JP3185065B2 - Collision type air crusher - Google Patents

Collision type air crusher

Info

Publication number
JP3185065B2
JP3185065B2 JP19990291A JP19990291A JP3185065B2 JP 3185065 B2 JP3185065 B2 JP 3185065B2 JP 19990291 A JP19990291 A JP 19990291A JP 19990291 A JP19990291 A JP 19990291A JP 3185065 B2 JP3185065 B2 JP 3185065B2
Authority
JP
Japan
Prior art keywords
collision
chamber
powder
classifying
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19990291A
Other languages
Japanese (ja)
Other versions
JPH0515802A (en
Inventor
一彦 小俣
仁志 神田
聡 三ツ村
和幸 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP19990291A priority Critical patent/JP3185065B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP95109861A priority patent/EP0679441A3/en
Priority to KR1019920012582A priority patent/KR950006885B1/en
Priority to EP92112063A priority patent/EP0523653B1/en
Priority to DE69222480T priority patent/DE69222480T2/en
Priority to EP95109863A priority patent/EP0679442A3/en
Priority to CN92105740A priority patent/CN1057025C/en
Publication of JPH0515802A publication Critical patent/JPH0515802A/en
Priority to US08/375,173 priority patent/US5577670A/en
Priority to US08/640,633 priority patent/US5839670A/en
Application granted granted Critical
Publication of JP3185065B2 publication Critical patent/JP3185065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、気流分級機を具備し、
かつ、ジェット気流(高圧気体)を用いて粉砕を行う衝
突式気流粉砕装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises an air classifier,
Further, the present invention relates to an impingement type airflow pulverizer that performs pulverization using a jet airflow (high-pressure gas).

【0002】[0002]

【従来の技術】ジェット気流を用いた衝突式気流粉砕機
は、ジェット気流に粉体原料を載せ粒子混合気流とし、
加速管の出口より噴射させ、この粒子混合気流を加速管
の出口前方に設けた衝突部材の衝突面に衝突させて、そ
の衝撃力により前記粉体原料を粉砕せんとするものであ
る。
2. Description of the Related Art In an impingement type air flow pulverizer using a jet air flow, a powder raw material is placed on a jet air flow to form a particle mixed air flow.
Injection is performed from the outlet of the accelerating tube, and the mixed gas stream is caused to collide with a collision surface of a collision member provided in front of the outlet of the accelerating tube, whereby the powder material is pulverized by the impact force.

【0003】以下に、その詳細を図6に基づいて説明す
る。高圧気体供給ノズル41を接続した加速管42の出
口43に対向して衝突部材44を設け、前記加速管42
に供給した高圧気体の流動により、加速管42の中途に
連通させた被粉砕物供給口45から加速管42の内部に
粉体原料を吸引し、これを高圧気体とともに噴射して衝
突部材44の衝突面に衝突させ、その衝撃によって粉砕
するようにしたものである。
The details will be described below with reference to FIG. A collision member 44 is provided opposite the outlet 43 of the acceleration tube 42 to which the high-pressure gas supply nozzle 41 is connected.
The powder material is sucked into the inside of the accelerating tube 42 from the pulverized material supply port 45 which is communicated with the middle of the accelerating tube 42 by the flow of the high pressure gas supplied to the accelerating tube 42. It is designed to collide with a collision surface and to be crushed by the impact.

【0004】しかしながら、上記従来例では、被粉砕物
供給口45が加速管42の中途に連通されており、加速
管内に吸引導入された粉体原料は、被粉砕物供給口45
通過直後に、高圧気体供給ノズルより噴出する高圧気流
により、加速管出口方向に向って流路を急激に変更しな
がら分散急加速される。この状態において、粉体原料中
比較的粗粒子のものは、その慣性力の影響から加速管低
流部を、また、比較的微粒子のものは、加速管高流部を
通過しており、高圧気流中に十分均一に分散されずに、
粉体原料濃度の高い流れと低い流れに分離したまま粉体
原料が対向する衝突部材に部分的に集中して衝突するこ
とになり、粉砕効率が低下し処理能力の低下を引き起こ
している。更に、上記従来例では、衝突面に衝突し粉砕
された粉砕物は、粉砕室内壁に二次(あるいは三次)衝
突して更に粉砕されるが、粉砕室形状が箱型であるた
め、効率的な二次衝突が行われず、微粉砕処理能力の向
上が図れないという欠点があった。一方、従来かかる粉
砕機における衝突部材の衝突面は図6及び図7に示すよ
うに、被粉砕物を載せた粒子混合気流方向、つまり加速
管に対し直角あるいは45度傾斜による平板状のもの
(特開昭57−50554号公報及び特開昭58−14
3853号公報参照)が用いられており、次のような欠
点があった。
However, in the above-mentioned conventional example, the material supply port 45 is connected to the middle of the accelerating tube 42, and the powder material sucked and introduced into the acceleration tube is supplied to the material supply port 45.
Immediately after the passage, the dispersion is rapidly accelerated by the high-pressure gas flow ejected from the high-pressure gas supply nozzle while rapidly changing the flow path toward the outlet of the acceleration tube. In this state, relatively coarse particles in the powder raw material pass through the low flow section of the accelerating tube due to the effect of the inertial force, and relatively fine particles pass through the high flow section of the accelerating tube due to the effect of the inertia force. Without being evenly dispersed in the airflow,
The powder raw material partially collides with the opposing collision member while being separated into a flow having a high powder raw material concentration and a flow having a low powder raw material concentration, so that the pulverization efficiency is reduced and the processing capacity is reduced. Furthermore, in the above-mentioned conventional example, the pulverized material colliding with the collision surface and pulverized secondary (or tertiary) with the inner wall of the pulverization chamber is further pulverized. However, since the pulverization chamber has a box shape, it is efficient. There is a disadvantage that secondary collision does not take place and the pulverization processing capacity cannot be improved. On the other hand, as shown in FIGS. 6 and 7, the collision surface of the collision member in such a conventional pulverizer has a flat plate shape inclined at right angles or at 45 degrees to the direction of the particle mixture gas flow on which the material to be pulverized is placed. JP-A-57-50554 and JP-A-58-14
3853), which has the following disadvantages.

【0005】図6のように加速管42の軸方向と垂直な
衝突面49の場合、加速管出口43から吹き出される被
粉砕物と衝突面49で反射される粉砕物とが衝突面49
の近傍で共存する割合が高く、そのため、衝突面49近
傍での粉体(被粉砕物及び粉砕物)濃度が高くなり、粉
砕効率が良くない。
In the case of a collision surface 49 perpendicular to the axial direction of the acceleration tube 42 as shown in FIG. 6, the crushed material blown out from the acceleration tube outlet 43 and the crushed material reflected on the collision surface 49 are different from each other.
Is high near the collision surface 49. Therefore, the concentration of the powder (the material to be crushed and the crushed material) near the collision surface 49 increases, and the crushing efficiency is not good.

【0006】また、図7の粉砕機においては、衝突面5
0が加速管42の軸方向に対して傾斜しているために、
衝突面50近傍の粉体濃度は図6の粉砕機と比較して低
くなるが、高圧気流による衝突力が分散されて低下す
る。さらに、粉砕室壁51との二次衝突を有効に利用し
ているとはいえない。例えば、図7に示す如く、衝突面
50の角度が加速管に対し45°傾斜のものでは、熱可
塑性樹脂を粉砕するときに上記のような問題点は少な
い。しかしながら、衝突する際に粉砕に使われる衝撃力
が小さく、さらに粉砕室壁51との二次衝突による粉砕
が少ないので、粉砕能力は図6の粉砕機と比較して1/
2〜1/1.5に粉砕能力が落ちる。
Further, in the crusher shown in FIG.
Since 0 is inclined with respect to the axial direction of the acceleration tube 42,
Although the powder concentration in the vicinity of the collision surface 50 is lower than that of the pulverizer of FIG. 6, the collision force due to the high-pressure airflow is dispersed and lowers. Furthermore, it cannot be said that the secondary collision with the crushing chamber wall 51 is effectively used. For example, as shown in FIG. 7, when the collision surface 50 has an angle of 45 ° with respect to the accelerating tube, the above-mentioned problems are small when pulverizing the thermoplastic resin. However, since the impact force used for crushing at the time of collision is small and crushing due to secondary collision with the crushing chamber wall 51 is small, the crushing ability is 1 / compared to the crusher of FIG.
The crushing ability drops to 2 to 1 / 1.5.

【0007】また衝突式気流粉砕機に具備する気流分級
機としては、種々の分級機が提案されいている。その代
表的なものとして、図8に示したようなディスパージョ
ンセパレーター(日本ニューマチック工業社製)が一般
的に用いられている。
Various classifiers have been proposed as an airflow classifier provided in the collision type airflow pulverizer. As a typical example, a dispersion separator (manufactured by Nippon Pneumatic Co., Ltd.) as shown in FIG. 8 is generally used.

【0008】しかし、図8に示したようなこの種の気流
分級機の分級室への粉体材料供給部は、サイクロン状の
形状をなしており、上部カバー60の上面中央部には案
内筒61を起立状に設け、該案内筒61の上部外周面に
供給筒62が接続されいている。供給筒62は、案内筒
61の外周に供給筒62を介して供給される粉体材料が
案内筒内円周接線方向に導入されるように接続されてい
る。
However, the powder material supply section to the classifying chamber of this type of airflow classifier as shown in FIG. 8 has a cyclone-like shape. A supply tube 62 is connected to the upper outer peripheral surface of the guide tube 61. The supply cylinder 62 is connected so that the powder material supplied to the outer periphery of the guide cylinder 61 via the supply cylinder 62 is introduced in a circumferential tangential direction in the guide cylinder.

【0009】かかる供給筒62より案内筒61内に粉体
材料を供給すると、該粉体材料は案内筒61の内周面に
沿って旋回しながら下降する。この場合粉体材料は、供
給筒62より案内筒61内周面に沿って帯状に下降する
ため、分級室63に流入する粉体材料の分布及び濃度が
不均一となり(分級室へ案内筒内周面の一部からのみ粉
体材料は流入する)、分散が悪い。
When the powder material is supplied from the supply cylinder 62 into the guide cylinder 61, the powder material descends while turning along the inner peripheral surface of the guide cylinder 61. In this case, since the powder material descends from the supply cylinder 62 along the inner peripheral surface of the guide cylinder 61 in a band shape, the distribution and concentration of the powder material flowing into the classification chamber 63 become non-uniform (the distribution of the guide cylinder into the classification chamber). The powder material flows in only from a part of the peripheral surface), and the dispersion is poor.

【0010】また、処理量を大きくとると粉体材料の凝
集が一層、起こり易く、さらに分散が十分に行われなく
なり、高精度の分級が行えないという問題点がある。ま
た、粉体材料を搬送するエアー量が多い場合、分級室に
流入するエアーの量が多いため分級室において旋回する
粒子の中心向き速度が大きくなり分離粒子径が大きくな
るという問題点がある。
Further, when the treatment amount is increased, the powder materials are more likely to agglomerate, dispersing is not sufficiently performed, and high-precision classification cannot be performed. In addition, when the amount of air that conveys the powder material is large, there is a problem that the amount of air flowing into the classifying chamber is large, so that the velocity of the particles turning in the classifying chamber toward the center increases, and the diameter of the separated particles increases.

【0011】したがって、通常分離粒子径を小さくする
場合、案内筒上部64よりエアーをダンパーによりコン
トロールして抜いているが、抜くエアー量が多いと粉体
材料の一部も排出し、損失するという実用上の問題点が
生じる場合もある。
Therefore, when the diameter of the separated particles is normally reduced, the air is controlled and discharged from the upper portion 64 of the guide cylinder by a damper. However, if the amount of the discharged air is large, a part of the powder material is also discharged and lost. There may be practical problems.

【0012】[0012]

【発明が解決しようとする課題】上記従来技術の問題点
に鑑み、本発明の目的とするところは、 .被粉砕物をより一層効率良く粉砕する点、 .粉砕物の融着,凝集,粗粒化,あるいは加速管内壁
や衝突部材の衝突面での極部的摩耗の発生を防止する
点、 等を達成し得る衝突式気流粉砕装置を提供することにあ
る。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the objects of the present invention are as follows. Crushing the material to be crushed more efficiently; An object of the present invention is to provide an impingement type air flow pulverizer capable of achieving the points of preventing the fusion, agglomeration, and coarsening of the pulverized material, or the occurrence of extreme wear on the inner wall of the accelerating tube and the collision surface of the collision member. is there.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成は、分級室の底部に中央部が高くなる傾
斜状の分級板を有し、該分級室において搬送エアーとと
もに供給された粉体材料を分級ルーバーを介して流入す
る気流によって旋回流動させて微粉と粗粉とに遠心分離
し、微粉を分級板の中央部に設けられた排出口に接続し
た微粉排出シュートへ排出させるとともに、粗粉を分級
板の外周部に形成した排出口より排出し得る、該分級室
の上部に粉体供給筒と連通する環状の案内室を設け、該
案内室と該分級室との間に案内室の内周円方向の接線方
向に先端を向けた複数のルーバーを設けた気流分級機
と、高圧気体により被粉砕物を搬送加速する加速管と、
該加速管出口に対向して設けた衝突面を有する衝突部材
を有し、該加速管がラバルノズル(中細ノズル)をな
し、そのスロート部上流に高圧気体噴出ノズルを配し、
該高圧気体噴出ノズルは、流路断面積が長軸方向下流側
に向かって一旦絞られた後、再度広がっている形状を有
しており、該被粉砕物の加速管への供給がエゼクター効
果により行われるように、該高圧気体噴出ノズルの外壁
とスロート部内壁間に被粉砕物供給口を設け、さらに、
該加速管の出口に接続して設けた粉砕室の軸方向断面形
状が円形もしくは楕円形状を有し、かつ、該衝突部材衝
突面の先端部分が頂角110〜175度を有する錘体形
状を有し、該衝突部材後方に粉砕物排出口を設けた衝突
式気流粉砕機とを具備し、該衝突式気流粉砕機の被粉砕
物供給口を該気流分級機の粗粉排出口に連通させ、かつ
該衝突式気流粉砕機の粉砕物排出口と該気流分級機の粉
体供給筒とを連通させた衝突式気流粉砕装置、としてい
る点にある。
In order to achieve the above-mentioned object, the present invention has a structure in which a classification plate having an inclined center whose height is high at the bottom of a classification chamber is supplied together with carrier air in the classification chamber. The powdered material is swirled by an airflow flowing through a classification louver, centrifuged into fine powder and coarse powder, and the fine powder is discharged to a fine powder discharge chute connected to a discharge port provided at the center of the classification plate. At the same time, an annular guide chamber communicating with the powder supply cylinder is provided at the upper part of the classifying chamber so that coarse powder can be discharged from a discharge port formed on an outer peripheral portion of the classifying plate, and between the guide chamber and the classifying chamber. An airflow classifier provided with a plurality of louvers whose tips are directed tangentially to the inner circumferential direction of the guide chamber, and an accelerating tube for conveying and accelerating the object to be ground by high-pressure gas,
A collision member having a collision surface provided opposite to the acceleration tube outlet, wherein the acceleration tube forms a Laval nozzle (medium-thin nozzle), and a high-pressure gas ejection nozzle is arranged upstream of the throat portion;
The high-pressure gas ejection nozzle has a shape in which the cross-sectional area of the flow path is once narrowed toward the downstream side in the long axis direction and then spread again, so that the supply of the object to be crushed to the acceleration tube is an ejector effect.
As a result , an object supply port is provided between the outer wall of the high-pressure gas ejection nozzle and the inner wall of the throat portion,
A crushing chamber connected to the outlet of the acceleration tube has a circular or elliptical cross-sectional shape in the axial direction, and a tip portion of the collision surface of the collision member has a weight shape having an apex angle of 110 to 175 degrees. A collision-type airflow pulverizer provided with a pulverized material discharge port behind the collision member, and a pulverized material supply port of the collision-type airflow pulverizer communicates with a coarse powder discharge port of the airflow classifier. And a collision-type airflow pulverizer in which a pulverized material discharge port of the collision-type airflow pulverizer communicates with a powder supply cylinder of the airflow classifier.

【0014】ここで、上述加速管の中心軸が鉛直方向で
あれば、重力との関係でより好ましい粉砕効果が得られ
る。
Here, if the center axis of the accelerating tube is vertical, a more favorable pulverizing effect can be obtained in relation to gravity.

【0015】尚、本発明の構成及び作用については、以
下の実施例にて詳述する。
The configuration and operation of the present invention will be described in detail in the following embodiments.

【0016】[0016]

【実施例】図1から図5は、本発明の一実施例を示す概
略図であり、図2は図1のA−A線における加速管スロ
ート部と高圧気体噴出ノズルを示す拡大断面図、図3は
同B−B線における粉砕室と衝突部材(円錐形状)を示
す拡大断面図、図4は同C−C線における高圧気体供給
口と高圧気体チャンバーを示す断面図、図5はD−D線
におけるルーバーを示す断面図である。
1 to 5 are schematic views showing one embodiment of the present invention. FIG. 2 is an enlarged sectional view showing an accelerating tube throat portion and a high-pressure gas jet nozzle along line AA in FIG. FIG. 3 is an enlarged sectional view showing the crushing chamber and the collision member (conical shape) along the line BB, FIG. 4 is a sectional view showing the high pressure gas supply port and the high pressure gas chamber along the line CC, and FIG. It is sectional drawing which shows the louver in the -D line.

【0017】先ず、本発明に用いる衝突式気流粉砕機に
ついて、図1に基づいて説明する。被粉砕物供給筒5よ
り供給された被粉砕物は、中心軸を鉛直方向に配設した
ラバルノズル形状をなす加速管1の加速管スロート部2
の内壁と中心が加速管1の中心軸と同軸上にある高圧気
体噴出ノズル3の外壁との間で形成された被粉砕物供給
口4へ到達する。一方、高圧気体は高圧気体供給口6よ
り導入され高圧気体チャンバー7を経て、一本好ましく
は複数本の高圧気体導入管8を通り高圧気体噴出ノズル
3より加速管出口9方向に向って急激に膨張しながら噴
出する。この時、加速管スロート部2の近傍で発生する
エゼクター効果により、被粉砕物はこれと共存している
気体に同伴されながら、被粉砕物供給口4より加速管出
口9方向に向けて吸引され、加速管スロート部2におい
て高圧気流と均一に混合されながら急加速し、加速管出
口9に対向配置された衝突部材10の衝突面(先端部分
が頂角110〜175度を有した錐体形状)に、粉塵濃
度の偏りなく均一な固気混合気流の状態で衝突する。
First, an impingement type air current pulverizer used in the present invention will be described with reference to FIG. The crushed material supplied from the crushed material supply cylinder 5 is supplied to the accelerating tube throat portion 2 of the accelerating tube 1 having a Laval nozzle shape having a central axis disposed in a vertical direction.
Reaches the material supply port 4 formed between the inner wall and the outer wall of the high-pressure gas ejection nozzle 3 whose center is coaxial with the central axis of the acceleration tube 1. On the other hand, the high-pressure gas is introduced from the high-pressure gas supply port 6, passes through the high-pressure gas chamber 7, passes through one or preferably a plurality of high-pressure gas introduction pipes 8, and sharply moves from the high-pressure gas ejection nozzle 3 toward the acceleration pipe outlet 9. Spouts while expanding. At this time, due to the ejector effect generated in the vicinity of the accelerating tube throat portion 2, the material to be ground is sucked from the material supply port 4 toward the acceleration tube outlet 9 while being entrained by the gas coexisting therewith. In the accelerating tube throat portion 2, rapid acceleration is performed while being uniformly mixed with the high-pressure airflow, and the collision surface of the collision member 10 disposed opposite to the accelerating tube outlet 9 (a cone having a tip portion having a vertex angle of 110 to 175 degrees) ) Collide with each other in the state of a uniform solid-gas mixture gas stream without an uneven dust concentration.

【0018】衝突時に発生する衝撃力は、十分分散した
個々の粒子(被粉砕物)に与えられる為、非常に効率の
良い粉砕ができる。衝突部材10の衝突面にて粉砕され
た粉砕物は、更に断面形状が円形もしくは楕円形状の粉
砕室壁14の内壁面と衝突部材10表面の間で二次衝突
(また三次衝突)を繰り返し、より粉砕効率を上昇さ
せ、衝突部材10後方に配設された粉砕物排出口13よ
り排出される。
Since the impact force generated at the time of collision is given to the sufficiently dispersed individual particles (objects to be crushed), very efficient crushing can be performed. The crushed material crushed on the collision surface of the collision member 10 further repeats a secondary collision (and a tertiary collision) between the inner wall surface of the crushing chamber wall 14 having a circular or elliptical cross section and the surface of the collision member 10, The crushing efficiency is further increased, and the crushed material is discharged from the crushed material discharge port 13 provided behind the collision member 10.

