JPH0330845A - Method for pulverizing powder - Google Patents

Method for pulverizing powder

Info

Publication number
JPH0330845A
JPH0330845A JP1163878A JP16387889A JPH0330845A JP H0330845 A JPH0330845 A JP H0330845A JP 1163878 A JP1163878 A JP 1163878A JP 16387889 A JP16387889 A JP 16387889A JP H0330845 A JPH0330845 A JP H0330845A
Authority
JP
Japan
Prior art keywords
powder
collision
acceleration tube
raw material
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1163878A
Other languages
Japanese (ja)
Inventor
Satoshi Mitsumura
三ツ村 聡
Masakichi Kato
政吉 加藤
Hitoshi Kanda
仁志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1163878A priority Critical patent/JPH0330845A/en
Publication of JPH0330845A publication Critical patent/JPH0330845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To improve the pulverizing capacity of a pulverizer by forming a collision face of collision member into a shape which has a specified angle with a direction of acceleration tube and by making a divergent angle of the acceleration tube a specified angle. CONSTITUTION:A raw material of powder supplied through a charge port 1 is accelerated by compressed air ejected from a nozzle 2 and blown out of the outlet 13 of an acceleration tube into a pulverizing chamber 8, wherein the raw material 7 is thrown onto a collision face 14, pulverized by an impulse force, dispersed all around the periphery by the collision face 14 which has an angle of 55 deg. or larger and smaller than 90 deg. with the direction of acceleration tube, made to collide secondarily with the wall 6 of the pulverizing chamber and further pulverized there. The pulverized raw material of powder is carried out of a discharge port 5 to a classifier 24, fine powder is removed as a classified powder and coarse powder is thrown into the charge port 1 together with the law material so as to be processed once again. It is possible to improve a capacity of pulverizer by this method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジェット気流(高圧気体)を用いた衝突式気
流粉砕機で粉体原料を粉砕する方法であり、特に、電子
写真法による画像形成方法に用いられるトナーまたはト
ナー用着色樹脂粉体を効率良く生成する粉体の粉砕方法
に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is a method for pulverizing powder raw materials with an impact-type air-flow pulverizer using a jet stream (high-pressure gas). The present invention relates to a powder pulverization method for efficiently producing toner or colored resin powder for toner used in a forming method.

[従来の技術] ジェット気流を用いた衝突式気流粉砕機は、ジェット気
流で粉体原料を搬送し、粉体原料を衝突部材に衝突させ
、その衝撃力により粉砕するものである。
[Prior Art] A collision-type air current pulverizer using a jet stream conveys a powder raw material by a jet stream, collides the powder raw material with a collision member, and crushes it by the impact force.

従来、かかる粉砕、搗における衝突部材の衝突面14は
、第7図及び第8図に示すように、粉体原料を乗せたジ
ェット気流方向(加速管の軸方向)に対し垂直あるいは
傾斜(例えば45°)している平面状のものが用いられ
てきた(特開昭57−50554号公報及び特開昭58
−143853号公報参照)。
Conventionally, as shown in FIGS. 7 and 8, the collision surface 14 of the collision member in such crushing and pounding is perpendicular or inclined (for example, 45°) have been used (Japanese Unexamined Patent Publications No. 57-50554 and No. 58)
(Refer to Publication No.-143853).

第7図の粉砕機において粗い粒径を有する粉体原料は、
投入口1より加速管3に供給され、ジェットノズル2か
ら吹き出されるジェット気流によって、粉体原料は衝突
部材4の衝突面14にたたきつけられ、その衝撃力で粉
砕され、排出口5より粉砕室外に排出される。しかしな
がら、衝突面14が加速管3の軸方向と垂直な場合、ジ
ェットノズル2から吹き出される原料粉体と衝突面14
で反射される粉体とが衝突面14の近傍で共存する割合
が高く、そのため、衝突面14近傍の粉体濃度が高(な
るために、粉砕効率が良くない。さらに、衝突面14に
おける一次衝突が主体であり、粉砕室壁6との二次衝突
を有効に利用しているとはいえない。さらに、衝突面の
角度が加速管3に対し垂直の粉砕機では、粉体原料が熱
可塑性樹脂である材料を粉砕するときに、衝突時の局部
発熱により融着及び凝集物が発生し易く、装置の安定し
た運転が困難になる。そのため、粉砕衝撃力を向上させ
ようとしても、6.5kg/cm”以上の高圧縮気体を
用いることはできなくなる。
In the crusher of Fig. 7, the powder raw material having a coarse particle size is
The powder raw material is supplied to the accelerator tube 3 from the input port 1, and is struck by the jet air stream blown out from the jet nozzle 2 against the collision surface 14 of the collision member 4, and is crushed by the impact force, and is discharged from the discharge port 5 to the outside of the crushing chamber. is discharged. However, when the collision surface 14 is perpendicular to the axial direction of the acceleration tube 3, the raw material powder blown out from the jet nozzle 2 and the collision surface 14
There is a high proportion of the powder reflected by the collision surface 14 coexisting near the collision surface 14, and as a result, the powder concentration near the collision surface 14 is high, resulting in poor pulverization efficiency.Furthermore, the primary The collision is the main one, and the secondary collision with the crushing chamber wall 6 cannot be said to be effectively utilized.Furthermore, in a crusher where the angle of the collision surface is perpendicular to the acceleration tube 3, the powder raw material is heated. When crushing materials that are plastic resins, fusion and agglomerates are likely to occur due to local heat generation during collision, making stable operation of the equipment difficult. It is no longer possible to use highly compressed gas of .5 kg/cm'' or more.

ところで、電子写真法による画像形成方法に用いられる
トナーまたはトナー用着色樹脂粉体は、通常結着樹脂及
び着色剤または磁性粉を少なくとも含有している。かか
るトナーは、潜像担持体に形成された静電荷像を現像し
、形成されたトナー像は普通紙またはプラスチックフィ
ルムの如き転写材へ転写され、加熱定着手段、圧力ロー
ラ定着手段または加熱加圧ローラ定着手段の如き定着装
置によって転写材上のトナー像は転写材に定着される。
Incidentally, toner or colored resin powder for toner used in an electrophotographic image forming method usually contains at least a binder resin and a colorant or magnetic powder. Such toner develops the electrostatic charge image formed on the latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or plastic film, and is then transferred to a transfer material such as a heat fixing means, a pressure roller fixing means, or a heat and pressure application. The toner image on the transfer material is fixed to the transfer material by a fixing device such as a roller fixing means.

従って、トナーに使用される結着樹脂は、熱及び/また
は圧力が付加されると塑性変形する特性を有する。現在
、トナーまたはトナー用着色樹脂粉体は、結着樹脂及び
着色剤または磁性粉(必要により、さらに第三成分を含
有)を少な(とも含有iる混合物を溶融混練し、溶融混
線物を冷却し、冷却物を粉砕し、粉砕物を分級して調製
される。冷却物の粉砕は、通常、機械的衝撃式粉砕機に
より粗粉砕(または中粉砕)される過程を経て、この粉
砕で得られた粗粉をジェット気流を用いた衝突式気流粉
砕機で微粉砕する。しかしながら、被粉砕物濃度を高(
して、6.5kg/cm2以上の高圧縮気体を使用して
微粉砕することは困難であった。
Therefore, the binder resin used in the toner has the property of being plastically deformed when heat and/or pressure is applied. Currently, toners or colored resin powders for toners are produced by melt-kneading a mixture containing a small amount of a binder resin and a colorant or magnetic powder (if necessary, further containing a third component), and then cooling the molten mixture. It is prepared by pulverizing the cooled material and classifying the pulverized material.Usually, the pulverization of the cooled material is performed through a process of coarse (or medium) pulverization using a mechanical impact pulverizer. The resulting coarse powder is finely pulverized using a collision-type airflow pulverizer using a jet stream.
Therefore, it was difficult to pulverize the powder using highly compressed gas of 6.5 kg/cm2 or more.

第8図の粉砕機において、衝突面14が加速管3の軸方
向に対して傾斜しているために、衝突面14近傍の粉体
濃度は第7図の粉砕機と比較して低(なるが粉砕圧が分
散されて低下する。さらに、粉砕室壁6との二次衝突を
有効に利用しているとはいえない。
In the crusher shown in FIG. 8, since the collision surface 14 is inclined with respect to the axial direction of the acceleration tube 3, the powder concentration near the collision surface 14 is lower (lower) than in the crusher shown in FIG. However, the crushing pressure is dispersed and lowered.Furthermore, it cannot be said that the secondary collision with the crushing chamber wall 6 is effectively utilized.

第8図及び第9図に示す如く、衝突面14の角度が加速
管に対し45°傾斜のものでは、熱可塑性樹脂を粉砕す
るときに上記のような問題点は少ない。しかしながら、
衝突する際に粉砕に使われる衝撃力が小さく、さらに粉
砕室壁6との二次衝突による粉砕が少ないので、第7図
の粉砕機と比較して1/2〜1/1.5に粉砕能力が落
ちる。
As shown in FIGS. 8 and 9, when the angle of the collision surface 14 is inclined at 45 degrees with respect to the acceleration tube, the above-mentioned problems occur less when crushing thermoplastic resin. however,
The impact force used for crushing during collision is small, and there is less crushing due to secondary collision with the crushing chamber wall 6, so the crushing is 1/2 to 1/1.5 compared to the crusher shown in Fig. 7. ability decreases.

従って、被粉砕物原料特に、熱可塑性樹脂を含む材料を
粉砕するときに粉砕効率が良好であり、6゜5kg/c
m”以上の高圧縮気体を利用しても粉砕能力が向上でき
る粉砕方法が待望されている。
Therefore, the pulverization efficiency is good when pulverizing raw materials to be pulverized, especially materials containing thermoplastic resins, and the
There is a long-awaited pulverization method that can improve the pulverization ability even when using a highly compressed gas of 10 m or more.

[発明が解決しようとする課題] 本発明の目的は、上記問題点、さらには、前記従来例で
は、加速管の拡がり角θが6.5度以下であり狭いため
、高圧気体流量を増加した場合、加速管内で圧力損失が
生じ、目的とする微粉砕処理能力の向上が図れないとい
う欠点があった。かかる欠点が解消された粉砕方法を提
供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above problems, and furthermore, in the conventional example, the expansion angle θ of the accelerating tube is 6.5 degrees or less, which is narrow, so the flow rate of high-pressure gas is increased. In this case, pressure loss occurs in the accelerating tube, and the desired improvement in pulverization processing capacity cannot be achieved. The object of the present invention is to provide a pulverization method that eliminates such drawbacks.

すなわち、熱可塑性樹脂等を含む材料を粉砕する場合で
も、被粉砕物濃度を下げることなく、高圧縮気体(例え
ば6.5kg/cm”以上)を利用して粉砕できる粉体
の粉砕方法を提供することにある。
In other words, we provide a method for pulverizing powder that can be pulverized using highly compressed gas (for example, 6.5 kg/cm" or more) without reducing the concentration of the material to be pulverized, even when pulverizing materials containing thermoplastic resin or the like. It's about doing.

また、粉砕時における融着、凝集物、粗粒子等の発生が
なく、装置の安定した運転を可能にする粉体の粉砕方法
を提供することにある。
Another object of the present invention is to provide a method for pulverizing powder that does not generate fusion, agglomerates, coarse particles, etc. during pulverization and enables stable operation of the apparatus.

[課題を解決するための手段及び作用]本発明の特徴と
するところは、高圧気体により粉体を搬送加速する加速
管と、該加速管より噴出する粉体を衝撃力により粉砕す
るための衝突部材を加速管出口に相対して粉砕室内に設
けてなる衝突式気流粉砕機を用いた粉砕において、前記
衝突部材の衝突面が加速管方向に対して55°以上90
゜未満の傾斜を持つ正直角錐、直角錐、斜直角堆いずれ
かの形状を成したものを用い、前記加速管の拡がり角度
を7°以上9°以下として、前記高圧気体の圧力を6.
5kg/cm”にして粉砕する粉体の粉砕方法にある。
[Means and effects for solving the problems] The present invention is characterized by an acceleration tube that conveys and accelerates powder using high-pressure gas, and a collision that uses impact force to crush the powder ejected from the acceleration tube. In pulverization using a collision-type airflow pulverizer in which a member is provided in a pulverizer chamber facing the outlet of an accelerating tube, the collision surface of the colliding member is 55° or more and 90° with respect to the direction of the accelerating tube.
A straight pyramid, a right pyramid, or an oblique pyramid having an inclination of less than 6 degrees is used, the expansion angle of the acceleration tube is set to 7 degrees or more and 9 degrees or less, and the pressure of the high-pressure gas is set to 6.
There is a method of pulverizing powder to 5 kg/cm''.

また、前記粉体の原料として、熱可塑性樹脂を含む材料
を用いる粉体の粉砕方法にある。
The present invention also provides a method of pulverizing powder using a material containing a thermoplastic resin as a raw material for the powder.

すなわち、本発明は、6.5Kg/cm”以上の高圧気
体により被粉砕物を搬送加速する加速管を有し、該加速
管の出口より噴射される高圧気体と被粉砕物の粒子混合
気流を、該加速管出口に相対して設けた衝突部材の衝突
面に衝突させ粉砕するようにした衝突式気流粉砕機にお
いて、前記加速管の拡がり角度θを7度以上9度以下と
することで、気流の速度を低下させることな(、加速管
内での圧力損失を低減し、また第1図〜第5図に示すよ
うに、衝突面を加速管に対して、55°以上90°未満
の傾斜を持つ正直角錐又は、直角錐又は斜角錐形状の衝
突面を有する衝突部材を設けることにより、該衝突面に
衝突した被粉砕物を全周方向に分散させ対向する粉砕室
壁と二次衝突を生じさせることで微粉砕処理能力を向上
させ、6.5kg/cm”以上の高圧気体を加速管から
投入しても、熱可塑性樹脂材料及び粉砕された粉体の融
着が抑制され、凝集物及び粗粒子の生成が少ない粉砕方
法を提供することを可能にしたものである。
That is, the present invention has an acceleration tube that conveys and accelerates the material to be crushed by high-pressure gas of 6.5 kg/cm or more, and a mixed air flow of the high-pressure gas and particles of the material to be crushed that is injected from the outlet of the acceleration tube. , in a collision type air flow crusher configured to collide with the collision surface of a collision member provided opposite the outlet of the acceleration tube to crush the particles, by setting the expansion angle θ of the acceleration tube to 7 degrees or more and 9 degrees or less, In order to avoid reducing the velocity of the airflow (and reduce the pressure loss within the accelerating tube, as shown in Figures 1 to 5, the collision surface should be tilted at an angle of 55° or more and less than 90° with respect to the accelerating tube. By providing a collision member having a collision surface in the shape of a right pyramid, a right pyramid, or an oblique pyramid, the material to be crushed that collides with the collision surface is dispersed in the entire circumferential direction, thereby preventing secondary collision with the opposing crushing chamber wall. This improves the pulverization processing capacity, and even if high-pressure gas of 6.5 kg/cm or more is injected from the accelerator tube, the fusion of the thermoplastic resin material and the pulverized powder is suppressed, and no aggregates are formed. This also makes it possible to provide a pulverization method that generates fewer coarse particles.

以下、本発明を図面に基づいて説明する。Hereinafter, the present invention will be explained based on the drawings.

第1図〜第6図は、本発明の一実施例を示す概略図であ
り、第2図は第1図の要部の拡大図であり、図中加速管
3は第7図及び第8図に示す従来例の衝突式気障粉砕様
同様、高圧気体供給ノズル2を接続しており、加速管3
の出口13に対向して衝突部材4を設けである。加速管
3は、拡がり角度θが7度以上9度以下の単調拡大管で
ある。さらに拡がり角度θを7.5度以上8.5度以下
の範囲にすれば微粉砕処理能力向上に優れ最適である。
1 to 6 are schematic diagrams showing one embodiment of the present invention, and FIG. 2 is an enlarged view of the main part of FIG. Similar to the conventional example of collision-type gas pulverization shown in the figure, a high-pressure gas supply nozzle 2 is connected, and an acceleration pipe 3
A collision member 4 is provided opposite the outlet 13 of the engine. The accelerator tube 3 is a monotonically expanding tube with an expansion angle θ of 7 degrees or more and 9 degrees or less. Furthermore, if the spreading angle θ is in the range of 7.5 degrees or more and 8.5 degrees or less, it is optimal because it improves the pulverization processing capacity.

次に前記実施例の作用について説明する。衝突式気流粉
砕機の微粉砕処理能力を向上させるためには、粉砕に供
する衝撃力を与える圧縮気体流量を増加させ、気体流の
圧力を増加させることが有効である。しかし、従来の衝
突式気流粉砕機のように拡がり角度θが7°未滴の加速
管の場合には、加速管内で圧力損失が生じてしまい、圧
縮気体流量と圧力の増加分の能力まで微粉砕能力を向上
させることができない。一方拡がり角度θが9度を越え
る加速管の場合には、加速管の角度が拡がるにつれて、
加速管出口13の断面積が大きくなり、逆に、加速管か
ら噴射されろ粒子混合気流の速度が低下してしまうため
、圧縮気体の圧力の増加分の能力まで微粉砕能力を向上
させることはできない。従って、上述のごとき範囲を除
いた7度以上9度以下の拡がり角度θを有する加速管が
、微粉砕処理能力の向上に最も適しているものである。
Next, the operation of the above embodiment will be explained. In order to improve the pulverization processing capacity of an impingement type air flow pulverizer, it is effective to increase the flow rate of compressed gas that provides the impact force for pulverization and to increase the pressure of the gas flow. However, in the case of an accelerator tube with a spread angle θ of 7°, as in a conventional collision type airflow crusher, a pressure loss occurs in the accelerator tube, and the ability to increase the compressed gas flow rate and pressure is slightly reduced. Unable to improve crushing ability. On the other hand, in the case of an accelerator tube whose expansion angle θ exceeds 9 degrees, as the angle of the acceleration tube expands,
The cross-sectional area of the accelerating tube outlet 13 increases, and conversely, the speed of the particle mixture air flow injected from the accelerating tube decreases, so it is impossible to improve the pulverization ability to the extent that the pressure of the compressed gas increases. Can not. Therefore, an accelerating tube having a divergence angle θ of 7 degrees or more and 9 degrees or less, excluding the above-mentioned range, is most suitable for improving the pulverization processing capacity.

