され、捕集サイクロンで捕集さ
れトナー製品となるべく回収される。微粉体は排出導管
113を介して系外に排出されて捕集サイクロンで捕集
され、次いで規定外粒径の微小粉として回収される。捕
集サイクロンは、細粉をノズル116を介して分級域に
吸引導入する為の吸引減圧手段としての働きもしてい
る。回収された微粉体は、粉砕原料を生成する為の溶融
混練工程に供給して再利用するのが望ましい。
Thereafter, the coarse powder passes through the discharge conduit 111 and is collected via a collecting cyclone (not shown).
In order to improve production efficiency, it is preferable to return the collected coarse powder to the pulverizing step and to pulverize again. Medium powder is exhaust pipe 1
It is discharged to the outside of the system via 12 and collected by a collection cyclone to be recovered as a toner product as much as possible. The fine powder is discharged to the outside of the system through the discharge conduit 113, collected by the collection cyclone, and then collected as fine powder having a non-regulated particle size. The collection cyclone also functions as suction decompression means for sucking and introducing fine powder into the classification area through the nozzle 116. It is desirable that the recovered fine powder be supplied to a melt-kneading step for producing a pulverized raw material and reused.

【0054】本発明において、図1のフローチャートに
示す粉砕工程はこれに限定されるものではなく、例え
ば、粉砕手段が1つに対して第1分級手段が2つ或は粉
砕手段及び第1分級手段が各々2つ以上であってもよ
い。どういう組み合わせで粉砕工程を構成するかは、所
望の粒径やトナー粒子の構成材料等により適宜設定すれ
ばよい。この場合、粉砕工程に戻される粗粉体をどの場
所に戻すかは適宜設定すればよい。第2分級手段として
の多分割分級機は、図12に示す形状に限定されるもの
ではなく、粉砕原料の粒子径、所望の中粉体の粒子径及
び粉体の真比重等により最適な形状のものを採用すれば
よい。
In the present invention, the crushing step shown in the flow chart of FIG. 1 is not limited to this, and for example, one crushing means and two first classifying means or one crushing means and first classifying means. There may be two or more means each. What kind of combination constitutes the crushing step may be appropriately set depending on the desired particle diameter, the constituent material of the toner particles, and the like. In this case, where to return the coarse powder to be returned to the crushing step may be set appropriately. The multi-division classifier as the second classifying means is not limited to the shape shown in FIG. 12, but an optimum shape depending on the particle size of the pulverized raw material, the particle size of the desired medium powder, the true specific gravity of the powder, and the like. What is good is adopted.

【0055】本発明のトナーの製造方法は、静電荷像を
現像する為に使用されるトナー粒子の生成に好ましく使
用することが出来る。静電荷像現像用トナーを作製する
には、着色剤又は磁性粉及びビニル系や非ビニル系の熱
可塑性樹脂、必要に応じて荷電制御剤、その他の添加剤
等をヘンシェルミキサー又はボールミルの如き混合機に
より充分混合してから加熱ロール、ニーダー、エクスト
ルーダーの如き熱混練機を用いて熔融、捏和及び練肉し
て樹脂類を互いに相溶せしめた中に顔料又は染料を分散
又は溶解せしめ、冷却固化後粉砕及び分級を行ってトナ
ーを得ることが出来る。この様な粉砕工程及び分級工程
で本発明の製造方法が使用される。
The method for producing a toner of the present invention can be preferably used for producing toner particles used for developing an electrostatic image. To prepare a toner for developing an electrostatic image, a colorant or magnetic powder, a vinyl-based or non-vinyl-based thermoplastic resin, a charge control agent if necessary, and other additives are mixed with a Henschel mixer or a ball mill. After sufficiently mixing with a machine, heating roll, kneader, using a heat kneader such as an extruder, kneading and kneading meat to disperse or dissolve the pigment or dye in which the resins are mutually compatibilized, After cooling and solidification, pulverization and classification can be performed to obtain a toner. The production method of the present invention is used in such a crushing step and a classifying step.

【0056】次にトナーの構成材料について説明する。
トナーに使用される結着樹脂としては、オイルを塗布す
る装置を有する加熱加圧定着装置又は加熱加圧ローラ定
着装置を使用する場合には、下記トナー用結着樹脂の使
用が可能である。
Next, the constituent materials of the toner will be described.
As the binder resin used for the toner, when a heating / pressurizing fixing device or a heating / pressurizing roller fixing device having a device for applying oil is used, the following binder resin for toner can be used.

【0057】例えば、ポリスチレン、ポリ−p−クロル
スチレン、ポリビニルトルエン等のスチレン及びその置
換体の単重合体;スチレン−p−クロルスチレン共重合
体、スチレン−ビニルトルエン共重合体、スチレン−ビ
ニルナフタリン共重合体、スチレン−アクリル酸エステ
ル共重合体、スチレン−メタクリル酸エステル共重合
体、スチレン−α−クロルメタクリル酸メチル共重合
体、スチレン−アクリロニトリル共重合体、スチレン−
ビニルメチルエーテル共重合体、スチレン−ビニルエチ
ルエーテル共重合体、スチレン−ビニルメチルケトン共
重合体、スチレン−ブタジエン共重合体、スチレン−イ
ソプレン共重合体、スチレン−アクリロニトリル−イン
デン共重合体等のスチレン系共重合体;ポリ塩化ビニ
ル、フェノール樹脂、天然樹脂変性フェノール樹脂、天
然樹脂変性マレイン酸樹脂、アクリル樹脂、メタクリル
樹脂、ポリ酢酸ビニール、シリコーン樹脂、ポリエステ
ル樹脂、ポリウレタン、ポリアミド樹脂、フラン樹脂、
エポキシ樹脂、キシレン樹脂、ポリビニルブチラール、
テルペン樹脂、クマロンインデン樹脂、石油系樹脂等を
使用することが出来る。
For example, homopolymers of styrene such as polystyrene, poly-p-chlorostyrene, polyvinyltoluene and the like, and their substitution products; styrene-p-chlorostyrene copolymers, styrene-vinyltoluene copolymers, styrene-vinylnaphthalene. Copolymer, styrene-acrylic acid ester copolymer, styrene-methacrylic acid ester copolymer, styrene-α-chloromethyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-
Styrene such as vinyl methyl ether copolymer, styrene-vinyl ethyl ether copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer -Based copolymer: polyvinyl chloride, phenol resin, natural resin modified phenol resin, natural resin modified maleic acid resin, acrylic resin, methacrylic resin, polyvinyl acetate, silicone resin, polyester resin, polyurethane, polyamide resin, furan resin,
Epoxy resin, xylene resin, polyvinyl butyral,
Terpene resin, coumarone indene resin, petroleum resin, etc. can be used.

【0058】オイルを殆ど塗布しないか又は全く塗布し
ない加熱加圧定着方式又は加熱加圧ローラ定着方式にお
いては、トナー像支持体部材上のトナー像の一部がロー
ラに転移するいわゆるオフセット現象、及びトナー像支
持部材に対するトナーの密着性が重要な問題である。よ
り少ない熱エネルギーで定着するトナーは、通常保存中
若しくは現像器中でブロッキング若しくはケーキングし
易い性質があるので、同時にこれらの問題も考慮しなけ
ればならない。これらの現象には、トナー中の結着樹脂
の物性が最も大きく関与しているが、本発明者らの研究
によれば、トナー中の磁性体の含有量を減らすと、定着
時にトナー像支持体に対するトナーの密着性は良くなる
が、オフセットが起こり易くなり、又、ブロッキング若
しくはケーキングも生じ易くなる。それ故、トナーをオ
イルを殆ど塗布しない加熱加圧ローラ定着方式を用いる
時には、結着樹脂の選択がより重要である。好ましい結
着物質としては、架橋されたスチレン系共重合体若しく
は架橋されたポリエステルがある。
In the heating / pressurizing fixing method or the heating / pressurizing roller fixing method in which little or no oil is applied, a so-called offset phenomenon in which a part of the toner image on the toner image support member is transferred to the roller, and Adhesion of the toner to the toner image supporting member is an important issue. Toners that fix with less heat energy usually tend to be blocked or caked during storage or in a developing device, so these problems must be taken into consideration at the same time. The physical properties of the binder resin in the toner are most involved in these phenomena. However, according to the research conducted by the present inventors, when the content of the magnetic material in the toner is reduced, the toner image is supported at the time of fixing. Adhesion of the toner to the body is improved, but offset is likely to occur, and blocking or caking is likely to occur. Therefore, the selection of the binder resin is more important when using the heating and pressure roller fixing method in which toner is hardly applied with oil. Preferred binder materials are crosslinked styrenic copolymers or crosslinked polyesters.

【0059】スチレン系共重合体のスチレンモノマーに
対するコモノマーとしては、例えば、アクリル酸、アク
リル酸メチル、アクリル酸エチル、アクリル酸ブチル、
アクリル酸ドデシル、アクリル酸オクチル、アクリル酸
−2−エチルヘキシル、アクリル酸フェニル、メタクリ
ル酸、メタクリル酸メチル、メタクリル酸エチル、メタ
クリル酸ブチル、メタクリル酸オクチル、アクリロニト
リル、メタクリニトリル、アクリルアミド等の様な二重
結合を有するモノカルボン酸若しくはその置換体;例え
ば、マレイン酸、マレイン酸ブチル、マレイン酸メチ
ル、マレイン酸ジメチル等の様な二重結合を有するジカ
ルボン酸及びその置換体;例えば、塩化ビニル、酢酸ビ
ニル、安息香酸ビニル等の様なビニルエステル類;例え
ば、エチレン、プロピレン、ブチレン等の様なエチレン
系オレフィン類;例えば、ビニルメチルケトン、ビニル
ヘキシルケトン等の様なビニルケトン類;例えば、ビニ
ルメチルエーテル、ビニルエチルエーテル、ビニルイソ
ブチルエーテル等の様なビニルエーテル類;等のビニル
単量体が単独若しくは2つ以上用いられる。
Examples of the comonomer for the styrene monomer of the styrene type copolymer include acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate,
Duplex such as dodecyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, phenyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, etc. A monocarboxylic acid having a bond or a substituted product thereof; a dicarboxylic acid having a double bond such as maleic acid, butyl maleate, methyl maleate, dimethyl maleate and the like; and a substituted product thereof; for example, vinyl chloride, vinyl acetate Vinyl esters such as vinyl benzoate; for example, ethylene-based olefins such as ethylene, propylene and butylene; vinyl ketones such as vinyl methyl ketone and vinyl hexyl ketone; for example, vinyl methyl ether, Alkenyl ether, such vinyl ethers and vinyl isobutyl ether; vinyl monomers are used singly or two or more.

【0060】ここで架橋剤としては主として2個以上の
重合可能な二重結合を有する化合物が用いられ、例え
ば、ジビニルベンゼン、ジビニルナフタレン等の様な芳
香族ジビニル化合物;例えば、エチレングリコールジア
クリレート、エチレングリコールジメタクリレート、
1,3−ブタンジオールジメタクリレート等の様な二重
結合を2個有するカルボン酸エステル;ジビニルアニリ
ン、ジビニルエーテル、ジビニルスルフィド、ジビニル
スルホン等のジビニル化合物;及び3個以上のビニル基
を有する化合物;が単独若しくは混合物として用いられ
る。
As the cross-linking agent, a compound having two or more polymerizable double bonds is mainly used. For example, an aromatic divinyl compound such as divinylbenzene, divinylnaphthalene, etc .; for example, ethylene glycol diacrylate, Ethylene glycol dimethacrylate,
Carboxylic acid esters having two double bonds such as 1,3-butanediol dimethacrylate; divinyl compounds such as divinylaniline, divinyl ether, divinyl sulfide, divinyl sulfone; and compounds having three or more vinyl groups; Are used alone or as a mixture.

【0061】又、加圧定着方式又は軽加熱加圧定着方式
を用いる場合には、圧力定着トナー用結着樹脂の使用が
可能であり、例えば、ポリエチレン、ポリプロピレン、
ポリメチレン、ポリウレタンエラストマー、エチレン−
エチルアリウリレート共重合体、エチレン−酢酸ビニル
共重合体、アイオノマー樹脂、スチレン−ブタジエン共
重合体、スチレン−イソプレン共重合体、線状飽和ポリ
エステル及びパラフイン等が挙げられる。
When the pressure fixing method or the light heat pressure fixing method is used, a binder resin for pressure fixing toner can be used. For example, polyethylene, polypropylene,
Polymethylene, polyurethane elastomer, ethylene-
Examples thereof include ethyl aliurilate copolymer, ethylene-vinyl acetate copolymer, ionomer resin, styrene-butadiene copolymer, styrene-isoprene copolymer, linear saturated polyester and paraffin.

【0062】又、トナーには、荷電制御剤をトナー粒子
に配合(内添)して用いることが好ましい。荷電制御剤
によって、現像システムに応じた最適の荷電量コントロ
ールが可能となり、特に粒度分布と荷電とのバランスを
更に安定したものとすることが可能であり、荷電制御剤
を用いることで先に述べたところの粒径範囲毎による高
画質化の為の機能分離及び相互補完性をより明確にする
ことが出来る。
In the toner, it is preferable to use a charge control agent by mixing (internally adding) the toner particles. The charge control agent makes it possible to control the optimum charge amount according to the developing system, and in particular, it is possible to further stabilize the balance between the particle size distribution and the charge. It is possible to further clarify the function separation and the mutual complementarity for improving the image quality depending on each particle size range.

【0063】正荷電制御剤としては、ニグロシン及び脂
肪酸金属塩による変性物:トリブチルベンジルアンモニ
ウム−1−ヒドロキシ−4−ナフトスルホン酸塩、テト
ラブチルアンモニウムテトラフルオロボレート等の四級
アンモニウム塩;を単独で或は2種類以上組み合わせて
用いることが出来る。これらの中でも、ニグロシン系化
合物や四級アンモニウム塩の如き荷電制御剤が特に好ま
しく使用される。又、下記一般式
As the positive charge control agent, a modified product of nigrosine and a fatty acid metal salt: a quaternary ammonium salt such as tributylbenzylammonium-1-hydroxy-4-naphthosulfonate or tetrabutylammonium tetrafluoroborate; Alternatively, two or more kinds can be used in combination. Of these, charge control agents such as nigrosine compounds and quaternary ammonium salts are particularly preferably used. Also, the following general formula

【化1】 (上記式中のR1 はH又はCH3 であり、R2 又はR3
は置換又は未置換のアルキル基(好ましくはC1 〜C
4 ))で表されるモノマーの単重合体又は前述した様な
スチレン、アクリル酸エステル、メタクリル酸エステル
等の重合性モノマーとの共重合体を正荷電性制御剤とし
て用いることが出来、この場合にはこれらの荷電制御剤
は結着樹脂(の全部又は一部)としての作用をも有す
る。
[Chemical 1] (R 1 in the above formula is H or CH 3 , and R 2 or R 3
Is a substituted or unsubstituted alkyl group (preferably C 1 -C
4 )) A monomer homopolymer or a copolymer with a polymerizable monomer such as styrene, acrylic acid ester, and methacrylic acid ester as described above can be used as a positive charge control agent. In addition, these charge control agents also have a function as (all or part of) a binder resin.

【0064】負帯電性制御剤としては、例えば、有機金
属錯体やキレート化合物が有効であり、その例としては
アルミニウムアセチルアセトナート、鉄(II)アセチ
ルアセトナート、3,5−ジターシャリーブチルサリチ
ル酸クロム又は亜鉛等があり、特にアセチルアセトン金
属錯体又は塩が好ましく、特にサリチル酸系金属錯体又
はサリチル酸系金属塩が好ましい。上述した荷電制御剤
(結着樹脂としての作用を有しないもの)は、微粒子状
として用いることが好ましい。この場合にはこの荷電制
御剤の個数平均粒径は、具体的には4μm以下(更には
3μm以下)が好ましい。
As the negative charge control agent, for example, an organometallic complex or a chelate compound is effective, and examples thereof include aluminum acetylacetonate, iron (II) acetylacetonate, and chromium 3,5-ditertiarybutylsalicylate. Or zinc or the like, and acetylacetone metal complex or salt is particularly preferable, and salicylic acid metal complex or salicylic acid metal salt is particularly preferable. It is preferable to use the above-mentioned charge control agent (which does not function as a binder resin) in the form of fine particles. In this case, the number average particle diameter of the charge control agent is specifically preferably 4 μm or less (further, 3 μm or less).

【0065】トナーに内添する際、この様な荷電制御剤
は、結着樹脂100重量部に対して0.1〜20重量部
(更には0.2〜10重量部)用いることが好ましい。
トナーが磁性トナーの場合には、磁性トナー中に含まれ
る磁性材料としては、マグネタイト、γ−酸化鉄、フェ
ライト、鉄過剰型フェライト等の酸化鉄;鉄、コバル
ト、ニッケルの様な金属或はこれらの金属とアルミニウ
ム、コバルト、銅、鉛、マグネシウム、錫、亜鉛、アン
チモン、ベリリウム、ビスマス、カドミウム、カルシウ
ム、マンガン、セレン、チタン、タングステン、バナジ
ウムの様な金属との合金及びその混合物等が挙げられ
る。
When internally added to the toner, such a charge control agent is preferably used in an amount of 0.1 to 20 parts by weight (more preferably 0.2 to 10 parts by weight) with respect to 100 parts by weight of the binder resin.
When the toner is a magnetic toner, the magnetic material contained in the magnetic toner includes iron oxide such as magnetite, γ-iron oxide, ferrite, iron-excessive ferrite, and the like; metals such as iron, cobalt, and nickel, or these. Alloys of these metals with metals such as aluminum, cobalt, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten and vanadium, and mixtures thereof. .

【0066】これらの強磁性体は平均粒径が0.1〜1
μm、好ましくは0.1〜0.5μm程度のものが望ま
しく、磁性トナー中に含有される量としては樹脂成分1
00重量部に対して60〜110重量部、好ましくは樹
脂成分100重量部に対して65〜100重量部であ
る。
These ferromagnetic materials have an average particle size of 0.1 to 1
μm, preferably about 0.1 to 0.5 μm, and the resin component 1 is contained in the magnetic toner.
60 to 110 parts by weight with respect to 00 parts by weight, and preferably 65 to 100 parts by weight with respect to 100 parts by weight of the resin component.

【0067】トナーに使用される着色剤としては、従来
より知られている染料及び/又は顔料が使用可能であ
る。例えば、カーボンブラック、フタロシアニンブル
ー、ピーコックブルー、パーマネントレッド、レーキレ
ッド、ローダミンレーキ、ハンザイエロー、パーマネン
トイエロー、ベンジジンイエロー等を使用することが出
来る。その含有量としては、結着樹脂100重量部に対
して0.1〜20重量部、好ましくは0.5〜20重量
部、更にトナー像を定着したOHPフイルムの透過性を
良くする為には12重量部以下が好ましく、更に好まし
くは0.5〜9重量部である。
As the colorant used in the toner, conventionally known dyes and / or pigments can be used. For example, carbon black, phthalocyanine blue, peacock blue, permanent red, lake red, rhodamine lake, Hansa yellow, permanent yellow, benzidine yellow and the like can be used. Its content is 0.1 to 20 parts by weight, preferably 0.5 to 20 parts by weight, based on 100 parts by weight of the binder resin, and in order to improve the transparency of the OHP film on which the toner image is fixed, It is preferably 12 parts by weight or less, more preferably 0.5 to 9 parts by weight.

