JP3182039B2 - Crusher - Google Patents

Crusher

Info

Publication number
JP3182039B2
JP3182039B2 JP06823194A JP6823194A JP3182039B2 JP 3182039 B2 JP3182039 B2 JP 3182039B2 JP 06823194 A JP06823194 A JP 06823194A JP 6823194 A JP6823194 A JP 6823194A JP 3182039 B2 JP3182039 B2 JP 3182039B2
Authority
JP
Japan
Prior art keywords
jet
collision
crushed
crushing
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06823194A
Other languages
Japanese (ja)
Other versions
JPH07275732A (en
Inventor
覚 岡野
信康 牧野
賢一 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP06823194A priority Critical patent/JP3182039B2/en
Publication of JPH07275732A publication Critical patent/JPH07275732A/en
Application granted granted Critical
Publication of JP3182039B2 publication Critical patent/JP3182039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粉砕装置に関し、詳し
くは画像形成装置等に用いられるトナーの製造に好適な
粉砕装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulverizing apparatus, and more particularly to a pulverizing apparatus suitable for producing a toner used in an image forming apparatus or the like.

【0002】[0002]

【従来の技術】従来のこの種の粉砕装置としては、図6
に示すようなものがある(特開平4−48942号公報
参照)。図6において、圧縮気体供給ノズル51を接続
した加速管52の加速管出口53に対向して衝突部材5
4を設け、加速管52内部でのジェット噴流である高速
気流55の流動により、被粉砕物供給口56から加速管
52内に被粉砕物57を吸引させ、これを高速気流55
とともに粉砕室58へ噴射して衝突部材54の衝突面5
9に衝突させ、その衝撃によって被粉砕物57を粉砕す
るようにしている。通常、被粉砕物57を所望の粒径に
粉砕するために、被粉砕物供給口56と排出口60の間
に分級機61を配して閉回路構造としており、分級機6
1によって粒径の大きさにより分級を行っている。分級
の結果、粉砕物62の粒径が所望の粒径以下の場合63
には装置から取り出され、所望の粒径よりも粗い場合6
4には、再び被粉砕物供給口56へ送られ粉砕を繰り返
す。このようにして粉砕を繰り返せば、所望の粒径以下
となった粉砕物を分級機61によって選別して取り出す
ことができる。
2. Description of the Related Art FIG.
(See JP-A-4-48942). In FIG. 6, the collision member 5 faces an acceleration tube outlet 53 of an acceleration tube 52 to which a compressed gas supply nozzle 51 is connected.
The high-speed airflow 55, which is a jet jet within the acceleration tube 52, sucks the crushed object 57 from the crushed object supply port 56 into the acceleration tube 52.
And into the crushing chamber 58 to collide with the collision surface 5 of the collision member 54.
The object 57 is crushed by the impact. Usually, in order to pulverize the object to be pulverized 57 to a desired particle size, a classifier 61 is disposed between the supply port 56 and the discharge port 60 of the object to form a closed circuit structure.
Classification is performed according to the particle size according to 1. As a result of classification, when the particle size of the pulverized material 62 is smaller than the desired particle size 63
Is removed from the apparatus and is coarser than the desired particle size.
At 4, the material is again sent to the material supply port 56 and the pulverization is repeated. By repeating the pulverization in this manner, the pulverized material having a desired particle size or less can be sorted out by the classifier 61 and taken out.

【0003】そして、衝突部材54の衝突面59の形状
として図7(a)、(b)に示すものが知られている
(特開平2−68155号公報参照)。同図において、
衝突面59は円錐面65と円環面66から形成されるこ
とにより、それぞれの粉砕面上で高い気流速度が実現さ
れ、一層被粉砕物を衝突によって粉砕し易いという効果
がある。
FIGS. 7A and 7B show known shapes of the collision surface 59 of the collision member 54 (see Japanese Patent Application Laid-Open No. 2-68155). In the figure,
Since the collision surface 59 is formed by the conical surface 65 and the annular surface 66, a high airflow velocity is realized on each of the crushing surfaces, and there is an effect that the object to be crushed is more easily crushed by the collision.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の粉砕装置にあっては、粉砕室28内に角張っ
た形状の部分、例えば円環面66のエッジ66aの角形
状により渦が発生するため圧力損失が生じ、このため効
率の良い粉砕や粉砕後の粉砕物の効率の良い搬送をあま
り期待することができないという問題がある。また、粉
砕効率および搬送効率の低下は、円環面66での粉砕物
62の融着の原因ともなるという問題もある。
However, in such a conventional pulverizing apparatus, a vortex is generated in the pulverizing chamber 28 due to an angular portion, for example, an angular shape of the edge 66a of the annular surface 66. Therefore, there is a problem that pressure loss occurs, so that it is not possible to expect highly efficient pulverization or efficient conveyance of the pulverized material after pulverization. Further, there is a problem that the reduction in the crushing efficiency and the transport efficiency causes the fusion of the crushed material 62 on the annular surface 66.

【0005】そこで、請求項1記載の発明は、衝突部材
の第1衝突部の先端の角を面取りして曲率を有するよう
にすることにより、粉砕効率が良く、かつ、粉砕後の粉
砕物の効率良い搬送が行える粉砕装置を提供することを
目的とする。そして、微粉砕が効率良く行われるために
は、被粉砕物が衝突部材の衝突面に垂直に衝突すること
が望ましい。
In view of the above, according to the first aspect of the present invention, the corner of the tip of the first collision portion of the collision member is chamfered to have a curvature, so that the pulverization efficiency is high and the pulverized material after the pulverization is obtained. It is an object of the present invention to provide a pulverizer capable of performing efficient transport. Then, in order to perform the fine pulverization efficiently, it is desirable that the object to be pulverized collides perpendicularly with the collision surface of the collision member.

【0006】そこで、請求項2記載の発明は、衝突部材
の第2衝突部を釣鐘形とすることにより、一層粉砕効率
が良く、かつ、粉砕後の粉砕物を一層効率良く搬送でき
る粉砕装置を提供することを目的とする。また、請求項
3記載の発明は、衝突部材の第1衝突部の面取りされた
角から後端よりの位置にテーパー部を設けることによ
り、一層粉砕効率が良く、かつ、粉砕後の粉砕物を一層
効率良く搬送できる粉砕装置を提供することを目的とす
る。
In view of the above, a second aspect of the present invention provides a pulverizing device which has a more efficient pulverization efficiency and a more efficient transport of pulverized material by making the second collision portion of the collision member a bell-shaped one. The purpose is to provide. Further, according to the third aspect of the present invention, by providing a tapered portion from the chamfered corner of the first collision portion of the collision member to a position from the rear end, the pulverization efficiency is further improved, and the pulverized material after the pulverization is reduced. It is an object of the present invention to provide a pulverizing device capable of more efficiently conveying.

【0007】更に、請求項4記載の発明は、衝突部材の
周囲を取り囲む粉砕容器の内壁面の形状を、衝突部材の
第1衝突部の形状に倣わせることにより、更に一層粉砕
効率が良く、かつ、粉砕後の粉砕物を更に一層効率良く
搬送できる粉砕装置を提供することを目的とする。
Further, according to the fourth aspect of the present invention, the shape of the inner wall surface of the crushing container surrounding the periphery of the collision member is made to conform to the shape of the first collision portion of the collision member, so that the crushing efficiency is further improved. It is another object of the present invention to provide a pulverizer capable of transporting the pulverized material after the pulverization even more efficiently.

【0008】[0008]

【課題を解決するための手段】上記目的達成のため、請
求項1記載の発明は、粉砕容器内にジェット噴流を噴出
する噴出ノズルと、前記ジェット噴流中に被粉砕物を供
給する供給手段と、前記粉砕容器内に該噴出ノズルに対
向して配置され、ジェット噴流とともに被粉砕物を直接
衝突させて微粉砕する衝突部材と、を備えた粉砕装置に
おいて、前記衝突部材が、噴出ノズルのジェット噴流噴
出方向に略直交する平端面を先端に有する第1衝突部
と、該第1衝突部の前記平端面に一致する底面を有する
とともに、噴出ノズルのジェット噴流の噴出方向に略平
行な軸線を有する錐体形状の第2衝突部と、からなり、
前記衝突部材の第1衝突部の先端の角が曲率を有するよ
う面取りされたことを特徴とするものである。
In order to achieve the above object, the invention according to claim 1 comprises a jet nozzle for jetting a jet jet into a pulverizing container, and a supply means for supplying an object to be ground into the jet jet. A collision member disposed in the pulverization container so as to face the ejection nozzle and directly collide the object to be pulverized with the jet jet to finely pulverize, wherein the collision member comprises a jet of the ejection nozzle. A first collision portion having a flat end surface at a tip thereof that is substantially perpendicular to the jet ejection direction, a bottom surface corresponding to the flat end surface of the first collision portion, and an axis substantially parallel to the ejection direction of the jet jet of the ejection nozzle. A second collision portion having a cone shape having
The corner of the tip of the first collision portion of the collision member is chamfered so as to have a curvature.

【0009】請求項2記載の発明は、請求項1記載の発
明において、前記第2衝突部が釣鐘形の錐体形状を有す
ることを特徴とするものである。請求項3記載の発明
は、請求項2記載の発明において、前記第1衝突部が前
記面取りされた角から後端よりに位置するテーパー部を
有し、該テーパー部が第1衝突部の先端から後端に向う
に従って細くなることを特徴とするものである。
According to a second aspect of the present invention, in the first aspect, the second collision portion has a bell-shaped cone shape. According to a third aspect of the present invention, in the second aspect of the present invention, the first collision portion has a tapered portion located from the chamfered corner to a rear end, and the tapered portion is a tip of the first collision portion. From the rear to the rear end.

【0010】請求項4記載の発明は、請求項3記載の発
明において、前記粉砕容器が、前記第1衝突部のテーパ
ー部に対向するとともに、該テーパー部の表面に略平行
な内壁面を有することを特徴とするものである。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the crushing container has an inner wall surface that is opposed to the tapered portion of the first collision portion and is substantially parallel to the surface of the tapered portion. It is characterized by the following.

【0011】[0011]

【作用】請求項1記載の発明では、衝突部材が、噴出ノ
ズルのジェット噴流噴出方向に略直交する平端面を先端
に有する第1衝突部と、その第1衝突部の平端面に一致
する底面を有するとともに、噴出ノズルのジェット噴流
の噴出方向に略平行な軸線を有する錐体形状の第2衝突
部とから形成され、更に第1衝突部の先端の角が曲率を
有するよう面取りされて構成される。そして、被粉砕物
がジェット噴流により加速された後、ジェット噴流とと
もに第2衝突部および第1衝突部の先端の平端面に直接
衝突して微粉砕される。このとき、ジェット噴流が第1
衝突部に衝突すると、ジェット噴流は、壁付着効果(コ
アンダ効果)により面取りされた角の曲率に沿って滑ら
かに流れるので、渦が発生し難くなって圧力損失を生じ
難くすることができ、粉砕を効率良く行うことができ
る。そして、粉砕された粉砕物のうち第1衝突部の平端
面に存在する粉砕物は前記壁付着効果によるジェット噴
流の流れによって加速されて搬送されるので、粉砕後の
粉砕物の搬送を効率良く行うことができる。
According to the first aspect of the present invention, the collision member has a first collision portion having a flat end surface at a front end substantially perpendicular to a jet jet direction of the jet nozzle, and a bottom surface coinciding with the flat end surface of the first collision portion. And a second collision portion in the form of a cone having an axis substantially parallel to the jetting direction of the jet jet of the jet nozzle, and the first collision portion is chamfered so that the angle of the tip has a curvature. Is done. Then, after the object to be crushed is accelerated by the jet jet, the crushed object directly collides with the jet jet directly against the flat end surfaces of the distal ends of the second collision portion and the first collision portion to be finely pulverized. At this time, the jet
When colliding with the collision portion, the jet jet flows smoothly along the curvature of the corner chamfered by the wall adhesion effect (Coanda effect), so that it is difficult for vortex to be generated and pressure loss is easily generated, and crushing is performed. Can be performed efficiently. And, among the pulverized pulverized materials, the pulverized material existing on the flat end surface of the first collision portion is accelerated and conveyed by the flow of the jet jet due to the wall adhesion effect, so that the pulverized material after the pulverization is efficiently conveyed. It can be carried out.

【0012】請求項2記載の発明では、衝突部材の第2
衝突部が釣鐘形の錐体形状に形成される。そして、被粉
砕物はジェット噴流とともに衝突部材に形成された釣鐘
形の錐体形状を有する第2衝突部および第1衝突部の先
端の平端面に衝突し粉砕される。このときジェット噴流
が釣鐘形の錐体形状を有する第2衝突部に衝突すると、
ジェット噴流は流体の壁付着効果により釣鐘形の表面に
沿って流れ、その流れに沿って移動する被粉砕物は第1
衝突部の先端の平端面に略垂直に衝突するので、被粉砕
物の運動速度成分が他の方向の速度成分を持つことで生
じる粉砕効率の損失を低減させることができる。そし
て、ジェット噴流は流体の壁付着効果により第1衝突部
の面取りされた角の曲率に沿って滑らかに流れるので、
渦が発生し難くなって圧力損失を生じ難くすることがで
きる。したがって、被粉砕物の粉砕効率を向上させるこ
とができるとともに、粉砕された後の粉砕物の搬送効率
を向上させることができる。
According to the second aspect of the present invention, the second member of the collision member
The collision portion is formed in a bell-shaped cone shape. The object to be crushed collides with the jet jet and collides with the flat end surfaces of the tip ends of the second collision portion and the first collision portion having a bell-shaped cone shape formed on the collision member. At this time, when the jet jet collides with the second collision portion having a bell-shaped cone shape,
The jet jet flows along the bell-shaped surface due to the wall adhesion effect of the fluid, and the object to be crushed moving along the flow is the first.
Since it collides substantially perpendicularly with the flat end surface at the tip of the collision portion, it is possible to reduce the loss of crushing efficiency caused by the movement speed component of the crushed object having a speed component in another direction. And the jet jet flows smoothly along the curvature of the chamfered corner of the first collision portion due to the wall adhesion effect of the fluid,
Vortices are less likely to occur and pressure loss is less likely to occur. Therefore, it is possible to improve the efficiency of pulverization of the object to be pulverized and to improve the efficiency of transporting the pulverized object after being pulverized.

【0013】請求項3記載の発明では、衝突部材の第1
衝突部に面取りされた角から後端よりに位置するテーパ
ー部が設けられ、かつ、そのテーパー部は第1衝突部の
先端から後端に向うに従って細くなる形状に形成され
る。そして、被粉砕物はジェット噴流とともに衝突部材
に形成された釣鐘形の錐体形状を有する第2衝突部およ
び第1衝突部の先端の平端面に衝突して微粉砕される。
このとき、ジェット噴流は流体の壁付着効果により釣鐘
形の表面に沿って流れて被粉砕物を第1衝突部の先端の
平端面に略垂直に衝突させた後、流体の壁付着効果によ
って第1衝突部の面取りされた角の曲率に沿って流れ、
更に、同様の壁付着効果により第1衝突部の面取りされ
た角より後方側に形成されたテーパー部に沿って後方へ
流れて行く。したがって、ジェット噴流が衝突部材の第
2衝突部および第1衝突部に衝突したとき、渦が発生し
難くなって圧力損失が生じ難くなり、被粉砕物の粉砕効
率を向上させることができるとともに、第1衝突部の先
端の平端面に衝突した後の衝突部材の周囲を流れるジェ
ット噴流の運動速度成分のうち、粉砕容器の内壁面に向
う速度成分が低減されるので、粉砕された後の粉砕物は
ジェット噴流とともに効率良く搬送することができる。
According to the third aspect of the invention, the first member of the collision member is provided.
The collision portion has a tapered portion located from the chamfered corner to the rear end, and the tapered portion is formed in a shape that becomes thinner from the front end to the rear end of the first collision portion. The object to be crushed collides with the jet jet and collides with the flat end surface of the tip of the second collision portion and the first collision portion having a bell-shaped conical shape formed on the collision member, and is finely pulverized.
At this time, the jet jet flows along the bell-shaped surface due to the wall adhesion effect of the fluid and causes the crushed object to collide substantially perpendicularly with the flat end surface at the tip of the first collision portion. 1 flows along the curvature of the chamfered corner of the collision,
Further, due to the same wall adhesion effect, the first collision portion flows rearward along a tapered portion formed rearward of the chamfered corner of the first collision portion. Therefore, when the jet jet collides with the second collision portion and the first collision portion of the collision member, a vortex is less likely to be generated and a pressure loss is less likely to occur, and the crushing efficiency of the crushed object can be improved, Of the motion velocity components of the jet jet flowing around the collision member after colliding with the flat end face of the tip of the first collision portion, the velocity component toward the inner wall surface of the crushing container is reduced, so that the crushing after crushing is performed. The object can be efficiently transported together with the jet jet.

【0014】請求項4記載の発明では、粉砕容器の内壁
面が衝突部材の第1衝突部のテーパー部に対向するとと
もに、そのテーパー部の表面に略平行に形成される。そ
して、被粉砕物はジェット噴流とともに衝突部材に形成
された釣鐘形の錐体形状を有する第2衝突部および第1
衝突部の先端の平端面に衝突され、粉砕される。このと
き、ジェット噴流は流体の壁付着効果により第2衝突部
の釣鐘形の錐体形状の表面に沿って流れて被粉砕物を第
1衝突部の先端の平端面へ衝突させた後、第1衝突部の
面取りされた角の曲率に沿って流れ、更に、衝突部材の
テーパー部と粉砕容器の内壁面により、ジェット噴流は
両方の面から挟まれて流れるとともに、粉砕容器の内壁
面が第1衝突部のテーパー部に対向するとともに、その
テーパー部の表面に略平行な形状になっていることから
流れの領域が縮小される。この結果、衝突部材の表面お
よび粉砕容器の内壁面の両方の面についての流体の壁付
着効果によりジェット噴流の速度成分には粉砕容器の容
器内壁面と垂直な速度成分がなくなるので、ジェット噴
流を速度を増加させて後部へ流すことができ、粉砕物の
搬送効率の損失を最小となるようにすることができる。
したがって、ジェット噴流が第2衝突部および第1衝突
部に衝突したとき、渦が発生し難くなって圧力損失が生
じ難くなるとともに、第1衝突部の先端の平端面に衝突
した後の衝突部材の周囲を流れるジェット噴流の速度の
低下を低減させることができ、一層効率の良い粉砕と粉
砕後の粉砕物の一層効率のよい搬送を行うことができ
る。
According to the fourth aspect of the present invention, the inner wall surface of the crushing container faces the tapered portion of the first collision portion of the collision member and is formed substantially parallel to the surface of the tapered portion. The object to be crushed is formed by a second collision portion having a bell-shaped cone shape formed on the collision member together with the jet jet, and the first collision portion.
It collides with the flat end surface at the tip of the collision part and is crushed. At this time, the jet jet flows along the bell-shaped cone-shaped surface of the second collision portion due to the wall adhesion effect of the fluid, and collides the object to be crushed with the flat end surface at the tip of the first collision portion. (1) Flow along the curvature of the chamfered corner of the collision portion, and furthermore, the jet jet flows sandwiched from both surfaces by the tapered portion of the collision member and the inner wall surface of the grinding container, and the inner wall surface of the grinding container The region of the flow is reduced because it is opposed to the tapered portion of the one collision portion and is substantially parallel to the surface of the tapered portion. As a result, the velocity component of the jet jet has no velocity component perpendicular to the inner wall surface of the grinding container in the velocity component of the jet jet due to the wall adhesion effect of the fluid on both the surface of the collision member and the inner wall surface of the grinding container. The speed can be increased and flowed to the rear, minimizing the loss of transport efficiency of the pulverized material.
Therefore, when the jet jet collides with the second collision portion and the first collision portion, a vortex is less likely to be generated and pressure loss is less likely to occur, and the collision member after colliding with the flat end surface at the tip of the first collision portion. , The reduction of the velocity of the jet jet flowing around the periphery can be reduced, and more efficient pulverization and more efficient conveyance of the pulverized material after the pulverization can be performed.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。図1は請求項1記載の発明に係る粉砕装
置の一実施例の概略断面構成図およびその粉砕装置と分
級機を使用した粉砕分級工程をフローチャート的に示す
図であり、図2は請求項1記載の発明に係る粉砕装置の
衝突部材の一実施例の要部を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic sectional view of an embodiment of a pulverizing apparatus according to the first aspect of the present invention and a flow chart showing a pulverizing and classifying process using the pulverizing apparatus and a classifier. FIG. It is a figure showing an important section of one embodiment of a collision member of a crushing device concerning the above-mentioned invention.

【0016】まず、その構成を説明する。図1、図2に
おいて、粉砕装置1は、被粉砕物供給ホッパー管2、圧
縮気体供給ノズル3、加速管4(噴出ノズル)、粉砕容
器7、衝突部材11を具備している。被粉砕物供給ホッ
パー管2は、略ロート状の形状を有しており、被粉砕物
21を被粉砕物供給口6(供給手段)を通して後述する
加速管4に導くようになっている。圧縮気体供給ノズル
3は、図示しない圧縮気体供給装置から供給された圧縮
気体を加速管4に供給するようになっている。加速管4
は略円錐コーン状の加速管内壁面5を有しており、小径
の開口が圧縮気体供給ノズル3に接続されるとともに、
大径の開口は粉砕容器7の開口8に接続するようになっ
ており、圧縮気体供給ノズル3から所定圧力の圧縮気体
を供給されると、高速気流20(ジェット噴流)を発生
するようになっている。また、加速管4の途中には被粉
砕物供給口6が設けられ、被粉砕物供給ホッパー管2か
ら供給された被粉砕物21を加速管4内に導くようにな
っている。粉砕容器7は開口8、排出口9を有した中空
容器であり、内部に柱状部12が容器内壁面10(内壁
面)から突出した状態で収納されるようになっている。
粉砕容器7の開口8は加速管4の大径の開口に接続され
ているとともに、排出口9には図示しない回収ダクトが
接続されるようになっている。衝突部材11は柱状部1
2(第1衝突部)と突出部13(第2衝突部)とからな
っている。柱状部12は略円柱形状をなしており、その
中心軸が延在する方向は加速管4の中心軸線の延在する
方向と一致若しくは略一致していて、加速管4に対向す
るようになっている。柱状部12の先端には、高速気流
20の噴出方向に略直交する平端面14を有していると
ともに、その先端の角15は面取りされていて所定の曲
率を有するようになっている。突出部13は、柱状部1
2の先端に突出して設けられ、柱状部12の平端面14
に一致する底面を有しているとともに、加速管4からの
高速気流20の噴出方向に略平行な軸線19を有する錐
体から形成されるようになっている。なお、柱状部12
の形状は多角柱形状等でも構成できるが、高速気流20
の軸線に対して放射方向(ラジアル方向)に等価でない
と放射方向の角度により被粉砕物21への粉砕作用が変
化するので、均質な被粉砕物22を得るには放射方向に
等価な円筒形状や円柱形状が好ましく、また、多角柱の
ように角が存在すると、その角部で渦が発生して圧力損
失が生じ、粉砕効率や搬送効率の低下を招くので、角張
った形状のない円筒形状や円柱形状が好ましい。突出部
13は、多角錐等でも構成できるが上記と同様の理由に
より円錐形状が好ましい。更に、柱状部12の軸線と突
出部13の軸線19とが一致するように配置され、柱状
部12の先端の平端面14が円環面となるようにするの
が上記と同様の理由により好ましい。
First, the configuration will be described. 1 and 2, a crushing apparatus 1 includes a hopper pipe 2 for supplying an object to be crushed, a compressed gas supply nozzle 3, an acceleration pipe 4 (jet nozzle), a crushing vessel 7, and a collision member 11. The crushed object supply hopper tube 2 has a substantially funnel shape, and guides the crushed object 21 through the crushed object supply port 6 (supply means) to the acceleration tube 4 described later. The compressed gas supply nozzle 3 supplies a compressed gas supplied from a compressed gas supply device (not shown) to the acceleration pipe 4. Accelerator tube 4
Has an accelerating tube inner wall surface 5 having a substantially conical cone shape, and a small-diameter opening is connected to the compressed gas supply nozzle 3.
The large-diameter opening is connected to the opening 8 of the pulverizing container 7, and when a compressed gas having a predetermined pressure is supplied from the compressed gas supply nozzle 3, a high-speed air flow 20 (jet jet) is generated. ing. A crushed material supply port 6 is provided in the middle of the acceleration tube 4, and guides the crushed material 21 supplied from the crushed material supply hopper tube 2 into the acceleration tube 4. The pulverizing container 7 is a hollow container having an opening 8 and a discharge port 9, and has a columnar portion 12 housed therein so as to protrude from an inner wall surface 10 (inner wall surface).
The opening 8 of the pulverizing container 7 is connected to the large-diameter opening of the acceleration tube 4, and a discharge duct (not shown) is connected to the discharge port 9. The collision member 11 is a columnar part 1
2 (first collision portion) and a protruding portion 13 (second collision portion). The columnar portion 12 has a substantially cylindrical shape, and the direction in which the central axis extends coincides or substantially coincides with the direction in which the central axis of the accelerating tube 4 extends, and is opposed to the accelerating tube 4. ing. The end of the columnar portion 12 has a flat end surface 14 that is substantially perpendicular to the direction in which the high-speed airflow 20 is ejected, and the corner 15 of the end is chamfered to have a predetermined curvature. The protruding portion 13 is
2 and protrude from the end of the column-shaped portion 12.
And a cone having an axis 19 substantially parallel to the direction in which the high-speed airflow 20 is ejected from the accelerating tube 4. In addition, the columnar part 12
Can be configured as a polygonal column shape or the like.
If it is not equivalent to the radial direction with respect to the axis of, the crushing action on the crushed object 21 changes depending on the angle of the radiating direction, so that in order to obtain a uniform crushed object 22, a cylindrical shape equivalent to the radial direction is required. In addition, if there is a corner such as a polygonal prism, a vortex is generated at the corner and a pressure loss occurs, leading to a reduction in crushing efficiency and transport efficiency. And a cylindrical shape are preferred. The protruding portion 13 can be formed by a polygonal pyramid or the like, but is preferably conical for the same reason as described above. Further, it is preferable that the axis of the columnar portion 12 and the axis 19 of the protruding portion 13 are arranged so as to coincide with each other, and the flat end surface 14 at the tip of the columnar portion 12 is an annular surface for the same reason as described above. .

【0017】分級機16は、排出口9から取り出された
粉砕物22を所望の粒径以下の粒径をもつ粉砕物22
(微粉)と所望の粒径を超える粒径をもつ粉砕物22
(粗粉)とに分級するようになっており、粉砕物22の
粒径が所望の粒径以下の場合17には、外部に取り出さ
れて回収され、粉砕物22の粒径が所望の粒径を超える
場合18には、粉砕物22は再び被粉砕物供給ホッパー
管2に供給されるようになっている。
The classifier 16 converts the pulverized material 22 taken out from the discharge port 9 into a pulverized material 22 having a particle size smaller than a desired particle size.
(Fine powder) and pulverized material 22 having a particle size exceeding a desired particle size
(Coarse powder), and when the particle size of the pulverized material 22 is smaller than the desired particle size 17, the pulverized material 22 is taken out and collected, and the particle size of the pulverized material 22 is reduced to the desired particle size. When the diameter exceeds the diameter 18, the crushed material 22 is again supplied to the crushed material supply hopper tube 2.

【0018】次に、その作用を説明する。圧縮気体供給
装置から供給された圧縮気体は、圧縮気体供給ノズル3
を介して加速管4に供給される。加速管4に供給された
圧縮気体は高速気流20となって粉砕容器7内に流入
し、加速管4に対向して設けられた衝突部材11の突出
部13および柱状部12の先端の平端面14に衝突す
る。このとき、被粉砕物供給口6から供給された被粉砕
物21が高速気流20に混合され、高速気流20により
加速された後、高速気流20とともに衝突部材11の突
出部13および柱状部12の先端の平端面14に衝突し
て微粉砕される。高速気流20が平端面14に衝突する
と、高速気流20は、壁付着効果(コアンダ効果)によ
り面取りされた角15の曲率に沿って曲げられ、排出口
9の方向の流れ23となる。すなわち、高速気流20が
衝突部材11に衝突しても、高速気流20は衝突部材の
角15の曲率に沿って滑らかに流れるので、渦が発生し
難くなって圧力損失を生じ難くすることができ、粉砕を
効率良く行うことができる。被粉砕物21は粉砕されて
粉砕物22となり、そのうち平端面14上に存在する粉
砕物22は流れ23によって加速され、排出口9へ搬送
される。したがって、粉砕後の粉砕物の搬送を効率良く
行うことができる。
Next, the operation will be described. The compressed gas supplied from the compressed gas supply device is supplied to the compressed gas supply nozzle 3
Is supplied to the acceleration tube 4. The compressed gas supplied to the accelerating pipe 4 flows into the pulverizing vessel 7 as a high-speed air flow 20, and the flat end face of the tip of the protruding part 13 and the columnar part 12 of the collision member 11 provided opposite to the accelerating pipe 4. Collision with 14. At this time, the crushed object 21 supplied from the crushed object supply port 6 is mixed with the high-speed airflow 20 and accelerated by the high-speed airflow 20. It collides with the flat end surface 14 at the tip and is finely pulverized. When the high-speed airflow 20 collides with the flat end surface 14, the high-speed airflow 20 is bent along the curvature of the corner 15 chamfered by the wall adhesion effect (Coanda effect), and becomes a flow 23 in the direction of the outlet 9. In other words, even if the high-speed airflow 20 collides with the collision member 11, the high-speed airflow 20 smoothly flows along the curvature of the corner 15 of the collision member, so that eddies are less likely to be generated and pressure loss is less likely to occur. The pulverization can be performed efficiently. The to-be-pulverized material 21 is pulverized into a pulverized material 22, of which the pulverized material 22 existing on the flat end surface 14 is accelerated by the flow 23 and conveyed to the discharge port 9. Therefore, the pulverized material after the pulverization can be efficiently transported.

【0019】排出口9から排出された粉砕物22は、回
収ダクトにより分級機16に搬送される。分級機16に
搬送された粉砕物22は所望の粒径以下であるか否かに
よって選別される。粉砕物22の粒径が所望の粒径以下
である場合17には、選別されて装置外部に取り出され
回収されるが、粉砕物の粒径が所望の粒径を超える場合
18には、粉砕物22は被粉砕物供給ホッパー管2に戻
され、再度粉砕工程に投入されることになる。こうして
粉砕と分級とを繰り返すことにより、所望の粒径の粉砕
物22を得ることができる。
The pulverized material 22 discharged from the discharge port 9 is conveyed to the classifier 16 by a collection duct. The pulverized material 22 conveyed to the classifier 16 is sorted according to whether or not it has a desired particle size or less. When the particle size of the pulverized material 22 is smaller than the desired particle size 17, the pulverized material is sorted out and taken out of the apparatus and collected. The material 22 is returned to the material supply hopper tube 2 and is again supplied to the grinding step. By repeating the pulverization and classification in this manner, a pulverized product 22 having a desired particle size can be obtained.

【0020】このように本実施例においては、衝突部材
11を、加速管4からの高速気流20噴出方向に略直交
する平端面14を先端に有する柱状部12と、その柱状
部12の平端面14に一致する底面を有するとともに、
加速管4の高速気流20の噴出方向に略平行な軸線19
を有する錐体形状の突出部13とから形成され、更に柱
状部12の先端の角15が曲率を有するよう面取りして
構成するので、高速気流20が柱状部12に衝突すると
き、高速気流20は、壁付着効果により面取りされた角
15の曲率に沿って滑らかに流れるようにすることがで
きる。したがって、高速気流20に渦が発生し難くなっ
て圧力損失を生じ難くすることができ、粉砕を効率良く
行うことができる。そして、粉砕された粉砕物のうち柱
状部12の平端面14に存在する粉砕物22は壁付着効
果による高速気流20の流れによって加速されて搬送さ
れるので、粉砕後の粉砕物22の搬送を効率良く行うこ
とができる。したがって、被粉砕物21の衝突部材11
への融着を防止することができ、所望の粒径以下の粉砕
物22の収率を向上させることができる。
As described above, in the present embodiment, the collision member 11 is composed of a columnar portion 12 having a flat end surface 14 at the tip thereof substantially perpendicular to the direction of jet of the high-speed airflow 20 from the acceleration tube 4, and a flat end surface of the columnar portion 12. Having a bottom surface corresponding to 14;
An axis 19 substantially parallel to the jet direction of the high-speed airflow 20 of the acceleration tube 4
And a conical projection 13 having a convex shape, and the corner 15 at the tip of the columnar portion 12 is chamfered so as to have a curvature. Therefore, when the high-speed airflow 20 collides with the columnar portion 12, the high-speed airflow 20 Can flow smoothly along the curvature of the corner 15 chamfered by the wall adhesion effect. Therefore, a vortex is less likely to be generated in the high-speed airflow 20 and a pressure loss is less likely to occur, so that pulverization can be performed efficiently. Since the crushed material 22 existing on the flat end surface 14 of the columnar portion 12 of the crushed crushed material is accelerated and conveyed by the flow of the high-speed airflow 20 due to the wall adhesion effect, the conveyance of the crushed crushed material 22 is performed. It can be performed efficiently. Therefore, the collision member 11 of the object 21
It is possible to prevent fusing to the powder and improve the yield of the pulverized product 22 having a desired particle size or less.

【0021】次に、本実施例の具体例について説明す
る。下記表1記載の原料をミキサーにて混合し、混合物
を得る。
Next, a specific example of this embodiment will be described. The raw materials described in Table 1 below are mixed with a mixer to obtain a mixture.

【0022】[0022]

【表1】 [Table 1]

【0023】次いで、この混合物をエクストルダーにて
約200℃に加熱溶融し、混練した後、冷却して固化
し、その固化物をハンマーミルで200〜2000μm
の粒径をもつ粒子に粗粉砕した。次いで、この粗粉砕物
を被粉砕物21として用いて前述の粉砕装置1および分
級機16を用いて粉砕およびを行った。分級機16とし
ては、公知の固定式風力分級機を使用した。
Next, the mixture is heated and melted at about 200 ° C. in an extruder, kneaded, cooled, and solidified.
Coarsely pulverized into particles having a particle size of Next, this coarsely pulverized material was used as the material to be pulverized 21 and pulverized and pulverized using the above-described pulverizing apparatus 1 and classifier 16. As the classifier 16, a known fixed type air classifier was used.

【0024】加速管4内に圧縮気体供給ノズル3から流
量7Nm3 /minの圧縮空気を導入し、また、被粉砕
物供給口6から32kg/hrの割合で被粉砕物21を
供給した。粉砕された粉砕物22は分級機16に搬送さ
れ、微粉である場合17には粉砕物22を回収し、粗粉
である場合18には粉砕物22を被粉砕物供給口6によ
り被粉砕物21とともに加速管4に再度投入して粉砕を
繰り返した。このようにして被粉砕物21を粉砕した結
果、微粉として体積平均粒径7.5μm(コールターカ
ウンターによる測定)の粉砕物22を27.40kg/
hr(収率85.6%)の割合で回収することができ
た。また、このとき10時間の連続運転後においても衝
突部材11に被粉砕物21の融着は見られなかった。
Compressed air having a flow rate of 7 Nm 3 / min was introduced from the compressed gas supply nozzle 3 into the accelerating tube 4, and the material 21 to be crushed was supplied from the material supply port 6 at a rate of 32 kg / hr. The pulverized material 22 is conveyed to a classifier 16, and in the case of fine powder 17, the pulverized material 22 is collected, and in the case of coarse powder 18, the pulverized material 22 is supplied to the pulverized material supply port 6. The powder was again charged into the acceleration tube 4 together with 21 and the pulverization was repeated. As a result of crushing the material 21 to be crushed as described above, 27.40 kg / pulverized material 22 having a volume average particle size of 7.5 μm (measured by a Coulter counter) as fine powder was obtained.
hr (85.6% yield). Further, at this time, even after the continuous operation for 10 hours, no fusion of the object 21 to the collision member 11 was observed.

【0025】図3は請求項2記載の発明に係る粉砕装置
の一実施例の要部を示す図である。なお、本図では、衝
突部材11の形状以外は先に説明したものと同一の構成
であるため、同一の構成には同一の符号を付してその具
体的な説明を省略する。図3において、衝突部材11の
柱状部12は、加速管4の高速気流20噴出方向に略直
交する平端面14を先端に有している。突出部13は釣
鐘形の錐体24の形状を有しており、底面が柱状部12
の先端の平端面14に一致するようになっているととも
に、その軸線19は加速管4の高速気流20の噴出方向
に略平行となるようになっている。釣鐘形の錐体24の
平端面14の近傍では、釣鐘形の錐体24は平端面14
に対して垂直若しくは略垂直な面となるようになってい
る。
FIG. 3 is a view showing a main part of an embodiment of a pulverizing apparatus according to the second aspect of the present invention. In this drawing, since the configuration is the same as that described above except for the shape of the collision member 11, the same configuration is denoted by the same reference numeral and the specific description is omitted. In FIG. 3, the columnar portion 12 of the collision member 11 has at its tip a flat end surface 14 that is substantially perpendicular to the direction in which the high-speed airflow 20 is ejected from the acceleration tube 4. The protruding portion 13 has the shape of a bell-shaped cone 24, and the bottom thereof has a columnar portion 12.
And the axis 19 thereof is substantially parallel to the jet direction of the high-speed airflow 20 of the acceleration tube 4. Near the flat end face 14 of the bell-shaped cone 24, the bell-shaped cone 24 is
The surface is perpendicular or substantially perpendicular to the surface.

【0026】このように構成された衝突部材11を有す
る粉砕装置1を用い、上記と同様の過程により被粉砕物
21は粉砕容器7中へ投入された後、高速気流20とと
もに衝突部材11の突出部13および柱状部12の先端
の平端面14に衝突し、粉砕される。このとき高速気流
20が釣鐘形の錐体24を有する突出部13に衝突する
と、高速気流20は流体の壁付着効果により釣鐘形の錐
体24の表面に沿って流れ、釣鐘形の錐体24が平端面
14近傍では平端面14に対して垂直若しくは略垂直な
面となっていることにより、軸線19と平行な流れ方向
となり、その結果、高速気流20は平端面14に垂直若
しくは略垂直に入射する。すなわち、高速気流20は衝
突部材11に入射して、突出部13に衝突すると釣鐘形
の錐体24の表面に沿って流れ、軌跡25となる流れと
なる。したがって、軌跡25の流れに沿って移動する被
粉砕物21は平端面14に垂直若しくは略垂直に衝突す
るので、被粉砕物22の運動速度成分が他の方向の速度
成分を持つことで生じる粉砕効率の損失を低減させるこ
とができる。そして、高速気流20は柱状部12の角1
5の曲率に沿って滑らかに流れるので、渦が発生し難く
なって圧力損失を生じ難くすることができる。したがっ
て、粉砕効率を向上させることができるとともに、平端
面14への粉砕物21の融着を防ぎ、かつ、粉砕された
後の粉砕物22の搬送効率を向上させることができる。
この結果、微粉の収率を向上させることができる。
Using the crushing apparatus 1 having the colliding member 11 configured as described above, the object 21 to be crushed is put into the crushing container 7 in the same process as described above, and then the colliding member 11 is projected together with the high-speed airflow 20. It collides with the flat end face 14 at the tip of the portion 13 and the columnar portion 12 and is crushed. At this time, when the high-speed airflow 20 collides with the protrusion 13 having the bell-shaped cone 24, the high-speed airflow 20 flows along the surface of the bell-shaped cone 24 due to the wall adhesion effect of the fluid, and the bell-shaped cone 24. Is near or perpendicular to the flat end surface 14, the flow direction is parallel to the axis 19, and as a result, the high-speed airflow 20 is perpendicular or substantially perpendicular to the flat end surface 14. Incident. That is, when the high-speed airflow 20 enters the collision member 11 and collides with the protrusion 13, the high-speed airflow 20 flows along the surface of the bell-shaped cone 24, forming a trajectory 25. Therefore, the object 21 moving along the flow of the trajectory 25 collides perpendicularly or substantially perpendicularly to the flat end surface 14, and the crushing caused by the movement velocity component of the object 22 having a velocity component in another direction. Efficiency loss can be reduced. The high-speed airflow 20 is at the corner 1 of the columnar portion 12.
Since the fluid flows smoothly along the curvature of 5, the vortex is less likely to be generated and the pressure loss is less likely to be generated. Therefore, the pulverization efficiency can be improved, the fusion of the pulverized material 21 to the flat end surface 14 can be prevented, and the transportation efficiency of the pulverized material 22 after the pulverization can be improved.
As a result, the yield of fine powder can be improved.

【0027】このように本実施例においては、衝突部材
11の突出部13を釣鐘形の錐体形状に形成するので、
高速気流20が突出部13に衝突すると、高速気流20
は流体の壁付着効果により釣鐘形の錐体24の表面に沿
って流れ、その流れに沿って移動する被粉砕物21は柱
状部12の先端の平端面14に垂直若しくは略垂直に衝
突し、被粉砕物21の運動速度成分が他の方向の速度成
分を持つことで生じる粉砕効率の損失を低減させること
ができる。そして、高速気流20は流体の壁付着効果に
より柱状部12の面取りされた角15の曲率に沿って滑
らかに流れるので、渦が発生し難くなって圧力損失を生
じ難くすることができる。したがって、被粉砕物21の
粉砕効率を一層向上させることができるとともに、粉砕
された後の粉砕物22の搬送効率を一層向上させること
ができる。更に、被粉砕物21の衝突部材11への融着
を防止することができ、所望の粒径以下の粉砕物22の
収率を向上させることができる。
As described above, in this embodiment, since the projection 13 of the collision member 11 is formed in a bell-shaped cone shape,
When the high-speed airflow 20 collides with the protrusion 13, the high-speed airflow 20
Flows along the surface of the bell-shaped cone 24 due to the wall adhesion effect of the fluid, and the crushed object 21 moving along the flow collides perpendicularly or substantially perpendicularly with the flat end surface 14 at the tip of the columnar portion 12, It is possible to reduce the loss of the grinding efficiency caused by the movement speed component of the object 21 having a speed component in another direction. Since the high-speed airflow 20 smoothly flows along the curvature of the chamfered corner 15 of the columnar portion 12 due to the wall adhesion effect of the fluid, vortices are less likely to occur and pressure loss is less likely to occur. Therefore, the pulverization efficiency of the pulverized material 22 can be further improved, and the transportation efficiency of the pulverized material 22 after the pulverization can be further improved. Further, fusion of the object 21 to the collision member 11 can be prevented, and the yield of the object 22 having a desired particle size or less can be improved.

【0028】次に、本実施例の具体例について説明す
る。上記表1と同様の原料を使用し、釣鐘形の錐体24
を有する突出部13を有する衝突部材11を備えた粉砕
装置1と上記と同様の分級機16を用いて粉砕を行っ
た。加速管4内に圧縮気体供給ノズル3から流量7Nm
3 /minの圧縮空気を導入し、また、被粉砕物供給口
6から32kg/hrの割合で被粉砕物21を供給し
た。粉砕した粉砕物22は分級機16に搬送され、微粉
である場合17には粉砕物22を回収し、粗粉である場
合18には粉砕物22を被粉砕物供給口6により被粉砕
物21とともに加速管4内に再度投入して粉砕を繰り返
した。このようにして被粉砕物21を粉砕した結果、微
粉として体積平均粒径7.5μm(コールターカウンタ
ーによる測定)の粉砕物を27.90kg/hr(収率
87.2%)の割合で回収することができた。また、こ
のとき10時間の連続運転を行っても衝突部材11での
被粉砕物21の融着は見られなかった。
Next, a specific example of this embodiment will be described. Using the same raw material as in Table 1 above, a bell-shaped cone 24
The pulverization was performed using the pulverizing apparatus 1 provided with the collision member 11 having the protruding portion 13 and the classifier 16 similar to the above. Flow rate 7 Nm from compressed gas supply nozzle 3 into acceleration pipe 4
3 / min of compressed air was introduced, and the material 21 to be ground was supplied from the material supply port 6 at a rate of 32 kg / hr. The pulverized material 22 is conveyed to a classifier 16, and when it is a fine powder, the pulverized material 22 is collected. When it is a coarse powder, the pulverized material 22 is collected by the pulverized material supply port 6. At the same time, the powder was charged again into the acceleration tube 4 to repeat the pulverization. As a result of crushing the material 21 to be crushed as described above, a crushed material having a volume average particle size of 7.5 μm (measured by a Coulter counter) is recovered as fine powder at a rate of 27.90 kg / hr (yield: 87.2%). I was able to. Further, at this time, even if the continuous operation was performed for 10 hours, no fusion of the crushed object 21 at the collision member 11 was observed.

【0029】図4は請求項3記載の発明に係る粉砕装置
の一実施例の要部を示す図であり、本図では、衝突部材
11以外の構成は請求項1と同様であるため、同一の構
成には同一の符号を付してその説明を省略する。同図に
おいて、衝突部材11の柱状部12は、加速管4の高速
気流20噴出方向に略直交する平端面14を先端に有し
ているとともに、面取りされた角15から後端よりにテ
ーパー部26が軸線に対して放射方向全周に亘って設け
られており、このテーパー部26は柱状部12の先端か
ら後端に向うに従って細くなるようになっている。突出
部13は釣鐘形の錐体24の形状を有しており、底面が
柱状部12の先端の平端面14に一致するようになって
いるとともに、その軸線19は加速管4の高速気流20
の噴出方向に略平行となるようになっている。釣鐘形の
錐体24の平端面14の近傍では、釣鐘形の錐体24は
平端面14に対して垂直若しくは略垂直な面となるよう
になっている。
FIG. 4 is a view showing a main part of an embodiment of the pulverizing apparatus according to the third aspect of the present invention. In this figure, since the configuration other than the collision member 11 is the same as that of the first aspect, it is the same. Are denoted by the same reference numerals and description thereof will be omitted. In the figure, the columnar portion 12 of the collision member 11 has a flat end surface 14 at the front end that is substantially perpendicular to the jet direction of the high-speed airflow 20 of the acceleration tube 4 and has a tapered portion from the chamfered corner 15 to the rear end. 26 is provided over the entire circumference in the radial direction with respect to the axis, and the tapered portion 26 becomes thinner from the front end to the rear end of the columnar portion 12. The protruding portion 13 has the shape of a bell-shaped cone 24, the bottom surface of which coincides with the flat end surface 14 at the tip of the columnar portion 12, and the axis 19 of which extends along the high-speed airflow 20 of the accelerating tube 4.
Are substantially parallel to the ejection direction. In the vicinity of the flat end surface 14 of the bell-shaped cone 24, the bell-shaped cone 24 is formed to be a plane perpendicular or substantially perpendicular to the flat end surface 14.

【0030】このように構成された衝突部材11を有す
る粉砕装置1を用い、上記と同様の過程により被粉砕物
21は加速管4内に投入されると、高速気流20ととも
に衝突部材11に形成された突出部13および柱状部1
2の先端の平端面14に衝突して粉砕される。このと
き、高速気流20は突出部13の釣鐘形の錐体24の表
面に沿って流れて被粉砕物21を平端面14に衝突させ
た後、流体の壁付着効果によって柱状部12の面取りさ
れた角15の曲率に沿って流れ、更に、同様の壁付着効
果により柱状部12の外周部分に形成されたテーパー部
26に沿って後方へ流れ、軸線19と平行な流れ27と
なる。すなわち、高速気流20の速度成分のうち、粉砕
容器7の容器内壁面10に向う速度成分が低減される。
そして、粉砕された後の粉砕物22は流れ27とともに
軸線19に平行に排出口9へ効率良く搬送される。この
結果、粉砕された後の粉砕物22の搬送効率を向上する
ことができ、微粉の収率を向上することができる。
Using the crushing apparatus 1 having the colliding member 11 configured as described above, when the object to be crushed 21 is charged into the acceleration tube 4 in the same process as described above, it is formed on the colliding member 11 together with the high-speed airflow 20. Projected portion 13 and columnar portion 1
The powder is crushed by colliding with the flat end face 14 at the tip of the second. At this time, the high-speed airflow 20 flows along the surface of the bell-shaped cone 24 of the protrusion 13 to collide the object 21 with the flat end surface 14, and then the columnar portion 12 is chamfered by the fluid wall adhesion effect. The flow flows along the curvature of the corner 15, and further flows backward along the tapered portion 26 formed on the outer peripheral portion of the columnar portion 12 due to the same wall adhesion effect, and becomes a flow 27 parallel to the axis 19. That is, of the speed components of the high-speed airflow 20, the speed component toward the inner wall surface 10 of the crushing container 7 is reduced.
Then, the pulverized material 22 after the pulverization is efficiently conveyed to the discharge port 9 in parallel to the axis 19 together with the flow 27. As a result, the transfer efficiency of the crushed material 22 after crushing can be improved, and the yield of fine powder can be improved.

【0031】このように本実施例においては、衝突部材
11の柱状部12に面取りされた角15から後端よりに
テーパー部26を設け、かつ、そのテーパー部26を柱
状部12の先端から後端に向うに従って細くなる形状に
形成するので、高速気流20が衝突部材11の突出部1
3および柱状部12に衝突したとき、渦が発生し難くな
って圧力損失が生じ難くなり、被粉砕物21の粉砕効率
を一層向上させることができるとともに、柱状部12の
先端の平端面14に衝突した後の衝突部材11の周囲を
流れる高速気流20の運動速度成分のうち、粉砕容器7
の容器内壁面10に向う速度成分が低減されるので、粉
砕された後の粉砕物22は高速気流20とともに一層効
率良く搬送することができる。したがって、被粉砕物2
1の衝突部材11への融着を防止することができるとと
もに、所望の粒径以下の粉砕物の収率をより一層向上さ
せることができる。
As described above, in the present embodiment, the tapered portion 26 is provided from the chamfered corner 15 of the columnar portion 12 of the collision member 11 to the rear end thereof, and the tapered portion 26 is formed rearward from the tip of the columnar portion 12. Since it is formed in a shape that becomes thinner toward the end, the high-speed airflow 20
When it collides with the column 3 and the columnar portion 12, vortices are less likely to be generated and pressure loss is less likely to occur, and the pulverization efficiency of the object 21 can be further improved. Among the motion velocity components of the high-speed airflow 20 flowing around the collision member 11 after the collision,
Since the velocity component toward the inner wall surface 10 of the container is reduced, the pulverized material 22 after pulverization can be more efficiently conveyed together with the high-speed airflow 20. Therefore, the object 2
It is possible to prevent fusion of the first collision member 11 and to further improve the yield of the pulverized product having a desired particle size or less.

【0032】次に、本実施例の具体例について説明す
る。上記表1と同様の原料を使用し、突出部13が釣鐘
形の錐体24を有するとともに、平端面14の後方に位
置する外周部分に、柱状部12の先端から後端に向うに
従って細くなるテーパー部26を有している柱状部12
を備えた粉砕装置1と上記と同様の分級機16を用いて
粉砕を行った。
Next, a specific example of this embodiment will be described. Using the same raw material as in Table 1 above, the protrusion 13 has a bell-shaped cone 24 and the outer peripheral portion located behind the flat end surface 14 becomes thinner from the front end to the rear end of the columnar portion 12. Columnar portion 12 having tapered portion 26
Was crushed using the crushing apparatus 1 provided with the above and a classifier 16 similar to the above.

【0033】加速管4内に圧縮気体供給ノズル3から流
量7Nm3 /minの圧縮空気を導入し、被粉砕物供給
口6から32kg/hrの割合で被粉砕物21を供給し
た。粉砕した粉砕物22は分級機16に搬送され、微粉
である場合17には粉砕物22を回収し、粗粉である場
合18には粉砕物22を被粉砕物供給口6により被粉砕
物21とともに加速管4内に再度投入して粉砕を繰り返
した。このようにして被粉砕物21を粉砕した結果、微
粉として体積平均粒径7.5μm(コールターカウンタ
ーによる測定)の粉砕物を28.50kg/hr(収率
89.1%)の割合で回収することができた。また、こ
のとき10時間の連続運転を行っても衝突部材11での
被粉砕物21の融着は見られなかった。
Compressed air having a flow rate of 7 Nm 3 / min was introduced into the acceleration tube 4 from the compressed gas supply nozzle 3, and the crushed material 21 was supplied from the crushed material supply port 6 at a rate of 32 kg / hr. The pulverized material 22 is conveyed to a classifier 16, and when it is a fine powder, the pulverized material 22 is collected. When it is a coarse powder, the pulverized material 22 is collected by the pulverized material supply port 6. At the same time, the powder was charged again into the acceleration tube 4 to repeat the pulverization. As a result of crushing the material to be crushed 21 as described above, a crushed material having a volume average particle size of 7.5 μm (measured by a Coulter counter) is recovered as fine powder at a rate of 28.50 kg / hr (yield 89.1%). I was able to. Further, at this time, even if the continuous operation was performed for 10 hours, no fusion of the crushed object 21 at the collision member 11 was observed.

【0034】図5は請求項4記載の発明に係る粉砕装置
の一実施例の要部を示す図であり、本図では、粉砕容器
7の構成が異なるのみでその他の構成は請求項1、3と
同様であるため、同一の構成には同一の符号を付してそ
の説明を省略する。同図において、粉砕容器7はその内
部に収納する衝突部材11の周囲に配置されるようにな
っており、衝突部材11のテーパー部26に対向すると
ともに、そのテーパー部26の表面に略平行な内壁面2
8に有している。この略平行な内壁面28により、柱状
部12の平端面14の周囲の容器内壁面10の径に比
べ、柱状部12のテーパー部26より後方側の周囲の粉
砕容器7の容器内壁面10の径は、図5中の符号29の
分だけ小さくなるようになっている。
FIG. 5 is a view showing a main part of an embodiment of the pulverizing apparatus according to the fourth aspect of the present invention. In FIG. 3, the same components are denoted by the same reference numerals, and description thereof is omitted. In the figure, the crushing container 7 is arranged around the collision member 11 housed therein, and is opposed to the tapered portion 26 of the collision member 11 and is substantially parallel to the surface of the tapered portion 26. Inner wall 2
8 Due to the substantially parallel inner wall surface 28, the diameter of the inner wall surface 10 around the flat end face 14 of the columnar portion 12 is smaller than the diameter of the inner wall surface 10 around the tapered portion 26 of the columnar portion 12. The diameter is reduced by an amount indicated by reference numeral 29 in FIG.

【0035】このように構成された粉砕容器7を有する
粉砕装置1を用い、上記と同様の過程により被粉砕物2
1を加速管4内へ投入した後、高速気流20とともに衝
突部材11に形成された突出部13および柱状部12の
先端の平端面14に衝突させ、粉砕させる。このとき、
高速気流20は突出部13の釣鐘形の錐体24に沿って
流れて被粉砕物21を平端面14へ衝突させた後、柱状
部12の角15の曲率に沿って流れ、更に、柱状部12
のテーパー部26と粉砕容器7の容器内壁面10の略平
行な内壁面28により、高速気流20は両方の面から挟
まれて流れ、流れの領域が符号29の分だけ縮小される
とともに、略平行な内壁面28およびテーパー部26の
両方の面についての流体の壁付着効果により排出口9へ
の流れ30となる。流れ30となった高速気流20の速
度成分には粉砕容器7の容器内壁面10と垂直な速度成
分がなくなるので、高速気流20は排出口9への速度を
増加させて軸線19と平行に排出口9へ流れ、粉砕物2
2の搬送効率の損失を最小となるようにすることができ
る。
Using the crushing apparatus 1 having the crushing container 7 constructed as described above, the material to be crushed 2
After charging 1 into the acceleration tube 4, the high-speed airflow 20 collides with the protruding portion 13 formed on the collision member 11 and the flat end surface 14 at the tip of the columnar portion 12, and is crushed. At this time,
The high-speed airflow 20 flows along the bell-shaped cone 24 of the projection 13 and collides the object 21 with the flat end surface 14, and then flows along the curvature of the corner 15 of the columnar portion 12, and further flows along the columnar portion. 12
The high-speed airflow 20 is sandwiched from both surfaces by the tapered portion 26 of the crushing container 7 and the substantially parallel inner wall surface 28 of the inner wall surface 10 of the crushing container 7. Due to the wall adhesion effect of the fluid on both the parallel inner wall surface 28 and the tapered portion 26, a flow 30 to the outlet 9 results. Since the velocity component of the high-speed airflow 20 that has become the stream 30 has no velocity component perpendicular to the inner wall surface 10 of the crushing container 7, the high-speed airflow 20 increases the speed to the discharge port 9 and discharges the airflow parallel to the axis 19. Flow to outlet 9 and crushed material 2
2 can be minimized.

【0036】このように本実施例においては、粉砕容器
7の内壁面28を衝突部材11の柱状部12のテーパー
部26に対向させるとともに、そのテーパー部26の表
面に略平行に形成させるので、衝突部材11の表面およ
び粉砕容器7の内壁面の両方の面についての流体の壁付
着効果により高速気流20の速度成分には粉砕容器7の
内壁面28と垂直な速度成分がなくなり、ジェット噴流
を速度を増加させて後方へ流すことができ、粉砕物22
の搬送効率の損失を最小となるようにすることができ
る。したがって、高速気流20が突出部13および柱状
部12に衝突したとき、渦が発生し難くなって圧力損失
が生じ難くなるとともに、柱状部12の先端の平端面1
4に衝突した後の衝突部材11の周囲を流れる高速気流
20の速度の低下を低減させることができ、一層効率の
良い粉砕と粉砕後の粉砕物22の一層効率のよい搬送を
行うことができる。したがって、被粉砕物21の衝突部
材11への融着を防止することができるとともに、所望
の粒径以下の粉砕物22の収率を更により一層向上させ
ることができる。
As described above, in this embodiment, the inner wall surface 28 of the crushing container 7 is opposed to the tapered portion 26 of the columnar portion 12 of the collision member 11, and is formed substantially parallel to the surface of the tapered portion 26. Due to the wall adhesion effect of the fluid on both the surface of the collision member 11 and the inner wall surface of the crushing container 7, the velocity component of the high-speed airflow 20 has no velocity component perpendicular to the inner wall surface 28 of the crushing container 7, and the jet It is possible to increase the speed and to flow backward,
Of the transfer efficiency can be minimized. Therefore, when the high-speed airflow 20 collides with the protruding portion 13 and the columnar portion 12, vortices are less likely to occur and pressure loss is less likely to occur, and the flat end surface 1 at the tip of the columnar portion 12 is reduced.
4 can reduce a decrease in the speed of the high-speed airflow 20 flowing around the collision member 11 after colliding with the crushing member 4, and can perform more efficient pulverization and more efficient conveyance of the crushed material 22 after crushing. . Therefore, it is possible to prevent the object to be crushed 21 from being fused to the collision member 11 and further improve the yield of the crushed object 22 having a desired particle size or less.

【0037】次に、本実施例の具体例について説明す
る。上記表1と同様の原料を使用し、加速管4内へ圧縮
気体供給ノズル3から流量7Nm3 /minの圧縮空気
を導入し、また、被粉砕物供給口6から32kg/hr
の割合で被粉砕物を供給した。粉砕した粉砕物22は分
級機16に搬送され、微粉である場合17には粉砕物2
2を回収し、粗粉である場合18には粉砕物22を被粉
砕物供給口6により被粉砕物21とともに加速管4内に
再度投入して粉砕を繰り返した。このようにして被粉砕
物21を粉砕した結果、微粉として体積平均粒径7.5
μm(コールターカウンターによる測定)の粉砕物を2
9.00kg/hr(収率90.6%)の割合で回収す
ることができた。また、このとき10時間の連続運転を
行っても衝突部材11での被粉砕物21の融着は見られ
なかった。
Next, a specific example of this embodiment will be described. Using the same raw material as in Table 1 above, compressed air having a flow rate of 7 Nm 3 / min was introduced from the compressed gas supply nozzle 3 into the acceleration tube 4, and 32 kg / hr was supplied from the supply port 6 for the material to be pulverized.
Was supplied at the ratio of The pulverized material 22 is conveyed to the classifier 16, and in the case of fine powder 17,
2 was recovered, and in the case of coarse powder 18, the pulverized material 22 was again charged into the acceleration tube 4 together with the pulverized material 21 through the pulverized material supply port 6, and the pulverization was repeated. As a result of crushing the material to be crushed 21 as described above, the volume average particle size is 7.5 as fine powder.
2 μm (measured by Coulter counter)
It could be recovered at a rate of 9.00 kg / hr (yield 90.6%). Further, at this time, even if the continuous operation was performed for 10 hours, no fusion of the crushed object 21 at the collision member 11 was observed.

【0038】[0038]

【発明の効果】請求項1記載の発明によれば、衝突部材
を、噴出ノズルのジェット噴流噴出方向に略直交する平
端面を先端に有する第1衝突部と、その第1衝突部の平
端面に一致する底面を有するとともに、噴出ノズルのジ
ェット噴流の噴出方向に略平行な軸線を有する錐体形状
の第2衝突部とから形成され、更に第1衝突部の先端の
角が曲率を有するよう面取りして構成するので、ジェッ
ト噴流が第1衝突部に衝突するとき、ジェット噴流は、
壁付着効果により面取りされた角の曲率に沿って滑らか
に流れるようにすることができる。したがって、ジェッ
ト噴流に渦が発生し難くなって圧力損失を生じ難くする
ことができ、粉砕を効率良く行うことができる。そし
て、粉砕された粉砕物のうち第1衝突部の平端面に存在
する粉砕物は壁付着効果によるジェット噴流の流れによ
って加速されて搬送されるので、粉砕後の粉砕物の搬送
を効率良く行うことができる。したがって、粉砕物の衝
突部材への融着を防止することができ、所望の粒径以下
の粉砕物の収率を向上させることができる。
According to the first aspect of the present invention, the collision member has a first collision portion having a flat end surface at a tip end substantially perpendicular to a jet jet direction of the jet nozzle, and a flat end surface of the first collision portion. And a second collision portion in the form of a cone having an axis substantially parallel to the jet direction of the jet stream of the jet nozzle, and the corner of the tip of the first collision portion has a curvature. Since the jet jet collides with the first collision portion, the jet jet is
The flow can smoothly flow along the curvature of the chamfered corner due to the wall adhesion effect. Therefore, a vortex is less likely to be generated in the jet stream, so that a pressure loss is less likely to occur, and the pulverization can be performed efficiently. Then, among the pulverized materials, the pulverized material existing on the flat end surface of the first collision portion is accelerated and conveyed by the flow of the jet jet due to the wall adhesion effect, so that the pulverized material after the pulverization is efficiently conveyed. be able to. Therefore, the fusion of the pulverized material to the collision member can be prevented, and the yield of the pulverized material having a desired particle size or less can be improved.

【0039】請求項2記載の発明によれば、衝突部材の
第2衝突部を釣鐘形の錐体形状に形成するので、ジェッ
ト噴流が釣鐘形の錐体形状を有する第2衝突部に衝突す
ると、ジェット噴流は流体の壁付着効果により釣鐘形の
表面に沿って流れ、その流れに沿って移動する被粉砕物
は第1衝突部の先端の平端面に垂直若しくは略垂直に衝
突し、被粉砕物の運動速度成分が他の方向の速度成分を
持つことで生じる粉砕効率の損失を低減させることがで
きる。そして、ジェット噴流は流体の壁付着効果により
第1衝突部の面取りされた角の曲率に沿って滑らかに流
れるので、渦が発生し難くなって圧力損失を生じ難くす
ることができる。したがって、被粉砕物の粉砕効率を一
層向上させることができるとともに、粉砕された後の粉
砕物の搬送効率を一層向上させることができる。更に、
粉砕物と衝突部材との融着を防止することができ、所望
の粒径以下の粉砕物の収率を向上させることができる。
According to the second aspect of the present invention, since the second collision portion of the collision member is formed in a bell-shaped cone shape, when the jet jet collides with the second collision portion having the bell-shaped cone shape. The jet jet flows along the bell-shaped surface due to the wall adhesion effect of the fluid, and the crushed object moving along the flow collides perpendicularly or almost perpendicularly to the flat end face at the tip of the first collision portion, and is crushed. The loss of the grinding efficiency caused by the movement velocity component of the object having the velocity component in another direction can be reduced. Since the jet jet flows smoothly along the curvature of the chamfered corner of the first collision portion due to the wall adhesion effect of the fluid, the vortex is less likely to be generated and the pressure loss is less likely to be generated. Accordingly, the efficiency of pulverization of the pulverized material can be further improved, and the efficiency of transport of the pulverized material after pulverization can be further improved. Furthermore,
It is possible to prevent fusion of the pulverized material and the collision member, and to improve the yield of the pulverized material having a desired particle size or less.

【0040】請求項3記載の発明によれば、衝突部材の
第1衝突部に面取りされた角から後端よりにテーパー部
を設け、かつ、そのテーパー部を第1衝突部の先端から
後端に向うに従って細くなる形状に形成するので、ジェ
ット噴流が衝突部材の第2衝突部および第1衝突部に衝
突したとき、渦が発生し難くなって圧力損失が生じ難く
なり、被粉砕物の粉砕効率を一層向上させることができ
るとともに、第1衝突部の先端の平端面に衝突した後の
衝突部材の周囲を流れるジェット噴流の運動速度成分の
うち、粉砕容器の内壁面に向う速度成分が低減されるの
で、粉砕された後の粉砕物はジェット噴流とともに一層
効率良く搬送することができる。したがって、粉砕物と
衝突部材との融着を防止することができるとともに、所
望の粒径以下の粉砕物の収率をより一層向上させること
ができる。
According to the third aspect of the invention, the first collision portion of the collision member is provided with a tapered portion from the chamfered corner to the rear end, and the tapered portion is formed from the front end to the rear end of the first collision portion. When the jet jet collides with the second collision portion and the first collision portion of the collision member, a vortex is less likely to be generated and a pressure loss is less likely to occur, and the crushed material is crushed. Efficiency can be further improved, and of the motion velocity components of the jet jet flowing around the collision member after colliding with the flat end face at the tip of the first collision portion, the velocity component toward the inner wall surface of the crushing container is reduced. Therefore, the pulverized material after being pulverized can be more efficiently conveyed together with the jet jet. Therefore, fusion of the crushed material and the collision member can be prevented, and the yield of the crushed material having a desired particle size or less can be further improved.