【0019】更には、衝突部材10の衝突面先端部分
が、頂角110〜175度を有した錐体形状であるた
め、樹脂や粘着性のあるものを粉砕した場合において、
衝突面の角度が加速管に対し90度のものに生じる様な
融着,凝集,粗粒化が発生せず、粉塵濃度が上昇した状
態での粉砕が可能になり、また、摩耗性のある被粉砕物
においては、加速管内壁や衝突部材の衝突面に発生する
摩耗が極部的に集中することがなく長寿命化が図れ、安
定的な運転が可能になった。
Further, since the tip portion of the collision surface of the collision member 10 has a cone shape having an apex angle of 110 to 175 degrees, when resin or sticky material is crushed,
Fusing, agglomeration, and coarsening that occur when the angle of the collision surface is 90 degrees with respect to the accelerating tube do not occur, and pulverization with a high dust concentration is possible. In the crushed material, wear generated on the inner wall of the accelerating tube and the collision surface of the collision member was not concentrated locally, so that the life was prolonged, and stable operation became possible.

【0020】次に、本発明に用いる気流分級機を図1に
より説明する。本図において、21は筒状の本体ケーシ
ングを示し、22は下部ケーシングを示し、その下部に
粗粉排出用のホッパー23が接続されている。本体ケー
シング21の内部は、分級室24が形成されており、こ
の分級室24の上部は本体ケーシング21の上部に取付
けた環状の案内室25と中央部が高くなる円錐状(傘
状)の上部カバー26によって閉鎖されている。
Next, an air flow classifier used in the present invention will be described with reference to FIG. In this figure, 21 indicates a cylindrical main body casing, 22 indicates a lower casing, and a hopper 23 for discharging coarse powder is connected to a lower portion thereof. A classifying chamber 24 is formed inside the main body casing 21. An upper part of the classifying chamber 24 has an annular guide chamber 25 attached to an upper part of the main body casing 21 and a conical (umbrella-shaped) upper part whose central part is higher. It is closed by a cover 26.

【0021】分級室24と案内室25の間の仕切壁に円
周方向に配列する複数のルーバー27を設け、案内室2
5に送り込まれた粉体材料とエアーを各ルーバー27の
間より分級室24に旋回させて流入させる。なお、供給
筒28を経て案内室25の中を流動するエアーと粉体材
料は、各ルーバー27に均一に分配されることが精度よ
く分級するために必要である。ルーバー27へ到達する
までの流路は遠心力による濃縮が起りにくい形状にする
必要があり、本実施例では供給筒を分級室24の水平面
に対して垂直な上方向から接続させているが、これに限
定されるものではない。
A plurality of louvers 27 arranged in the circumferential direction are provided on a partition wall between the classifying chamber 24 and the guide chamber 25, and the guide chamber 2 is provided.
The powder material and the air fed into 5 are swirled into the classifying chamber 24 from between the louvers 27 to flow. The air and the powder material flowing in the guide chamber 25 via the supply tube 28 are required to be uniformly distributed to each louver 27 in order to accurately classify them. The flow path up to the louver 27 needs to be shaped so that concentration by centrifugal force does not easily occur. In this embodiment, the supply cylinder is connected from the upper direction perpendicular to the horizontal plane of the classification chamber 24. It is not limited to this.

【0022】このようにして、ルーバー27を介して、
エアーと粉体材料は分級室24へ供給され、ルーバー2
7を介して、分級室24へ供給する際に従来の方式より
著しい分散の向上が得られる。また、ルーバー27は可
動であり、ルーバー間隔は調整できる。
Thus, through the louver 27,
The air and the powder material are supplied to the classifying chamber 24 and the louver 2
A significant improvement in dispersion is obtained when feeding the classifying chamber 24 via 7 compared to conventional systems. The louver 27 is movable, and the louver interval can be adjusted.

【0023】本体ケーシング21の下部には円周方向に
配列する分級ルーバー29を設け、外部から分級室24
へ旋回流を起こす分級エアーを分級ルーバー29を介し
て取り入れている。
A classifying louver 29 arranged in the circumferential direction is provided at a lower portion of the main body casing 21, and a classifying chamber 24 is externally provided.
Classification air that causes a swirling flow is introduced through a classification louver 29.

【0024】分級室24の底部に、中央部が高くなる円
錐状(傘状)の分級板30を設け、該分級板30の外周
囲に粗粉排出口31を形成する。また、分級板30の中
央部には微粉排出シュート32を接続し、該シュート3
2の下端部をL字形に屈曲し、この屈曲端部を下部ケー
シング22の側壁より外部に位置させる。さらに該シュ
ート32はサイクロンや集塵機のような微粉回収手段を
介して吸引ファンに接続しており、該吸引ファンにより
分級室24に吸引力を作用させ、該ルーバー29間より
分級室24に流入する吸引エアーによって分級に要する
旋回流を起こしている。
At the bottom of the classifying chamber 24, a conical (umbrella-shaped) classifying plate 30 whose central portion is high is provided, and a coarse powder discharge port 31 is formed around the outside of the classifying plate 30. Further, a fine powder discharge chute 32 is connected to the center of the classifying plate 30, and the chute 3
The lower end of 2 is bent into an L-shape, and the bent end is located outside the side wall of the lower casing 22. Further, the chute 32 is connected to a suction fan via fine powder collecting means such as a cyclone or a dust collector, and applies a suction force to the classification chamber 24 by the suction fan, and flows into the classification chamber 24 from between the louvers 29. The swirling flow required for classification is caused by the suction air.

【0025】本実施例で示す気流分級機は、上記の構造
から成り、供給筒28より案内筒25内に粉体材料をエ
アーとともに供給すると、この粉体材料を含むエアー
は、案内室25から各ルーバー27間を通過して分級室
24に旋回しながら均一の濃度で分散されながら流入す
る。
The air flow classifier shown in the present embodiment has the above-described structure. When a powder material is supplied from the supply cylinder 28 into the guide cylinder 25 together with air, the air containing the powder material is supplied from the guide chamber 25. After passing between the louvers 27, it is swirled into the classifying chamber 24 and flows in a uniform concentration while being dispersed.

【0026】分級室24内に旋回しながら流入した粉体
材料は、微粉排出シュート32に接続した吸引ファンに
より、分級室下部の分級ルーバー29間より流入する吸
引エアー流にのって旋回を増し、各粒子に作用する遠心
力によって粗粉と微粉とに遠心分離され、分級室24内
の外周部を旋回する粗粉は粗粉排出口31より排出さ
れ、下部のホッパー23より排出される。また、分級板
30の上部傾斜面に沿って中央部へと移行する微粉は微
粉排出シュート32により、微粉回収手段へ排出され
る。
The powder material that has flowed into the classifying chamber 24 while swirling is further swirled by a suction fan connected to the fine powder discharge chute 32 along with a suction air flow flowing from between the classifying louvers 29 below the classifying chamber. The coarse powder, which is centrifuged into coarse powder and fine powder by the centrifugal force acting on each particle, and circulates around the outer periphery of the classification chamber 24, is discharged from the coarse powder discharge port 31 and discharged from the lower hopper 23. The fine powder moving to the center along the upper inclined surface of the classification plate 30 is discharged to the fine powder collecting means by the fine powder discharge chute 32.

【0027】分級室24に粉体材料とともに流入するエ
アーは、すべて旋回流となって流入するため、分級室2
4内で旋回する粒子の中心向きの速度は遠心力に比べ相
対的に小さくなり、分級室24において分離粒子径の小
さな分級が行われ、粒子径の非常に小さな微粉を微粉排
出シュート32に排出させることができる。しかも、粉
体材料がほぼ均一な濃度で分級室に流入するため精緻な
分布の粉体として得ることができる。
The air flowing into the classifying chamber 24 together with the powder material flows in a swirling flow.
The velocity of the particles rotating in the center 4 toward the center becomes relatively smaller than the centrifugal force, and the separation of the separated particle diameter is performed in the classification chamber 24, and the fine powder having a very small particle diameter is discharged to the fine powder discharge chute 32. Can be done. In addition, since the powder material flows into the classifying chamber at a substantially uniform concentration, it can be obtained as a finely distributed powder.

【0028】本発明は、かかる衝突式気流粉砕機と気流
分級機を図1に示す如く、衝突式気流粉砕機の被粉砕物
供給口と気流分級機の粗粉排出口を連通させ、かつ衝突
式気流粉砕機の粉砕物排出口と気流分級機の粉体供給筒
とを連通させた粉砕装置である。
According to the present invention, as shown in FIG. 1, the impingement type air flow pulverizer and the air flow classifier are connected to each other through a pulverized material supply port of the impingement type air flow pulverizer and a coarse powder discharge port of the air flow classifier. This is a pulverizing apparatus in which a pulverized material discharge port of an airflow pulverizer communicates with a powder supply cylinder of an airflow classifier.

【0029】本発明において、粉砕用原料は適宜の導入
手段により、図1中の原料導入部33より導入され、ま
た最終的に得られた粉砕物は微粉排出シュート32より
系外に取り出される。
In the present invention, the raw material for pulverization is introduced from a raw material introduction part 33 in FIG. 1 by an appropriate introduction means, and the finally obtained pulverized material is taken out of the system from a fine powder discharge chute 32.

【0030】[0030]

【発明の効果】以上説明したように、本発明の衝突式気
流粉砕装置によれば、被粉砕物を粉塵濃度の偏りがない
様均一に分散させて、衝突部材の衝突面に衝突させるこ
とにより、被粉砕物を効率良く粉砕し、粉砕物の融着,
凝集,粗粒化や加速管内壁,衝突部材の衝突面での極部
的な摩耗の発生を防止できる。更には、粉砕室内壁を利
用して、効率的に二次または三次衝突せしめることによ
り、効率良く粉砕を行い、しかも装置の安定した運転を
可能にすることができる。
As described above, according to the collision-type airflow pulverizer of the present invention, the objects to be pulverized are uniformly dispersed so that the dust concentration is not deviated, and the objects are collided with the collision surface of the collision member. Efficiently pulverize the material to be crushed,
Aggregation, coarsening, and extreme wear on the inner wall of the acceleration tube and the collision surface of the collision member can be prevented. Further, the secondary or tertiary collision is efficiently performed by utilizing the inner wall of the grinding chamber, whereby the grinding can be efficiently performed, and the apparatus can be operated stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した衝突式気流粉砕機の概略断面
図である。
FIG. 1 is a schematic cross-sectional view of a collision type air current pulverizer embodying the present invention.

【図2】図1のA−A断面図を示す。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B断面図を示す。FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】図1のC−C断面図を示す。FIG. 4 is a sectional view taken along line CC of FIG. 1;

【図5】図1のD−D断面図を示す。FIG. 5 is a sectional view taken along line DD of FIG. 1;

【図6】衝突式気流粉砕機の従来例を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing a conventional example of a collision type airflow pulverizer.

【図7】衝突式気流粉砕機の従来例を示す断面図であ
る。
FIG. 7 is a cross-sectional view showing a conventional example of a collision type airflow pulverizer.

【図8】気流分級機の従来例を示す断面図である。FIG. 8 is a cross-sectional view showing a conventional example of an airflow classifier.

【符号の説明】[Explanation of symbols]

1 加速管 2 加速管スロート部 3 高圧気体噴出ノズル 4 被粉砕物供給口 5 被粉砕物供給筒 6 高圧気体供給口 7 高圧気体チャンバー 8 高圧気体導入管 9 加速管出口 10 衝突部材 11 衝突部材支持体 12 粉砕室 13 粉砕物排出口 14 粉砕室壁 21 分級機本体ケーシング 22 分級機下部ケーシング 23 粗粉排出ホッパー 24 分級室 25 案内室 26 上部カバー 27 ルーバー 28 供給筒 29 ルーバー 30 分級板 31 粗粉排出口 32 微粉排出シュート 33 原料導入部 DESCRIPTION OF SYMBOLS 1 Acceleration pipe 2 Acceleration pipe throat part 3 High pressure gas ejection nozzle 4 Pulverized material supply port 5 Pulverized substance supply cylinder 6 High pressure gas supply port 7 High pressure gas chamber 8 High pressure gas introduction pipe 9 Acceleration pipe outlet 10 Collision member 11 Collision member support Body 12 crushing chamber 13 crushed material discharge port 14 crushing chamber wall 21 classifier main casing 22 classifier lower casing 23 coarse powder discharge hopper 24 classification chamber 25 guide chamber 26 upper cover 27 louver 28 supply cylinder 29 louver 30 classification plate 31 coarse powder Discharge port 32 Fine powder discharge chute 33 Raw material introduction section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮野 和幸 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭54−117971(JP,A) 特開 平1−207152(JP,A) 特開 平1−254266(JP,A) 特開 昭61−234958(JP,A) (58)調査した分野(Int.Cl.7,DB名) B02C 19/06 B02C 19/00 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuyuki Miyano 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-54-117971 (JP, A) JP-A-1 -207152 (JP, A) JP-A-1-254266 (JP, A) JP-A-61-234958 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B02C 19/06 B02C 19/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分級室の底部に中央部が高くなる傾斜状
の分級板を有し、該分級室において搬送エアーとともに
供給された粉体材料を分級ルーバーを介して流入する気
流によって旋回流動させて微粉と粗粉とに遠心分離し、
微粉を分級板の中央部に設けられた排出口に接続した微
粉排出シュートへ排出させるとともに、粗粉を分級板の
外周部に形成した排出口より排出し得る、該分級室の上
部に粉体供給筒と連通する環状の案内室を設け、該案内
室と該分級室との間に案内室の内周円方向の接線方向に
先端を向けた複数のルーバーを設けた気流分級機と、 高圧気体により被粉砕物を搬送加速するための加速管
と、該加速管出口に対向して設けた衝突面を有する衝突
部材を有し、該加速管がラバルノズルをなし、該加速管
のスロート部上流に高圧気体噴出ノズルを配し、該高圧
気体噴出ノズルは、流路断面積が長軸方向下流側に向か
って一旦絞られた後、再度広がっている形状を有してお
り、該被粉砕物の加速管への供給がエゼクター効果によ
り行われるように、該高圧気体噴出ノズルの外壁とスロ
ート部内壁間に被粉砕物供給口を設け、さらに、該加速
管の出口に接続して設けた粉砕室の軸方向断面形状が円
形もしくは楕円形状を有し、かつ、該衝突部材衝突面の
先端部分が頂角110〜175度を有する錐体形状を成
し、該衝突部材後方に粉砕物排出口を設けた衝突式気流
粉砕機とを具備し、 該衝突式気流粉砕機の被粉砕物供給口を該気流分級機の
粗粉排出口に連通させ、かつ該衝突式気流粉砕機の粉砕
物排出口と該気流分級機の粉体供給筒とを連通させたこ
とを特徴とする衝突式気流粉砕装置。
1. A classifying plate having an inclined central portion at the bottom of the classifying chamber, the center of which rises, and the powder material supplied together with the conveying air in the classifying chamber is swirled by an airflow flowing through a classifying louver. Centrifuged into fine powder and coarse powder,
A fine powder can be discharged to a fine powder discharge chute connected to a discharge port provided at the center of the classification plate, and coarse powder can be discharged from a discharge port formed at an outer peripheral portion of the classification plate. An airflow classifier provided with an annular guide chamber communicating with the supply cylinder, and provided with a plurality of louvers between the guide chamber and the classifying chamber, the louvers of which are directed in the tangential direction in the inner circumferential direction of the guide chamber; An acceleration tube for conveying and accelerating the object to be crushed by gas, and a collision member having a collision surface provided opposite to the acceleration tube outlet, the acceleration tube forming a Laval nozzle, and a throat portion upstream of the acceleration tube The high-pressure gas ejection nozzle has a shape in which the cross-sectional area of the flow path is once narrowed toward the downstream side in the long axis direction, and then re-spreads . Supply to the accelerator due to the ejector effect
In order to perform this, an object supply port is provided between the outer wall of the high-pressure gas ejection nozzle and the inner wall of the throat portion, and further, the axial cross-sectional shape of the grinding chamber connected to the outlet of the acceleration tube is circular or circular. A collision type airflow pulverizer having an elliptical shape, a tip portion of the collision member collision surface having a cone shape having an apex angle of 110 to 175 degrees, and a pulverized material discharge port provided behind the collision member; A crushed material supply port of the collision type air flow crusher is communicated with a coarse powder discharge port of the air flow classifier, and a pulverized material discharge port of the collision type air flow crusher and powder of the air flow classification device are provided. An impingement airflow pulverizer characterized by being in communication with a supply cylinder.
【請求項2】 前記加速管の中心軸が、鉛直方向となる
ように配置されることを特徴とする請求項1記載の衝突
式気流粉砕装置。
2. The impingement-type airflow pulverizer according to claim 1, wherein a center axis of the accelerating tube is arranged in a vertical direction.
JP19990291A 1991-07-16 1991-07-16 Collision type air crusher Expired - Fee Related JP3185065B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP19990291A JP3185065B2 (en) 1991-07-16 1991-07-16 Collision type air crusher
KR1019920012582A KR950006885B1 (en) 1991-07-16 1992-07-15 Pneumatic impact pulverizer, fine powder production apparatus and toner production process
EP92112063A EP0523653B1 (en) 1991-07-16 1992-07-15 Pneumatic impact pulverizer
DE69222480T DE69222480T2 (en) 1991-07-16 1992-07-15 Pneumatic impact mill
EP95109861A EP0679441A3 (en) 1991-07-16 1992-07-15 Toner production process.
EP95109863A EP0679442A3 (en) 1991-07-16 1992-07-15 Fine powder production apparatus.
CN92105740A CN1057025C (en) 1991-07-16 1992-07-16 Collided air-jet mill, apparatus for meparation of micropoder and process for preparation of mix colours agent.
US08/375,173 US5577670A (en) 1991-07-16 1995-01-18 Pneumatic impact pulverizer system
US08/640,633 US5839670A (en) 1991-07-16 1996-05-01 Pneumatic impact pulverizer, fine powder production apparatus, and toner production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19990291A JP3185065B2 (en) 1991-07-16 1991-07-16 Collision type air crusher

Publications (2)

Publication Number Publication Date
JPH0515802A JPH0515802A (en) 1993-01-26
JP3185065B2 true JP3185065B2 (en) 2001-07-09

Family

ID=16415505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19990291A Expired - Fee Related JP3185065B2 (en) 1991-07-16 1991-07-16 Collision type air crusher

Country Status (1)

Country Link
JP (1) JP3185065B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6660701B2 (en) * 2015-10-07 2020-03-11 日本ニューマチック工業株式会社 Crusher
CN113955221A (en) * 2021-10-11 2022-01-21 安徽金寨仙芝灵生物科技有限公司 Storage method of ganoderma lucidum spore powder raw material
CN116618149B (en) * 2023-05-22 2024-01-16 云南鸿泰博新材料股份有限公司 Jet mill for processing lithium iron phosphate

Also Published As

Publication number Publication date
JPH0515802A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
KR910004253A (en) Impingement air pulverizer and pulverization method
JP3845214B2 (en) Classifier and rectifier
JP3185065B2 (en) Collision type air crusher
JP3108820B2 (en) Collision type air crusher
JP3091281B2 (en) Collision type air crusher
JP2967304B2 (en) Classification crusher
JP3091289B2 (en) Collision type air crusher
JP3114040B2 (en) Collision type air crusher
JPS6316981B2 (en)
JP2020104032A (en) Pulverizer and pulverizing and classifying device
JP2942405B2 (en) Collision type air crusher
JPH0523611A (en) Collision type pneumatic grander
JPH07132241A (en) Pulverizer
JP2811621B2 (en) Method and apparatus for supplying raw material powder to airflow classifier
JP3016402B2 (en) Collision type air crusher
JPH0534977A (en) Production of electrostatic charge image developing toner
JPH01207152A (en) Gaseous flow classifier
JP6660701B2 (en) Crusher
JPH04150978A (en) Air jet classifier
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2733488B2 (en) Jet air flow type powder crusher
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JPH04326953A (en) Impact type pneumatic grinder
JP3101786B2 (en) Collision type air crusher
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees