JPH05343667A - Manufacture of conductivity modulation type mosfet - Google Patents

Manufacture of conductivity modulation type mosfet

Info

Publication number
JPH05343667A
JPH05343667A JP15169592A JP15169592A JPH05343667A JP H05343667 A JPH05343667 A JP H05343667A JP 15169592 A JP15169592 A JP 15169592A JP 15169592 A JP15169592 A JP 15169592A JP H05343667 A JPH05343667 A JP H05343667A
Authority
JP
Japan
Prior art keywords
semiconductor layer
impurity semiconductor
region
type
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15169592A
Other languages
Japanese (ja)
Other versions
JP2768143B2 (en
Inventor
Hiroyasu Hagino
浩靖 萩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15169592A priority Critical patent/JP2768143B2/en
Publication of JPH05343667A publication Critical patent/JPH05343667A/en
Application granted granted Critical
Publication of JP2768143B2 publication Critical patent/JP2768143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce Vth without latchup a parasitic thyristor by accelerating a switching operation of an IGBT. CONSTITUTION:A method for manufacturing an IGBT for controlling an operation of a bipolar transistor by a MOSFET formed of an emitter region, a base region, a conductivity modulation layer and a gate electrode of the transistor so formed as to be bridged thereover comprises the steps of damaging the modulation layer by irradiating it with an electron beam of the step 1, shortening a life time of minority carrier in the modulation layer, and damaging a gate oxide film by irradiating it with an electron beam of the step 3 to lower Vth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、伝導度変調型MOS
FETの製造方法に関するものである。
BACKGROUND OF THE INVENTION This invention relates to a conductivity modulation type MOS.
The present invention relates to an FET manufacturing method.

【0002】[0002]

【従来の技術】図3は、nチャネル伝導度変調型MOS
FET(IGBT:絶縁ゲート型バイポーラトランジス
タ)を示す断面図である。図3において、1はp+ コレ
クタ領域、2はp+ コレクタ領域1からのキャリア(ホ
ール)の注入を制限するためのn+ バッファ領域、3は
高抵抗率を有するn型ボディ領域、4はn型ボディ領域
3の主表面の一部にp型不純物をイオン注入するなどの
方法で形成されたp型ベース領域、5はこのp型ベース
領域4内に選択的に高濃度のn型不純物をイオン注入あ
るいは拡散することにより形成されたn+ エミッタ領域
である。6は2つのn+ エミッタ領域に両端が架かるよ
うに形成されたゲート酸化膜であり、このゲート酸化膜
6は隣接するIGBTセル間で一体となるようにn型ボ
ディ領域3の表面上にも形成されている。7はゲート酸
化膜6の上に形成されたポリシリコンからなるゲート電
極、8はp型ベース領域4及びn- エミッタ領域5の両
方に電気的に接続するように形成されたアルミなどの金
属からなるエミッタ電極、9はp+ コレクタ領域1の裏
面に形成された金属のコレクタ電極である。
2. Description of the Related Art FIG. 3 shows an n-channel conductivity modulation type MOS.
It is sectional drawing which shows FET (IGBT: insulated gate bipolar transistor). In FIG. 3, 1 is a p + collector region, 2 is an n + buffer region for limiting injection of carriers (holes) from the p + collector region 1, 3 is an n-type body region having high resistivity, and 4 is A p-type base region 5 formed by a method of ion-implanting a p-type impurity into a part of the main surface of the n-type body region 3 is a high-concentration n-type impurity selectively in the p-type base region 4. Is an n + emitter region formed by ion implantation or diffusion. Reference numeral 6 denotes a gate oxide film formed so as to extend across both ends of two n + emitter regions. This gate oxide film 6 is also formed on the surface of the n-type body region 3 so as to be integrated between adjacent IGBT cells. Has been formed. Reference numeral 7 is a gate electrode made of polysilicon formed on the gate oxide film 6, and 8 is a metal such as aluminum formed so as to be electrically connected to both the p-type base region 4 and the n emitter region 5. Is a metal collector electrode formed on the back surface of the p + collector region 1.

【0003】この伝導度変調型MOSFET(IGB
T)のゲート電極7に正、エミッタ電極8にVth(閾
値電圧)を越える負のバイアス電圧VG (ゲート電圧)
を印加すると、n+ エミッタ領域5とn型ボディ領域3
で挟まれたp型ベース領域4の領域41の表面がn型に
反転し(反転層)、電子がこの反転層を通って、n
ミッタ領域5からn型ボディ領域3に注入される。それ
にともない、p+ コレクタ領域1からn+ バッファ領域
2を通ってn型ボディ領域3へホールが注入される。こ
のように、IGBTは基本的にはバイポーラ的動作をす
る。このIGBTは、p+ コレクタ領域1とn型ボディ
領域3とp型ベース領域4とで形成されるトランジスタ
部を、ゲート電極7とゲート酸化膜6とp型ベース領域
4とで形成されるMOSFETでベース駆動する素子で
ある。
This conductivity modulation type MOSFET (IGB
T), a positive bias voltage is applied to the gate electrode 7 and a negative bias voltage V G (gate voltage) is applied to the emitter electrode 8 exceeding Vth (threshold voltage).
Is applied, the n + emitter region 5 and the n-type body region 3
The surface of the p-type region 41 of the base region 4 sandwiched by is inverted to n-type (inversion layer), the electrons through the inversion layer are injected from the n-emitter region 5 in n-type body region 3. Accordingly, holes are injected from p + collector region 1 through n + buffer region 2 into n type body region 3. In this way, the IGBT basically operates in a bipolar manner. In this IGBT, a transistor portion formed of ap + collector region 1, an n-type body region 3 and a p-type base region 4, a MOSFET formed of a gate electrode 7, a gate oxide film 6 and a p-type base region 4 is formed. It is an element that is driven by the base.

【0004】IGBTは、以上のようにバイポーラ動作
をし、n型ボディ領域3で伝導度変調が起こり、この領
域の抵抗は大幅に低下し、MOSFET部が導電変調を
受けるため、高耐圧化しても充分なベース電流を上記ト
ランジスタ部に供給できるので、通常のMOSFETに
比較して、高耐圧でオン電圧の低い素子が得られる。
The IGBT operates in the bipolar manner as described above, conductivity modulation occurs in the n-type body region 3, the resistance of this region is significantly reduced, and the MOSFET portion undergoes conductivity modulation, so that the withstand voltage is increased. Since a sufficient base current can be supplied to the transistor portion, an element having a high breakdown voltage and a low on-voltage can be obtained as compared with an ordinary MOSFET.

【0005】ところがこのままでは、伝導度変調の担い
手となる小数キャリア(ホール)がスイッチング時には
n型ボディ領域3の残留キャリアとなるため、高速性が
阻害されターンオフ時間が長いという問題があった。こ
の残留キャリアのライフタイムを短くする制御の1つと
して、電子線照射が挙げられる。電子線照射によりn型
ボディ領域3に損傷を与えることで、正孔(キャリア)
のライフタイムを短くできる。またこのとき、同時に、
ゲート酸化膜6にも損傷を与え、この損傷が+イオン固
定電荷として働き、Vthを低下させる。
However, as it is, the minority carriers (holes), which are responsible for the conductivity modulation, become the residual carriers in the n-type body region 3 at the time of switching, so that there is a problem that the high speed is obstructed and the turn-off time is long. One of the controls for shortening the lifetime of the residual carrier is electron beam irradiation. Holes (carriers) are generated by damaging the n-type body region 3 by electron beam irradiation.
Life time can be shortened. Also at this time, at the same time,
The gate oxide film 6 is also damaged, and this damage acts as + ion fixed charges, which lowers Vth.

【0006】ところで、これらの損傷は熱的に不安定で
あるため、実用上安定させるためには、実使用上に起こ
る温度よりも十分に高い(約300℃以上)温度でアニ
ールをする必要がある。このアニールによって、n型ボ
ディ領域3中にできた損傷やゲート酸化膜6中の損傷の
一部は回復する。この回復の度合いは、温度と時間に依
存し、特に温度に対する依存性は強く、温度を上げる
と、電子線の照射による損傷の回復量は増す。この回復
メカニズムを用いることによって、高速でかつ、ラッチ
アップ耐性の強いディバイスが得られる。
By the way, since these damages are thermally unstable, it is necessary to anneal at a temperature sufficiently higher (about 300.degree. C. or more) than the temperature that actually occurs in order to stabilize it practically. is there. By this annealing, some of the damages formed in the n-type body region 3 and the damages in the gate oxide film 6 are recovered. The degree of this recovery depends on the temperature and the time, and in particular, the dependence on the temperature is strong. When the temperature is raised, the recovery amount of damage due to electron beam irradiation increases. By using this recovery mechanism, a device that is fast and has a strong latch-up resistance can be obtained.

【0007】[0007]

【発明が解決しようとする課題】Vthは低いほど電子
を多く供給することができるため、オン電圧を下げるこ
とができるが、従来のIGBTは以上のようにして製造
されていたため、電子線でゲート酸化膜6に損傷を与え
てVthを低下させても、これらの損傷を安定させるた
めに行うアニールでそのゲート酸化膜6の損傷が回復し
てしまい、初期設計ほどVthが下がらないと言う問題
があった。一方、Vthを下げるための他の方法とし
て、p型ベース領域4の不純物濃度を下げるか、ゲート
酸化膜6を薄くするかであるが、双方とも他の特性への
影響がある。
Since the higher Vth is, the more electrons can be supplied, the on-voltage can be lowered. However, since the conventional IGBT is manufactured as described above, the gate is formed by the electron beam. Even if the oxide film 6 is damaged and Vth is lowered, the damage of the gate oxide film 6 is recovered by annealing performed to stabilize these damages, and Vth does not decrease as much as in the initial design. there were. On the other hand, another method for reducing Vth is to reduce the impurity concentration of the p-type base region 4 or to reduce the thickness of the gate oxide film 6, but both have an effect on other characteristics.

【0008】前者のp型ベース領域4の不純物濃度を下
げる方法によるとキャリアの数が減少し、n+ エミッタ
領域5直下のp型ベース領域4の横方向抵抗Rb(図
3)が大きくなり、n+ エミッタ領域5,p型ベース領
域4,n型ボディ領域3,p+コレクタ領域1からなる
寄生サイリスタが動作し易くなり(ラッチアップ)、I
GBTとしての安全動作領域が低下する。また、後者の
ゲート酸化膜6を薄くする方法によると、入力容量が増
えてスイッチング時間が長くなる。
According to the former method of lowering the impurity concentration of the p-type base region 4, the number of carriers is reduced, and the lateral resistance Rb (FIG. 3) of the p-type base region 4 immediately below the n + emitter region 5 is increased. The parasitic thyristor composed of the n + emitter region 5, the p-type base region 4, the n-type body region 3, and the p + collector region 1 becomes easy to operate (latch-up), and I
The safe operation area as the GBT is reduced. The latter method of thinning the gate oxide film 6 increases the input capacitance and prolongs the switching time.

【0009】この発明は、以上のような問題を解決する
ためになされたもので、IGBTのスイッチング動作を
早くし、寄生サイリスタのラッチアップを起こすこと無
しにVthを低くすることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to speed up the switching operation of an IGBT and reduce Vth without causing latch-up of a parasitic thyristor.

【0010】[0010]

【課題を解決するための手段】以上の問題点を解消する
ためにこの発明では、電子線を基板に照射する第1の工
程と、第1の工程に次いで基板を加熱してアニールする
第2の工程と、第1の工程より低いエネルギーの電子線
を基板に照射する第3の工程と、第3の工程に次いで第
2の工程より低い温度で基板を加熱してアニールする第
4の工程と含むことを特徴とする。
In order to solve the above problems, according to the present invention, a first step of irradiating a substrate with an electron beam and a second step of heating and annealing the substrate subsequent to the first step Step, a third step of irradiating the substrate with an electron beam having lower energy than the first step, and a fourth step of heating the substrate at a temperature lower than that of the second step and annealing the substrate after the third step. It is characterized by including.

【0011】[0011]

【作用】まず、始めの電子線照射で伝導度変調を起こす
領域が損傷をうけ、底の小数キャリアのライフタイムが
短くなる。この次の電子線照射では、ゲート酸化膜が損
傷を受け、Vthが下がる。
First, the region where conductivity is modulated by the first electron beam irradiation is damaged, and the lifetime of the decimal carrier at the bottom is shortened. In the subsequent electron beam irradiation, the gate oxide film is damaged and Vth is lowered.

【0012】[0012]

【実施例】以下この発明の1実施例を図を参照して説明
する。図1はこの発明の製造フローを示すフローチャー
トである。まず、ウエハ上にIGBTを形成する前工程
を図3を参照して説明する。ボロンなどの不純物を有す
る比抵抗0.001〜0.02Ω/cm程度のp+コレ
クタ領域1(基板)の上に、厚さ10〜20μm,比抵
抗0.03〜0.1Ωcmのn+ バッファ領域2をエピ
タキシャル成長により形成する。さらに連続的にエピタ
キシャル成長させることにより、高抵抗率のn型ボディ
領域3を形成する。例えば定格電圧が1200Vクラス
のものであれば、約50〜60Ω/cm程度の比抵抗
で、厚さが約100μmの厚さで形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing the manufacturing flow of the present invention. First, a pre-process of forming an IGBT on a wafer will be described with reference to FIG. An n + buffer having a thickness of 10 to 20 μm and a specific resistance of 0.03 to 0.1 Ωcm is formed on the p + collector region 1 (substrate) having a specific resistance of about 0.001 to 0.02 Ω / cm containing impurities such as boron. Region 2 is formed by epitaxial growth. Further, epitaxial growth is performed continuously to form the n-type body region 3 having a high resistivity. For example, if the rated voltage is in the 1200 V class, it is formed with a specific resistance of about 50 to 60 Ω / cm and a thickness of about 100 μm.

【0013】次に、n型ボディ領域3上に全面に約厚さ
800〜1000Å程度の酸化膜を形成し、この酸化膜
上に約5000〜6000Å程度のポリシリコン層を形
成する。これらの酸化膜,ポリシリコン層に対する写真
製版によってゲート酸化膜6及びゲート電極7を形成
し、このゲート電極7をマスクとし低温注入法によりボ
ロンを注入し、p型ベース領域4を形成する。このとき
の注入量は、4〜8×1014cm-2程度である。さら
に、同じくゲート電極7をマスクにして、p型ベース領
域4内に選択的にリン,砒素などの不純物を注入または
拡散させてn+ エミッタ領域5を形成する。そして、n
+ エミッタ領域5とp型ベース領域4とを電気的に接続
するアルミなどの金属によりなるエミッタ電極8を形成
し、さらにp+ コレクタ領域1にオーミック接続される
コレクタ電極9が形成する(ステップS1)。
Next, an oxide film having a thickness of about 800 to 1000 Å is formed on the entire surface on the n-type body region 3, and a polysilicon layer having a thickness of about 5000 to 6000 Å is formed on the oxide film. A gate oxide film 6 and a gate electrode 7 are formed by photolithography on these oxide film and polysilicon layer, and boron is injected by a low temperature injection method using the gate electrode 7 as a mask to form a p-type base region 4. The implantation amount at this time is about 4 to 8 × 10 14 cm −2 . Further, using the gate electrode 7 as a mask, impurities such as phosphorus and arsenic are selectively implanted or diffused in the p-type base region 4 to form the n + emitter region 5. And n
An emitter electrode 8 made of a metal such as aluminum for electrically connecting the + emitter region 5 and the p-type base region 4 is formed, and a collector electrode 9 ohmic-connected to the p + collector region 1 is formed (step S1). ).

【0014】つぎに、この発明の工程1として、このI
GBTウエハに約0.75MeV程度の加速電圧で5〜
15×1014/cm2 程度のドーズ量の電子線を照射す
る(ステップS2)。このとき、小数キャリアのライフ
タイムは数10ns以下になっている。また、Vth
は、電子線照射前には8〜10V程度であったものが、
−5〜0V程度まで低下する。次に、工程2として後工
程の組み立て時の熱処理などを考慮にいれ、330〜3
50℃程度で1〜3時間程度アニールする(ステップS
3)。すると、Vthは照射前より約2V程度低いとこ
ろまで回復する。また、その時、n型ボディ領域3の小
数キャリアのライフタイムは200〜300ns程度に
なっている。
Next, as step 1 of the present invention, this I
5 ~ at an acceleration voltage of about 0.75 MeV for a GBT wafer
An electron beam with a dose of about 15 × 10 14 / cm 2 is irradiated (step S2). At this time, the lifetime of the decimal carrier is several tens of ns or less. Also, Vth
Was about 8-10V before electron beam irradiation,
It falls to about -5 to 0V. Next, as a process 2, 330 to 3 in consideration of heat treatment at the time of assembly in a later process.
Anneal at about 50 ° C. for about 1 to 3 hours (step S
3). Then, Vth is recovered to a level about 2 V lower than that before irradiation. At that time, the lifetime of the minority carrier in the n-type body region 3 is about 200 to 300 ns.

【0015】次に、工程3として工程1の1回目の照射
より低い加速電圧(例えば200〜300keV程度が
適当)で、かつ、約1015cm-2程度のドーズ量で再び
電子線照射を行う(ステップS4)。このとき、エネル
ギーが200〜300keVと低いと、n型ボディ領域
3にはその小数キャリアのライフタイムに影響を与える
ような損傷はほとんどできないが、ゲート酸化膜6の中
には充分損傷ができ、Vthは低下する。このときのV
thは、やはり0V近傍まで下がる。次に、工程4とし
て、このVthを熱的に安定させるために、約300℃
で約1時間程度アニールする(ステップS5)。この段
階では、330〜350℃以下で回復する損傷は回復し
てしまっているので、小数キャリアのライフタイムはほ
とんど変わらないが、2回目の電子線照射でできたゲー
ト酸化膜6の中の損傷が部分的に回復するため、最終的
にVthは望ましい4〜6V程度になる。
Next, in step 3, electron beam irradiation is performed again at an acceleration voltage lower than that in the first irradiation in step 1 (for example, about 200 to 300 keV is appropriate) and a dose amount of about 10 15 cm -2. (Step S4). At this time, if the energy is as low as 200 to 300 keV, the n-type body region 3 can hardly be damaged to affect the lifetime of the minority carriers, but the gate oxide film 6 can be sufficiently damaged. Vth decreases. V at this time
The th also drops to around 0V. Next, in Step 4, in order to thermally stabilize this Vth, about 300 ° C.
Then, annealing is performed for about 1 hour (step S5). At this stage, the damage that recovers at 330 to 350 ° C. or less has been recovered, so the lifetime of the minority carrier hardly changes, but the damage in the gate oxide film 6 formed by the second electron beam irradiation is small. However, Vth finally becomes about 4 to 6 V which is desirable.

【0016】図2には各工程後のVthをキャリアライ
フタイムの変化を示す。工程1と工程2の処理でn型ボ
ディ領域3の小数キャリアのライフタイムが短くなり、
工程1〜工程4の処理でVthは望ましい5V程度まで
下がっている。また、工程1と工程2の処理で短くなっ
た小数キャリアのライフタイムは、工程3と工程4の処
理を行っても変化していない。なお、この実施例では、
nチャネルIGBTに関して述べたが、pチャネルIG
BTにも適用できることは言うまでもない。
FIG. 2 shows changes in Vth and carrier lifetime after each step. The lifetimes of the minority carriers in the n-type body region 3 are shortened by the processing in the steps 1 and 2,
In the processes of steps 1 to 4, Vth is lowered to a desirable level of about 5V. In addition, the lifetime of the minority carrier shortened in the processes of steps 1 and 2 does not change even after the processes of steps 3 and 4. In this example,
I mentioned n-channel IGBT, but p-channel IG
It goes without saying that it can also be applied to BT.

【0017】[0017]

【発明の効果】以上説明したように、この発明によれ
ば、4つの工程により伝導度変調層の小数キャリアのラ
イフタイムを短くすると同時にVthを適正な値にでき
るので、高速でかつオン抵抗の低い伝導度変調型MOS
FETを製造することが可能となる。また、寄生サイリ
スタの動作を抑え、伝導度変調型MOSFETとしての
安全動作範囲を狭めることがないと言う効果もある。
As described above, according to the present invention, the lifetime of the minority carriers in the conductivity modulation layer can be shortened and Vth can be set to an appropriate value by the four steps. Low conductivity modulation type MOS
It becomes possible to manufacture a FET. Further, there is an effect that the operation of the parasitic thyristor is suppressed and the safe operation range of the conductivity modulation type MOSFET is not narrowed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の1実施例である製造方法を示すフロ
ーチャートである。
FIG. 1 is a flowchart showing a manufacturing method according to an embodiment of the present invention.

【図2】図1のフローチャートで示す工程毎のIGBT
のVthとn型ボディ領域(伝導度変調層)の小数キャ
リアのライフタイムの変化を示す変化図である。
FIG. 2 is an IGBT for each process shown in the flowchart of FIG.
FIG. 5 is a change diagram showing changes in Vth and lifetime of minority carriers in the n-type body region (conductivity modulation layer).

【図3】伝導度変調型MOSFETの構成を示す断面図
である。
FIG. 3 is a cross-sectional view showing the structure of a conductivity modulation type MOSFET.

【符号の説明】[Explanation of symbols]

1 p+コレクタ領域 2 n+バッファ領域 3 n型ボディ領域 4 p型ベース領域 5 n+エミッタ領域 6 ゲート酸化膜 7 ゲート電極 8 n+エミッタ電極 9 コレクタ電極1 p + collector region 2 n + buffer region 3 n type body region 4 p type base region 5 n + emitter region 6 gate oxide film 7 gate electrode 8 n + emitter electrode 9 collector electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/336 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/336

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された第1導電型の第1の
不純物半導体層と、前記第1の不純物半導体層の上に形
成された第2導電型の第2の不純物半導体層と、前記第
2の不純物半導体層の上に選択的に形成された第1導電
型の第3の不純物半導体層と、前記第3の不純物半導体
層の上に選択的に形成された第2導電型の第4の不純物
半導体層と、前記第2の不純物半導体層の上にその両端
が前記第3の不純物半導体層と第4の不純物半導体層と
の上に架かるように形成された絶縁層と、前記絶縁層の
上に形成されたゲート電極とから構成され、前記第1の
不純物半導体層,第2の不純物半導体層,第3の不純物
半導体層,第4の不純物半導体層から構成されるバイポ
ーラ型のトランジスタ部を、前記第2の不純物半導体
層、第3の不純物半導体層、第4の不純物半導体層と絶
縁層,ゲート電極とで形成されるMOSFET部で制御
する伝導度変調型MOSFETの製造方法において、 電子線を前記基板に照射する第1の工程と、 前記第1の工程に次いで前記基板を加熱してアニールす
る第2の工程と、 前記第1の工程より低いエネルギーの電子線を前記基板
に照射する第3の工程と、 前記第3の工程に次いで前記第2の工程より低い温度で
前記基板を加熱してアニールする第4の工程とを含む伝
導度変調型MOSFETの製造方法。
1. A first conductivity type first impurity semiconductor layer formed on a substrate, and a second conductivity type second impurity semiconductor layer formed on the first impurity semiconductor layer. A third impurity semiconductor layer of the first conductivity type selectively formed on the second impurity semiconductor layer, and a second impurity type semiconductor layer of the second conductivity type selectively formed on the third impurity semiconductor layer. A fourth impurity semiconductor layer, an insulating layer formed on the second impurity semiconductor layer so that both ends thereof extend over the third impurity semiconductor layer and the fourth impurity semiconductor layer, and And a gate electrode formed on the insulating layer, and of a bipolar type including the first impurity semiconductor layer, the second impurity semiconductor layer, the third impurity semiconductor layer, and the fourth impurity semiconductor layer. The transistor portion is formed of the second impurity semiconductor layer and the third impurity semiconductor. In a method of manufacturing a conductivity modulation type MOSFET controlled by a MOSFET part formed of a body layer, a fourth impurity semiconductor layer, an insulating layer and a gate electrode, a first step of irradiating the substrate with an electron beam, A second step of heating and annealing the substrate after the first step, a third step of irradiating the substrate with an electron beam having lower energy than the first step, and a step of following the third step A fourth step of heating the substrate at a temperature lower than that of the second step to anneal the substrate, and a method of manufacturing a conductivity modulation type MOSFET.
JP15169592A 1992-06-11 1992-06-11 Manufacturing method of conductivity modulation type MOSFET Expired - Lifetime JP2768143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15169592A JP2768143B2 (en) 1992-06-11 1992-06-11 Manufacturing method of conductivity modulation type MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15169592A JP2768143B2 (en) 1992-06-11 1992-06-11 Manufacturing method of conductivity modulation type MOSFET

Publications (2)

Publication Number Publication Date
JPH05343667A true JPH05343667A (en) 1993-12-24
JP2768143B2 JP2768143B2 (en) 1998-06-25

Family

ID=15524246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15169592A Expired - Lifetime JP2768143B2 (en) 1992-06-11 1992-06-11 Manufacturing method of conductivity modulation type MOSFET

Country Status (1)

Country Link
JP (1) JP2768143B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252212A (en) * 2003-04-10 2005-09-15 Fuji Electric Holdings Co Ltd Reverse blocking type semiconductor device and method of manufacturing the same
US7638368B2 (en) * 2003-04-10 2009-12-29 Fuji Electric Holdings Co., Ltd. Reverse blocking semiconductor device and a method for manufacturing the same
US8987866B2 (en) 2012-11-07 2015-03-24 Sony Corporation Semiconductor device, method of manufacturing semiconductor device, and antenna switch module
US9704980B2 (en) 2013-11-12 2017-07-11 Denso Corporation Insulated gate bipolar transistor and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252212A (en) * 2003-04-10 2005-09-15 Fuji Electric Holdings Co Ltd Reverse blocking type semiconductor device and method of manufacturing the same
US7638368B2 (en) * 2003-04-10 2009-12-29 Fuji Electric Holdings Co., Ltd. Reverse blocking semiconductor device and a method for manufacturing the same
US8987866B2 (en) 2012-11-07 2015-03-24 Sony Corporation Semiconductor device, method of manufacturing semiconductor device, and antenna switch module
US9379239B2 (en) 2012-11-07 2016-06-28 Sony Corporation Semiconductor device, method of manufacturing semiconductor device, and antenna switch module
US9537005B2 (en) 2012-11-07 2017-01-03 Sony Corporation Semiconductor device, method of manufacturing semiconductor device, and antenna switch module
US10553550B2 (en) 2012-11-07 2020-02-04 Sony Corporation Semiconductor device, method of manufacturing semiconductor device, and antenna switch module
US9704980B2 (en) 2013-11-12 2017-07-11 Denso Corporation Insulated gate bipolar transistor and method for manufacturing same

Also Published As

Publication number Publication date
JP2768143B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US5985708A (en) Method of manufacturing vertical power device
US6168981B1 (en) Method and apparatus for the localized reduction of the lifetime of charge carriers, particularly in integrated electronic devices
JP3906076B2 (en) Semiconductor device
JPH07107935B2 (en) Semiconductor device
JP2984478B2 (en) Conductivity modulation type semiconductor device and method of manufacturing the same
US5541122A (en) Method of fabricating an insulated-gate bipolar transistor
JPH027569A (en) Field effect controllable bipolar transistor
JPH1027807A (en) Manufacture of semiconductor device
JP3727827B2 (en) Semiconductor device
KR950014279B1 (en) Semiconductor device and its making method
US5065212A (en) Semiconductor device
JP2718907B2 (en) PIC structure and manufacturing method thereof
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
JP2768143B2 (en) Manufacturing method of conductivity modulation type MOSFET
JPS6384164A (en) Perpendicular mosfet
EP1052699A1 (en) Semiconductor device and fabrication method therefor
US5306929A (en) MOS controlled thyristor
JPH0529628A (en) Insulating-gate type bipolar transistor
JP2000200792A (en) Manufacture of semiconductor device
JPH03259537A (en) Semiconductor device and manufacture thereof
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JP3369862B2 (en) Method for manufacturing semiconductor device
JPH01287965A (en) Manufacture of semiconductor device
JPH07321304A (en) Insulated gate bipolar transistor and its manufacture
JPH0982955A (en) Manufacture of semiconductor device