JPH0728036B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JPH0728036B2 JPH0728036B2 JP62059521A JP5952187A JPH0728036B2 JP H0728036 B2 JPH0728036 B2 JP H0728036B2 JP 62059521 A JP62059521 A JP 62059521A JP 5952187 A JP5952187 A JP 5952187A JP H0728036 B2 JPH0728036 B2 JP H0728036B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- region
- threshold voltage
- electron beam
- channel region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000004065 semiconductor Substances 0.000 title claims description 7
- 238000010894 electron beam technology Methods 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 11
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000000137 annealing Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66325—Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
- H01L29/66333—Vertical insulated gate bipolar transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/30—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
- H01L29/32—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造方法に関し、さらに詳し
くは、主に電力用スイッチング素子として用いられる竪
型IGBT(Insulated Gate Bipolar Transistor)の製造
方法に係るものである。TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor device, and more specifically, a method for manufacturing a vertical IGBT (Insulated Gate Bipolar Transistor) mainly used as a power switching element. It is related to.
近年,この種の電力用スイッチング素子には、従来から
一般に用いられてきたバイポーラトランジスタに代わる
ものとして、その高速性,および制御回路の簡略化が可
能であるなどの利点を有することから、いわゆる,竪型
パワーMOS FET(MOS Filed Effect Transistor)への移
行が注目されている。しかしながら、一方で、500V以上
での高耐圧の竪型パワーMOS FETにおいては、必然的に
そのオン抵抗が高くなつて、大電流を流すことが難かし
くなると云う不利がある。In recent years, this type of power switching element has advantages such as high speed and simplification of a control circuit as an alternative to a bipolar transistor which has been generally used in the past. The shift to vertical power MOS FET (MOS Filed Effect Transistor) is attracting attention. On the other hand, however, in a vertical power MOS FET having a high withstand voltage of 500 V or more, the ON resistance is inevitably high, which makes it difficult to pass a large current.
そこで、この点を解消するための電力用スイッチング素
子として、先の1981年に、米国RCA社から、特開昭56-15
0870号公報として示される竪型IGBTが提案された。この
竪型IGBTは、ドレイン領域にソース領域とは逆の導電型
層を形成することにより、この逆導電型層から高抵抗層
への注入を起こさせ、高抵抗層に伝導度変調を生じさせ
て、オン抵抗を下げるようにしたものである。Then, as a power switching element for solving this point, in 1981, from RCA Corporation of the United States, JP-A-56-15
A vertical IGBT, which is shown as Japanese Patent No. 0870, has been proposed. In this vertical type IGBT, by forming a conductivity type layer opposite to the source region in the drain region, injection from this reverse conductivity type layer to the high resistance layer is caused to cause conductivity modulation in the high resistance layer. Therefore, the on resistance is lowered.
第4図にこの提案に係る竪型IGBTの基本的な構成を示
す。Figure 4 shows the basic configuration of the vertical IGBT according to this proposal.
すなわち,この第4図従来例構成において、符号1は10
19/cm3程度の高濃度p+シリコン基板であり、このp+シリ
コン基板1上にエピタキシャル成長などにより高濃度n+
層2を形成させ、また、この高濃度n+層2上に低不純物
濃度のn-層3を形成させ、さらに、このn-層3の主表面
上にあつて、DSA(Diffused Self-Alignment)法によ
り、pウエル層4と同層4中へのn+型ソース層5とを選
択的に形成させる。That is, in the configuration of the conventional example shown in FIG.
It is a high-concentration p + silicon substrate of about 19 / cm 3 , and a high-concentration n + is formed on this p + silicon substrate 1 by epitaxial growth.
A layer 2 is formed, an n − layer 3 having a low impurity concentration is formed on the high concentration n + layer 2, and DSA (Diffused Self-Alignment) is performed on the main surface of the n − layer 3. Method, the p well layer 4 and the n + type source layer 5 in the same layer 4 are selectively formed.
そして、前記DSA法では、pウエル層4を形成するため
の拡散窓をして、n+型ソース層5を形成するための拡散
窓の一部として用いるために、チャンネル領域6が素子
のあらゆる部分で一定となるように、n+型ソース層5を
形成できる。In the DSA method, since the diffusion window for forming the p-well layer 4 is used as a part of the diffusion window for forming the n + -type source layer 5, the channel region 6 is used for all elements. The n + type source layer 5 can be formed so as to be constant in the portion.
ついで、チャンネル領域6上にゲート絶縁膜7を介して
ゲート電極8を形成させ、また、n+型ソース層5とpウ
エル層4とを同時にオーミックコンタクトするようにソ
ース電極9を形成させ、さらに、p+シリコン基板1の他
面にドレイン電極10を形成させ、このようにして目的と
する竪型IGBT11を得ているのである。Then, a gate electrode 8 is formed on the channel region 6 via the gate insulating film 7, and a source electrode 9 is formed so that the n + type source layer 5 and the p well layer 4 are simultaneously ohmic-contacted. , And the drain electrode 10 is formed on the other surface of the p + silicon substrate 1 to obtain the intended vertical IGBT 11 .
従つて、前記構成による竪型IGBT11の場合にあつては、
n+型ソース層5からチャンネル領域6を通つてn-層3に
注入される電子電流に対し、p+シリコン基板1から高濃
度n+層2を介してn-層3へ正孔注入を生じ、この結果,
高抵抗を有するn-層3が伝導度変調を起こして低抵抗化
を図り得るのである。Therefore, in the case of the vertical IGBT 11 having the above-mentioned configuration,
For the electron current injected from the n + type source layer 5 to the n − layer 3 through the channel region 6, holes are injected from the p + silicon substrate 1 to the n − layer 3 through the high concentration n + layer 2. And as a result,
The n − layer 3 having a high resistance can cause conductivity modulation to reduce the resistance.
しかしながら、前記従来例構成による竪型IGBT11では、
一方でこの竪型IGBT11をターンオフさせたとき、高濃度
n+層2に注入された残留正孔のために、ターンオフ時間
が長くなると云う問題点がある。However, in the vertical IGBT 11 with the configuration of the conventional example,
On the other hand, when this vertical IGBT 11 was turned off, high concentration
There is a problem that the turn-off time becomes long due to the residual holes injected into the n + layer 2.
こゝで、一般に竪型IGBT11においては、高濃度n-層2内
での前記残留正孔のライフタイムを制御するために、重
金属や電子線などの放射線照射などをなしており、特に
電子線照射による手段が、ライフタイムの制御性の良
さ,およびオン電圧とターンオフ時間の相関の良さによ
つて採用されている。Here, generally, in the vertical type IGBT 11 , in order to control the lifetime of the residual holes in the high-concentration n − layer 2, radiation such as heavy metal or electron beam is applied. The method using the line irradiation is adopted because of the good controllability of the lifetime and the good correlation between the on-voltage and the turn-off time.
しかし、前記電子線照射方法によるときは、その電子線
照射によつて、NOS部のゲート絶縁膜7がダメージを受
け易く、この種の竪型IGBT11の重要な特性の一つである
ゲートしきい値電圧VGS(th)が大幅に低下することにな
ると云う不都合があつた。However, when the electron beam irradiation method is used, the gate insulating film 7 in the NOS portion is easily damaged by the electron beam irradiation, which is one of the important characteristics of the vertical IGBT 11 of this type. There is an inconvenience that the threshold voltage V GS (th) is significantly reduced.
この発明は従来のこのような問題点を解消するためにな
されたものであつて、その目的とするところは、製造後
においてもゲートしきい値電圧特性を低下させることの
ない,この種の半導体装置の製造方法,こゝでは竪型IG
BTの製造方法を提供することである。The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a semiconductor of this kind which does not deteriorate the gate threshold voltage characteristic even after manufacturing. Device manufacturing method, in this case vertical IG
It is to provide a manufacturing method of BT.
前記目的を達成するために、この発明に係る半導体装置
の製造方法は、チャンネル領域の形成時に、まず、その
表面濃度を、素子構成のしきい値電圧がおゝよそ5〜10
V程度になるように3〜5×1017cm-3に設定させ、つい
で、5×1013〜8×1014cm-2の照射量の電子線を照射し
た後、おゝよそ300℃の温度で2〜5時間のアニール処
理をして、電子線照射時に低下したしきい値電圧を、お
ゝよそ2〜5V程度まで回復させるようにしたものであ
る。In order to achieve the above object, in the method of manufacturing a semiconductor device according to the present invention, when the channel region is formed, first, the surface concentration of the channel region is set to a threshold voltage of the device structure of about 5 to 10.
It is set to 3 to 5 × 10 17 cm -3 so that it becomes about V, and then, after being irradiated with an electron beam of an irradiation dose of 5 × 10 13 to 8 × 10 14 cm -2 , it is kept at about 300 ° C. By annealing at a temperature for 2 to 5 hours, the threshold voltage lowered during electron beam irradiation is restored to about 2 to 5V.
すなわち,この発明においては、中間段階での素子構成
に電子線照射をなして製造終了した後における素子構成
のしきい値電圧を、所期の値であるおゝよそ2〜5Vの範
囲に維持できると共に、高温度によるしきい値電圧の低
減に対しても、最低のしきい値電圧を保持し得るのであ
る。That is, in the present invention, the threshold voltage of the device structure after the production is completed by irradiating the device structure in the intermediate stage with electron beam irradiation is maintained within the desired range of about 2 to 5V. In addition, the minimum threshold voltage can be maintained even when the threshold voltage is reduced due to high temperature.
以下、この発明に係る半導体装置の製造方法の一実施例
につき、第1図ないし第3図を参照して詳細に説明す
る。An embodiment of a method of manufacturing a semiconductor device according to the present invention will be described in detail below with reference to FIGS.
第1図はこの実施例方法を適用した竪型IGBTの概要構成
を示す断面図である。FIG. 1 is a sectional view showing a schematic structure of a vertical IGBT to which the method of this embodiment is applied.
すなわち,この実施例装置の場合にも、p+シリコン基板
21上には、エピタキシャル成長などにより高濃度n+層2
2,および低不純物濃度のn-層23を順次に形成させ、かつ
このn-層23の主表面上に、DSA法によりpウエル層24,お
よび同層24中へのn+型ソース層25とを選択的に形成させ
てチャンネル領域26を得る。そしてこのとき、このチャ
ンネル領域26の表面濃度をして、素子における電子線照
射前のしきい値電圧が5〜10V程度になるように設定し
ておくのである。That is, even in the case of the device of this embodiment, p + silicon substrate
On top of 21, a high concentration n + layer 2 is formed by epitaxial growth or the like.
2, and the n − layer 23 having a low impurity concentration are sequentially formed, and the p well layer 24 and the n + type source layer 25 in the same layer 24 are formed on the main surface of the n − layer 23 by the DSA method. And are selectively formed to obtain the channel region 26. At this time, the surface concentration of the channel region 26 is set so that the threshold voltage of the device before electron beam irradiation is about 5 to 10V.
ついで、チャンネル領域26上にゲート絶縁膜27を介して
ゲート電極28を、n+型ソース層25とpウエル層24とを同
時にオーミックコンタクトするようにソース電極29を、
p+シリコン基板21の他面にドレイン電極30をそれぞれに
形成させた上で、電子線を照射すると共に、かつ熱処理
して、素子のしきい値電圧が2〜5V程度になるようにし
たものである。Then, a gate electrode 28 is formed on the channel region 26 via the gate insulating film 27, and a source electrode 29 is formed so that the n + type source layer 25 and the p well layer 24 are simultaneously ohmic-contacted.
A drain electrode 30 is formed on the other surface of the p + silicon substrate 21, respectively, and then electron beams are irradiated and heat treatment is performed so that the threshold voltage of the device becomes about 2 to 5V. Is.
従つて、前記のようにして製造された実施例構成による
竪型IGBT11においては、装置の製造後にあつて2〜5V程
度の範囲のしきい値電圧VGS(th)が得られ、温度の経時
変化に対しても、このしきい値電圧VGS(th)は殆んど変
動することがない。そしてまた、通常,考えられる10mV
/℃程度の高温度VGS(th)の低減に対しても、150℃の高
温において、最低0.7V程度の値を保証できるのである。Therefore, in the vertical IGBT 11 according to the example configuration manufactured as described above, the threshold voltage V GS (th) in the range of about 2 to 5 V is obtained after manufacturing the device, and the temperature The threshold voltage V GS (th) hardly changes even with time. And also, usually 10mV considered
Even at a high temperature V GS (th) of about / ° C, a value of at least about 0.7V can be guaranteed at a high temperature of 150 ° C.
こゝで、前記した従来例構成におけるように、電子線照
射前に設定されたしきい値電圧VGS(th)が2〜5V程度で
あると、電子線照射後にアニールしても、このしきい値
電圧VGS(th)が1〜2.5V程度までしか回復せず、その下
限値である1Vでは、10mV/℃程度までの温度低減率を考
慮するとき、150℃程度の高温の場合にはノーマリーオ
ン状態となつてしまい、この竪型IGBTの制御が不能にな
る。Here, as in the configuration of the conventional example described above, if the threshold voltage V GS (th) set before the electron beam irradiation is about 2 to 5 V, even if annealing is performed after the electron beam irradiation, this The threshold voltage V GS (th) recovers only up to about 1 to 2.5 V, and at the lower limit value of 1 V, when considering the temperature reduction rate up to about 10 mV / ° C, when the temperature is about 150 ° C, Becomes a normally-on state, and this vertical IGBT cannot be controlled.
そして、前記従来例構成での電子線照射前の初期しきい
値電圧VGS(th)を2〜5V程度に設定するのには、この実
施例構成の第1図を参考にして、チャンネル領域26部を
1〜2×1017cm-3の表面濃度にするために、1〜2×10
14/cm2での,例えば、B+のイオン注入がなされる。しか
して、この場合には、n+型ソース層25の直下のpウエル
領域24の濃度が低下することによるところの,各層25,2
4,23,21でのnpnpサイリスタ領域のラッチアップが問題
になるために、通常,符号24で示したようなラッチアッ
プ対策用のp+領域の形成を必要とするのである。In order to set the initial threshold voltage V GS (th) before electron beam irradiation in the above conventional configuration to about 2 to 5 V, refer to FIG. To obtain a surface concentration of 1 to 2 × 10 17 cm -3 for 26 parts, 1 to 2 × 10
For example, B + ion implantation at 14 / cm 2 is performed. In this case, however, each of the layers 25, 2 due to the decrease in the concentration of the p well region 24 immediately below the n + type source layer 25
Since the latch-up of the npnp thyristor region at 4,23,21 becomes a problem, it is usually necessary to form the p + region for the latch-up countermeasure as shown by reference numeral 24.
しかして、このような従来例構成に対し、この実施例構
成の場合には、電子線照射前の初期しきい値電圧V
GS(th)を5〜10V程度に高く設定しているために、前記
したチャンネル領域26部を3〜5×1017cm-3の表面濃度
にし得て、n+型ソース層25の直下のpウエル領域24の濃
度が高くなり、これによつて、ラッチアップ対策用のp+
領域を形成せずに済み、仍つて製造プロセスの簡略化も
また可能になるのである。In contrast to such a conventional example configuration, in the case of this example configuration, the initial threshold voltage V before electron beam irradiation is
Since the GS (th) is set to a high value of about 5 to 10 V, the above-mentioned channel region 26 portion can be made to have a surface concentration of 3 to 5 × 10 17 cm −3 , and the portion directly below the n + type source layer 25 can be obtained. The concentration of the p-well region 24 becomes high, which results in p +
No regions have to be formed, which also simplifies the manufacturing process.
次に、この実施例方法による具体例について述べる。Next, a specific example according to this embodiment method will be described.
第2図(a)ないし(d)はこの実施例方法を適用した
竪型IGBTの製造態様の概要を工程順に示すそれぞれ断面
図である。2 (a) to 2 (d) are cross-sectional views showing the outline of the manufacturing mode of the vertical IGBT to which the method of this embodiment is applied in the order of steps.
すなわち,この実施例方法の場合にあつては、まず、0.
01Ω−cm程度のp+型シリコン基板21の主面上に、0.1Ω
−cm程度のn+不純物エピタキシャル層からなる高濃度n+
層22を約20μmの厚さに形成させ、かつこの高濃度n+層
22上に、50Ω−cm程度の低不純物濃度のn-層23を約100
μmの厚さに形成させる(第2図(a))。That is, in the case of this embodiment method, first,
0.1Ω on the main surface of p + type silicon substrate 21 of about 01Ω-cm
High concentration n + composed of n + impurity epitaxial layer of about −cm
Layer 22 is formed to a thickness of about 20 μm, and this high-concentration n + layer is formed.
A n - layer 23 with a low impurity concentration of about 50 Ω-cm is formed on
It is formed to a thickness of μm (FIG. 2 (a)).
ついで、前記n-層23の表面を酸化させることにより、約
1000〜1500Åの厚さのゲート絶縁膜27を形成させたの
ち、その上に約5000Åの厚さのポリシリコンからなるゲ
ート電極28を形成させる。また、その後,このゲート電
極28をマスクにしてイオン注入などの手段により、約5
×1014/cm2のB+をドープし、かつ拡散によつて約10μm
程度の深さのpウエル層24を選択的に形成させ、さら
に、ゲート電極28による窓の中央部のみを絶縁膜で覆
い、これらのゲート電極28および絶縁膜をマスクにして
Asやリンを拡散し、pウエル層24中にn+型ソース層25を
選択的に形成させてチャンネル領域26を得る(同図
(b))。Then, by oxidizing the surface of the n − layer 23,
After forming a gate insulating film 27 having a thickness of 1000 to 1500Å, a gate electrode 28 made of polysilicon having a thickness of about 5000Å is formed thereon. After that, by using this gate electrode 28 as a mask, by means such as ion implantation, about 5
Doped with × 10 14 / cm 2 of B + and about 10 μm by diffusion
The p-well layer 24 having a certain depth is selectively formed, and only the central portion of the window formed by the gate electrode 28 is covered with an insulating film, and the gate electrode 28 and the insulating film are used as a mask.
As and phosphorus are diffused to selectively form the n + type source layer 25 in the p well layer 24 to obtain the channel region 26 (FIG. 2B).
さらに、前記n+型ソース層25とpウエル層24とを同時に
オーミックコンタクトするようにしてソース電極29を形
成させ、また、前記p+シリコン基板21の他面にはドレイ
ン電極30をそれぞれに形成させる(同図(c))。こゝ
で、このようにして得た中間段階の素子構成の初期しき
い値電圧VGS(th)は5〜10V程度である。Further, a source electrode 29 is formed by simultaneously making ohmic contact with the n + type source layer 25 and the p well layer 24, and a drain electrode 30 is formed on the other surface of the p + silicon substrate 21. (Fig. (C)). Here, the initial threshold voltage V GS (th) of the intermediate stage device structure thus obtained is about 5 to 10V.
そしてまた、前記中間段階での素子構成に対しては、続
いて、5×1013〜8×1014cm-2程度の照射量の電子線を
照射させ(同図(d))、その後,温度約300℃程度
で、おゝよそ2〜5時間程度アニール処理して、前記第
1図に示した竪型IGBTを完成する。Further, again, for the element structure at the intermediate stage, an electron beam with an irradiation amount of about 5 × 10 13 to 8 × 10 14 cm −2 is irradiated (FIG. (D)), and thereafter, Annealing is performed at a temperature of about 300 ° C. for about 2 to 5 hours to complete the vertical IGBT shown in FIG.
しかして、この場合,第3図に示されている通り、前記
電子線の照射後のしきい値電圧VGS(th)は、−4〜5V程
度まで低下するが、その後のアニール処理に伴ない2〜
5V程度まで回復する。すなわち,このアニール処理を伴
なつて、ターンオフ時間は、アニール処理時間と共に徐
々に回復し、一方,しきい値電圧VGS(th)は、その回復
がおゝよそ2〜5時間程度で飽和してしまう。仍つて、
このアニール処理は、温度約300℃程度で、2〜5時間
程度行なうことが望ましい。In this case, however, as shown in FIG. 3, the threshold voltage V GS (th) after irradiation with the electron beam is reduced to about −4 to 5 V, but it is accompanied by the subsequent annealing treatment. No 2
Recover up to about 5V. That is, with this annealing treatment, the turn-off time gradually recovers with the annealing treatment time, while the threshold voltage V GS (th) is saturated within about 2 to 5 hours. Will end up. On the other hand,
This annealing treatment is preferably performed at a temperature of about 300 ° C. for about 2 to 5 hours.
すなわち,以上のようにして、目的とするところの,前
記作用,効果を有する所期の竪型IGBTを製造し得るので
ある。That is, as described above, it is possible to manufacture the intended vertical IGBT having the above-mentioned actions and effects.
なお、前記実施例方法においては、素子構成各部の導電
形をそれぞれに特定した場合について述べたが、これら
を逆の導電形にした場合にも適用できて、同様な作用,
効果を得られることは勿論である。In the method of the embodiment described above, the case where the conductivity type of each component of the element is specified has been described, but it is applicable to the case where these conductivity types are opposite to each other, and the same action,
Of course, the effect can be obtained.
以上詳述したようにこの発明によれば、相互に逆の導電
形で直列に隣接するソース領域,ウエル領域,基体領
域,およびドレイン領域を有してサイリスタ構成とさ
れ、かつソース領域とウエル領域との表面に、DSA法に
よつて自己整合的にチャンネル領域を形成させ、チャン
ネル領域にゲート絶縁膜を介して形成されるゲート電極
により制御可能にした竪型IGBTにおいて、まず、チャン
ネル領域の形成時に、このチャンネル領域の表面濃度
を、素子構成のしきい値電圧がおゝよそ5〜10V程度に
なるように3〜5×1017cm-3に設定させ、ついで、同表
面側から5×1013〜8×1014cm-2の照射量の電子線を照
射した後、おゝよそ300℃の温度で2〜5時間のアニー
ル処理をして、電子線照射時に低下したしきい値電圧
を、おゝよそ2〜5V程度まで回復させるようにしたか
ら、中間段階での素子構成に電子線照射をなして製造終
了した後のしきい値電圧を、常時,所定の値であるとこ
ろの,おゝよそ2〜5Vの範囲に維持し得ると共に、高温
度によるしきい値電圧の低減に対しても、最低のしきい
値電圧を効果的に保持でき、しかも、この種のサイリス
タ構成におけるラッチアップ対策をも自動的に講ずるこ
とができて、製造工程自体の簡略化をも図り得るなどの
優れた特長を有するものである。As described above in detail, according to the present invention, a thyristor structure is formed by having a source region, a well region, a substrate region, and a drain region which are adjacent to each other in series and have opposite conductivity types, and which has a source region and a well region. In the vertical IGBT in which the channel region is formed on the surface of and by the DSA method in a self-aligning manner and can be controlled by the gate electrode formed through the gate insulating film in the channel region, first, the formation of the channel region is performed. At this time, the surface concentration of this channel region is set to 3 to 5 × 10 17 cm -3 so that the threshold voltage of the device structure is about 5 to 10 V, and then 5 × from the same surface side. After irradiation with an electron beam at a dose of 10 13 to 8 × 10 14 cm -2 , annealing was performed at a temperature of about 300 ° C. for 2 to 5 hours, and the threshold voltage decreased during electron beam irradiation. To about 2-5V Therefore, the threshold voltage after electron beam irradiation to the element structure at the intermediate stage and the end of manufacturing is always maintained within a range of about 2 to 5 V which is a predetermined value. In addition, the minimum threshold voltage can be effectively held even if the threshold voltage is reduced due to high temperature, and the latch-up countermeasure in this type of thyristor configuration can be automatically taken. Therefore, it has an excellent feature that the manufacturing process itself can be simplified.
第1図はこの発明に係る半導体装置の製造方法の一実施
例を適用した竪型IGBTの概要構成を示す断面図、第2図
(a)ないし(d)は同上竪型IGBTの製造態様の概要を
工程順に示すそれぞれ断面図、第3図は同上方法でのア
ニール処理時におけるしきい値電圧,およびターンオフ
時間と、アニール処理時間との関係を示す説明図であ
り、また、第4図は同上従来例による竪型IGBTの概要構
成を示す断面図である。 21……p+シリコン基板、22……高濃度n+層、23……低不
純物濃度のn-層、24……pウエル層、25……n+型ソース
層、26……チャンネル領域、27……ゲート絶縁膜、28…
…ゲート電極28、29……ソース電極、30……ドレイン電
極。FIG. 1 is a sectional view showing a schematic structure of a vertical IGBT to which an embodiment of a method for manufacturing a semiconductor device according to the present invention is applied, and FIGS. FIG. 4 is a cross-sectional view showing an outline of the steps in order, and FIG. 3 is an explanatory view showing the relationship between the annealing voltage and the threshold voltage and turn-off time during the annealing process by the same method. FIG. 7 is a cross-sectional view showing a schematic configuration of a vertical IGBT according to the conventional example. 21 …… p + silicon substrate, 22 …… high concentration n + layer, 23 …… low impurity concentration n − layer, 24 …… p well layer, 25 …… n + type source layer, 26 …… channel region, 27 ... Gate insulating film, 28 ...
… Gate electrodes 28, 29 …… Source electrode, 30 …… Drain electrode.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Solid−State Electr onics,Vol.26[12](Dec. 1983),Baliga et al.: “Improving the Reve rse Recovery of Pow er MOSFET Integral Diodes by Electron Irradiation,”PP.1133− 1141 ─────────────────────────────────────────────────── ─── Continued Front Page (56) References Solid-State Electronics, Vol. 26 [12] (Dec. 1983), Baliga et al. "Improving the Revise Recovery of Power MOSFET Integral Diodes by Electron Irradiation," PP. 1133-1114
Claims (1)
領域,ウエル領域,基体領域,およびドレイン領域を有
し、かつ前記ソース領域とウエル領域との表面に、DSA
法によって自己整合的にチャンネル領域を形成した素子
構成とされ、前記チャンネル領域にゲート絶縁膜を介し
て形成したゲート電極により制御される堅型IGBTにおい
て、前記チャンネル領域の形成時に、まず、その表面濃
度を、素子構成のしきい値電圧がおゝよそ5〜10V程度
になるように3〜5×1017cm-3に設定させ、ついで、5
×1013〜8×1014cm-2の照射量の電子線を照射した後、
おゝよそ300℃の温度で2〜5時間のアニール処理し
て、電子線照射時に低下した前記しきい値電圧を、おゝ
よそ2〜5V程度まで回復させるようにしたことを特徴と
する半導体装置の製造方法。1. A DSA having a source region, a well region, a substrate region, and a drain region which are opposite in conductivity type and are adjacent in series, and DSA is provided on the surface of the source region and the well region.
In a rigid IGBT that has a device structure in which a channel region is formed in a self-aligned manner by a method and is controlled by a gate electrode formed through a gate insulating film in the channel region, first, when the channel region is formed, its surface is first formed. The concentration is set to 3 to 5 × 10 17 cm -3 so that the threshold voltage of the device configuration is about 5 to 10 V, and then 5
After irradiating with an electron beam of a dose of × 10 13 to 8 × 10 14 cm -2 ,
A semiconductor characterized by being annealed at a temperature of about 300 ° C. for 2 to 5 hours to recover the threshold voltage lowered during electron beam irradiation to about 2 to 5V. Device manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62059521A JPH0728036B2 (en) | 1987-03-13 | 1987-03-13 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62059521A JPH0728036B2 (en) | 1987-03-13 | 1987-03-13 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63226072A JPS63226072A (en) | 1988-09-20 |
JPH0728036B2 true JPH0728036B2 (en) | 1995-03-29 |
Family
ID=13115650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62059521A Expired - Lifetime JPH0728036B2 (en) | 1987-03-13 | 1987-03-13 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0728036B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013111568A1 (en) * | 2012-01-23 | 2013-08-01 | 株式会社デンソー | Semiconductor device and method for producing same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02185069A (en) * | 1988-12-02 | 1990-07-19 | Motorola Inc | Semiconductor device having high-energy stopping power and temperature-compensated stopping voltage |
JP2753331B2 (en) * | 1989-06-26 | 1998-05-20 | 株式会社日立製作所 | Semiconductor device |
KR102251761B1 (en) * | 2019-11-27 | 2021-05-14 | 현대모비스 주식회사 | Power semiconductor device |
-
1987
- 1987-03-13 JP JP62059521A patent/JPH0728036B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
Solid−StateElectronics,Vol.26[12(Dec.1983),Baligaetal.:"ImprovingtheReverseRecoveryofPowerMOSFETIntegralDiodesbyElectronIrradiation,"PP.1133−1141 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013111568A1 (en) * | 2012-01-23 | 2013-08-01 | 株式会社デンソー | Semiconductor device and method for producing same |
JP2013175707A (en) * | 2012-01-23 | 2013-09-05 | Denso Corp | Semiconductor device and manufacturing method of the same |
Also Published As
Publication number | Publication date |
---|---|
JPS63226072A (en) | 1988-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0467343B2 (en) | ||
US5032532A (en) | Method for fabricating insulated gate semiconductor device | |
US7932538B2 (en) | Insulated gate bipolar transistor and method of fabricating the same | |
EP0424710B1 (en) | Thyristor and method of manufacturing the same | |
JPS61156882A (en) | Double-diffused igfet and manufacture thereof | |
JP3413021B2 (en) | Semiconductor device | |
JP2000277734A (en) | Insulated-gate semiconductor device and its manufacture | |
JPS63186476A (en) | Vertical mosfet | |
JP2501810B2 (en) | Vertical MOSFET | |
JPH07101737B2 (en) | Method for manufacturing semiconductor device | |
JPH0728036B2 (en) | Method for manufacturing semiconductor device | |
JPS6184867A (en) | Manufacture of igfet | |
US4216038A (en) | Semiconductor device and manufacturing process thereof | |
JP3333299B2 (en) | Power semiconductor device | |
JP2513665B2 (en) | Insulated gate type thyristor | |
JP3369862B2 (en) | Method for manufacturing semiconductor device | |
JP2964609B2 (en) | Insulated gate bipolar transistor and method of manufacturing the same | |
JPH0529628A (en) | Insulating-gate type bipolar transistor | |
JP3186298B2 (en) | Method for manufacturing MOS type semiconductor device | |
JP2808945B2 (en) | Method of manufacturing vertical MOS field effect transistor | |
JP3061030B2 (en) | Method for manufacturing semiconductor device | |
JPH0575041A (en) | Cmos semiconductor device | |
JPH0234937A (en) | Manufacture of semiconductor device | |
JPH05343667A (en) | Manufacture of conductivity modulation type mosfet | |
JPH0888232A (en) | Manufacture of vertical mos semiconductor element |