JPH0757569A - Bi系超伝導線材の製造方法 - Google Patents

Bi系超伝導線材の製造方法

Info

Publication number
JPH0757569A
JPH0757569A JP5203833A JP20383393A JPH0757569A JP H0757569 A JPH0757569 A JP H0757569A JP 5203833 A JP5203833 A JP 5203833A JP 20383393 A JP20383393 A JP 20383393A JP H0757569 A JPH0757569 A JP H0757569A
Authority
JP
Japan
Prior art keywords
wire
value
heat treatment
superconducting wire
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5203833A
Other languages
English (en)
Inventor
Shunichi Nishikida
俊一 錦田
Akihiko Endo
昭彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5203833A priority Critical patent/JPH0757569A/ja
Publication of JPH0757569A publication Critical patent/JPH0757569A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

(57)【要約】 【目的】Jc特性に優れたBi系超伝導線材の製造方法の提
供。 【構成】金属元素組成比Bi:Pb:Sr:Ca:Cuがa:b:
c:d:eである原料粉末を仮焼して銀シース管に充填
し塑性加工を施して素線材とし、この素線材に熱処理を
施した後、さらに塑性加工ならびに熱処理を1回以上施
すことを特徴とするBi系超伝導線材の製造方法。ただ
し、a、b、c、dおよびeは、それぞれ1.76≦a≦1.
84、0.36≦b≦0.44、1.76≦c≦1.84、2.16≦d≦2.2
4、e=3.00を満足する値である。 【効果】本発明の方法によれば、高いJc値を有するBi系
超伝導線材を作製することができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、液体窒素温度以上にお
いて優れた超伝導臨界電流密度特性を有するBi系超伝導
線材の製造方法に関するものである。
【0002】
【従来の技術】1987年にいわゆるBi系超伝導体が発見さ
れて以来、多くの研究がなされ、その結果、Bi2Sr2Ca2C
u3O y の構造を持つ化合物が高い臨界温度(107K)を示
す超伝導相であることが明らかになった。
【0003】超伝導体材料(例えば線材)の重要な特性
である臨界電流密度(以下Jcと記す)の値を向上させる
ためにはその材料中に超伝導相を多く生成させて、非超
伝導相の割合を少なくしなければならない。これまでに
も種々の原料粉末の組成が研究され、銀シース法を用い
て線材化した材料において高いJc値が得られたという報
告がある。例えば特開平3−110721号公報には、Bi:P
b:Sr:Ca:Cu= 1.8 :0.4 :2.0 :2.3 :3.0 の割合
のBi系超伝導線材が10000A/cm2のJc値を示すことが記さ
れている。また特開平3−208211号公報には、Bi:Pb:
Sr:Ca:Cu= 1.8:0.4 :2.0 :2.2 :3.0 の割合のBi
系超伝導線材が19300A/cm2のJc値を示すことが記されて
いる。
【0004】しかしながら、これらの組成の超伝導物質
に対して同じ熱処理を行っても必ずしも同じ結果が得ら
れない。この原因は明らかではないが、一つには非超伝
導相の生成量が多くなるためであると考えられる。
【0005】一方では、超伝導マグネット、デバイス用
配線、電力ケーブル等に超伝導技術を適用して実用化す
るためにさらに高いJc値を持つ超伝導線材の開発が求め
られている。
【0006】
【発明が解決しようとする課題】本発明の目的は、液体
窒素温度(77K )以上で再現性がありかつ優れたJc特性
を有するBi系超伝導線材の製造方法を提供することにあ
る。
【0007】
【課題を解決するための手段】本発明は、下記のBi系超
伝導線材の製造方法を要旨とする。
【0008】金属元素組成比Bi:Pb:Sr:Ca:Cuがa:
b:c:d:eである原料粉末を仮焼して銀シース管に
充填し塑性加工を施して素線材とし、この素線材に熱処
理を施した後、さらに塑性加工ならびに熱処理を1回以
上施すことを特徴とするBi系超伝導線材の製造方法。
【0009】ただし、a、b、c、dおよびeは、それ
ぞれ 1.76≦a≦1.84 0.36≦b≦0.44 1.76≦c≦1.84 2.16≦d≦2.24 e=3.00 を満足する値である。上記の発明において原料粉末とは
通常Bi、Pb、Sr、CaおよびCuの酸化物、炭化物、塩化
物、硝酸塩あるいはこれらの金属元素の単体等を混合し
た粉末であり、その粉末中のBi、Pb、Sr、CaおよびCuの
金属元素の原子数の比がBi:Pb:Sr:Ca:Cu= a:b:
c:d:eとなっているものである。それらの粉末を酸
素雰囲気中(例えば大気中)において仮焼する。仮焼は
700℃〜 825℃の温度で3〜12時間程おこなうのが望
ましい。
【0010】仮焼後、粉末を銀シース管に充填し、ダイ
ス伸線、ロール圧延などにより素線材とする。なお、銀
シース管の断面は円形、矩形等任意であり特に制限はな
い。
【0011】この素線材に1回目の熱処理を施す。この
熱処理は酸素分圧が0.1 〜0.3 気圧(例えば大気中)の
雰囲気下で825 ℃以上845 ℃以下の温度を80時間以上保
持するものである。
【0012】1回目の熱処理を施した素線材を再度圧延
等で加工して線材とする。この線材に再び熱処理を施
す。この熱処理は1回目の熱処理と同様な温度、同様な
雰囲気下において24時間程度おこなう。
【0013】これらの作業を行うことにより、高Jc値を
有するBi系超伝導線材を製造することができる。
【0014】なお、2回目の線材とする加工とその後の
熱処理は複数回繰り返してもよい。
【0015】
【作用】本発明者らは、原料粉末の金属元素組成比Bi:
Pb:Sr:Ca:Cuを種々に変化させて配合した粉末を用い
て、それら粉末を仮焼後銀シース管に充填し、素線材に
加工し、熱処理を施した後さらに加工して線材とし、再
度熱処理するという特殊な製造方法でBi系超伝導線材を
作製し、Jc値の測定をおこなった。
【0016】その結果、原料中のSrの量、即ち前記のc
の値を従来知られている原料組成よりも減少させること
でJc値が報告されている値(19300A/cm2 、77K 、0 磁場
中で測定) と比較して著しく上昇する原料粉末の組成を
見出した。さらにその組成を中心に組成をわずかに変化
させた原料を用いて種々のBi系超伝導線材を作製し、同
様にJc値を測定することにより30000A/cm2以上の高いJc
値をもつ原料粉末の組成範囲を見出した。
【0017】また、作製した線材の組成と生成相につい
てSEMやX線回折で分析をおこなった結果、本発明の
製造方法で作製した線材のJc値が向上する原因として次
のようなことがわかった。
【0018】原料粉末のSrの量を減少させれば非超伝
導化合物である(Ca ,Sr)2CuO3の生成量が減少し、その
結果Jc値が増加する。
【0019】2回目の圧延またはプレス( 再加工) と
再熱処理により超伝導体内部の組織が緻密化し、かつ結
晶の配向性が向上することによってJc値が高くなる。
【0020】
【実施例】
〔試験1〕原料として Bi2O3、PbO 、 SrCO3、 CaCO3
CuOの各粉末(いずれも純度99.9%)を用いた。それら
粉末を公知の組成であるBi:Pb:Sr:Ca:Cu= 1.8 :0.
4:2.0 :2.2 :3.0 を中心として各金属元素を±0.2
づつ変化させた組成で原料粉末を配合した。次にそれら
の粉末を大気中、電気炉で800 ℃に12時間保持してCO2
を除去した。
【0021】その後、粉末を細かく粉砕し、銀シース管
に充填し、ダイス伸線とロール圧延を行って、厚さ0.1
mm、幅4mmの素線材とした。これを30mmの長さに切断し
て、835 ℃で96時間大気中で焼成した。この後1軸プレ
スと835 ℃で24時間の焼成を2回繰り返してテープ状の
Bi系超伝導線材を作製した。
【0022】次にそれらの線材のJc値を液体窒素中、77
K、0磁場の環境下で測定した。これらの結果を表1に
示す。
【0023】
【表1】
【0024】表1に示すとおりJc値が10000A/cm2を超え
る材料が8種類あった(表中の*印)。その中でもBi:
Pb:Sr:Ca:Cu= 1.8 :0.4 :1.8 :2.2 :3.0 の組成
(表中の**印)の原料から作製した線材のJc値は、30
000A/cm2以上の高い値であった。〔試験2〕試験1で10
000A/cm2を超えるJc値が得られた8種類の原料につい
て、焼成温度を825 〜845 ℃とした以外は試験1と同様
の方法で線材を作製してJc値を測定したところ、前記の
Bi:Pb:Sr:Ca:Cu= 1.8 :0.4 :1.8 :2.2 :3.0 の
組成でJc値が30000A/cm2以上となった。そこでSrの減少
によるJc値向上の事実に着目し、Srを1.6 としてBiを1.
6 〜2.0 、Pbを0.2 〜0.6 、Caを2.0 〜2.4 、Cuを3に
変化させた種々の原料を830 ℃または835 ℃の焼成温度
で同様に線材を作製し、Jc値の測定をおこなったが3000
0A/cm2以上の結果は得られなかった。
【0025】〔試験3〕Srが1.8である前記の組成、B
i:Pb:Sr:Ca:Cu= 1.8 :0.4 :1.8 :2.2 :3.0 を
中心とし、その組成を微妙に変化させた原料で試験1と
同様に線材を作製し、Jc値の測定を行った。即ち、Bi、
Pb、SrおよびCaについてそれぞれ±0.04づつ±0.08まで
変化させた試料について830 ℃で焼成を行って線材を作
製した。その結果、Bi、Pb、SrおよびCaのいずれの元素
であっても組成比の変化が±0.04以内であれば作製した
線材はそれぞれ30000A/cm2〜36000A/cm2のJc値(77K、
0磁場中で測定)を有することがわかった。表2にその
結果を示す。
【0026】
【表2】
【0027】以上の各試験を繰り返し行ったところ、ほ
ぼ同じ効果が得られ、本発明方法の優れた再現性が確認
された。
【0028】
【発明の効果】本発明の方法によれば、高いJc値を有す
るBi系超伝導線材を作製することができる。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA Z 9276−4M // H01B 12/04 ZAA 7244−5G

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】金属元素組成比Bi:Pb:Sr:Ca:Cuがa:
    b:c:d:eである原料粉末を仮焼して銀シース管に
    充填し塑性加工を施して素線材とし、この素線材に熱処
    理を施した後、さらに塑性加工ならびに熱処理を1回以
    上施すことを特徴とするBi系超伝導線材の製造方法。た
    だし、a、b、c、dおよびeは、それぞれ 1.76≦a≦1.84 0.36≦b≦0.44 1.76≦c≦1.84 2.16≦d≦2.24 e=3.00 を満足する値である。
JP5203833A 1993-08-18 1993-08-18 Bi系超伝導線材の製造方法 Pending JPH0757569A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5203833A JPH0757569A (ja) 1993-08-18 1993-08-18 Bi系超伝導線材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5203833A JPH0757569A (ja) 1993-08-18 1993-08-18 Bi系超伝導線材の製造方法

Publications (1)

Publication Number Publication Date
JPH0757569A true JPH0757569A (ja) 1995-03-03

Family

ID=16480465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5203833A Pending JPH0757569A (ja) 1993-08-18 1993-08-18 Bi系超伝導線材の製造方法

Country Status (1)

Country Link
JP (1) JPH0757569A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041682A (ja) * 2011-08-11 2013-02-28 Sumitomo Electric Ind Ltd Bi系超電導線材およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041682A (ja) * 2011-08-11 2013-02-28 Sumitomo Electric Ind Ltd Bi系超電導線材およびその製造方法

Similar Documents

Publication Publication Date Title
EP0332291B1 (en) Devices and systems based on novel superconducting material
EP0692147A1 (en) Improved processing of oxide superconductors
EP0330214B1 (en) High-Tc oxide superconductor and method for producing the same
EP0504909A2 (en) Method of preparing oxide superconducting wire
JPH0780710B2 (ja) 酸化物高温超電導体の製造法
JP2719518B2 (ja) 酸化物超伝導性素材の製造法
JPH0757569A (ja) Bi系超伝導線材の製造方法
JPH0536317A (ja) ビスマス系酸化物超電導線材の製造方法
EP0286372B1 (en) Oxide superconductor and manufacturing method thereof
JP2625280B2 (ja) 酸化物超電導材料の製造方法
JPH06176637A (ja) Bi系酸化物超電導線の製造方法
JP3121001B2 (ja) Tl系酸化物超伝導体の製造方法
JP3149170B2 (ja) ビスマス系酸化物超電導体の製造方法
JP2854338B2 (ja) 銅系酸化物超電導体
EP0428630B1 (en) Superconducting metal oxide compositions and processes for manufacture and use
JP2822559B2 (ja) タリウム系酸化物超電導線材の製造方法
JP2831755B2 (ja) 酸化物超伝導体
JP2966134B2 (ja) Bi系酸化物超電導々体の製造方法
EP0400666A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JP2749194B2 (ja) Bi−Sr−Ca−Cu−O系超電導体の製法
JPH08337424A (ja) Bi系酸化物超伝導線材の製造方法
JPH0447611A (ja) 酸化物超電導線材の製造方法
JP2590242B2 (ja) 酸化物超電導体の作製方法
JP2971504B2 (ja) Bi基酸化物超電導体の製造方法
JP2820480B2 (ja) 酸化物超伝導体及びその製造方法