[実施例] 以下、実施例、比較例にて本発明を詳述する。[Example] The present invention will be explained in detail below using Examples and Comparative Examples.

実」1例」2 添付図面の第1図、第2図、第3図及び第6図に示す衝
突式気流粉砕機を使用して粉体の粉砕を行った。粉砕さ
れた粉体を細粉と粗粉とを分級するための分級手段とし
て固定壁式風力分級機を使用した。
Example 1 Example 2 Powder was pulverized using an impact type air flow pulverizer shown in FIGS. 1, 2, 3, and 6 of the attached drawings. A fixed wall type wind classifier was used as a classification means for classifying the pulverized powder into fine powder and coarse powder.

衝突式気流粉砕機は、寸法(b)が60mmの酸化アル
ミニウム系セラミックで形成された角柱状の衝突部材4
を有し、衝突部材4の先端部は、該加速管に対して55
°と80°の傾斜を有する2種類の正直角錐形状とした
。粉砕室8の内壁はセラミックコートされていた。加速
管出口13の内径は25mmであり、加速管3の中心軸
と衝突部材4の先端とは一致していた。加速管出口13
から衝突面14までの最近接距離(a)は60mmであ
り、衝突部材4と粉砕室壁6との最近接距離(c)は2
0m+++であった。衝突式気流粉砕機のA−A’面に
おける断面は、第6図に示1′、U字形を有していた。
The collision type air flow crusher has a prismatic collision member 4 made of aluminum oxide ceramic having a dimension (b) of 60 mm.
The tip of the collision member 4 is at a distance of 55 mm with respect to the acceleration tube.
Two types of right pyramid shapes were used, one with an inclination of 80° and the other with an inclination of 80°. The inner wall of the crushing chamber 8 was coated with ceramic. The inner diameter of the acceleration tube outlet 13 was 25 mm, and the central axis of the acceleration tube 3 and the tip of the collision member 4 coincided. Accelerator tube outlet 13
The closest distance (a) from the collision surface 14 to the collision surface 14 is 60 mm, and the closest distance (c) between the collision member 4 and the crushing chamber wall 6 is 2.
It was 0m+++. The cross section of the impingement type air flow crusher along the plane AA' was 1' shown in FIG. 6, and had a U-shape.

衝突部材4の左右及び下方の粉砕室壁6との距離は、2
0〜約40mmであった。
The distance between the collision member 4 and the left and right and lower crushing chamber walls 6 is 2.
It was 0 to about 40 mm.

さらに、高圧気体供給ノズルの内径(dl)が11mm
であり、加速管出口13の内径(d2)が29mmであ
り、加速管3の全長(L)が133mmであり、加速管
の拡がり角度 (θ)が7.7°を有する形状であった
Furthermore, the inner diameter (dl) of the high-pressure gas supply nozzle is 11 mm.
The acceleration tube outlet 13 had an inner diameter (d2) of 29 mm, the overall length (L) of the acceleration tube 3 was 133 mm, and the accelerating tube had a divergence angle (θ) of 7.7°.

一方、原料7としては、下記のものを使用した。On the other hand, as the raw material 7, the following was used.

上記処方の混合物よりなるトナー原料を約180℃で約
1.0時間溶融混線後、冷却して固化し、溶融混線物の
冷却物をハンマーミルで100〜1000gmの粒子に
粗粉砕したものを粉体原料とした。
A toner raw material consisting of a mixture of the above formulation is melted and mixed at about 180°C for about 1.0 hours, then cooled and solidified, and the cooled mixture is coarsely ground into particles of 100 to 1000 gm using a hammer mill. It was used as a body raw material.

投入口1から粉体原料が43kg/Hrの割合で供給さ
れると、ノズル2から吹き出される圧縮空気(8,0k
gf/cm”)によって、加速管3内で粉体原料は加速
され、加速管出口13から粉砕室8内に吐出され、粉体
原料7は衝突面14にたたきつけられ、その衝撃力で粉
砕された。それと共に前記角度の傾斜が付いた各々の正
直角錐形状の衝突面14により、衝突した粉体原料は全
周方向に分散し、対向する粉砕室壁6と、二次衝突し、
そこで更に粉砕された。
When the powder raw material is supplied from the input port 1 at a rate of 43 kg/Hr, compressed air (8.0 kg/Hr) is blown out from the nozzle 2.
gf/cm"), the powder raw material is accelerated in the acceleration tube 3 and discharged from the acceleration tube outlet 13 into the crushing chamber 8. The powder raw material 7 is struck against the collision surface 14 and is crushed by the impact force. At the same time, the colliding powder raw material is dispersed in the entire circumferential direction by each of the collision surfaces 14 in the shape of a right pyramid inclined at the above-mentioned angle, and causes a secondary collision with the opposing crushing chamber wall 6.
There it was further shattered.

粉砕された粉体原料は排出口5からスムーズに分級機2
4に運ばれ、細粉は分級粉体として取り除かれ、粗粉は
再び投入口1より粉体原料と共に投入された。この結果
、細粉として重量平均粒径12pmの粉砕粉体が44k
g/Hrの割合で収集された。
The crushed powder raw material is smoothly transferred to the classifier 2 from the discharge port 5.
4, the fine powder was removed as classified powder, and the coarse powder was again input from the input port 1 together with the powder raw material. As a result, 44 kg of pulverized powder with a weight average particle size of 12 pm was obtained as fine powder.
Collected at a rate of g/Hr.

このように、各々の衝突部材4の衝突面は該加速管に対
して各々55°、80°の傾斜の付いた正直角錐形状を
しているため、衝突した粉体原料は全周方向に分散し、
対向する粉砕壁と二次衝突した。
In this way, since the collision surface of each collision member 4 has a right pyramidal shape with an inclination of 55° and 80° with respect to the acceleration tube, the collided powder raw material is dispersed in the entire circumferential direction. death,
There was a secondary collision with the opposing crushing wall.

そのため、衝突部材付近での融着、凝集物、粗粒子が生
じず、粉体濃度の上昇がな(、さらに二次衝突するため
に、従来より粉砕能力が非常に高くなることが確認され
た。
As a result, there is no fusion, agglomerates, or coarse particles near the collision member, and no increase in powder concentration (furthermore, due to secondary collisions, it has been confirmed that the crushing capacity is much higher than before. .

夫土■ユ 実施例1と同様な粉体原料を第4図に示す加速管に対し
て55°と80°傾斜の付いた2種類の直角錐形状の衝
突面を有する衝突部材を用いて、実施例1と同様に粉砕
したところ、粉砕時の衝突部材付近での粉塵濃度が上昇
せずかつ二次衝突するために実施例1と同様、従来より
粉砕能力が非常に高(なることが確認された。粉体原料
の投入量は、処理量に応じて調製した。
The same powder raw material as in Example 1 was used as shown in FIG. 4 using a collision member having two types of right pyramidal collision surfaces inclined at 55° and 80° with respect to the accelerator tube. When pulverization was performed in the same manner as in Example 1, the dust concentration near the collision member during pulverization did not increase and secondary collisions occurred, so as in Example 1, it was confirmed that the pulverization capacity was much higher than before. The amount of powder raw material input was adjusted according to the amount to be processed.

及1皇ユ 実施例1と同様な粉体原料を第5図に示す加速管に対し
て55°と80°の傾斜の付いた2種類の斜角錐形状の
衝突面を有する衝突部材を用いて実施例1と同様に粉砕
したところ、粉砕時の衝突面付近での粉塵濃度が上昇せ
ず、かつ二次衝突するために従来より粉砕能力が非常に
高くなることが確認された。
The same powder raw material as in Example 1 was used as shown in FIG. When pulverization was performed in the same manner as in Example 1, it was confirmed that the dust concentration near the collision surface during pulverization did not increase, and because of secondary collisions, the pulverization ability was much higher than before.

L較亘ユ 実施例1と同様な粉体原料を第7図に示す従来の衝突式
気流粉砕機で粉砕した。該粉砕機において、加速管3に
対し垂直である平面状衝突面14を有する衝突部材4を
用いて、実施例1と同様に粉砕した。
A powder raw material similar to that in Example 1 was pulverized using a conventional impingement air flow pulverizer shown in FIG. In this pulverizer, the material was pulverized in the same manner as in Example 1 using the collision member 4 having a planar collision surface 14 perpendicular to the acceleration tube 3.

かかる衝突式気流粉砕機は、高圧気体供給ノズルの内径
(dl)が9mmであり、加速管出口13の内径(d2
)が2411101であり、加速管3の全長(L)が1
53mmであり、加速管の拡がり角度(θ)が5.6°
の形状を有し、加速管3から吹き出される圧縮空気は、
6、0kgf/cm”で粉砕した。衝突面14に衝突し
た粉体原料は、吐出方向と対向する方向に反射されるた
めに、衝突面付近の粉体濃度は著しく高くなった。その
ため、粉体原料の供給割合が10kg/Hrを超えると
、衝突部材上で、融着、凝集物、粗粒子が生じはじめ、
融着物が加速管出口13や分級機を詰まらせる場合があ
った。従って、粉砕処理量を1時間当りlokgに低下
させることを余儀な(され、これが粉砕能力の限界とな
った。
In this collision type air flow crusher, the inner diameter (dl) of the high-pressure gas supply nozzle is 9 mm, and the inner diameter (dl) of the acceleration tube outlet 13 is 9 mm.
) is 2411101, and the total length (L) of the accelerator tube 3 is 1
53mm, and the expansion angle (θ) of the accelerator tube is 5.6°.
The compressed air blown out from the acceleration tube 3 has the shape of
6.0 kgf/cm''.The powder raw material that collided with the collision surface 14 was reflected in the direction opposite to the discharge direction, so the powder concentration near the collision surface became extremely high. When the supply rate of body raw materials exceeds 10 kg/Hr, fusion, aggregates, and coarse particles begin to occur on the collision member.
There were cases where the fused material clogged the accelerator tube outlet 13 and the classifier. Therefore, it was necessary to reduce the pulverization throughput to 100 kg per hour, which became the limit of the pulverization capacity.

L校lユ 実施例1と同様な粉体原料を第7図に示す従来の衝突式
気流粉砕機で粉砕した。該粉砕機において、加速管3に
対し垂直である平面状衝突面14を有する衝突部材4を
用いて、実施例1と同様に粉砕した。
A powder raw material similar to that in Example 1 was pulverized using a conventional impingement type air flow pulverizer shown in FIG. In this pulverizer, the material was pulverized in the same manner as in Example 1 using the collision member 4 having a planar collision surface 14 perpendicular to the acceleration tube 3.

かかる衝突式気流粉砕機は、高圧気体供給ノズルの内径
(dl)が11mmであり、加速管出口13の内径(d
2)が24+nmであり、加速管3の全長(L)が13
3mmであり、加速管の拡がり角度(θ)が5.6°の
形状を有し、加速管3から吹き出される圧縮空気は、8
、0kgf/cm”で粉砕した。衝突面14に衝突した
粉体原料は吐出方向と対向する方向に反射されるために
、衝突面付近の粉体濃度は著しく高(なり、さらに、衝
撃力は太き(なったために衝突部材上で融着、凝集物、
粗粒子が生じはじめ、融着物が加速管出口13や分級機
を詰まらせ、粉砕機能を達成することができなくなって
しまった。
In this collision type air flow crusher, the inner diameter (dl) of the high-pressure gas supply nozzle is 11 mm, and the inner diameter (dl) of the acceleration tube outlet 13 is 11 mm.
2) is 24+nm, and the total length (L) of the accelerator tube 3 is 13
3 mm, and the expansion angle (θ) of the accelerating tube is 5.6°, and the compressed air blown out from the accelerating tube 3 is 8 mm.
, 0 kgf/cm''.The powder raw material that collided with the collision surface 14 is reflected in the direction opposite to the discharge direction, so the powder concentration near the collision surface becomes extremely high (and furthermore, the impact force is Thick (because of this, fusion, agglomerates,
Coarse particles began to form, and the fused materials clogged the accelerator tube outlet 13 and the classifier, making it impossible to achieve the pulverizing function.

L較五1 実施例1と同様な粉体原料を第7図に示す従来の衝突式
気流粉砕機で粉砕した。該粉砕機において、加速管3に
対し垂直である平面状衝突面14を有する衝突部材4を
用いて、実施例1と同様に粉砕した。
L Comparison 51 A powder raw material similar to that in Example 1 was pulverized using a conventional impingement type air flow pulverizer shown in FIG. In this pulverizer, the material was pulverized in the same manner as in Example 1 using the collision member 4 having a planar collision surface 14 perpendicular to the acceleration tube 3.

かかる衝突式気流粉砕機は、高圧気体供給ノズルの内径
(dl)が9mmであり、加速管出口13の内径(d2
)が24mmであり、加速管3の全長(L)が153m
mであり、加速管の拡がり角度(θ)が5.6°の形状
を有し、加速管3から吹き出される圧縮空気は、8、0
kgf/cm2で粉砕した。衝突面14に衝突した粉体
原料は吐出方向と対向する方向に反射されるために、衝
突面付近の粉体濃度は著しく高(なり、さらに、衝撃力
は大きくなったために衝突部材上で融着、凝集物、粗粒
子が生じはじめ、融着物が加速管出口13や分級機を詰
まらせ、粉砕機能を達成することができなくなってしま
った。
In this collision type air flow crusher, the inner diameter (dl) of the high-pressure gas supply nozzle is 9 mm, and the inner diameter (dl) of the acceleration tube outlet 13 is 9 mm.
) is 24 mm, and the total length (L) of the accelerator tube 3 is 153 m.
m, the expansion angle (θ) of the acceleration tube is 5.6°, and the compressed air blown out from the acceleration tube 3 is 8.0°.
It was pulverized at kgf/cm2. The powder raw material that collided with the collision surface 14 is reflected in the direction opposite to the discharge direction, so the powder concentration near the collision surface becomes extremely high (furthermore, because the impact force becomes large, it melts on the collision member). Agglomerates, aggregates, and coarse particles began to form, and the fused substances clogged the accelerating tube outlet 13 and the classifier, making it impossible to achieve the pulverizing function.

巳校IL 実施例1と同様な粉体原料を、第8図及び第9図に示す
衝突式気流粉砕機で粉砕した。該粉砕機において45度
の衝突面を有する衝突部材を用いて、比較例2と同様に
粉砕したところ、衝突面に衝突した粉体原料は、比較例
2に比べ、加速管出口13から離れる方向へ反射される
ので融着及び凝集物は生じなかった。しかし、衝突する
際に、衝撃力が弱くなるため、粉砕効率が悪く、重量平
均粒径12pa+の細粉は、1時間当り約9Kg シか
得られなかった。
Miku IL The same powder raw material as in Example 1 was pulverized using the collision type air flow pulverizer shown in FIGS. 8 and 9. When pulverization was performed in the same manner as in Comparative Example 2 using a collision member having a 45-degree collision surface in the pulverizer, the powder raw material that collided with the collision surface moved in a direction away from the acceleration tube outlet 13 compared to Comparative Example 2. No fusion or agglomeration occurred because the light was reflected to However, since the impact force becomes weak during the collision, the pulverization efficiency is poor, and only about 9 kg of fine powder with a weight average particle size of 12 pa+ can be obtained per hour.

以上実施例1〜3及び比較例1〜4の結果を下記第1表
に示す。
The results of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 1 below.

実JJ吐1 粉体原料として下記のものを使用した。Real JJ vomit 1 The following materials were used as powder raw materials.

上記処方の混合物よりなるトナー原料を約180℃で約
1,0時間溶融混線後、冷却して固化し、固形物をハン
マーミルで100〜1100Jtの粒子に粗粉砕したも
のを粉体原料とした。
A toner raw material consisting of a mixture of the above formulation was melted and mixed at about 180°C for about 1.0 hours, then cooled and solidified, and the solid was coarsely ground into particles of 100 to 1100 Jt using a hammer mill, which was used as a powder raw material. .

投入口1・から粉体原料を15.8kg/Hrの割合で
供給し、ノズル2から8.0kgf/cm2の圧縮空気
を導入し、高圧気体供給ノズルの内径(dl)が11m
mであり、加速管出口13の内径(d、)が29mmで
あり、全長(L)が133mm 、拡がり角度(θ)が
7.7°の形状の加速管と第3図に示す該加速管に対し
て(ψ)55°と80°の傾斜の付いた2種類の正直角
錐形状の衝突面を有する衝突部材を具備した第1図及び
−注一 比較例1の粉砕機の処理能力を1とした。
Powder raw material is supplied from the input port 1 at a rate of 15.8 kg/Hr, compressed air of 8.0 kgf/cm2 is introduced from the nozzle 2, and the inner diameter (dl) of the high-pressure gas supply nozzle is 11 m.
m, the inner diameter (d, ) of the acceleration tube outlet 13 is 29 mm, the total length (L) is 133 mm, and the expansion angle (θ) is 7.7°, and the acceleration tube shown in FIG. Fig. 1 and Note 1 The throughput of the crusher of Comparative Example 1 was 1. And so.

第2図に示す各々の衝突式気流粉砕機にて粉砕し、粉砕
された粉体を分級機24にて細粉と粗粉に分級した。そ
の結果、細粉として、共に重量平均粒径12ILITl
の粉体が1時間当り14.5Kgの割合で収集された。
The powder was pulverized using each collision type air flow pulverizer shown in FIG. 2, and the pulverized powder was classified into fine powder and coarse powder using a classifier 24. As a result, as a fine powder, both had a weight average particle size of 12ILITl.
of powder was collected at a rate of 14.5 Kg per hour.

塞J1舛j− 実施例4と同様な粉体原料を、第4図に示す加速管に対
して (ψ)55°と80°の傾斜の付いた2種類の直
角錐形状の衝突面を有する衝突部材を具備した第1図に
示す各々の衝突式気流粉砕機を用いて実施例4と同様に
粉砕したところ、共に重量平均粒径的12Hの細粉が1
時間当り15.8Kgの割合で収集された。粉体原料の
投入量は、処理量に応じて、調整した。
Powder raw material similar to that in Example 4 was used with respect to the acceleration tube shown in Fig. 4, which had two types of right pyramid-shaped collision surfaces with inclinations of (ψ) 55° and 80°. When pulverization was carried out in the same manner as in Example 4 using each of the collision type air flow pulverizers shown in FIG. 1 equipped with collision members, fine powder with a weight average particle size of 12H
Collected at a rate of 15.8 Kg per hour. The amount of powder raw material input was adjusted depending on the amount to be processed.

11■玉 実施例4と同様な粉体原料を、第5図に示す加速管に対
して (ψ)55°と80°の傾斜の付いた2種類の斜
角錐形状の衝突面を有する衝突部材を具備した第1図に
示す各々の衝突式気流粉砕機を用いて、実施例4と同様
に粉砕したところ、共に重量平均粒径的12μmの細粉
が1時間当り15.8Kgの割合で収集された。
11 ■ Balls The same powder raw material as in Example 4 was applied to the acceleration tube shown in Fig. 5 into collision members having two types of oblique pyramid-shaped collision surfaces with inclinations of (ψ) 55° and 80°. When pulverization was carried out in the same manner as in Example 4 using each of the collision type air flow pulverizers shown in FIG. 1 equipped with It was done.

工較困j 実施例4と同様な粉体原料を、第7図に示す衝突式気流
粉砕機で比較例1と同様に粉砕したところ、重量平均粒
径的12gmの細粉が1時間当り7kgしか収集されな
かった。
When the same powder raw material as in Example 4 was pulverized in the same manner as in Comparative Example 1 using the impingement air flow pulverizer shown in Fig. 7, 7 kg of fine powder with a weight average particle size of 12 gm was produced per hour. only was collected.

血校土ユ 実施例4と同様な粉体原料を、第7図に示す衝突式気流
粉砕機で比較例2と同様に粉砕したところ、衝突面14
に衝突した粉体原料は吐出方向と対向する方向に反射さ
れるために、衝突面付近の粉体濃度は著しく高(なり、
さらに衝撃力は大きくなったために衝突部材上で融着、
凝集物、粗粒子が生じはじめ、融着物が加速管出口13
や分級機を詰まらせ粉砕機能を達成することができなく
なってしまった。
When the same powder raw material as in Example 4 was pulverized in the same manner as in Comparative Example 2 using the collision type air flow pulverizer shown in FIG.
The powder material collided with the collision surface is reflected in the direction opposite to the discharge direction, so the powder concentration near the collision surface is extremely high (becomes
Furthermore, as the impact force became larger, fusion occurred on the collision member.
Agglomerates and coarse particles begin to form, and the fused materials reach the acceleration tube outlet 13.
It clogged the classifier and made it impossible to achieve the crushing function.

比、JLf引ユ 実施例4と同様な粉体原料を、第7図に示す衝突式気流
粉砕機で比較例3と同様に粉砕したところ、衝突面14
に衝突した粉体原料は吐出方向と対向する方向に反射さ
れるために、衝突面付近の粉体濃度は著しく高(なり、
さらに衝撃力は大きくなったために衝突部材上で融着、
凝集物、粗粒子が生じはじめ、融着物が加速管出口13
や分級機を詰まらせ粉砕機能を達成することができなく
なってしまった。
When the same powder raw material as in Example 4 was crushed in the same manner as in Comparative Example 3 using the collision type air flow crusher shown in FIG. 7, the collision surface 14
The powder material collided with the collision surface is reflected in the direction opposite to the discharge direction, so the powder concentration near the collision surface is extremely high (becomes
Furthermore, as the impact force became larger, fusion occurred on the collision member.
Agglomerates and coarse particles begin to form, and the fused materials reach the acceleration tube outlet 13.
It clogged the classifier and made it impossible to achieve the crushing function.

ルl吐旦 実施例4と同様な粉体原料を第8図及び第9図に示す衝
突式気流粉砕機で比較例4と同様に粉砕したところ、重
量平均粒径的12#Lmの細粉が1時間当り6kg L
、か収集されなかった。
When the same powder raw material as in Example 4 was pulverized in the same manner as in Comparative Example 4 using the collision type air flow pulverizer shown in FIGS. 8 and 9, fine powder with a weight average particle size of 12#Lm is 6kg L per hour
, or not collected.

以上、実施例4〜6及び比較例5〜8の結果を下記第2
表に示す。
The results of Examples 4 to 6 and Comparative Examples 5 to 8 are summarized in the second section below.
Shown in the table.

(以下余白) 一注一 比較例5の粉砕機の処理能力を1とした。(Margin below) Note 1: The processing capacity of the pulverizer in Comparative Example 5 was set to 1.

[発明の効果] 以上説明したように、加速管の拡がり角θを7°以上9
°以下にすること、衝突面の先端部分が該加速管に対し
て、55°以上90°未満の傾斜をもつ正直角錐、又は
直角錐、又は斜角錐形状とすることで、熱可塑性樹脂を
含む粉体原料は6、5kg/c+n”以上の高圧縮気体
を投入しても、粉砕時における融着、凝集物、粗粒子等
が発生せず、装置の安定した運転を可能にし、さらに、
装置を大きくすることなく、従来の粉砕能力を著しく向
上することができる。
[Effect of the invention] As explained above, when the divergence angle θ of the accelerator tube is set to 7° or more, 9
° or less, and the tip of the collision surface is in the shape of a right pyramid, a right pyramid, or an oblique pyramid with an inclination of 55 degrees or more and less than 90 degrees with respect to the acceleration tube, and contains thermoplastic resin. The powder raw material does not generate fusion, agglomerates, coarse particles, etc. during pulverization even when highly compressed gas of 6.5 kg/c+n'' or more is input, allowing stable operation of the equipment, and furthermore,
The conventional crushing capacity can be significantly improved without increasing the size of the equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、衝突部材が正直角錐、又は直角錐
、又は斜角錐形状を有する本発明に使用した衝突式気流
粉砕機の断面及び粉砕・分級工程を概略的に示した図で
あり、第3図、第4図及び第5図は、本発明に使用した
、正直角錐、直角錐、斜角錐形状である各々の衝突部材
の先端を示した図である。第6図は第1図に示す粉砕機
のA−A’面における断面を概略的に示した図である。 第7図は、衝突部材の衝突面が加速管の軸方向に対して
垂直である、比較例としての衝突式気流粉砕機の断面及
び粉砕・分級工程を概略的に示した図である。 第8図は、衝突部材の衝突面が加速管の軸方向に対して
、上方に45°傾斜している、比較例としての衝突式気
流粉砕機の断面及び粉砕・分級工程を概略的に示した図
であり、第9図は、第8図に示す衝突式気流粉砕機のB
−B’面における断面を概略的に示した図である。 1・・・粉体原料投入口 2・・・圧縮気体供給ノズル 3・・・加速管 4・・・衝突部材 5・・・排出口 6・・・粉砕室壁 7・・・粉体原料 8・・・粉砕室 13・・・加速管出口 14・・・衝突面 24・・・分級機 ψ・・・衝突面の加速管方向と成す角 θ・・・加速管拡がり角度 dl・・・高圧気体供給ノズル内径 d2・・・加速管出口内径 L・・・加速管全長
FIGS. 1 and 2 are diagrams schematically showing the cross section and the crushing/classifying process of the collision type air flow crusher used in the present invention, in which the collision member has the shape of a right pyramid, a right pyramid, or an oblique pyramid. 3, 4, and 5 are diagrams showing the tips of each of the collision members in the shape of a right pyramid, a right pyramid, and an oblique pyramid used in the present invention. FIG. 6 is a diagram schematically showing a cross section of the crusher shown in FIG. 1 along the plane AA'. FIG. 7 is a diagram schematically showing a cross section and a crushing/classifying process of a collision type air flow crusher as a comparative example in which the collision surface of the collision member is perpendicular to the axial direction of the accelerator tube. FIG. 8 schematically shows the cross section and crushing/classifying process of a collision type air flow crusher as a comparative example, in which the collision surface of the collision member is inclined upward at 45 degrees with respect to the axial direction of the accelerator tube. Fig. 9 is a diagram showing B of the collision type air flow crusher shown in Fig. 8.
It is a diagram schematically showing a cross section in the -B' plane. 1... Powder raw material input port 2... Compressed gas supply nozzle 3... Accelerator tube 4... Collision member 5... Outlet port 6... Grinding chamber wall 7... Powder raw material 8 ...Crushing chamber 13...Acceleration tube outlet 14...Collision surface 24...Classifier ψ...Angle θ between the collision surface and the acceleration tube direction...Acceleration tube expansion angle dl...High pressure Gas supply nozzle inner diameter d2...Acceleration tube outlet inner diameter L...Acceleration tube total length

Claims (2)

【特許請求の範囲】[Claims] (1)高圧気体により粉体を搬送加速する加速管と、該
加速管より噴出する粉体を衝撃力により粉砕するための
衝突部材を加速管出口に相対して粉砕室内に設けてなる
衝突式気流粉砕機を用いた粉砕において、前記衝突部材
の衝突面が加速管方向に対して55゜以上90゜未満の
傾斜をもつ正直角錐、直角錐、斜角錐いずれかの形状を
成したものを用い、前記加速管の拡がり角度を7゜以上
9゜以下として、前記高圧気体の圧力を6.5kg/c
m^2以上にして粉砕することを特徴とする粉体の粉砕
方法。
(1) Collision type consisting of an acceleration tube that conveys and accelerates powder using high-pressure gas, and a collision member that crushes the powder ejected from the acceleration tube by impact force in the crushing chamber opposite the acceleration tube outlet. In pulverization using an air flow pulverizer, the collision surface of the collision member is in the shape of any one of a right pyramid, a right pyramid, and an oblique pyramid with an inclination of 55° or more and less than 90° with respect to the direction of the accelerating tube. , the expansion angle of the acceleration tube is 7° or more and 9° or less, and the pressure of the high-pressure gas is 6.5 kg/c.
A method for pulverizing powder, characterized by pulverizing it to m^2 or more.
(2)前記粉体の原料として、熱可塑性樹脂を含む材料
を用いることを特徴とする請求項1記載の粉体の粉砕方
法。
(2) The method for pulverizing powder according to claim 1, characterized in that a material containing a thermoplastic resin is used as a raw material for the powder.
JP1163878A 1989-06-28 1989-06-28 Method for pulverizing powder Pending JPH0330845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1163878A JPH0330845A (en) 1989-06-28 1989-06-28 Method for pulverizing powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163878A JPH0330845A (en) 1989-06-28 1989-06-28 Method for pulverizing powder

Publications (1)

Publication Number Publication Date
JPH0330845A true JPH0330845A (en) 1991-02-08

Family

ID=15782505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163878A Pending JPH0330845A (en) 1989-06-28 1989-06-28 Method for pulverizing powder

Country Status (1)

Country Link
JP (1) JPH0330845A (en)

Similar Documents

Publication Publication Date Title
US5358183A (en) Pneumatic pulverizer and process for producing toner
US4930707A (en) Pneumatic pulverizer and pulverizing method
JPH0549349B2 (en)
JP3114040B2 (en) Collision type air crusher
JP2654989B2 (en) Powder grinding method
JP2805332B2 (en) Grinding method
JPH0330845A (en) Method for pulverizing powder
JP2759499B2 (en) Powder grinding method
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JP3283728B2 (en) Crusher
JPH0326349A (en) Grinding method for powder
JPH02298365A (en) Grinding method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JP2566158B2 (en) Collision airflow crusher
JP3102902B2 (en) Collision type supersonic jet crusher
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP2759500B2 (en) Collision type air crusher
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP3119100B2 (en) Collision type air crusher
JP2525230B2 (en) Collision airflow crusher
JP2704777B2 (en) Collision type air flow crusher and crushing method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2704787B2 (en) Powder material grinding method
JPH0386257A (en) Collision-type jet pulverizer and crushing method
JPH03109951A (en) Collision type air flow grinder and grinding method