【0041】請求項4記載の発明によれば、粉砕容器の
内壁面を衝突部材の第1衝突部のテーパー部に対向させ
るとともに、そのテーパー部の表面に略平行に形成させ
るので、衝突部材の表面および粉砕容器の内壁面の両方
の面についての流体の壁付着効果によりジェット噴流の
速度成分には粉砕容器の容器内壁面と垂直な速度成分が
なくなり、ジェット噴流を速度を増加させて後部へ流す
ことができ、粉砕物の搬送効率の損失を最小となるよう
にすることができる。したがって、ジェット噴流が第2
衝突部および第1衝突部に衝突したとき、渦が発生し難
くなって圧力損失が生じ難くなるとともに、第1衝突部
の先端の平端面に衝突した後の衝突部材の周囲を流れる
ジェット噴流の速度の低下を低減させることができ、一
層効率の良い粉砕と粉砕後の粉砕物のより一層効率のよ
い搬送を行うことができる。したがって、被粉砕物と衝
突部材との融着を防止することができるとともに、所望
の粒径以下の粉砕物の収率を更により一層向上させるこ
とができる。
According to the fourth aspect of the present invention, the inner wall surface of the pulverizing container is opposed to the tapered portion of the first collision portion of the collision member and is formed substantially parallel to the surface of the tapered portion. Due to the wall adhesion effect of the fluid on both the surface and the inner wall surface of the grinding container, the velocity component of the jet jet has no velocity component perpendicular to the inner wall surface of the grinding container, and the velocity of the jet jet is increased to the rear It is possible to minimize the loss of the efficiency of conveying the pulverized material. Therefore, the jet jet is
When colliding with the collision portion and the first collision portion, vortices are less likely to be generated and pressure loss is less likely to occur, and the jet jet flowing around the collision member after colliding with the flat end face at the tip of the first collision portion is reduced. The reduction in speed can be reduced, and more efficient pulverization and more efficient transportation of the pulverized material after pulverization can be performed. Therefore, it is possible to prevent the fusion of the object to be crushed and the collision member, and to further improve the yield of the crushed object having a desired particle size or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の発明に係る粉砕装置の一実施例
の全体構成および粉砕装置と分級機とを用いた粉砕分級
工程を示す図である。
FIG. 1 is a view showing an entire configuration of an embodiment of a pulverizing apparatus according to the invention of claim 1, and a pulverizing / classifying step using a pulverizing apparatus and a classifier.

【図2】請求項1記載の発明に係る粉砕装置の一実施例
の衝突部材の要部拡大図である。
FIG. 2 is an enlarged view of a main part of a collision member of one embodiment of the crushing device according to the first aspect of the present invention.

【図3】請求項2記載の発明に係る粉砕装置の一実施例
の衝突部材の要部拡大図である。
FIG. 3 is an enlarged view of a main part of a collision member of an embodiment of the crushing device according to the second aspect of the present invention.

【図4】請求項3記載の発明に係る粉砕装置の一実施例
の衝突部材の要部拡大図である。
FIG. 4 is an enlarged view of a main part of a collision member of an embodiment of the crushing device according to the third aspect of the present invention.

【図5】請求項4記載の発明に係る粉砕装置の一実施例
の要部拡大図である。
FIG. 5 is an enlarged view of a main part of an embodiment of the pulverizing device according to the fourth aspect of the present invention.

【図6】従来の技術における粉砕装置の例を示す図であ
る。
FIG. 6 is a diagram showing an example of a pulverizing device according to a conventional technique.

【図7】従来の技術における粉砕装置の衝突部材の衝突
面の形状の例を示す図であり、(a)はその側面図、
(b)はその正面図である。
FIG. 7 is a view showing an example of a shape of a collision surface of a collision member of a crusher according to a conventional technique, where (a) is a side view thereof;
(B) is a front view thereof.

【符号の説明】[Explanation of symbols]

1 粉砕装置 4 加速管(噴出ノズル) 6 被粉砕物供給口(供給手段) 7 粉砕容器 10 容器内壁面(内壁面) 11 衝突部材 12 柱状部(第1衝突部) 13 突出部(第2衝突部) 14 平端面 15 角 20 高速気流(ジェット噴流) 21 被粉砕物 22 粉砕物 24 釣鐘状の錐体 26 テーパー部 28 略平行な内壁面 DESCRIPTION OF SYMBOLS 1 Crusher 4 Acceleration pipe (ejection nozzle) 6 Material supply port (supply means) 7 Crushing container 10 Container inner wall surface (inner wall surface) 11 Collision member 12 Columnar part (first collision part) 13 Projection part (second collision) Part) 14 flat end face 15 angle 20 high-speed air flow (jet jet) 21 crushed material 22 crushed material 24 bell-shaped cone 26 taper portion 28 substantially parallel inner wall surface

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−210255(JP,A) 特開 平3−60749(JP,A) (58)調査した分野(Int.Cl.7,DB名) B02C 19/06 B02C 19/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-210255 (JP, A) JP-A-3-60749 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B02C 19/06 B02C 19/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粉砕容器内にジェット噴流を噴出する噴出
ノズルと、 前記ジェット噴流中に被粉砕物を供給する供給手段と、 前記粉砕容器内に該噴出ノズルに対向して配置され、ジ
ェット噴流とともに被粉砕物を直接衝突させて微粉砕す
る衝突部材と、を備えた粉砕装置において、 前記衝突部材が、 噴出ノズルのジェット噴流噴出方向に略直交する平端面
を先端に有する第1衝突部と、 該第1衝突部の前記平端面に一致する底面を有するとと
もに、噴出ノズルのジェット噴流の噴出方向に略平行な
軸線を有する錐体形状の第2衝突部と、からなり、 前記衝突部材の第1衝突部の先端の角が曲率を有するよ
う面取りされたことを特徴とする粉砕装置。
A jet nozzle for jetting a jet jet into a pulverizing container; a supply means for supplying an object to be pulverized in the jet jet; and a jet jet disposed in the pulverizing container so as to face the jet nozzle. And a collision member for directly colliding the object to be crushed to finely pulverize the object, wherein the collision member has a first collision portion having a flat end surface at a tip end substantially orthogonal to a jet jet ejection direction of an ejection nozzle. A second collision portion having a bottom surface coinciding with the flat end surface of the first collision portion and having a conical shape having an axis substantially parallel to the jetting direction of the jet stream of the jet nozzle. A crushing device characterized in that the corner of the tip of the first collision portion is chamfered so as to have a curvature.
【請求項2】前記第2衝突部が釣鐘形の錐体形状を有す
ることを特徴とする請求項1記載の粉砕装置。
2. The crushing apparatus according to claim 1, wherein said second collision portion has a bell-shaped cone shape.
【請求項3】前記第1衝突部が前記面取りされた角から
後端よりに位置するテーパー部を有し、該テーパー部が
第1衝突部の先端から後端に向うに従って細くなること
を特徴とする請求項2記載の粉砕装置。
3. The first collision portion has a tapered portion located from the chamfered corner to a rear end, and the tapered portion becomes thinner from the front end to the rear end of the first collision portion. The crushing device according to claim 2, wherein
【請求項4】前記粉砕容器が、前記第1衝突部のテーパ
ー部に対向するとともに、該テーパー部の表面に略平行
な内壁面を有することを特徴とする請求項3記載の粉砕
装置。
4. The crushing device according to claim 3, wherein said crushing container has an inner wall surface facing a tapered portion of said first collision portion and substantially parallel to a surface of said tapered portion.
JP06823194A 1994-04-06 1994-04-06 Crusher Expired - Lifetime JP3182039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06823194A JP3182039B2 (en) 1994-04-06 1994-04-06 Crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06823194A JP3182039B2 (en) 1994-04-06 1994-04-06 Crusher

Publications (2)

Publication Number Publication Date
JPH07275732A JPH07275732A (en) 1995-10-24
JP3182039B2 true JP3182039B2 (en) 2001-07-03

Family

ID=13367820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06823194A Expired - Lifetime JP3182039B2 (en) 1994-04-06 1994-04-06 Crusher

Country Status (1)

Country Link
JP (1) JP3182039B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051496A (en) * 2004-07-13 2006-02-23 Ricoh Co Ltd Impact airflow grinding machine, manufacturing method of toner with the grinding machine and toner manufactured by the manufacturing method
US7438245B2 (en) 2004-07-13 2008-10-21 Ricoh Company, Ltd. Milling and classifying apparatus, collision mill, air classifier, toner, and method for producing toner
US8455820B2 (en) 2009-04-28 2013-06-04 Hitachi High-Technologies Corporation Composite charged particle beams apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426149B2 (en) 1998-12-25 2003-07-14 富士通株式会社 Method and apparatus for recycling polishing waste liquid in semiconductor manufacturing
JP2006159075A (en) * 2004-12-06 2006-06-22 Ricoh Co Ltd Pneumatic impact pulverizer, method for manufacturing electrostatic charge image developing toner and electrostatic charge image developing toner
KR100862497B1 (en) 2006-12-26 2008-10-08 삼성전기주식회사 Nitride semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051496A (en) * 2004-07-13 2006-02-23 Ricoh Co Ltd Impact airflow grinding machine, manufacturing method of toner with the grinding machine and toner manufactured by the manufacturing method
US7438245B2 (en) 2004-07-13 2008-10-21 Ricoh Company, Ltd. Milling and classifying apparatus, collision mill, air classifier, toner, and method for producing toner
US8455820B2 (en) 2009-04-28 2013-06-04 Hitachi High-Technologies Corporation Composite charged particle beams apparatus

Also Published As

Publication number Publication date
JPH07275732A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
KR970008350B1 (en) Pneumatic pulverizer and process for producing toner
JP6255681B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP3182039B2 (en) Crusher
JPH01254266A (en) Impact type air crusher and crushing method
JP3114040B2 (en) Collision type air crusher
JPH0929127A (en) Pulverizer
JP2654989B2 (en) Powder grinding method
JP3219918B2 (en) Crusher
JP3185065B2 (en) Collision type air crusher
JP2967304B2 (en) Classification crusher
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP3313922B2 (en) Crusher
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP2805332B2 (en) Grinding method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH08182937A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2759499B2 (en) Powder grinding method
JP2566158B2 (en) Collision airflow crusher
JP2704777B2 (en) Collision type air flow crusher and crushing method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JPH07289933A (en) Grinder
JP3101786B2 (en) Collision type air crusher
JP2525230B2 (en) Collision airflow crusher
JPH0651130B2 (en) Collision type airflow crusher and crushing method
JPH05131157A (en) Impact type air grinder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 13

EXPY Cancellation because of completion of term