【0068】[0068]

【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明する。 実施例1 ・スチレン−ブチルアクリレート−ジビニルベンゼン共重合体(モノマー重 合重量比80.0/19.0/1.0、重量平均分子量Mw35万) 100重量部 ・磁性酸化鉄(平均粒径0.18μm) 100重量部 ・ニグロシン 2重量部 ・低分子量エチレン−プロピレン共重合体 4重量部 上記処方の材料をヘンシェルミキサー(FM−75型、
三井三池化工機(株)製)で良く混合した後、温度15
0℃に設定した2軸混練機(PCM−30型、池貝鉄工
(株)製)にて混練した。得られた混練物を冷却し、ハ
ンマーミルにて1mm以下に粗粉砕し、トナー製造用の
粗粉物を得た。得られたトナー粉砕原料を図1に示す製
造方法で、粉砕、低衝撃処理及び分級を行なった。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. Example 1-Styrene-butyl acrylate-divinylbenzene copolymer (monomer weight ratio 80.0 / 19.0 / 1.0, weight average molecular weight Mw 350,000) 100 parts by weight-Magnetic iron oxide (average particle size 0 .18 μm) 100 parts by weight Nigrosine 2 parts by weight Low molecular weight ethylene-propylene copolymer 4 parts by weight Henschel mixer (FM-75 type,
After mixing well with Mitsui Miike Kakoki Co., Ltd., temperature 15
The kneading was performed with a twin-screw kneader (PCM-30 type, manufactured by Ikegai Tekko KK) set to 0 ° C. The obtained kneaded product was cooled and coarsely pulverized with a hammer mill to 1 mm or less to obtain a coarse powder for toner production. The obtained toner pulverized raw material was pulverized, subjected to low impact treatment and classified by the manufacturing method shown in FIG.

【0069】衝突式気流粉砕機は図2に示す構成の装置
を用い、衝突面の形状が頂角50°(α=50°)の円
錐状の突起を有し、外周衝突面の加速管の中心軸の垂直
面に対する傾斜角が10°(β=10°)であった(α
+2β=70°)。又、衝突部材の直径は90mm(b
=90mm)であり衝突面端部と加速管出口との距離は
50mm(a=50mm)であり、粉砕室壁との最短距
離は20mm(c=20mm)であり、粉砕室形状は箱
型で行った。第1分級機は強制渦型の気流分級機を用い
た。
The collision-type airflow crusher uses the device having the structure shown in FIG. 2, and the collision surface has a conical projection with an apex angle of 50 ° (α = 50 °), and the acceleration pipe of the outer peripheral collision surface is The inclination angle of the central axis with respect to the vertical plane was 10 ° (β = 10 °) (α
+ 2β = 70 °). Also, the diameter of the collision member is 90 mm (b
= 90 mm), the distance between the end of the collision surface and the exit of the accelerating pipe is 50 mm (a = 50 mm), the shortest distance to the crushing chamber wall is 20 mm (c = 20 mm), and the crushing chamber shape is box-shaped. went. A forced vortex type airflow classifier was used as the first classifier.

【0070】テーブル式の定量供給機にて、粉砕原料を
31.0Kg/hの割合でインジェクションフィーダー
にて気流分級機に供給し、分級された粗粉は該衝突式気
流粉砕機の粉砕原料供給口1より供給され、圧力6.0
Kg/cm2 (G)、6.0Nm3 /minの圧縮空気
を用いて粉砕された後、原料導入部にて供給されている
トナー粉砕原料と混合されながら、再び該気流分級機に
循環し、閉回路粉砕を行い、分級された細粉を得た。
尚、この時の細粉の重量平均径は8.8μmであり、1
6.0μm以上が実質含まれていないシャープな粒度分
布を有していた。
The pulverized raw material was supplied to the air flow classifier at a rate of 31.0 Kg / h by an injection feeder with a table type constant quantity feeder, and the classified coarse powder was supplied to the crushed raw material of the collision type air flow pulverizer. Supplied through mouth 1, pressure 6.0
After being crushed using compressed air of Kg / cm 2 (G) and 6.0 Nm 3 / min, it is circulated to the air stream classifier again while being mixed with the toner crushing raw material supplied in the raw material introduction section. Then, closed circuit pulverization was performed to obtain classified fine powder.
The weight average diameter of the fine powder at this time was 8.8 μm, and
It had a sharp particle size distribution substantially not containing 6.0 μm or more.

【0071】トナーの粒度分布は種々の方法によって測
定出来るが、本実施例では、コールターカウンターを用
いて行った。測定装置としてコールターカウンターTA
−II型(コールター社製)を用い、個数分布及び体積
分布を出力するインターフェイス(日科機製)及びCX
−1パーソルコンピュータ(キヤノン製)を接続し、電
解液は1級塩化ナトリウムを用いて1重量%NaCl水
溶液を調製する。測定法としては前記電解水溶液100
〜150ml中に分散剤として界面活性剤、好ましくは
アルキルベンゼンスルホン酸塩を0.1〜5ml加え、
更に測定試料を2〜20mg加える。試料を懸濁した電
解液は超音波分散器で約1〜3分間分散処理を行い、前
記コールターカウンターTA−II形により、アパチャ
ーとして100μmアパチャーを用いて、個数を基準と
して2〜40μmの粒子の粒度分布を測定して、それか
ら重量平均粒径及び個数平均径等の値を求めた。
The particle size distribution of the toner can be measured by various methods, but in this example, it was measured using a Coulter counter. Coulter counter TA as a measuring device
-An interface (made by Nikkaki) and a CX that uses II type (made by Coulter) to output the number distribution and volume distribution
-1 Persol Computer (manufactured by Canon Inc.) is connected, and a 1 wt% NaCl aqueous solution is prepared by using primary sodium chloride as an electrolytic solution. As a measuring method, the electrolytic aqueous solution 100 is used.
Add a surface active agent as a dispersant, preferably 0.1 to 5 ml of alkylbenzene sulfonate, to ~ 150 ml,
Further, 2 to 20 mg of the measurement sample is added. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment for about 1 to 3 minutes by an ultrasonic disperser, and the Coulter counter TA-II type is used to form particles having a diameter of 2 to 40 μm with a 100 μm aperture as an aperture. The particle size distribution was measured and the values such as the weight average particle size and the number average particle size were obtained.

【0072】この得られた細粉を図9に示す低衝撃処理
装置にて、ローターの回転速度が130m/sec、ラ
イナーとローターとのクリアランスが2mm及び装置の
出口側温度が40℃に制御された条件下で処理を行っ
た。処理後のトナーを走査型電子顕微鏡(日立製作所S
−800形)で観察したところ、処理前に較べて形状に
大きな変化は見られなかったが、角張った部分が減少し
ているのが確認された。尚、処理後の重量平均径は8.
7μmであった。
The fine powder thus obtained was controlled by the low impact treatment device shown in FIG. 9 so that the rotation speed of the rotor was 130 m / sec, the clearance between the liner and the rotor was 2 mm, and the temperature on the outlet side of the device was 40 ° C. The treatment was carried out under the following conditions. Scanned electron microscope (Hitachi S
As a result of observation with -800 type), no significant change was observed in the shape as compared with that before the treatment, but it was confirmed that the angular portion was reduced. The weight average diameter after the treatment was 8.
It was 7 μm.

【0073】この処理された細粉を、図12に示す多分
割分級機で分級した。多分割分級機への導入に際して
は、排出口111、112及び113に連通している捕
集サイクロンの吸引減圧による系内の減圧から発生する
吸引力と原料供給ノズル116に取り付けたインジェク
ションからの圧縮空気を利用した。導入された細粉は
0.01秒以下の瞬時に分級された。分級された粗粉体
は捕集サイクロンで捕集した後、前記粉砕機に再度導入
した。分級された中粉体は重量平均粒径が8.1μm
(粒径4.0μm以下の粒子を0.9体積%含有し、且
つ粒径12.7μm以上の粒子を0.5体積%含有す
る)のシャープな分布を有しており、トナー用として優
れた性能を有していた。
The fine powder thus treated was classified by a multi-division classifier shown in FIG. At the time of introduction into the multi-division classifier, the suction force generated by the decompression in the system by the suction decompression of the collection cyclone communicating with the discharge ports 111, 112 and 113 and the compression from the injection attached to the raw material supply nozzle 116. I used air. The introduced fine powder was classified in an instant of 0.01 seconds or less. The classified coarse powder was collected by a collection cyclone and then reintroduced into the pulverizer. The weight average particle diameter of the classified medium powder is 8.1 μm.
It has a sharp distribution (contains 0.9% by volume of particles having a particle size of 4.0 μm or less and 0.5% by volume of particles having a particle size of 12.7 μm or more) and is excellent as a toner. Had good performance.

【0074】尚、分級された微粉体は、混練工程に戻し
て再利用した。この時、投入された粉砕原料の全量に対
する最終的に得られた中粉体との比率(即ち、分級収
率)は87重量%であった。最終的に得られた中粉体を
光学顕微鏡で観察し、短径と長径の比を測定したところ
0.77であった。
The classified fine powder was returned to the kneading step and reused. At this time, the ratio of the finally obtained intermediate powder to the total amount of the pulverized raw material charged (that is, the classification yield) was 87% by weight. The medium powder finally obtained was observed with an optical microscope, and the ratio of the short diameter to the long diameter was measured and found to be 0.77.

【0075】実施例2 実施例1と同様のトナー粉砕原料を用いて、同様の製造
方法で、粉砕、低衝撃処理及び分級を行った。衝突式気
流粉砕機は、図4に示す構成のものを用い、衝突面の形
状が頂角55°(α=55°)の円錐状の突起を有し、
外周衝突面の加速管の中心軸の垂直面に対する傾斜角が
10°(β=10°)であった(α+2β=75°)。
又、衝突部材の直径は100mm(b=100mm)で
あり、衝突面端部と加速管出口との距離は50mm(a
=50mm)であり、粉砕室形状は内径150mmの円
筒状粉砕室(c=25mm)を用いた。鉛直線を基準と
した加速管の長軸方向の傾きは実質的に0°で行った。
又、第1分級機は実施例1と同様の装置を用いた。
Example 2 Using the same toner pulverization raw material as in Example 1, pulverization, low impact treatment and classification were carried out by the same production method. The collision-type airflow crusher has the structure shown in FIG. 4, and the collision surface has a conical projection with an apex angle of 55 ° (α = 55 °).
The inclination angle of the outer peripheral collision surface with respect to the vertical plane of the central axis of the acceleration tube was 10 ° (β = 10 °) (α + 2β = 75 °).
The diameter of the collision member is 100 mm (b = 100 mm), and the distance between the end of the collision surface and the exit of the acceleration tube is 50 mm (a
= 50 mm) and a cylindrical crushing chamber (c = 25 mm) having an inner diameter of 150 mm was used as the crushing chamber shape. The inclination of the acceleration tube in the long axis direction with respect to the vertical line was substantially 0 °.
Further, as the first classifier, the same device as in Example 1 was used.

【0076】定量供給機にて粉砕原料を47.0Kg/
hの割合で第1分級機に供給し分級された粗粉は該衝突
式気流粉砕機に導入し、圧力6.0Kg/cm2
(G)、6.0Nm3 /minの圧縮空気を用いて粉砕
した後、再度分級機に循環し、閉回路粉砕を行った。そ
の結果、分級された細粉として重量平均径8.9μmの
トナー用微粉砕品を得た。尚、粉砕中に融着物の発生は
なく、安定した運転が出来た。この細粉を実施例1と同
様の低衝撃処理装置を用いて、同様の条件で処理を行っ
た。処理後のトナーを走査型電子顕微鏡(日立製作所S
−800形)で観察したところ、処理前に較べて形状に
大きな変化は見られなかったが、角張った部分が減少し
ているのが確認された。尚、処理後の重量平均径は8.
8μmであった。
47.0 Kg / g of raw material was pulverized with a constant quantity feeder.
The coarse powder supplied to the first classifier at a rate of h and classified was introduced into the collision type airflow crusher, and the pressure was 6.0 kg / cm 2.
(G), after crushing using 6.0 Nm 3 / min of compressed air, it was circulated through the classifier again and closed circuit crushing was performed. As a result, a finely pulverized product for toner having a weight average diameter of 8.9 μm was obtained as classified fine powder. It should be noted that no stable deposit was generated during the pulverization, and stable operation was possible. This fine powder was treated under the same conditions using the same low impact treatment apparatus as in Example 1. Scanned electron microscope (Hitachi S
As a result of observation with -800 type), no significant change was observed in the shape as compared with that before the treatment, but it was confirmed that the angular portion was reduced. The weight average diameter after the treatment was 8.
It was 8 μm.

【0077】この処理された細粉を、図12に示す多分
割分級機に導入し、分級された中粉体として、重量平均
粒径が8.2μm(粒径4.0μm以下の粒子を0.8
体積%含有し、且つ粒径12.7μm以上の粒子を1.
0体積%含有する)のシャープな分布を有するトナーを
分級収率88重量%で得た。尚、分級された粗粉は粉砕
工程に循環し、微粉は混練工程に戻して再利用した。こ
の中粉体を光学顕微鏡で観察し、短径と長径の比を測定
したところ0.76であった。
This treated fine powder was introduced into the multi-division classifier shown in FIG. 12, and as the classified intermediate powder, the weight average particle size was 8.2 μm (particles having a particle size of 4.0 μm or less were .8
1. Particles containing 1% by volume and having a particle size of 12.7 μm or more
A toner having a sharp distribution of 0% by volume) was obtained with a classification yield of 88% by weight. The classified coarse powder was circulated to the crushing step, and the fine powder was returned to the kneading step for reuse. The medium powder was observed with an optical microscope and the ratio of the short diameter to the long diameter was measured and found to be 0.76.

【0078】実施例3 実施例1と同様のトナー粉砕原料を用いて、同様の製造
方法で、粉砕、低衝撃処理及び分級を行った。衝突式気
流粉砕機は、図7に示す構成のものを用い、衝突面の形
状が頂角55°(α=55°)の円錐状の突起を有し、
外周衝突面の加速管の中心軸の垂直面に対する傾斜角が
10°(β=10°)であった(α+2β=75°)。
又、衝突部材の直径は100mm(b=100mm)で
あり、衝突面端部と加速管出口との距離は50mm(a
=50mm)であり、粉砕室形状は内径150mmの円
筒状粉砕室(c=25mm)を用いた。鉛直線を基準と
した加速管の長軸方向の傾きは実質的に0°であり、粉
砕原料供給口は加速管の全周方向に開口しているものを
用いた。又、第1分級機は実施例1と同様の装置を用い
た。
Example 3 Using the same toner pulverization raw material as in Example 1, pulverization, low impact treatment and classification were carried out by the same production method. The collision type airflow crusher has the configuration shown in FIG. 7, and the shape of the collision surface has a conical projection with an apex angle of 55 ° (α = 55 °).
The inclination angle of the outer peripheral collision surface with respect to the vertical plane of the central axis of the acceleration tube was 10 ° (β = 10 °) (α + 2β = 75 °).
The diameter of the collision member is 100 mm (b = 100 mm), and the distance between the end of the collision surface and the exit of the acceleration tube is 50 mm (a
= 50 mm) and a cylindrical crushing chamber (c = 25 mm) having an inner diameter of 150 mm was used as the crushing chamber shape. The inclination of the acceleration tube in the long axis direction with respect to the vertical line was substantially 0 °, and the pulverized raw material supply port used was one that was open in the entire circumferential direction of the acceleration tube. Further, as the first classifier, the same device as in Example 1 was used.

【0079】定量供給機にて粉砕原料を46.0Kg/
hの割合で第1分級機に供給し、分級された粗粉は該衝
突式気流粉砕機に導入し、圧力6.0Kg/cm2
(G)、6.0Nm/minの圧縮空気を用いて粉砕
した後、再度分級機に循環し、閉回路粉砕を行った。そ
の結果、分級された細粉として重量平均径9.0μmの
トナー用微粉砕品を得た。尚、粉砕中に融着物の発生は
なく、安定した運転が出来た。この細粉を実施例1と同
様の低衝撃処理装置を用いて、同様の条件で処理を行っ
た。
The pulverized raw material was fed with a constant quantity feeder to 46.0 kg /
It is supplied to the first classifier at a rate of h, and the classified coarse powder is introduced into the collision type airflow crusher, and the pressure is 6.0 Kg / cm 2.
(G) After crushing using 6.0 Nm 3 / min of compressed air, it was circulated through the classifier again to perform closed circuit crushing. As a result, a finely pulverized product for toner having a weight average diameter of 9.0 μm was obtained as classified fine powder. It should be noted that no stable deposit was generated during the pulverization, and stable operation was possible. This fine powder was treated under the same conditions using the same low impact treatment apparatus as in Example 1.

【0080】処理後のトナーを走査型電子顕微鏡(日立
製作所S−800形)で観察したところ、処理前に較べ
て形状に大きな変化は見られなかったが、角張った部分
が減少しているのが確認された。尚、処理後の重量平均
径は8.9μmであった。この処理された細粉を、図1
2の多分割分級機に導入し、分級された中粉体として、
重量平均粒径が8.2μm(粒径4.0μm以下の粒子
を0.8体積%含有し、且つ粒径12.7μm以上の粒
子を1.2体積%含有する)のシャープな分布を有する
トナーを分級収率86重量%で得た。尚、分級された粗
粉は粉砕工程に循環し、微粉は混練工程に戻して再利用
した。この中粉体を光学顕微鏡で観察し、短径と長径の
比を測定したところ0.76であった。
When the toner after the treatment was observed with a scanning electron microscope (S-800 manufactured by Hitachi, Ltd.), no large change was seen in the shape as compared with that before the treatment, but the angular portion was reduced. Was confirmed. The weight average diameter after the treatment was 8.9 μm. This treated fine powder is shown in FIG.
Introduced into the multi-division classifier of No. 2, as a classified intermediate powder,
It has a sharp weight-average particle size of 8.2 μm (containing 0.8 vol% of particles having a particle size of 4.0 μm or less and 1.2 vol% of particles having a particle size of 12.7 μm or more). The toner was obtained with a classification yield of 86% by weight. The classified coarse powder was circulated to the crushing step, and the fine powder was returned to the kneading step for reuse. The medium powder was observed with an optical microscope and the ratio of the short diameter to the long diameter was measured and found to be 0.76.

【0081】実施例4 実施例1と同様のトナー粉砕原料を用いて、同様の製造
方法で粉砕、低衝撃処理及び分級を行った。即ち、衝突
式気流粉砕機は、図2に示す構成の装置を実施例1と同
様の装置条件で使用した。又、第1分級機は実施例1と
同様の装置を用いた。定量供給機にて粉砕原料を18.
0Kg/hの割合で第1分級機に供給し、分級された粗
粉を該衝突式気流粉砕機に導入し、圧力6.0Kg/c
2 (G)、6.0Nm/minの圧縮空気を用いて
粉砕した後、再度分級機に循環し、閉回路粉砕を行っ
た。その結果、分級された細粉として重量平均径7.0
μmのトナー用微粉砕品を得た。尚、粉砕中に融着物の
発生はなく、安定した運転が出来た。
Example 4 Using the same toner pulverization raw material as in Example 1, pulverization, low impact treatment and classification were carried out by the same production method. That is, the collision type airflow crusher used the apparatus having the configuration shown in FIG. 2 under the same apparatus conditions as in Example 1. Further, as the first classifier, the same device as in Example 1 was used. The pulverized raw material is fed with a constant quantity feeder 18.
It is supplied to the first classifier at a rate of 0 Kg / h, and the classified coarse powder is introduced into the collision type airflow crusher, and the pressure is 6.0 Kg / c.
After pulverizing with compressed air of m 2 (G) and 6.0 Nm 3 / min, it was circulated through the classifier again and closed circuit pulverization was performed. As a result, a weight average diameter of 7.0 as classified fine powder was obtained.
A finely pulverized product for toner having a size of μm was obtained. It should be noted that no stable deposit was generated during the pulverization, and stable operation was possible.

【0082】この細粉を図9に示す低衝撃装置にてロー
ターの回転速度が130m/sec、ライナーとロータ
ーのクリアランスが1mm及び装置の出口側温度45℃
で処理した。処理後のトナーを走査型電子顕微鏡(日立
製作所S−800形)で観察したところ、処理前に較べ
て形状に大きな変化は見られなかったが、角張った部分
が減少しているのが確認された。尚、処理後の重量平均
径は6.8μmであった。
The fine powder was placed in a low impact device shown in FIG. 9 at a rotor rotation speed of 130 m / sec, a liner-rotor clearance of 1 mm, and an outlet temperature of 45 ° C. of the device.
Processed in. When the toner after the treatment was observed with a scanning electron microscope (Hitachi S-800 type), no significant change was seen in the shape as compared with before the treatment, but it was confirmed that the angular portions were reduced. It was The weight average diameter after the treatment was 6.8 μm.

【0083】この処理された細粉を、図12の多分割分
級機に導入し分級された中粉体として、重量平均粒径が
6.5μm(粒径4.0μm以下の粒子を3.0体積%
含有し、且つ粒径10.08μm以上の粒子を1.0体
積%含有する)のシャープな分布を有するトナーを分級
収率84重量%で得た。尚、分級された粗粉は粉砕工程
に循環し、微粉は混練工程に戻して再利用した。この中
粉体を光学顕微鏡で観察し、短径と長径の比を測定した
ところ0.80であった。
This treated fine powder was introduced into the multi-division classifier shown in FIG. 12 and classified as a medium powder having a weight average particle size of 6.5 μm (particles having a particle size of 4.0 μm or less was 3.0 volume%
A toner having a sharp distribution of 1.0% by volume of particles having a particle size of 10.08 μm or more is obtained with a classification yield of 84% by weight. The classified coarse powder was circulated to the crushing step, and the fine powder was returned to the kneading step for reuse. The medium powder was observed with an optical microscope, and the ratio of the short diameter to the long diameter was measured and found to be 0.80.

【0084】実施例5 実施例1と同様のトナー粉砕原料を用いて、同様の製造
方法で粉砕、低衝撃処理及び分級を行った。即ち、衝突
式気流粉砕機は、図4に示す構成の装置を実施例2と同
様の装置条件で使用した。又、第1分級機は実施例1と
同様の装置を用いた。定量供給機にて粉砕原料を30.
0Kg/hの割合で第1分級機に供給し、分級された粗
粉は該衝突式気流粉砕機に導入し、圧力6.0Kg/c
2 (G)、6.0Nm3 /minの圧縮空気を用いて
粉砕した後、再度分級機に循環し、閉回路粉砕を行っ
た。その結果、分級された細粉として重量平均径6.9
μmのトナー用微粉砕品を得た。尚、粉砕中に融着物の
発生はなく、安定した運転が出来た。
Example 5 Using the same toner pulverization raw material as in Example 1, pulverization, low impact treatment and classification were carried out by the same production method. That is, as the collision type airflow crusher, the apparatus having the configuration shown in FIG. 4 was used under the same apparatus conditions as in Example 2. Further, as the first classifier, the same device as in Example 1 was used. 30.
It is supplied to the first classifier at a rate of 0 Kg / h, and the classified coarse powder is introduced into the collision type airflow crusher, and the pressure is 6.0 Kg / c.
After pulverizing with compressed air of m 2 (G) and 6.0 Nm 3 / min, it was circulated through the classifier again to perform closed circuit pulverization. As a result, a weight average diameter of 6.9 as classified fine powder was obtained.
A finely pulverized product for toner having a size of μm was obtained. It should be noted that no stable deposit was generated during the pulverization, and stable operation was possible.

【0085】この細粉を実施例1と同様の低衝撃処理装
置を用いて、同様の条件で処理を行った。処理後のトナ
ーを走査型電子顕微鏡(日立製作所S−800形)で観
察したところ、処理前に較べて形状に大きな変化は見ら
れなかったが、角張った部分が減少しているのが確認さ
れた。尚、処理後の重量平均径は6.8μmであった。
The fine powder was treated under the same conditions using the same low impact treatment apparatus as in Example 1. When the toner after the treatment was observed with a scanning electron microscope (Hitachi S-800 type), no significant change was seen in the shape as compared with before the treatment, but it was confirmed that the angular portions were reduced. It was The weight average diameter after the treatment was 6.8 μm.

【0086】この処理された細粉を、図12の多分割分
級機に導入し分級された中粉体として、重量平均粒径が
6.5μm(粒径4.0μm以下の粒子を3.0体積%
含有し、且つ粒径10.08μm以上の粒子を1.0体
積%含有する)のシャープな分布を有するトナーを分級
収率84重量%で得た。尚、分級された粗粉は粉砕工程
に循環し、微粉は混練工程に戻して再利用した。この中
粉体を光学顕微鏡で観察し、短径と長径の比を測定した
ところ0.80であった。
The treated fine powder was introduced into the multi-division classifier shown in FIG. 12 and classified as a medium powder having a weight average particle size of 6.5 μm (particles having a particle size of 4.0 μm or less was 3.0. volume%
A toner having a sharp distribution of 1.0% by volume of particles having a particle size of 10.08 μm or more is obtained with a classification yield of 84% by weight. The classified coarse powder was circulated to the crushing step, and the fine powder was returned to the kneading step for reuse. The medium powder was observed with an optical microscope, and the ratio of the short diameter to the long diameter was measured and found to be 0.80.

【0087】実施例6 実施例2と同様にして得た重量平均粒径8.9μmの細
粉を、図11に示す低衝撃処理装置にて、ローターブレ
ードの回転速度が110m/sec、ライナーとロータ
ーブレードのクリアランス2mm及び装置の出口側温度
40℃の条件下で処理を行った。処理後のトナーを走査
型電子顕微鏡(日立製作所S−800形)で観察したと
ころ、処理前に較べて形状に大きな変化は見られなかっ
たが、角張った部分が減少しているのが確認された。
尚、処理後の重量平均径は8.8μmであった。
Example 6 Fine powder having a weight average particle size of 8.9 μm obtained in the same manner as in Example 2 was used as a liner with a rotor blade rotating speed of 110 m / sec in a low impact treatment device shown in FIG. The treatment was carried out under the conditions of a rotor blade clearance of 2 mm and an apparatus outlet temperature of 40 ° C. When the toner after the treatment was observed with a scanning electron microscope (Hitachi S-800 type), no significant change was seen in the shape as compared with before the treatment, but it was confirmed that the angular portions were reduced. It was
The weight average diameter after the treatment was 8.8 μm.

【0088】この処理された細粉を、実施例1と同様に
多分割分級機で分級し、分級された中粉体は重量平均粒
径が8.2μmのシャープな分布を有しており、トナー
として優れた性能を有していた。尚、この時の分級収率
は86重量%であり、得られた中粉体を光学顕微鏡で観
察し、短径と長径の比を測定したところ0.75であっ
た。
This treated fine powder was classified by a multi-division classifier in the same manner as in Example 1, and the classified intermediate powder had a sharp distribution with a weight average particle diameter of 8.2 μm. It had excellent performance as a toner. The classification yield at this time was 86% by weight, and the obtained intermediate powder was observed with an optical microscope to measure the ratio of the short diameter to the long diameter, and it was 0.75.

【0089】比較例1 実施例1と同様のトナー粉砕原料を用いて、図13のフ
ローチャートに従って粉砕及び分級を行った。衝突式気
流粉砕機として、図14に示した粉砕機を使用し、衝突
面の形状が加速管の長軸方向に対して垂直な平面状のも
のを用いた。衝突部材の直径は90mm(b=90m
m)であり、衝突面端部と加速管出口との距離は50m
m(a=50mm)であり、粉砕室壁との最短距離は2
0mm(c=20mm)であり、粉砕室形状は箱型で行
った。
Comparative Example 1 Using the same toner pulverization raw material as in Example 1, pulverization and classification were carried out according to the flowchart of FIG. As the collision type air flow crusher, the crusher shown in FIG. 14 was used, and the shape of the collision surface was a plane shape perpendicular to the long axis direction of the acceleration tube. The diameter of the collision member is 90 mm (b = 90 m
m), and the distance between the end of the collision surface and the exit of the acceleration tube is 50 m.
m (a = 50 mm), and the shortest distance from the crushing chamber wall is 2
It was 0 mm (c = 20 mm), and the crushing chamber was box-shaped.

【0090】第1分級手段及び第2分級手段はデイスパ
ージョンセパレーターDS5UR(日本ニューマチック
工業社製)を使用した。定量供給機にて粉砕原料を1
5.0Kg/hの割合でDS5URに供給し、分級され
た粗粉は該衝突式気流粉砕機に導入し、圧力6.0Kg
/cm2 (G)、6.0Nm3 /minの圧縮空気を用
いて粉砕した後、再度分級機に循環し、閉回路粉砕を行
った。その結果、分級された細粉として重量平均径7.
8μmのトナー用微粉砕品を得た。供給量を15Kg/
h以上に増やすと得られる細粉の体積平均径が大きくな
り、又、衝突部材上で粉砕物の融着、凝集物及び粗粒子
が生じ始め、融着物が加速管の原料供給口を詰まらせる
場合があり、安定した運転が出来なかった。
As the first classifying means and the second classifying means, a dispersion separator DS5UR (manufactured by Nippon Pneumatic Mfg. Co., Ltd.) was used. 1 crushed raw material with constant quantity feeder
The coarse powder, which was supplied to the DS5UR at a rate of 5.0 Kg / h and was classified, was introduced into the collision type airflow crusher, and the pressure was 6.0 Kg.
/ Cm 2 (G), 6.0 Nm 3 / min Compressed air was used for pulverization, and then it was circulated through the classifier again for closed circuit pulverization. As a result, the weight average diameter of the finely divided powder was 7.
A finely pulverized product for toner of 8 μm was obtained. Supply amount 15Kg /
If it is increased to h or more, the volume average diameter of the fine powder obtained will become large, and fusion of the pulverized material, agglomerates and coarse particles will start to occur on the collision member, and the fusion material will clog the raw material supply port of the acceleration tube. In some cases, stable driving was not possible.

【0091】この細粉を走査型電子顕微鏡(日立製作所
S−800形)で観察したところ、角張った突起部分が
多く見受けられた。この細粉を第2分級手段であるDS
−5URに、15.0Kg/hの割合で供給し、重量平
均粒径8.4μm(粒径4.0μm以下の粒子を2.0
体積%含有し、且つ粒径12.7μm以上の粒子を3.
2体積%含有する)のややブロードな粒度分布を有する
中粉体を分級収率68重量%で得た。最終的に得られた
中粉体を光学顕微鏡で観察し、短径と長径の比を測定し
たところ0.65であった。実施例1〜3に比較する
と、粉砕処理量及び分級収率が劣っており、又、トナー
の表面状態が鋭利な突起部分を有していた。
When the fine powder was observed with a scanning electron microscope (Hitachi S-800 type), many angular protrusions were found. This fine powder is the second classification means DS
It is supplied to -5UR at a rate of 15.0 Kg / h, and a weight average particle size of 8.4 μm (particles having a particle size of 4.0 μm or less is 2.0.
2. Particles containing 3% by volume and having a particle size of 12.7 μm or more.
A medium powder having a rather broad particle size distribution (containing 2% by volume) was obtained with a classification yield of 68% by weight. The medium powder finally obtained was observed with an optical microscope, and the ratio of the short diameter to the long diameter was measured and found to be 0.65. Compared with Examples 1 to 3, the amount of pulverization treatment and the classification yield were inferior, and the toner surface state had sharp projections.

【0092】比較例2 実施例1と同様のトナー粉砕原料を用いて、図13に示
す製造方法で粉砕及び分級を行った。衝突式気流粉砕機
として比較例1と同様の粉砕機(圧力6.0Kg/cm
2 (G)、6.0Nm3 /minの圧縮空気使用)を使
用し、第1分級手段及び第2分級手段としてディスパー
ジョンセパレーターDS5UR(日本ニューマチック工
業社製)を使用した。
Comparative Example 2 Using the same toner crushing raw material as in Example 1, crushing and classification were performed by the manufacturing method shown in FIG. As a collision type air flow crusher, the same crusher as in Comparative Example 1 (pressure 6.0 kg / cm)
2 (G), 6.0 Nm 3 / min of compressed air was used), and a dispersion separator DS5UR (manufactured by Nippon Pneumatic Mfg. Co., Ltd.) was used as the first classifying means and the second classifying means.

【0093】粉砕原料を8.0Kg/hの割合で供給
し、重量平均粒径6.4μmの細粉を得た。この細粉を
走査型電子顕微鏡(日立製作所S−800形)で観察し
たところ、角張った突起部分が多く見受けられた。この
細粉を第2分級手段であるDS−5URに、8.0Kg
/hの割合で供給し、重量平均粒径6.8μm(粒径
4.0μm以下の粒子を5.3体積%含有し、且つ粒径
10.08μm以上の粒子を4.0体積%含有する)の
ややブロードな粒度分布を有する中粉体を分級収率60
重量%で得た。最終的に得られた中粉体を光学顕微鏡で
観察し、短径と長径の比を測定したところ0.70であ
った。実施例4及び5に比較すると、粉砕処理量及び分
級収率が劣っており、又、トナーの表面状態が鋭利な突
起部分を有していた。
The pulverized raw material was supplied at a rate of 8.0 kg / h to obtain fine powder having a weight average particle diameter of 6.4 μm. When the fine powder was observed with a scanning electron microscope (Hitachi S-800 type), many angular protrusions were found. 8.0 kg of this fine powder was added to DS-5UR which is the second classification means.
/ H, and has a weight average particle diameter of 6.8 μm (containing 5.3 vol% of particles having a particle diameter of 4.0 μm or less and 4.0 vol% of particles having a particle diameter of 10.08 μm or more). ) The intermediate powder having a slightly broad particle size distribution of
Obtained in% by weight. The medium powder finally obtained was observed with an optical microscope, and the ratio of the short diameter to the long diameter was measured and found to be 0.70. Compared with Examples 4 and 5, the pulverization amount and the classification yield were inferior, and the toner surface state had sharp projections.

【0094】実施例7 ・不飽和ポリエステル樹脂 100重量部 ・銅フタロシアニン顔料(C.I.Pigment Blue 15) 4.5重量部 ・荷電制御剤(サリチル酸クロム錯体) 4.0重量部 上記処方の材料をヘンシェルミキサー(FM−75型、
三井三池化工機(株)製)で良く混合した後、温度10
0℃に設定した2軸混練機(PCM−30型、池貝鉄工
(株)製)にて混練分散を行った。得られた混練物を冷
却し、ハンマーミルにて1mm以下に粗粉砕し、トナー
製造用の粗粉物を得た。得られたトナー粉砕原料を図1
に示す製造方法で、粉砕低衝撃処理及び分級を行なっ
た。
Example 7 100 parts by weight of unsaturated polyester resin 4.5 parts by weight of copper phthalocyanine pigment (CI Pigment Blue 15) charge control agent (chromium salicylate complex) 4.0 parts by weight Materials of the above formulation Henschel mixer (FM-75 type,
After mixing well with Mitsui Miike Kakoki Co., Ltd., temperature 10
Kneading and dispersion were performed with a twin-screw kneader (PCM-30 type, manufactured by Ikegai Tekko Co., Ltd.) set at 0 ° C. The obtained kneaded product was cooled and coarsely pulverized with a hammer mill to 1 mm or less to obtain a coarse powder for toner production. The obtained toner pulverized raw material is shown in FIG.
By the manufacturing method shown in (1), crushing low impact treatment and classification were performed.

【0095】衝突式気流粉砕機は図4に示す構成の装置
を用い、衝突面の形状が頂角55°(α=55°)の円
錐状の突起を有し、外周衝突面の加速管の中心軸の垂直
面に対する傾斜角が10°(β=10°)であった(α
+2β=75°)。又、衝突部材の直径は100mm
(b=100mm)であり、衝突面端部と加速管出口と
の距離は50mm(a=50mm)であり、粉砕室形状
は内径150mmの円筒状粉砕室(c=25mm)を用
いた。鉛直線を基準とした加速管の長軸方向の傾きは実
質的に0°で行った。又、第1分級機は実施例1と同様
の装置を用いた。
The collision type airflow crusher uses the device having the structure shown in FIG. 4, and the collision surface has a conical projection having an apex angle of 55 ° (α = 55 °), and the acceleration pipe of the outer peripheral collision surface is The inclination angle of the central axis with respect to the vertical plane was 10 ° (β = 10 °) (α
+ 2β = 75 °). Also, the diameter of the collision member is 100 mm
(B = 100 mm), the distance between the end of the collision surface and the outlet of the acceleration tube was 50 mm (a = 50 mm), and the crushing chamber was a cylindrical crushing chamber (c = 25 mm) having an inner diameter of 150 mm. The inclination of the acceleration tube in the long axis direction with respect to the vertical line was substantially 0 °. Further, as the first classifier, the same device as in Example 1 was used.

【0096】定量供給機にて粉砕原料を43.0Kg/
hの割合で第1分級機に供給し、分級された粗粉は該衝
突式気流粉砕機に導入し、圧力6.0Kg/cm2
(G)、6.0Nm3 /minの圧縮空気を用いて粉砕
した後、再度分級機に循環し、閉回路粉砕を行った。そ
の結果、分級された細粉として重量平均径8.0μmの
トナー用微粉砕品を得た。尚、粉砕中に融着物の発生は
なく、安定した運転が出来た。この細粉を実施例1と同
様の低衝撃処理装置を用いて、同様の条件で処理を行っ
た。処理後のトナーを走査型電子顕微鏡(日立製作所S
−800形)で観察したところ、処理前に較べて形状に
大きな変化は見られなかったが、角張った部分が減少し
ているのが確認された。尚、処理後の重量平均径は7.
8μmであった。
43.0 kg / min of pulverized raw material with a constant quantity feeder
It is supplied to the first classifier at a rate of h, and the classified coarse powder is introduced into the collision type airflow crusher, and the pressure is 6.0 Kg / cm 2.
(G), after crushing using 6.0 Nm 3 / min of compressed air, it was circulated through the classifier again and closed circuit crushing was performed. As a result, a finely pulverized product for toner having a weight average diameter of 8.0 μm was obtained as classified fine powder. It should be noted that no stable deposit was generated during the pulverization, and stable operation was possible. This fine powder was treated under the same conditions using the same low impact treatment apparatus as in Example 1. Scanned electron microscope (Hitachi S
As a result of observation with -800 type), no significant change was observed in the shape as compared with that before the treatment, but it was confirmed that the angular portion was reduced. The weight average diameter after the treatment was 7.
It was 8 μm.

【0097】この処理された細粉を、図12に示す多分
割分級機に導入し分級された中粉体として、重量平均粒
径が8.2μm(粒径4.0μm以下の粒子を0.6体
積%含有し、且つ粒径12.7μm以上の粒子を1.5
体積%含有する)のシャープな分布を有するトナーを分
級収率80重量%で得た。尚、分級された粗粉は粉砕工
程に循環し、微粉は混練工程に戻して再利用した。この
中粉体を光学顕微鏡で観察し、短径と長径の比を測定し
たところ0.75であった。
This treated fine powder was introduced into the multi-division classifier shown in FIG. 12 to be classified as a medium powder having a weight average particle diameter of 8.2 μm (particles having a particle diameter of 4.0 μm or less are less than 0.2 μm). Particles containing 6% by volume and having a particle size of 12.7 μm or more are 1.5
A toner having a sharp distribution of (containing by volume%) was obtained with a classification yield of 80% by weight. The classified coarse powder was circulated to the crushing step, and the fine powder was returned to the kneading step for reuse. The medium powder was observed with an optical microscope, and the ratio of the short diameter to the long diameter was measured and found to be 0.75.

【0098】比較例3 実施例7と同様のトナー粉砕原料を用いて、図13のフ
ローチャートに従って粉砕及び分級を行った。衝突式気
流粉砕機として図14に示した粉砕機を使用し、衝突面
の形状が加速管の長軸方向に対して垂直な平面状のもの
を用いた。衝突部材の直径は90mm(b=90mm)
であり、衝突面端部と加速管出口との距離は50mm
(a=50mm)であり、粉砕室壁との最短距離は20
mm(c=20mm)であり、粉砕室形状は箱型で行っ
た。第1分級手段及び第2分級手段はデイスパージョン
セパレーターDS5UR(日本ニューマチック工業社
製)を使用した。
Comparative Example 3 Using the same toner pulverization raw material as in Example 7, pulverization and classification were carried out according to the flowchart of FIG. The crusher shown in FIG. 14 was used as the collision type airflow crusher, and the shape of the collision surface was a plane shape perpendicular to the long axis direction of the acceleration tube. The diameter of the collision member is 90mm (b = 90mm)
And the distance between the end of the collision surface and the exit of the acceleration tube is 50 mm.
(A = 50 mm), and the shortest distance to the crushing chamber wall is 20
mm (c = 20 mm), and the crushing chamber was box-shaped. As the first classification means and the second classification means, a dispersion separator DS5UR (manufactured by Nippon Pneumatic Mfg. Co., Ltd.) was used.

【0099】定量供給機にて粉砕原料を18.0Kg/
hの割合でDS5URに供給し、分級された粗粉は該衝
突式気流粉砕機に導入し、圧力6.0Kg/cm2
(G)、6.0Nm3 /minの圧縮空気を用いて粉砕
した後、再度分級機に循環し、閉回路粉砕を行った。そ
の結果、分級された細粉として重量平均径7.5μmの
トナー用微粉砕品を得た。供給量を18Kg/h以上に
増やすと得られる細粉の体積平均径が大きくなり、又、
衝突部材上で粉砕物の融着、凝集物及び粗粒子が生じ始
め、融着物が加速管の原料供給口を詰まらせる場合があ
り、安定した運転が出来なかった。
18.0 Kg / g of pulverized raw material was fed with a constant quantity feeder.
The coarse powder fed to the DS5UR at a rate of h and classified was introduced into the collision type airflow crusher, and the pressure was 6.0 kg / cm 2.
(G), after crushing using 6.0 Nm 3 / min of compressed air, it was circulated through the classifier again and closed circuit crushing was performed. As a result, a finely pulverized product for toner having a weight average diameter of 7.5 μm was obtained as classified fine powder. When the supply amount is increased to 18 kg / h or more, the volume average diameter of the fine powder obtained increases, and
Stable operation could not be performed because the fused material, the agglomerated material, and the coarse particles of the crushed material may start to be generated on the collision member, and the fused material may clog the raw material supply port of the acceleration tube.

【0100】この細粉を走査型電子顕微鏡(日立製作所
S−800形)で観察したところ、角張った突起部分が
多く見受けられた。この細粉を、第2分級手段であるD
S−5URに、18.0Kg/hの割合で供給し、重量
平均粒径8.0μm(粒径4.0μm以下の粒子を1.
5体積%含有し、且つ粒径12.7μm以上の粒子を
3.3体積%含有する)のややブロードな粒度分布を有
する中粉体を分級収率62重量%で得た。最終的に得ら
れた中粉体を光学顕微鏡で観察し、短径と長径の比を測
定したところ0.65であった。実施例7に比較する
と、粉砕処理量及び分級収率が劣っており、又、トナー
の表面状態が鋭利な突起部分を有していた。
When the fine powder was observed with a scanning electron microscope (Hitachi S-800 type), many angular protrusions were found. This fine powder is used as the second classification means D
It was supplied to S-5UR at a rate of 18.0 Kg / h, and a weight average particle diameter of 8.0 μm (particles having a particle diameter of 4.0 μm or less was 1.
A medium powder having a slightly broad particle size distribution of 5% by volume and 3.3% by volume of particles having a particle size of 12.7 μm or more was obtained with a classification yield of 62% by weight. The medium powder finally obtained was observed with an optical microscope, and the ratio of the short diameter to the long diameter was measured and found to be 0.65. Compared with Example 7, the amount of pulverization and the classification yield were inferior, and the toner surface state had sharp projections.

【0101】[0101]

【発明の効果】本発明の静電荷像現像用トナーの製造方
法によれば、高衝撃で粉砕効率の良好な特定のジェット
ミルにより、粒子径の小さいトナーを効率良く製造する
ことが出来、且つ低衝撃処理工程により、流動性に優れ
た良品質のトナーを得ることが出来る。又、トナーの製
造工程におけるトナー粉砕物の融着、凝集及び粗粒化の
発生を防止し、トナー成分による装置的摩耗を防ぎ、連
続して安定した生産が行える利点がある。又、本発明の
トナー製造方法を用いることにより、従来法に比べ画像
濃度が安定して高く、耐久性が良く、カブリ及びクリー
ニング不良等の画像欠陥のない優れた所定の粒度を有す
る静電荷像現像用トナーが低コストで得られる。特に重
量平均粒径が9μm以下のトナーを効果的に得ることが
出来ると云う利点がある。
According to the method for producing a toner for developing an electrostatic charge image of the present invention, a toner having a small particle size can be efficiently produced by a specific jet mill having high impact and good pulverization efficiency, and By the low impact treatment step, a good quality toner having excellent fluidity can be obtained. Further, there is an advantage that fusion, aggregation and coarsening of the toner pulverized product in the toner manufacturing process can be prevented, apparatus abrasion due to the toner component can be prevented, and continuous and stable production can be performed. Further, by using the toner manufacturing method of the present invention, the image density is stable and high as compared with the conventional method, the durability is good, and an electrostatic charge image having an excellent predetermined grain size without image defects such as fog and cleaning failure. The developing toner can be obtained at low cost. In particular, there is an advantage that a toner having a weight average particle diameter of 9 μm or less can be effectively obtained.

【0102】[0102]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を説明する為のフローチャー
トである。
FIG. 1 is a flow chart for explaining a manufacturing method of the present invention.

【図2】本発明の製造方法を実施する為の衝突式気流粉
砕手段の一具体例の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a specific example of a collision type air flow pulverizing means for carrying out the manufacturing method of the present invention.

【図3】図2における粉砕室の横断平面図である。FIG. 3 is a cross-sectional plan view of the grinding chamber in FIG.

【図4】本発明の製造方法を実施する為の衝突式気流粉
砕手段の他の具体例を示す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing another specific example of the collision type air flow pulverizing means for carrying out the manufacturing method of the present invention.

【図5】図4におけるA−A’断面図である。5 is a cross-sectional view taken along the line A-A ′ in FIG.

【図6】図4におけるB−B’断面図である。6 is a cross-sectional view taken along the line B-B ′ in FIG.

【0103】[0103]

【図7】本発明の製造方法を実施する為の衝突式気流粉
砕手段の他の具体例を示す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing another specific example of the collision type air flow pulverizing means for carrying out the manufacturing method of the present invention.

【図8】図7におけるC−C’断面図である。8 is a cross-sectional view taken along the line C-C ′ in FIG. 7.

【図9】本発明の製造方法を実施する為の低衝撃処理装
置の具体例を示す概略断面図である。
FIG. 9 is a schematic cross-sectional view showing a specific example of a low impact treatment device for carrying out the manufacturing method of the present invention.

【図10】図9の装置のラーナーとローターの位置関係
を示した図である。
10 is a diagram showing a positional relationship between a learner and a rotor of the apparatus shown in FIG.

【図11】本発明の製造方法を実施する為の低衝撃処理
装置の他の具体例を示す概略断面図である。
FIG. 11 is a schematic cross-sectional view showing another specific example of the low impact treatment apparatus for carrying out the manufacturing method of the present invention.

【0104】[0104]

【図12】本発明に用いられる分級装置の一具体例の断
面図を示す。
FIG. 12 shows a cross-sectional view of a specific example of the classification device used in the present invention.

【図13】従来の製造方法を説明する為のフローチャー
ト図を示す。
FIG. 13 is a flow chart diagram for explaining a conventional manufacturing method.

【図14】従来の製造方法に用いられる衝突式気流粉砕
手段の概略断面図を示す。
FIG. 14 is a schematic sectional view of a collision type air flow pulverizing means used in a conventional manufacturing method.

【図15】従来の製造方法に用いられる他の衝突式気流
粉砕手段の概略断面図を示す。
FIG. 15 is a schematic cross-sectional view of another collision type air flow pulverizing means used in the conventional manufacturing method.

【図16】従来の製造方法に用いられる他の衝突式気流
粉砕手段の概略断面図を示す。
FIG. 16 is a schematic cross-sectional view of another collision type air flow pulverizing means used in the conventional manufacturing method.

【図17】従来の製造方法に用いられる他の衝突式気流
粉砕手段の概略断面図を示す。
FIG. 17 is a schematic cross-sectional view of another collision type air flow pulverizing means used in the conventional manufacturing method.

【0105】[0105]

【符合の説明】[Explanation of sign]

1:粉砕原料供給口 2:圧縮気体供給ノズル 3:加速管 4:衝突部材 5:排出口 6:粉砕室側壁 7:粉砕原料 8:粉砕室 11:粉砕機壁 13:加速管出口 14:突出中央部 15:外周衝突面 16:衝突面 1: Grinding material supply port 2: Compressed gas supply nozzle 3: Acceleration pipe 4: Collision member 5: Discharge port 6: Grinding chamber side wall 7: Grinding material 8: Grinding chamber 11: Grinder wall 13: Acceleration pipe outlet 14: Projection Central part 15: Perimeter collision surface 16: Collision surface

【0106】21:加速管 22:加速管スロート部 23:高圧気体噴出ノズル 24:被粉砕物供給口 25:被粉砕物供給筒 26:高圧気体供給口 27:高圧気体チャンバー 28:高圧気体導入管 29:加速管出口 30:衝突部材 32:粉砕室側壁21: Acceleration tube 22: Acceleration tube throat section 23: High pressure gas jet nozzle 24: Ground material supply port 25: Ground material supply tube 26: High pressure gas supply port 27: High pressure gas chamber 28: High pressure gas introduction tube 29: Accelerator pipe outlet 30: Collision member 32: Grinding chamber side wall

【0107】33:粉砕物出口 34:粉砕室 35:ラバールノズル 36:加速管スロート部 37:加速管出口 38:リターン路 39:原料供給口 40:入口 41:ジャケット 42:リターン閉鎖弁 43:回転軸 44:ケーシング 45:ライナー33: crushed product outlet 34: crushing chamber 35: Laval nozzle 36: accelerating pipe throat part 37: accelerating pipe outlet 38: return path 39: raw material supply port 40: inlet 41: jacket 42: return closing valve 43: rotating shaft 44: Casing 45: Liner

【0108】46:送風羽根 47:ローター 48:出口 49:製品取出口 51:ケーシング 52:ローター 53:ブレード 54:ライナー 55:処理領域 56:投入原料 57:流入空気 58:供給口 59:渦巻室46: blower blade 47: rotor 48: outlet 49: product outlet 51: casing 52: rotor 53: blade 54: liner 55: treatment area 56: input material 57: inflow air 58: supply port 59: swirl chamber

【0109】60:ディストリビューター 61:排出口 111:排出口 112:排出口 113:排出口 114:入気管 115:入気管 116:原料供給ノズル 117:分級エッジ 118:分級エッジ 119:入気エッジ 120:第1気体導入調節手段 121:第2気体導入調節手段60: Distributor 61: Discharge port 111: Discharge port 112: Discharge port 113: Discharge port 114: Inlet pipe 115: Inlet pipe 116: Raw material supply nozzle 117: Classification edge 118: Classification edge 119: Inlet edge 120 : First gas introduction adjusting means 121: Second gas introduction adjusting means

【0110】122:側壁 123:下部壁 124:側壁 125:下部壁 126:コアンダブロック 127:上部壁 128:静圧計 129:静圧計 130:粒子の軌跡122: Side wall 123: Lower wall 124: Side wall 125: Lower wall 126: Coanda block 127: Upper wall 128: Static pressure meter 129: Static pressure meter 130: Particle trajectory

フロントページの続き (72)発明者 三ッ村 聡 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内Front Page Continuation (72) Inventor Satoshi Mitsumura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結着樹脂及び着色剤を少なくとも含有す
る混合物を溶融混練し、混練物を冷却し、冷却物を粉砕
手段によって粉砕して粉砕物を得、得られた粉砕物を気
流分級手段で粗粉と細粉とに分級し、分級された粗粉を
衝突式気流粉砕手段により微粉砕して微粉体を生成し、
生成した微粉体から気流分級手段で微粉を分級し、分級
された細粉から静電荷像現像用トナーを製造する方法に
おいて、 前記衝突式気流粉砕手段は、高圧気体により被粉砕物を
搬送加速する為の加速管と、被粉砕物を微粉砕する為の
粉砕室とを有する微粉砕機であって、加速管内に供給さ
れ、加速された被粉砕物を粉砕室内に加速管出口から吐
出し、該加速管の出口の開口面に対向して設けた衝突面
を有する衝突部材の突出部で一次粉砕し、一次粉砕され
た一次粉砕物を該突出部の外周に設けられた外周衝突面
で二次粉砕し、二次粉砕された二次粉砕物を更に粉砕室
内の側壁で三次粉砕を行った後、第1気流分級手段に循
環し、第1気流分級手段で分級された微粉体にこの微粉
砕工程とは別に、該衝突式気流粉砕手段より比較的低い
衝撃を短時間与えた後、第2分級手段により粒度を調整
することを特徴とする静電荷像現像用トナーの製造方
法。
1. A mixture containing at least a binder resin and a colorant is melt-kneaded, the kneaded product is cooled, and the cooled product is crushed by a crushing device to obtain a crushed product. To classify into coarse powder and fine powder, and finely pulverize the classified coarse powder by collision type air flow pulverizing means to produce fine powder,
In the method of classifying fine powder from the generated fine powder by air flow classification means, and manufacturing electrostatic toner image developing toner from the classified fine powder, the collision type air flow grinding means accelerates conveyance of the object to be ground by high pressure gas. A pulverizer having an accelerating tube for crushing and a crushing chamber for crushing the object to be crushed, which is supplied into the accelerating tube and discharges the accelerated object to be crushed into the crushing chamber from the acceleration tube outlet, Primary crushing is performed by the projecting portion of the collision member having a collision surface provided facing the opening surface of the outlet of the acceleration tube, and the primary crushed primary pulverized product is crushed by the outer peripheral collision surface provided on the outer periphery of the projecting portion. After secondary pulverization and secondary pulverization, the secondary pulverized material is further tertiary pulverized on the side wall in the pulverization chamber, and then circulated to the first air stream classification means to obtain fine powder classified by the first air stream classification means. Apart from the crushing process, the impact type air flow crushing means has a relatively low impact. A method for producing a toner for developing an electrostatic charge image, which comprises adjusting a particle size by a second classifying means after giving a time.
【請求項2】 衝突部材の衝突面に突出している突出中
央部の頂角をα(°)とし、外周衝突面の加速管の中心
軸の垂直面に対する傾斜角β(°)とした場合、該α及
び該βが下記式 0<α<90、β>0 30≦α+2β≦90 を満足する請求項1のトナーの製造方法。
2. When the apex angle of the projecting central portion projecting on the collision surface of the collision member is α (°) and the inclination angle β (°) of the outer peripheral collision surface with respect to the vertical plane of the central axis of the acceleration tube, The method for producing a toner according to claim 1, wherein the α and the β satisfy the following formulas 0 <α <90, β> 0 30 ≦ α + 2β ≦ 90.
JP05345943A 1993-12-24 1993-12-24 Method for producing toner for developing electrostatic images Expired - Fee Related JP3138379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05345943A JP3138379B2 (en) 1993-12-24 1993-12-24 Method for producing toner for developing electrostatic images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05345943A JP3138379B2 (en) 1993-12-24 1993-12-24 Method for producing toner for developing electrostatic images

Publications (2)

Publication Number Publication Date
JPH07181736A true JPH07181736A (en) 1995-07-21
JP3138379B2 JP3138379B2 (en) 2001-02-26

Family

ID=18380058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05345943A Expired - Fee Related JP3138379B2 (en) 1993-12-24 1993-12-24 Method for producing toner for developing electrostatic images

Country Status (1)

Country Link
JP (1) JP3138379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105665104B (en) * 2016-04-12 2018-06-12 苏州金宁纳米科技有限公司 A kind of ultra-fine grain breaker and breaking method

Also Published As

Publication number Publication date
JP3138379B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
KR950006885B1 (en) Pneumatic impact pulverizer, fine powder production apparatus and toner production process
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
EP0850690B1 (en) Pneumatic impact pulverizer and process for producing toner
JP3005132B2 (en) Method of manufacturing toner and manufacturing apparatus system therefor
JPH09187732A (en) Preparation of toner
JP3176757B2 (en) Method for producing toner for developing electrostatic images
JP3486524B2 (en) Method and system for manufacturing toner
JPH1115196A (en) Production of toner and production system
JP3740202B2 (en) Toner production method
JP3451288B2 (en) Collision type air flow pulverizer, fine powder production apparatus and toner production method
JPH1115194A (en) Production of toner
JP3138379B2 (en) Method for producing toner for developing electrostatic images
JP3210132B2 (en) Method for producing toner for developing electrostatic images
JPH0792735A (en) Manufacture of toner and device for manufacturing the same
JP3327762B2 (en) Manufacturing method of toner
JP3210774B2 (en) Manufacturing method of toner
JP3220918B2 (en) Method and apparatus for manufacturing toner
JP3155855B2 (en) Method for producing toner for developing electrostatic images
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP3302270B2 (en) Manufacturing method of toner
JPH1090948A (en) Manufacture of toner
JPH08182937A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH07199530A (en) Production of electrostatic charge image developing toner
JP3297635B2 (en) Collision type air flow pulverizer and method for producing toner
JP2961463B2 (en) Collision type air flow pulverizer, fine powder production apparatus and toner production method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees