JP3219955B2 - Collision type air crusher - Google Patents
Collision type air crusherInfo
- Publication number
- JP3219955B2 JP3219955B2 JP34057194A JP34057194A JP3219955B2 JP 3219955 B2 JP3219955 B2 JP 3219955B2 JP 34057194 A JP34057194 A JP 34057194A JP 34057194 A JP34057194 A JP 34057194A JP 3219955 B2 JP3219955 B2 JP 3219955B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- acceleration
- throat
- accelerating tube
- type air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Developing Agents For Electrophotography (AREA)
- Disintegrating Or Milling (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ジェット噴流を用いた
減圧部供給型粉砕ノズルを備えた衝突式気流粉砕機に関
し、詳しくは、電子写真法による画像形成に用いられる
トナーまたはトナー用着色樹脂粉体の製造に好適な衝突
式気流粉砕機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impingement type air current pulverizer provided with a pulverizing nozzle for supplying a pressure reducing portion using a jet jet, and more particularly, to a toner or a colored resin for toner used for image formation by electrophotography. The present invention relates to an impingement airflow pulverizer suitable for producing powder.
【0002】[0002]
【従来の技術】ジェット噴流を用いた衝突式気流粉砕機
は、ジェット噴流中に被粉砕物を供給し、この被粉砕物
を衝突部材に衝突させ、その衝撃力によって粉砕するも
のである。このような衝突式気流粉砕機の一般的な構成
を図4に基づいて説明する。図4は、衝突式気流粉砕機
と分級機を組み合わせた粉砕・分級工程のフローシート
であり、衝突式気流粉砕機は概略縦断面図で示されてい
る。2. Description of the Related Art A collision type air flow pulverizer using a jet jet supplies an object to be pulverized in a jet jet, causes the object to be pulverized to collide with a collision member, and pulverizes by the impact force. A general configuration of such a collision type air flow pulverizer will be described with reference to FIG. FIG. 4 is a flow sheet of a pulverizing / classifying step in which a collision type air flow pulverizer and a classifier are combined, and the collision type air flow pulverizer is shown in a schematic longitudinal sectional view.
【0003】この衝突式気流粉砕機では、圧縮気体供給
ノズル2に接続した加速管3の加速管出口8に対向して
衝突部材4を設け、前記加速管3によるジェット噴流で
ある高速気流14の流動により被粉砕物6を、加速管3
の途中に設けた被粉砕物供給口1から加速管3に吸引
し、これを高速気流14と共に噴射し、粉砕室7へ入射
させ衝突部材4の衝突面9に衝突させ、その衝撃力によ
って粉砕する。In this impingement type air flow pulverizer, an impingement member 4 is provided opposite an acceleration tube outlet 8 of an acceleration tube 3 connected to a compressed gas supply nozzle 2, and a high speed air flow 14, which is a jet jet by the acceleration tube 3, is provided. The object 6 to be crushed by the flow is
Is sucked into the accelerating tube 3 from the supply port 1 provided in the middle of the crushing, and is injected together with the high-speed airflow 14 to be incident on the crushing chamber 7 so as to collide with the collision surface 9 of the collision member 4 and to be crushed by the impact force. I do.
【0004】通常、被粉砕物6を所望の粒径に粉砕する
ためには、被粉砕物供給口1と排出口5の間に分級機1
3を配備して閉回路を構成する。この場合、分級機13
による分級の後、粗粉については戻り経路11を経て被
粉砕物供給口1に送って前記した粉砕を行い、粉砕物1
0を排出口5から分級機13に戻して再度分級し、微粉
は、経路12を経由して所望の微粉砕物を得るようにし
ている。Usually, in order to pulverize the material to be ground 6 to a desired particle size, a classifier 1 is provided between the supply port 1 and the discharge port 5 of the material to be ground.
3 to form a closed circuit. In this case, the classifier 13
After the classification by crushing, the coarse powder is sent to the crushed material supply port 1 via the return path 11 and crushed as described above.
0 is returned from the discharge port 5 to the classifier 13 and classified again, so that the desired fine powder is obtained via the path 12.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来の
減圧部供給型粉砕ノズルを有する衝突式気流粉砕機で
は、圧縮空気供給ノズル2と加速管3により構成される
噴射ノズルにおいて、加速管3の有効長さLと、その拡
がり角θ(図4を参照)との関係が充分適切なものとは
いえず、通常の圧力下では加速管3を通過する際のジェ
ット噴流は、加速管3内の壁面部で充分な膨張が得られ
ず、通過途中で失速する。また、有効長さLが短いと加
速距離が不充分となり、有効長さLが長すぎると圧力損
失が生じ、減速により失速してしまう。However, in the conventional impingement type air-flow pulverizer having the decompression-section-supply-type pulverizing nozzle, in the injection nozzle constituted by the compressed-air supply nozzle 2 and the accelerating pipe 3, the effective use of the accelerating pipe 3 is effective. The relationship between the length L and the divergence angle θ (see FIG. 4) is not sufficiently appropriate, and the jet jet flowing through the accelerating tube 3 under a normal pressure causes the jet jet to flow inside the accelerating tube 3. Sufficient expansion cannot be obtained on the wall, and the vehicle stalls during passage. On the other hand, if the effective length L is short, the acceleration distance becomes insufficient, and if the effective length L is too long, a pressure loss occurs and the vehicle decelerates due to deceleration.
【0006】このような問題点を解決するために、特開
平3−26349号公報、特開平3−26350号公
報、および特開平3−30845号公報に、加速管3の
拡がり角θを7°〜9°の範囲内に規定した噴射ノズル
が提案されているが、必ずしも充分な粉砕処理能力が得
られるものではなかった。In order to solve such a problem, Japanese Patent Application Laid-Open Nos. 3-26349, 3-26350 and 3-30845 disclose a technique in which the divergence angle θ of the accelerating tube 3 is set to 7 °. Although an injection nozzle defined within the range of 99 ° has been proposed, it has not always been possible to obtain a sufficient pulverizing treatment capacity.
【0007】本発明は、従来技術の上記問題点に鑑みな
されたものであり、その目的とするところは、圧縮気体
が有するエネルギーを有効に生かすことにより、粉砕処
理能力を向上させた衝突式気流粉砕機を提供することに
ある。本発明の粉砕機は、この目的を達成するために、
前記噴射ノズルの構成を以下のように改良したものであ
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object the object of the present invention is to make effective use of the energy of a compressed gas to improve the crushing air flow with improved pulverization capacity. A crusher is provided. The pulverizer of the present invention achieves this purpose by:
The structure of the injection nozzle is improved as follows.
【0008】[0008]
【課題を解決するための手段】以下、本発明の構成と作
用を、図1〜図6を基に更に具体的に説明する。本発明
の衝突式気流粉砕機は、高速気流により被粉砕物供給口
1を介して被粉砕物6を輸送加速する減圧部供給加速管
3の後段に、該加速管3から粉砕室7に噴出される被粉
砕物6を衝撃力によって粉砕するための衝突面9(図4
を参照)を設けた構造の粉砕機を改良したものであっ
て、圧縮気体供給ノズル2から噴出した高圧気体が加速
管3を通過する際、理想的な断熱膨張によって超音速と
なる。このため、本発明の衝突式気流粉砕機によれば、
高速気流を効率良く利用し被粉砕物6を数μmのオーダ
ーまで粉砕することができる。Hereinafter, the structure and operation of the present invention will be described more specifically with reference to FIGS. The collision type air flow crusher of the present invention blows out from the acceleration tube 3 into the crushing chamber 7 at a stage subsequent to the decompression unit supply acceleration tube 3 for transporting and accelerating the object 6 through the object supply port 1 by the high speed air flow. A collision surface 9 (FIG. 4) for crushing the crushed object 6 by an impact force.
This is an improvement of the pulverizer having the structure provided with the above structure. When the high-pressure gas ejected from the compressed gas supply nozzle 2 passes through the accelerating tube 3, ideal adiabatic expansion becomes supersonic. For this reason, according to the collision type airflow pulverizer of the present invention,
The material 6 to be crushed can be crushed to the order of several μm by efficiently utilizing the high-speed air flow.
【0009】図1は、請求項1〜6に記載の衝突式気流
粉砕機に設けた圧縮気体供給ノズル2および加速管3の
概略縦断面図である。すなわち、請求項1に記載の衝突
式気流粉砕機は、圧縮気体供給ノズル2と、該供給ノズ
ル2に接続され且つ被粉砕物供給口1を有する加速管3
と、被粉砕物6を衝突させて粉砕するための衝突部材4
とを備える粉砕機において、加速管3については、圧縮
気体供給ノズル2の喉部2aから加速管3の有効出口部
3b迄の、供給ノズル2と加速管3の共通中心線Cに沿
う有効距離(加速管3の有効長さ)をLとし、また、加
速管3については、喉部2aからの距離が有効距離Lの
1/2である、共通中心線Cに沿う距離をL1 とし、ま
た、加速管3の内周面については、喉部2aと有効出口
部3bを結ぶ線lと共通中心線Cとのなす角を2倍した
もの(加速管(3)の拡がり角)をθとし、さらに、加
速管3の内周面については、喉部2aからの、共通中心
線Cに沿う距離がL1 である加速管3内周面上の点3a
と喉部2a内周面上の点とを結ぶ線l1 と、共通中心線
Cとのなす角を2倍したものをθ1 とするとき、加速管
3の内周面を、下記[数1]で示される関係式が成立す
るように形成したものである。FIG. 1 is a schematic vertical sectional view of a compressed gas supply nozzle 2 and an accelerating tube 3 provided in a collision type air current pulverizer according to the first to sixth aspects. That is, the collision-type airflow pulverizer according to claim 1 comprises a compressed gas supply nozzle 2 and an accelerating tube 3 connected to the supply nozzle 2 and having a supply port 1 to be pulverized.
And a collision member 4 for crushing the object 6 to be crushed.
The effective distance along the common center line C of the supply nozzle 2 and the acceleration tube 3 from the throat 2a of the compressed gas supply nozzle 2 to the effective outlet 3b of the acceleration tube 3 (effective length of the acceleration tube 3) is L, also the accelerating tube 3, the distance from the throat portion 2a is half of the effective distance L, and distance along the common centerline C and L 1, For the inner peripheral surface of the acceleration tube 3, the angle between the line l connecting the throat portion 2a and the effective outlet portion 3b and the common center line C is doubled (the divergence angle of the acceleration tube (3)) is θ. and then, further, the inner peripheral surface of the accelerating tube 3, from the throat portion 2a, 3a point on distance along the common centerline C is L 1 and the acceleration tube 3 inner peripheral surface is
When the angle between the line l 1 connecting the point and the point on the inner peripheral surface of the throat 2 a and the common center line C is doubled as θ 1 , the inner peripheral surface of the accelerating tube 3 is expressed as 1].
【0010】[0010]
【数1】Ltan(θ/2)≧L1 tan(θ1 /2)
>(1/2)Ltan(θ/2)[Number 1] Ltan (θ / 2) ≧ L 1 tan (θ 1/2)
> (1/2) Ltan (θ / 2)
【0011】このような加速ノズルを備えた衝突式気流
粉砕機では、被粉砕物供給口1から加速管3に供給され
た被粉砕物6は、圧縮気体供給ノズル2から噴出する気
流により搬送される。この場合、圧縮気体供給ノズル2
の喉部2aにおいて音速に達した気流は、角θ1 によっ
て超音速に加速され、角θ2 (図1を参照)によって気
体速度を維持することができる。前記角θ2 は図1に示
すように、喉部2aからの、共通中心線Cに沿う距離が
L1 である加速管3内周面上の点3aと、有効出口部3
bとを結ぶ線l2 と共通中心線Cとのなす角を2倍した
ものである。In the impingement type air current pulverizer having such an acceleration nozzle, the object 6 supplied from the object supply port 1 to the accelerating tube 3 is conveyed by the air flow ejected from the compressed gas supply nozzle 2. You. In this case, the compressed gas supply nozzle 2
Airflow reaches sonic velocity at the throat portion 2a of by angle theta 1 is accelerated to supersonic, it is possible to maintain the gas velocity by the angular theta 2 (see Figure 1). The angle theta 2, as shown in Figure 1, from the throat portion 2a, and 3a point distance on within the acceleration tube 3 peripheral surface is L 1 along a common center line C, the effective outlet 3
The angle formed by the line l 2 connecting b and the common center line C is doubled.
【0012】請求項2に記載の衝突式気流粉砕機は、請
求項1における加速管3が、喉部2aの直径Dと、加速
管3の有効長さLと、加速管3の拡がり角θとの間に、
下記[数2]で示される関係式が成り立ち、かつθが1
°〜7°で、Lが8D〜30Dの範囲にある、なだらか
な拡がり形状を有することを特徴とする。According to a second aspect of the present invention, in the collision-type airflow pulverizer, the accelerating tube 3 in the first aspect has a diameter D of the throat portion 2a, an effective length L of the accelerating tube 3, and a spread angle θ of the accelerating tube 3. Between
A relational expression expressed by the following [Equation 2] holds, and θ is 1
It is characterized by having a gently expanding shape in which L is in the range of 8D to 30D at a temperature of 7 to 7 °.
【0013】[0013]
【数2】1.8D≧Ltan(θ/2)≧0.13D1.8D ≧ Ltan (θ / 2) ≧ 0.13D
【0014】請求項3に記載の衝突式気流粉砕機は、請
求項2において、前記粉砕機が、加速管3からの噴流が
偏流を生じ、分散されながら衝突する形状の衝突部材4
2 (図6を参照)を備え、かつ圧力が0.7MPa以上
の圧縮気体を用いるものであり、加速管3は、喉部2a
の直径Dと、加速管3の有効長Lと、加速管3の拡がり
角θとの間に下記[数3]で示される関係式が成り立
ち、さらに角θが2°〜7°で、Lが10D〜30Dの
範囲にある、なだらかな拡がり形状を有するものである
ことを特徴とする。According to a third aspect of the present invention, there is provided an impingement-type airflow pulverizer according to the second aspect, wherein the pulverizer has a shape in which the jet from the accelerating tube generates a drift and impinges while being dispersed.
2 (see FIG. 6) and uses a compressed gas having a pressure of 0.7 MPa or more.
, The effective length L of the accelerating tube 3, and the divergence angle θ of the accelerating tube 3, a relational expression expressed by the following [Equation 3] holds. Further, when the angle θ is 2 ° to 7 °, L Has a gentle spreading shape in the range of 10D to 30D.
【0015】[0015]
【数3】1.8D≧Ltan(θ/2)≧0.19D## EQU3 ## 1.8D ≧ Ltan (θ / 2) ≧ 0.19D
【0016】本発明者らの検討によれば、請求項3の粉
砕機において粉砕性の低い被粉砕物6を粉砕するに際し
ては、圧縮気体供給ノズル2内の圧力を0.7MPa以
上に設定することが、粉砕性の向上、および過粉砕によ
り発生する微粉の量を低減するのに有効であることが確
認された。According to the study of the present inventors, when the crushable material 6 having low crushability is crushed by the crusher according to claim 3, the pressure in the compressed gas supply nozzle 2 is set to 0.7 MPa or more. Has been confirmed to be effective in improving the pulverizability and reducing the amount of fine powder generated by over-pulverization.
【0017】請求項4に記載の衝突式気流粉砕機は、請
求項2において、前記粉砕機が、加速管3からの噴流が
偏流を生じ、分散されながら衝突する形状の衝突部材4
2 (図6を参照)を備え、かつ圧力が0.7MPa以下
の圧縮気体を用いるものであり、加速管3は、喉部2a
の直径Dと、加速管3の有効長Lと、加速管3の拡がり
角θとの間に下記[数4]で示される関係式が成り立
ち、さらに角θが2°〜7°で、Lが8D〜25Dの範
囲にある、なだらかな拡がり形状を有するものであるこ
とを特徴とする。According to a fourth aspect of the present invention, there is provided a collision-type airflow pulverizer according to the second aspect, wherein the pulverizer has a shape in which the jet from the accelerating tube generates a deflected flow and collides while being dispersed.
2 (see FIG. 6), and uses a compressed gas having a pressure of 0.7 MPa or less.
, The effective length L of the accelerating tube 3, and the divergence angle θ of the accelerating tube 3, a relational expression expressed by the following [Equation 4] holds, and when the angle θ is 2 ° to 7 °, L Is in the range of 8D to 25D and has a gently expanding shape.
【0018】[0018]
【数4】1.2D≧Ltan(θ/2)≧0.19D## EQU4 ## 1.2D ≧ Ltan (θ / 2) ≧ 0.19D
【0019】本発明者らの検討によれば、請求項4の粉
砕機において、粉砕性が比較的良い被粉砕物6を粉砕す
るに際しては、圧縮気体供給ノズル2内の圧力を0.7
MPa以下に設定することが、過粉砕により発生する微
粉の量を低減するのに有効であり、また、粉砕熱による
溶融凝集物の生成量を減少できることが確認されてい
る。According to the study of the present inventors, in the pulverizer according to the fourth aspect, when pulverizing the material 6 having relatively good pulverizability, the pressure in the compressed gas supply nozzle 2 is set to 0.7.
It has been confirmed that setting the pressure to not more than MPa is effective in reducing the amount of fine powder generated by over-pulverization, and also can reduce the amount of melt agglomerates generated by the heat of pulverization.
【0020】請求項5に記載の衝突式気流粉砕機は、請
求項2において、前記粉砕機が、加速管3からの噴流が
偏流、分散のいずれも発生せず直接衝突する形状の衝突
部材41 (図5を参照)を備え、加速管3は、喉部2a
の直径Dと、加速管3の有効長Lと、加速管3の拡がり
角θとの間に下記[数5]で示される関係式が成り立
ち、かつ角θが1°〜5°で、Lが8D〜30Dの範囲
にある、なだらかな拡がり形状を有するものであること
を特徴とする。According to a fifth aspect of the present invention, there is provided an impingement-type airflow pulverizer according to the second aspect, wherein the pulverizer has a shape in which the jet from the accelerating tube 3 directly impacts without generating any drift or dispersion. 1 (see FIG. 5), and the acceleration tube 3 is provided with a throat 2a.
, The effective length L of the accelerating tube 3, and the divergence angle θ of the accelerating tube 3, a relational expression represented by the following [Equation 5] holds, and when the angle θ is 1 ° to 5 °, L Has a gentle spreading shape in the range of 8D to 30D.
【0021】[0021]
【数5】0.78D≧Ltan(θ/2)≧0.13D## EQU5 ## 0.78D ≧ Ltan (θ / 2) ≧ 0.13D
【0022】本発明者らの検討によれば、請求項5の粉
砕機の粉砕能力は、請求項3,4の粉砕機と比較して若
干低いが、過粉砕による微粉の発生防止に有効であり、
高い歩留りを確保した高効率の粉砕が可能であることが
確認されている。According to the study of the present inventors, the pulverizing ability of the pulverizer according to the fifth aspect is slightly lower than that of the pulverizers according to the third and fourth aspects, but it is effective in preventing the generation of fine powder due to excessive pulverization. Yes,
It has been confirmed that high-efficiency pulverization with high yield is possible.
【0023】図2に示す粉砕機では、加速管3端部の有
効出口部3bに拡がり出口部3cを設けて加速管3の出
口部を急拡大してあるが、この場合の拡がり角θは、圧
縮気体供給ノズル2の喉部2aと、加速管3の有効出口
部3bとにより設定される角度であって、喉部2aと拡
がり出口部3cとによって設定される角度ではない。な
お、図2の加速管3では、有効長さL部分より先の部分
に急激な拡がり部分を備えているが、本発明による上記
効果が得られることに変わりはない。In the pulverizer shown in FIG. 2, a diverging outlet 3c is provided at an effective outlet 3b at the end of the accelerating tube 3, and the outlet of the accelerating tube 3 is rapidly expanded. The angle is set by the throat 2a of the compressed gas supply nozzle 2 and the effective outlet 3b of the accelerating tube 3, but not by the throat 2a and the divergent outlet 3c. Although the acceleration tube 3 shown in FIG. 2 has a sharply expanding portion in a portion ahead of the effective length L portion, the effect of the present invention is still obtained.
【0024】図7に、喉部2aおよび有効距離Lの定義
について示してある。図1〜3では喉部2aは、加速管
3と圧縮気体供給ノズル2との接合面を示しているが、
喉部2a自体は、圧縮気体供給ノズル2と加速管3の間
での最狭部分をいう。従って喉部2aは、供給ノズル2
と加速管3との接合境界部分に限らず、供給ノズル2、
加速管3双方の内部に存在する場合もある。また、喉部
2aを示す最狭部分の値が長手方向に同寸法で幅を持つ
場合、加速管3の有効距離Lは、加速管3出口8に最も
近い喉部2a位置から前記出口8迄と定義する(図7を
参照)。FIG. 7 shows the definitions of the throat 2a and the effective distance L. In FIGS. 1 to 3, the throat 2 a shows a joint surface between the acceleration tube 3 and the compressed gas supply nozzle 2,
The throat portion 2a itself is the narrowest portion between the compressed gas supply nozzle 2 and the acceleration tube 3. Therefore, the throat 2a is connected to the supply nozzle 2
Not only at the joint boundary between the gas and the acceleration tube 3, but also at the supply nozzle 2,
In some cases, it may be present inside both of the acceleration tubes 3. When the value of the narrowest part indicating the throat 2a has the same width in the longitudinal direction and the same width, the effective distance L of the accelerating tube 3 is from the position of the throat 2a closest to the outlet 8 of the accelerating tube 3 to the outlet 8. (See FIG. 7).
【0025】図8を参照して喉部2aの直径D、有効距
離LおよびL1 について補足説明する。図8において
は、圧縮気体供給ノズル2を長くし、圧縮気体供給ノズ
ル2内の拡がり角θを非常に小さくしてある。この場
合、加速効果は、図7に示す加速管3の効果を上回るも
のではない。また、前記直径Dは、加速管3または圧縮
気体供給ノズル2の最狭部分の直径とする。有効距離L
については、加速管3のテーパ状内周面を表す輪郭線の
延長線l3 と、前記最狭部分に接し共通中心線Cに平行
な直線l4 との交点を2bとするとき、該交点2bから
加速管3の有効出口部3bまでの、共通中心線Cに沿う
距離をいう。さらにL1 については、前記交点2bから
の距離が有効距離Lの1/2である、共通中心線Cに沿
う距離とする。The diameter D of with reference to FIG. 8 throat 2a, the effective distance L and L 1 supplementary explanation. In FIG. 8, the compressed gas supply nozzle 2 is made longer, and the divergence angle θ in the compressed gas supply nozzle 2 is made very small. In this case, the acceleration effect does not exceed the effect of the acceleration tube 3 shown in FIG. The diameter D is the diameter of the narrowest part of the acceleration tube 3 or the compressed gas supply nozzle 2. Effective distance L
When the intersection of the extension l 3 of the contour representing the tapered inner peripheral surface of the acceleration tube 3 and the straight line l 4 contacting the narrowest portion and parallel to the common center line C is 2b, It refers to the distance along the common center line C from 2b to the effective outlet 3b of the acceleration tube 3. For a more L 1, the distance from the intersection point 2b is 1/2 of the effective distance L, thereby forming distance along the common centerline C.
【0026】図3は、請求項1の粉砕機に設けた圧縮気
体供給ノズル2および加速管3の概略縦断面図である。
すなわち、この加速管3は、環状体3dと3eを加速管
3の長手方向に並べて、かつ互いに分割可能に結合して
構成したものである。衝突式気流粉砕機では、被粉砕物
は圧縮気体供給ノズル2から噴出される高圧気体により
加速管出口8へ搬送されるが、この被粉砕物は用途およ
び品種により真比重、嵩密度、粒度分布が異なる。種々
異なる被粉砕物に適した粉砕気流を形成するために、請
求項6に記載の加速管では、前記θ1 とθ2 の組合せを
自在に構成し、最適状態で被粉砕物を高速に加速できる
加速管3の拡がり形状が容易に形成できるように、加速
管3を分割・組合せ可能に構成したものである。なお、
図3では2個の環状体を結合して加速管3を構成してあ
るが、3個以上の環状体を結合してもよい。FIG. 3 is a schematic vertical sectional view of the compressed gas supply nozzle 2 and the accelerating tube 3 provided in the pulverizer of the first embodiment.
That is, the accelerating tube 3 is configured by arranging the annular bodies 3d and 3e in the longitudinal direction of the accelerating tube 3, and connecting the ring members 3d and 3e so as to be able to be divided. In the impingement type air current pulverizer, the material to be pulverized is conveyed to the outlet 8 of the accelerating tube by the high-pressure gas ejected from the compressed gas supply nozzle 2, and the material to be pulverized depends on the use and the type of the material. Are different. Different in order to form a pulverized stream suitable for grinding object, in the accelerating tube according to claim 6, wherein to freely configure a combination of theta 1 and theta 2, accelerated object to be crushed at high speed in an optimum state The accelerating tube 3 is configured to be divided and combined so that the possible expanded shape of the accelerating tube 3 can be easily formed. In addition,
In FIG. 3, the acceleration tube 3 is formed by connecting two ring members, but three or more ring members may be connected.
【0027】以上のように、本発明の衝突式気流粉砕機
は、所定の特徴を備えた加速管および衝突部材を備えて
おり、適宜圧力の圧縮気体を用いることにより、粉砕エ
ネルギーを有効に使用して高効率の粉砕ができるように
したものである。As described above, the impingement type air current pulverizer of the present invention is provided with the accelerating tube and the impingement member having the predetermined characteristics, and the pulverizing energy can be effectively used by using a compressed gas having an appropriate pressure. Thus, highly efficient pulverization can be performed.
【0028】[0028]
【実施例】以下、本発明の実施例について説明する。 実施例1(請求項3に係るもの) ポリエステル樹脂 100重量部 フタロシアニン系顔料 8重量部 上記処方よりなるトナー顔料をミキサーにて混合し、こ
の混合物をエクストルーダーにて約200℃で溶融混練
した後、冷却・固化し、溶融混練物の冷却物をハンマー
ミルで200〜2000μmの粒子に粗粉砕した。この
粗粉砕物を被粉砕物とし、図4に示す粉砕機およびフロ
ーで粉砕を行った。粉砕された粉体を細粉と粗粉とに分
級するための分級機として固定壁式風力分級機を使用し
た。Embodiments of the present invention will be described below. Example 1 (according to claim 3) 100 parts by weight of a polyester resin 8 parts by weight of a phthalocyanine-based pigment A toner pigment having the above formulation was mixed in a mixer, and the mixture was melt-kneaded at about 200 ° C. in an extruder. The mixture was cooled and solidified, and the cooled mixture was coarsely pulverized into particles of 200 to 2000 μm by a hammer mill. This coarsely pulverized material was used as a material to be pulverized, and pulverized by a pulverizer and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder.
【0029】衝突式気流粉砕機の圧縮気体供給ノズル2
から圧力0.882MPaの圧縮空気を導入し、図1に
示す被粉砕物供給口1から被粉砕物6を34kg/Hr
の割合で供給した。得られた粉砕物10は分級機13に
送り、細粉は分級粉体として取り除き、粗粉は再度、被
粉砕物供給口1から粉体原料と共に被粉砕物6として加
速管3に投入した。The compressed gas supply nozzle 2 of the impingement type air flow pulverizer
Compressed air at a pressure of 0.882 MPa is introduced from the crushed material supply port 1 shown in FIG.
Supplied at the rate of The obtained pulverized material 10 was sent to a classifier 13 to remove the fine powder as a classified powder, and the coarse powder was again fed into the accelerating tube 3 together with the powder raw material from the pulverized material supply port 1 as the pulverized material 6.
【0030】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=7°、θ1 =12.8°、
θ2 =1°のものを使用し、衝突部材としては、加速管
3からの噴流が偏流を生じ、分散されながら衝突する形
状の、図6に示す衝突部材42 を使用し、連続運転を行
ったが、途中大量の溶融凝集物が発生し、実験の継続は
不可能であり、被粉砕物の供給量を減らしても溶融凝集
物の発生防止には効果がなかった。The accelerating tube 3 shown in FIG.
= 9 mm, L = 25D, θ = 7 °, θ 1 = 12.8 °,
Using those theta 2 = 1 °, as the collision member, jet from the acceleration tube 3 is caused to drift, shape impinging while being dispersed, using a collision member 4 2 shown in FIG. 6, the continuous operation Although the experiment was conducted, a large amount of molten agglomerates was generated on the way, and it was impossible to continue the experiment. Even if the supply amount of the pulverized material was reduced, there was no effect on the prevention of the generation of the molten agglomerates.
【0031】実施例2(請求項4に係るもの) 実施例1と同様の被粉砕物6にて、図4に示す分級機お
よびフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.686MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を34kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。Example 2 (According to Claim 4) The same material 6 to be ground as in Example 1 was pulverized by a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air at a pressure of 0.686 MPa was introduced from the compressed gas supply nozzle 2 of the impingement type air flow pulverizer.
34 kg / H of the material 6 to be ground from the material supply port 1 shown in FIG.
r. The obtained pulverized material 10 is classified into a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The material to be pulverized 6 was fed into the accelerating tube 3 together with the powder raw material through the supply port 1 for the material to be pulverized.
【0032】なお、加速管3としては、図1においてD
=9mm、L=18.5D、θ=5°、θ1 =8.9
°、θ2 =1°のものを使用し、衝突部材としては、加
速管3からの噴流が偏流を生じ、分散されながら衝突す
る形状の、図6に示す衝突部材42 を使用し、12時間
の連続運転を行った。その結果、体積平均粒径が9μm
であり、粒径4μm以下の微粉発生量が全体の14%で
ある細粉が得られた。The accelerating tube 3 is D in FIG.
= 9 mm, L = 18.5D, θ = 5 °, θ 1 = 8.9
°, using those theta 2 = 1 °, as the collision member, jet from the acceleration tube 3 is caused to drift, shape impinging while being dispersed, using a collision member 4 2 shown in FIG. 6, 12 A continuous operation for hours was performed. As a result, the volume average particle size was 9 μm.
Thus, fine powder having a particle size of 4 μm or less and a generation amount of fine powder of 14% of the whole was obtained.
【0033】実施例3(請求項5に係るもの) 実施例1と同様の被粉砕物6にて、図4に示す分級機お
よびフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.686MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を30kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。Example 3 (According to Claim 5) The material 6 to be ground as in Example 1 was ground by a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air at a pressure of 0.686 MPa was introduced from the compressed gas supply nozzle 2 of the impingement type air flow pulverizer.
30 kg / H of the material 6 to be ground from the material supply port 1 shown in FIG.
r. The obtained pulverized material 10 is classified into a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The material to be pulverized 6 was fed into the accelerating tube 3 together with the powder raw material through the supply port 1 for the material to be pulverized.
【0034】なお、加速管3としては、図1においてD
=9mm、L=18.5D、θ=3.5°、θ1 =6
°、θ2 =1°のものを使用し、衝突部材としては、加
速管3からの噴流が偏流、分散のいずれも発生せず直接
衝突する形状の、図5に示す衝突部材41 を使用し、1
2時間の連続運転を行った。その結果、体積平均粒径が
9μmであり、粒径4μm以下の微粉発生量が全体の1
2%である細粉が得られた。なお、実施例3における条
件で、圧縮気体供給ノズル2から0.882MPaの圧
縮空気を導入してみたが、溶融凝集物が発生し実験の継
続は不可能であった。The accelerating tube 3 is D in FIG.
= 9 mm, L = 18.5D, θ = 3.5 °, θ 1 = 6
°, using those theta 2 = 1 °, as the collision member, using jet drift from the acceleration tube 3, none of the variance of the shape impinging directly without generating a collision member 4 1 shown in FIG. 5 And 1
A continuous operation for 2 hours was performed. As a result, the volume average particle size was 9 μm, and the amount of fine powder having a particle size of 4 μm or less was 1
A fine powder of 2% was obtained. In addition, when the compressed air of 0.882 MPa was introduced from the compressed gas supply nozzle 2 under the conditions in Example 3, molten aggregates were generated, and the experiment could not be continued.
【0035】実施例4(請求項6に係るもの) 実施例1と同様の被粉砕物6にて、図4に示す分級機お
よびフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.686MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を30kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。Example 4 (According to Claim 6) The same material 6 to be pulverized as in Example 1 was pulverized by a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air at a pressure of 0.686 MPa was introduced from the compressed gas supply nozzle 2 of the impingement type air flow pulverizer.
30 kg / H of the material 6 to be ground from the material supply port 1 shown in FIG.
r. The obtained pulverized material 10 is classified into a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The material to be pulverized 6 was fed into the accelerating tube 3 together with the powder raw material through the supply port 1 for the material to be pulverized.
【0036】なお、加速管3および衝突部材としては、
実施例3と同一形状・寸法のものを用いたが、実施例3
の加速管3が分割不可能な構造であるのに対し、本実施
例では図3に示すように、加速管3の喉部2aからL1
の位置において分割可能であるものを使用し12時間の
連続運転を行った。その結果、体積平均粒径が9μmで
あり、粒径4μm以下の微粉発生量が全体の12%であ
る細粉が得られた。The accelerating tube 3 and the collision member include:
The same shape and size as in Example 3 were used.
In this embodiment, as shown in FIG. 3, the throat 2 a of the accelerating tube 3 is connected to L 1.
A 12-hour continuous operation was performed using a part that can be divided at the position. As a result, a fine powder having a volume average particle size of 9 μm and an amount of fine powder having a particle size of 4 μm or less of 12% of the whole was obtained.
【0037】比較例1 実施例1と同様の被粉砕物6にて、図4に示す分級機お
よびフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.686MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を20kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。COMPARATIVE EXAMPLE 1 Pulverization was carried out on a material 6 to be pulverized in the same manner as in Example 1 by using a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air at a pressure of 0.686 MPa was introduced from the compressed gas supply nozzle 2 of the impingement type air flow pulverizer.
20 kg / H of the material 6 to be ground from the material supply port 1 shown in FIG.
r. The obtained pulverized material 10 is classified into a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The material to be pulverized 6 was fed into the accelerating tube 3 together with the powder raw material through the supply port 1 for the material to be pulverized.
【0038】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=θ1 =θ2 =7°のものを
使用し、衝突部材としては、加速管3からの噴流が偏流
を生じ分散されながら衝突する形状の、図6に示す衝突
部材42 を使用し、12時間の連続運転を行った。その
結果、体積平均粒径が9μmであり、粒径4μm以下の
微粉発生量が全体の18%である細粉が得られた。The accelerating tube 3 is D in FIG.
= 9 mm, L = 25D, θ = θ 1 = θ 2 = 7 °, and the collision member has a shape in which the jet from the accelerating tube 3 is deflected to collide while being dispersed, as shown in FIG. using the collision member 4 2, it was continuously operated for 12 hours. As a result, a fine powder having a volume average particle diameter of 9 μm and an amount of fine powder having a particle diameter of 4 μm or less of 18% of the whole was obtained.
【0039】さらに、比較例1における条件で、圧縮気
体供給ノズル2から0.882MPaの圧縮空気を導入
してみたが、溶融凝集物が発生し実験の継続は不可能で
あり、供給量を減らしても溶融凝集物の発生防止には効
果がなかった。Further, under the conditions of Comparative Example 1, compressed air of 0.882 MPa was introduced from the compressed gas supply nozzle 2. However, it was impossible to continue the experiment because molten agglomerates were generated. However, there was no effect on the prevention of the generation of molten aggregates.
【0040】比較例2 実施例1と同様の被粉砕物6にて、図4に示す分級機お
よびフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.686MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を17kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。Comparative Example 2 Pulverization was carried out on a material 6 to be pulverized in the same manner as in Example 1 by using a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air at a pressure of 0.686 MPa was introduced from the compressed gas supply nozzle 2 of the impingement type air flow pulverizer.
17 kg / H of the material 6 to be ground from the material supply port 1 shown in FIG.
r. The obtained pulverized material 10 is classified into a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The material to be pulverized 6 was fed into the accelerating tube 3 together with the powder raw material through the supply port 1 for the material to be pulverized.
【0041】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=θ1 =θ2 =7°のものを
使用し、衝突部材としては、加速管3からの噴流が偏
流、分散のいずれも発生せず直接衝突する形状の、図5
に示す衝突部材41 を使用し、12時間の連続運転を行
った。その結果、体積平均粒径が9μmであり、粒径4
μm以下の微粉発生量が全体の14%である細粉が得ら
れた。The accelerating tube 3 shown in FIG.
= 9 mm, L = 25D, θ = θ 1 = θ 2 = 7 °, and the collision member has a shape in which the jet flow from the acceleration tube 3 directly collides without generating any drift or dispersion. FIG.
Using the collision member 4 1 shown in, was continuously operated for 12 hours. As a result, the volume average particle size was 9 μm, and the particle size was 4 μm.
A fine powder having an amount of fine powder having a size of 14 μm or less was obtained.
【0042】さらに、比較例2における条件で、圧縮気
体供給ノズル2から0.882MPaの圧縮空気を導入
してみたが、溶融凝集物が発生し実験の継続は不可能で
あり、被粉砕物の供給量を減らしても溶融凝集物の発生
防止には効果がなかった。Further, under the conditions in Comparative Example 2, compressed air of 0.882 MPa was introduced from the compressed gas supply nozzle 2, but the molten agglomerates were generated and the experiment could not be continued. Even if the supply amount was reduced, there was no effect in preventing the generation of the molten aggregate.
【0043】実施例5(請求項3に係るもの) スチレンアクリル樹脂 100重量部 フタロシアニン系顔料 8重量部 上記処方よりなるトナー顔料をミキサーにて混合し、こ
の混合物をエクストルーダーにて約200℃で溶融混練
した後、冷却・固化し、溶融混練物の冷却物をハンマー
ミルで200〜2000μmの粒子に粗粉砕した。この
粗粉砕物を被粉砕物とし、図4に示す粉砕機およびフロ
ーで粉砕を行った。粉砕された粉体を細粉と粗粉とに分
級するための分級機として固定壁式風力分級機を使用し
た。Example 5 (Claim 3) Styrene acrylic resin 100 parts by weight Phthalocyanine pigment 8 parts by weight A toner pigment having the above formulation is mixed with a mixer, and the mixture is extruded at about 200 ° C. with an extruder. After melt-kneading, the mixture was cooled and solidified, and the cooled melt-kneaded product was roughly pulverized by a hammer mill into particles of 200 to 2000 μm. This coarsely pulverized material was used as a material to be pulverized, and pulverized by a pulverizer and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder.
【0044】衝突式気流粉砕機の圧縮気体供給ノズル2
から圧力0.882MPaの圧縮空気を導入し、図1に
示す被粉砕物供給口1から被粉砕物6を34kg/Hr
の割合で供給した。得られた粉砕物10は分級機13に
送り、細粉は分級粉体として取り除き、粗粉は再度、被
粉砕物供給口1から粉体原料と共に被粉砕物6として加
速管3に投入した。Compressed gas supply nozzle 2 of impingement type air flow crusher
Compressed air at a pressure of 0.882 MPa is introduced from the crushed material supply port 1 shown in FIG.
Supplied at the rate of The obtained pulverized material 10 was sent to a classifier 13 to remove the fine powder as a classified powder, and the coarse powder was again fed into the accelerating tube 3 together with the powder raw material from the pulverized material supply port 1 as the pulverized material 6.
【0045】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=7°、θ1 =12.8°、
θ2 =1°のものを使用し、衝突部材としては、加速管
3からの噴流が偏流を生じ、分散されながら衝突する形
状の、図6に示す衝突部材42 を使用し、連続運転を行
った。その結果、体積平均粒径が9μmであり、粒径4
μm以下の微粉発生量が全体の16%である細粉が得ら
れた。The accelerating tube 3 shown in FIG.
= 9 mm, L = 25D, θ = 7 °, θ 1 = 12.8 °,
Using those theta 2 = 1 °, as the collision member, jet from the acceleration tube 3 is caused to drift, shape impinging while being dispersed, using a collision member 4 2 shown in FIG. 6, the continuous operation went. As a result, the volume average particle size was 9 μm, and the particle size was 4 μm.
A fine powder having an amount of generated fine powder of 16 μm or less was obtained.
【0046】実施例6(請求項4に係るもの) 実施例5と同様の被粉砕物6にて、図4に示す分級機お
よびフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.686MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を28kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。Example 6 (According to Claim 4) The material 6 to be pulverized in the same manner as in Example 5 was pulverized by a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air at a pressure of 0.686 MPa was introduced from the compressed gas supply nozzle 2 of the impingement type air flow pulverizer.
28 kg / H of the material 6 to be ground from the material supply port 1 shown in FIG.
r. The obtained pulverized material 10 is classified into a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The material to be pulverized 6 was fed into the accelerating tube 3 together with the powder raw material through the supply port 1 for the material to be pulverized.
【0047】なお、加速管3としては、図1においてD
=9mm、L=18.5D、θ=5°、θ1 =8.9
°、θ2 =1°のものを使用し、衝突部材としては、加
速管3からの噴流が偏流を生じ、分散されながら衝突す
る形状の、図6に示す衝突部材42 を使用し、12時間
の連続運転を行った。その結果、体積平均粒径が9μm
であり、粒径4μm以下の微粉発生量が全体の14%で
ある細粉が得られた。The accelerating tube 3 shown in FIG.
= 9 mm, L = 18.5D, θ = 5 °, θ 1 = 8.9
°, using those theta 2 = 1 °, as the collision member, jet from the acceleration tube 3 is caused to drift, shape impinging while being dispersed, using a collision member 4 2 shown in FIG. 6, 12 A continuous operation for hours was performed. As a result, the volume average particle size was 9 μm.
Thus, fine powder having a particle size of 4 μm or less and a generation amount of fine powder of 14% of the whole was obtained.
【0048】実施例7(請求項5に係るもの) 実施例5と同様の被粉砕物6にて、図4に示す分級機お
よびフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を30kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。Example 7 (According to Claim 5) The material 6 to be ground as in Example 5 was ground by a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air with a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the impingement type air flow pulverizer, and FIG.
30 kg / H of the material 6 to be ground from the material supply port 1 shown in FIG.
r. The obtained pulverized material 10 is classified into a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The material to be crushed 6 was fed into the acceleration tube 3 together with the powder raw material from the material to be crushed supply port 1.
【0049】なお、加速管3としては、図1においてD
=9mm、L=18.5D、θ=3.5°、θ1 =6
°、θ2 =1°のものを使用し、衝突部材としては、加
速管3からの噴流が偏流、分散のいずれも発生せず直接
衝突する形状の、図5に示す衝突部材41 を使用し、1
2時間の連続運転を行った。その結果、体積平均粒径が
9μmであり、粒径4μm以下の微粉発生量が全体の1
2%である細粉が得られた。The accelerating tube 3 is shown in FIG.
= 9 mm, L = 18.5D, θ = 3.5 °, θ 1 = 6
°, using those theta 2 = 1 °, as the collision member, using jet drift from the acceleration tube 3, none of the variance of the shape impinging directly without generating a collision member 4 1 shown in FIG. 5 And 1
A continuous operation for 2 hours was performed. As a result, the volume average particle size was 9 μm, and the amount of fine powder having a particle size of 4 μm or less was 1
A fine powder of 2% was obtained.
【0050】実施例8(請求項6に係るもの) 実施例5と同様の被粉砕物6にて、図4に示す分級機お
よびフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を34kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。Example 8 (according to claim 6) The same pulverized material 6 as in Example 5 was pulverized by a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air at a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the impingement type air flow pulverizer.
34 kg / H of the material 6 to be ground from the material supply port 1 shown in FIG.
r. The obtained pulverized material 10 is classified into a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The material to be pulverized 6 was fed into the accelerating tube 3 together with the powder raw material through the supply port 1 for the material to be pulverized.
【0051】なお、加速管3および衝突部材としては、
実施例5と同一形状・寸法のものを用いたが、実施例5
の加速管3が分割不可能な構造であるのに対し、本実施
例では図3に示すように、加速管3の喉部2aからL1
の位置において分割可能であるものを使用し12時間の
連続運転を行った。その結果、体積平均粒径が9μmで
あり、粒径4μm以下の微粉発生量が全体の16%であ
る細粉が得られた。The accelerating tube 3 and the collision member include:
The same shape and dimensions as in Example 5 were used.
In this embodiment, as shown in FIG. 3, the throat 2 a of the accelerating tube 3 is connected to L 1.
A 12-hour continuous operation was performed using a part that can be divided at the position. As a result, a fine powder having a volume average particle diameter of 9 μm and an amount of fine powder having a particle diameter of 4 μm or less of 16% of the whole was obtained.
【0052】比較例3 実施例5と同様の被粉砕物6にて、図4に示す分級機お
よびフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を20kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。COMPARATIVE EXAMPLE 3 Pulverization was carried out on a material 6 to be pulverized in the same manner as in Example 5 using a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air with a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the impingement type air flow pulverizer, and FIG.
20 kg / H of the material 6 to be ground from the material supply port 1 shown in FIG.
r. The obtained pulverized material 10 is classified into a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The material to be pulverized 6 was fed into the accelerating tube 3 together with the powder raw material through the supply port 1 for the material to be pulverized.
【0053】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=θ1 =θ2 =7°のものを
使用し、衝突部材としては、加速管3からの噴流が偏流
を生じ、分散されながら衝突する形状の、図6に示す衝
突部材42 を使用し、12時間の連続運転を行った。そ
の結果、体積平均粒径が9μmであり、粒径4μm以下
の微粉発生量が全体の18%である細粉が得られた。The accelerating tube 3 shown in FIG.
= 9 mm, L = 25D, θ = θ 1 = θ 2 = 7 °, and as a collision member, the jet from the accelerating tube 3 is deflected and collides while being dispersed, as shown in FIG. using the collision member 4 2 shown, was continuously operated for 12 hours. As a result, a fine powder having a volume average particle diameter of 9 μm and an amount of fine powder having a particle diameter of 4 μm or less of 18% of the whole was obtained.
【0054】比較例4 実施例5と同様の被粉砕物6にて、図4に示す分級機お
よびフローで粉砕を行った。粉砕された粉体を細粉と粗
粉とに分級するための分級機として、固定壁式風力分級
機を使用した。衝突式気流粉砕機の圧縮気体供給ノズル
2から圧力0.882MPaの圧縮空気を導入し、図1
に示す被粉砕物供給口1から被粉砕物6を17kg/H
rの割合で供給した。得られた粉砕物10は分級機13
に送り、細粉は分級粉体として取り除き、粗粉は再度、
被粉砕物供給口1から粉体原料と共に被粉砕物6として
加速管3に投入した。COMPARATIVE EXAMPLE 4 Pulverization was carried out on a material 6 to be pulverized in the same manner as in Example 5 using a classifier and a flow shown in FIG. A fixed wall type air classifier was used as a classifier for classifying the pulverized powder into fine powder and coarse powder. Compressed air with a pressure of 0.882 MPa was introduced from the compressed gas supply nozzle 2 of the impingement type air flow pulverizer, and FIG.
17 kg / H of the material 6 to be ground from the material supply port 1 shown in FIG.
r. The obtained pulverized material 10 is classified into a classifier 13
, Fine powder is removed as classified powder, coarse powder again,
The material to be pulverized 6 was fed into the accelerating tube 3 together with the powder raw material through the supply port 1 for the material to be pulverized.
【0055】なお、加速管3としては、図1においてD
=9mm、L=25D、θ=θ1 =θ2 =7°のものを
使用し、衝突部材としては、加速管3からの噴流が偏
流、分散のいずれも発生せず直接衝突する形状の、図5
に示す衝突部材41 を使用し、12時間の連続運転を行
った。その結果、体積平均粒径が9μmであり、粒径4
μm以下の微粉発生量が全体の14%である細粉が得ら
れた。The accelerating tube 3 shown in FIG.
= 9 mm, L = 25D, θ = θ 1 = θ 2 = 7 °, and the collision member has a shape in which the jet flow from the acceleration tube 3 directly collides without generating any drift or dispersion. FIG.
Using the collision member 4 1 shown in, was continuously operated for 12 hours. As a result, the volume average particle size was 9 μm, and the particle size was 4 μm.
A fine powder having an amount of fine powder having a size of 14 μm or less was obtained.
【0055】以上の実施例1〜8、比較例1〜4の粉砕
・分級条件と結果を、それぞれ下記[表1]、[表2]
に示す。The grinding and classification conditions and results of Examples 1 to 8 and Comparative Examples 1 to 4 are shown in Tables 1 and 2 below, respectively.
Shown in
【0056】[0056]
【表1】 [Table 1]
【0057】[0057]
【表2】 [Table 2]
【0058】[0058]
【発明の効果】以上の説明で明らかなように、請求項1
〜5に記載の減圧部供給型粉砕ノズルを備えた衝突式気
流粉砕機によれば、加速ノズル内で高圧気体がノズル角
θ1 により超音速に加速され、ノズル角θ2 により速度
がノズル内で均一に維持され、衝突部材に分散した状態
で衝突・粉砕が行われるため、ばらつきが少なく高効率
の粉砕が可能となる効果がある。また、請求項1〜5の
衝突式気流粉砕機によれば、同一エネルギーの高圧気流
を用いた場合、粉砕に使用されるエネルギーを有効に導
き出すことが可能となって粉砕処理能力が向上し、過粉
砕による微粉の発生を防止できることから、粒度分布の
狭い粉砕製品を得ることができる。また、高圧気体の圧
力を適宜に変更・設定することで、被粉砕物の性状に適
した粉砕が可能になり、高収率・高生産性を確保した粉
砕を行うことができる。請求項6に記載の衝突式気流粉
砕機によれば、加速管を、分解・組立可能な複数の環状
体を組み合わせて構成するようにしたので、被粉砕物の
用途・品種等に応じて最適形状の加速ノズルを容易に選
択・構成することができる。このように、本発明の粉砕
機は樹脂、農薬、化粧品、顔料など粒径がミクロン単位
の微粉状製品の製造用に、極めて有効に適用できるもの
である。As is apparent from the above description, claim 1
According to a collision type air pulverizer having a vacuum unit supply pulverizing nozzle according to 5, the high-pressure gas is accelerated to supersonic by the nozzle angle theta 1 with the accelerating nozzle, the speed is within the nozzle by nozzle angle theta 2 Since the crushing and the crushing are performed in a state where the crushing is uniformly performed and the scattered particles are scattered in the colliding member, there is an effect that the crushing can be performed with little variation and high efficiency. Further, according to the collision type airflow pulverizer of claims 1 to 5, when a high-pressure airflow having the same energy is used, the energy used for the pulverization can be effectively derived, and the pulverization processing capacity is improved, Since the generation of fine powder due to excessive pulverization can be prevented, a pulverized product having a narrow particle size distribution can be obtained. In addition, by appropriately changing and setting the pressure of the high-pressure gas, pulverization suitable for the properties of the object to be pulverized becomes possible, and pulverization with high yield and high productivity can be performed. According to the collision type air current pulverizer according to the sixth aspect, since the acceleration tube is configured by combining a plurality of annular bodies that can be disassembled and assembled, it is optimal according to the use and the type of the object to be pulverized. An acceleration nozzle having a shape can be easily selected and configured. As described above, the pulverizer of the present invention can be very effectively applied to the production of fine powder products having a particle size of micron units, such as resins, agricultural chemicals, cosmetics, and pigments.
【図1】本発明の衝突式気流粉砕機における噴出ノズル
の構成例を示す概略縦断面図である。FIG. 1 is a schematic longitudinal sectional view showing a configuration example of a jet nozzle in a collision type air current pulverizer of the present invention.
【図2】本発明の衝突式気流粉砕機における噴出ノズル
の別の構成例を示す概略縦断面図である。FIG. 2 is a schematic vertical sectional view showing another example of the configuration of the ejection nozzle in the collision type air flow pulverizer of the present invention.
【図3】本発明の衝突式気流粉砕機における噴出ノズル
の更に別の構成例を示す概略縦断面図である。FIG. 3 is a schematic longitudinal sectional view showing still another example of the configuration of the ejection nozzle in the collision-type airflow pulverizer of the present invention.
【図4】衝突式気流粉砕機と分級機からなる粉砕装置の
概略説明図である。FIG. 4 is a schematic explanatory view of a pulverizing device including a collision type air flow pulverizer and a classifier.
【図5】本発明の衝突式気流粉砕機における衝突部材の
一例を示す概略説明図である。FIG. 5 is a schematic explanatory view showing an example of a collision member in the collision type air current pulverizer of the present invention.
【図6】本発明の衝突式気流粉砕機における衝突部材の
別例を示す概略説明図である。FIG. 6 is a schematic explanatory view showing another example of a collision member in the collision-type airflow pulverizer of the present invention.
【図7】本発明の衝突式気流粉砕機における加速管の有
効距離構成の一例を示す概略縦断面図である。FIG. 7 is a schematic longitudinal sectional view showing an example of an effective distance configuration of an acceleration tube in the collision type air current pulverizer of the present invention.
【図8】本発明の衝突式気流粉砕機における加速管の有
効距離構成の別例を示す概略縦断面図である。FIG. 8 is a schematic longitudinal sectional view showing another example of the effective distance configuration of the accelerating tube in the impingement type air current pulverizer of the present invention.
1 被粉砕物供給口 2 圧縮気体供給ノズル 2a 喉部 2b,3a 点 3 加速管 3b 有効出口部 3c 拡がり出口部 3d,3e 環状体 4,41 ,42 衝突部材 5 排出口 6 被粉砕物 7 粉砕室 8 加速管出口 9 衝突面 10 粉砕物 11,12 経路 13 分級機 14 高速気流 C 共通中心線 D 喉部の直径 L 加速管の有効長さ θ 拡がり角1 object to be crushed supply opening 2 compressed gas supply nozzle 2a throat 2b, 3a point 3 accelerating tube 3b effective outlet 3c spread outlet 3d, 3e toroid 4,4 1, 4 2 collision member 5 outlet 6 object to be crushed 7 Crushing chamber 8 Acceleration tube outlet 9 Collision surface 10 Crushed material 11,12 Path 13 Classifier 14 High-speed airflow C Common center line D Throat diameter L Effective length of accelerator tube θ Spread angle
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−60150(JP,A) (58)調査した分野(Int.Cl.7,DB名) B02C 19/06 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-60150 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B02C 19/06
Claims (6)
接続され且つ被粉砕物供給口を有する加速管と、被粉砕
物を衝突させて粉砕するための衝突部材とを備える粉砕
機において、 加速管については、圧縮気体供給ノズルの喉部から加速
管の有効出口部迄の、供給ノズルと加速管の共通中心線
に沿う有効距離(加速管の有効長さ)をLとし、また、
加速管については、喉部からの距離が有効距離Lの1/
2である、共通中心線に沿う距離をL1 とし、 また、加速管の内周面については、喉部と有効出口部を
結ぶ線と共通中心線とのなす角を2倍したもの(加速管
の拡がり角)をθとし、さらに、加速管の内周面につい
ては、喉部からの、共通中心線に沿う距離がL1 である
加速管内周面上の点と喉部内周面上の点とを結ぶ線と、
共通中心線とのなす角を2倍したものをθ1 とすると
き、 加速管として、下記[数1]で示される関係式が成立す
るものを備えていることを特徴とする衝突式気流粉砕
機。 【数1】Ltan(θ/2)≧L1 tan(θ1 /2)
>(1/2)Ltan(θ/2)1. A crusher comprising a compressed gas supply nozzle, an acceleration pipe connected to the supply nozzle and having a crushed object supply port, and a collision member for colliding and crushing the crushed object. As for the pipe, the effective distance (effective length of the acceleration pipe) along the common center line between the supply nozzle and the acceleration pipe from the throat of the compressed gas supply nozzle to the effective outlet of the acceleration pipe is L,
For the accelerator tube, the distance from the throat is 1 / the effective distance L
Is 2, the distance along the common center line and L 1, also the inner circumferential surface of the acceleration tube, the angle between the line connecting the throat and the effective outlet portion and the common center line twice the intended (acceleration the divergence angle) of the tube and theta, further, the inner peripheral surface of the accelerating tube from the throat, the distance along a common center line accelerating tube circumference on the point on the throat inner peripheral surface of a L 1 A line connecting the points,
When the angle formed by the angle with the common center line is doubled to be θ 1 , an impulse type air current pulverizer is provided that has an accelerating tube that satisfies a relational expression represented by the following [Equation 1]. Machine. [Number 1] Ltan (θ / 2) ≧ L 1 tan (θ 1/2)
> (1/2) Ltan (θ / 2)
効長さLと、加速管の拡がり角θとの間に、下記[数
2]で示される関係式が成り立ち、かつ、θが1°〜7
°で、Lが8D〜30Dの範囲にある、なだらかな拡が
り形状を有することを特徴とする請求項1に記載の衝突
式気流粉砕機。 【数2】1.8D≧Ltan(θ/2)≧0.13D2. A relational expression expressed by the following [Equation 2] holds between the diameter D of the throat, the effective length L of the acceleration tube, and the divergence angle θ of the acceleration tube, and , Θ is 1 ° to 7
2. The impingement type air current pulverizer according to claim 1, having a gently expanding shape in which L is in a range of 8D to 30D in degrees. 3. 1.8D ≧ Ltan (θ / 2) ≧ 0.13D
を生じ、分散されながら衝突する形状の衝突部材を備
え、かつ圧力が0.7MPa以上の圧縮気体を用いるも
のであり、加速管は、喉部の直径Dと、加速管の有効長
Lと、加速管の拡がり角θとの間に下記[数3]で示さ
れる関係式が成り立ち、さらに、角θが2°〜7°で、
Lが10D〜30Dの範囲にある、なだらかな拡がり形
状を有するものであることを特徴とする請求項2に記載
の衝突式気流粉砕機。 【数3】1.8D≧Ltan(θ/2)≧0.19D3. The pulverizer is provided with a collision member having a shape in which a jet from an accelerating tube generates a drift and collide while being dispersed, and uses a compressed gas having a pressure of 0.7 MPa or more. The following equation (3) holds between the diameter D of the throat, the effective length L of the accelerating tube, and the divergence angle θ of the accelerating tube, and the angle θ is 2 ° to 7 °. so,
The impingement type air current pulverizer according to claim 2, wherein L has a gentle spreading shape in a range of 10D to 30D. ## EQU3 ## 1.8D ≧ Ltan (θ / 2) ≧ 0.19D
を生じ、分散されながら衝突する形状の衝突部材を備
え、かつ圧力が0.7MPa以下の圧縮気体を用いるも
のであり、加速管は、喉部の直径Dと、加速管の有効長
Lと、加速管の拡がり角θとの間に下記[数4]で示さ
れる関係式が成り立ち、さらに、角θが2°〜7°で、
Lが8D〜25Dの範囲にある、なだらかな拡がり形状
を有するものであることを特徴とする請求項2に記載の
衝突式気流粉砕機。 【数4】1.2D≧Ltan(θ/2)≧0.19D4. The pulverizer includes a collision member having a shape in which a jet from an accelerating tube generates a drift and collide while being dispersed, and uses a compressed gas having a pressure of 0.7 MPa or less. A relational expression expressed by the following [Equation 4] holds between the diameter D of the throat, the effective length L of the accelerating tube, and the spread angle θ of the accelerating tube, and the angle θ is 2 ° to 7 °. so,
The impingement-type airflow pulverizer according to claim 2, wherein L has a gentle spreading shape in a range of 8D to 25D. ## EQU4 ## 1.2D ≧ Ltan (θ / 2) ≧ 0.19D
流、分散のいずれも発生せず直接衝突する形状の衝突部
材を備え、加速管は、喉部の直径Dと、加速管の有効長
Lと、加速管の拡がり角θとの間に下記[数5]で示さ
れる関係式が成り立ち、かつ、角θが1°〜5°で、L
が8D〜30Dの範囲にある、なだらかな拡がり形状を
有するものであることを特徴とする請求項2に記載の衝
突式気流粉砕機。 【数5】0.78D≧Ltan(θ/2)≧0.13D5. The pulverizer includes a collision member having a shape in which a jet from an acceleration tube collides directly without generating any drift or dispersion. The acceleration tube has a throat diameter D and an effective diameter of the acceleration tube. A relational expression expressed by the following [Equation 5] holds between the length L and the divergence angle θ of the accelerator tube, and when the angle θ is 1 ° to 5 °, L
The impingement type air-flow crusher according to claim 2, wherein the crusher has a gently expanding shape in a range of 8D to 30D. ## EQU5 ## 0.78D ≧ Ltan (θ / 2) ≧ 0.13D
方向に並べて結合することにより構成したものであり、
かつこれら複数の環状体は、互いに分割可能であること
を特徴とする請求項1,2,3,4または5に記載の衝
突式気流粉砕機。6. The acceleration tube is formed by connecting a plurality of annular bodies in a longitudinal direction of the acceleration tube and connecting them.
The impingement type air current pulverizer according to claim 1, 2, 3, 4, or 5, wherein the plurality of annular bodies can be divided from each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34057194A JP3219955B2 (en) | 1994-02-24 | 1994-12-28 | Collision type air crusher |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5142894 | 1994-02-24 | ||
JP6-51428 | 1994-06-08 | ||
JP6-150552 | 1994-06-08 | ||
JP15055294 | 1994-06-08 | ||
JP34057194A JP3219955B2 (en) | 1994-02-24 | 1994-12-28 | Collision type air crusher |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0852376A JPH0852376A (en) | 1996-02-27 |
JP3219955B2 true JP3219955B2 (en) | 2001-10-15 |
Family
ID=27294314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34057194A Expired - Lifetime JP3219955B2 (en) | 1994-02-24 | 1994-12-28 | Collision type air crusher |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3219955B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100427915B1 (en) * | 1999-09-08 | 2004-04-30 | 나노코리아(주) | Jet mill |
JP5590433B2 (en) | 2008-09-25 | 2014-09-17 | 株式会社リコー | Crushing device and toner manufacturing method |
JP5504629B2 (en) | 2009-01-05 | 2014-05-28 | 株式会社リコー | Airflow type pulverization classification device |
JP5652779B2 (en) * | 2010-06-07 | 2015-01-14 | 日本ニューマチック工業株式会社 | Fine particle production equipment |
JP2012081461A (en) | 2010-09-15 | 2012-04-26 | Ricoh Co Ltd | Pulverizing device, pulverizing method, method for manufacturing toner, and toner |
US9022307B2 (en) | 2012-03-21 | 2015-05-05 | Ricoh Company, Ltd. | Pulverizer |
-
1994
- 1994-12-28 JP JP34057194A patent/JP3219955B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0852376A (en) | 1996-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3101416B2 (en) | Collision type airflow pulverizer and method for producing toner for electrostatic image development | |
JP3219955B2 (en) | Collision type air crusher | |
JP6255681B2 (en) | Toner manufacturing method and toner manufacturing apparatus | |
JP3114040B2 (en) | Collision type air crusher | |
JP3182039B2 (en) | Crusher | |
JP3283728B2 (en) | Crusher | |
JPH09206621A (en) | Collision type air crusher | |
JP3313922B2 (en) | Crusher | |
JP3093343B2 (en) | Collision type air flow crusher and powder material crushing method | |
JP2654989B2 (en) | Powder grinding method | |
JP3219918B2 (en) | Crusher | |
JPH08182936A (en) | Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same | |
JP3119100B2 (en) | Collision type air crusher | |
JP3102902B2 (en) | Collision type supersonic jet crusher | |
JPH08182937A (en) | Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same | |
JP2805332B2 (en) | Grinding method | |
JP3703256B2 (en) | Collision type airflow crusher and toner manufacturing method | |
JPH08103685A (en) | Impact type pneumatic pulverizer and production of electrostatic charge image developing toner | |
JP3101786B2 (en) | Collision type air crusher | |
JPH08299833A (en) | Collision type air flow crusher | |
JP2566158B2 (en) | Collision airflow crusher | |
JP2759500B2 (en) | Collision type air crusher | |
JPH03109951A (en) | Collision type air flow grinder and grinding method | |
JPH03296446A (en) | Impact type jet grinder and grinding method | |
JPH0386257A (en) | Collision-type jet pulverizer and crushing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |