JPH07258802A - Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production - Google Patents

Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production

Info

Publication number
JPH07258802A
JPH07258802A JP6056172A JP5617294A JPH07258802A JP H07258802 A JPH07258802 A JP H07258802A JP 6056172 A JP6056172 A JP 6056172A JP 5617294 A JP5617294 A JP 5617294A JP H07258802 A JPH07258802 A JP H07258802A
Authority
JP
Japan
Prior art keywords
steel sheet
secondary recrystallization
recrystallization annealing
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6056172A
Other languages
Japanese (ja)
Inventor
Hiroaki Masui
浩昭 増井
Kunihide Takashima
邦秀 高嶋
Nobunori Fujii
宣憲 藤井
Shuichi Yamazaki
修一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6056172A priority Critical patent/JPH07258802A/en
Publication of JPH07258802A publication Critical patent/JPH07258802A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain oriented silicon steel sheet capable of forming a primary film and also providing stable Goss-oriented secondary-recrystallized grains. CONSTITUTION:This steel sheet is a grain oriented silicon steel sheet having a composition where 0.001-0.50% of elements having >=70kcal/mol activation energy, such as Hf and Bi, are contained in iron containing 1-7% Si. The primary-recrystallized grain size of this sheet is regulated to 5-35mum, and the standard deviation value is 10-70% of the above. An antimony type compound is added by 0.05-5.0% to magnesia, and the average temp. rise rate from 800'C to the maximum ultimate temp. at the time of secondary recrystallization annealing is regulated to (0.1 to 80) deg.C/hr, and also the bearing between sheets at the time of secondary recrystallization annealing is regulated to <=0.3kg/mm<2>. At this time, when a boron type compound is used instead of antimony type compound, the temp. rise rate from 800 deg.C to the maximum ultimate temp. is regulated to (5 to 400) deg.C/hr. By this method, a magnetic flux density of >=1.92T can be stably obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表面被膜および磁気特性
に優れた珪素鋼板およびその製造法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon steel sheet excellent in surface coating and magnetic properties and a method for producing the same.

【0002】[0002]

【従来の技術】トランス用等の磁気特性に優れた珪素鋼
板を製造するに際して、絶縁特性と鋼板表面に張力を与
えトランスの性能向上に必要な磁気特性を向上させ、か
つ鋼板との密着性が良好な一次被膜を形成させることは
大変重要である。通常の技術では脱炭を伴う一次焼鈍後
に鋼板にマグネシアと呼ばれる酸化マグネシウム(Mg
O)の微粉末を水溶させたスラリー状のものを塗り、必
要に応じて乾燥させたあと、二次再結晶焼鈍工程で焼成
させ、鋼板中のSiとの反応でフォルステライト(Mg
2 SiO4 )と呼ばれるセラミックス質状の絶縁被膜を
形成させる。これが鋼板に張力を与え、磁気特性とりわ
け鉄損と呼ばれるトランスの効率を支配する特性値を向
上させるのに有効である。しかも、このフォルステライ
ト形成の状態が、二次再結晶焼鈍で鋼板の結晶方位を通
称GOSS方位と呼ばれ、透磁率や磁束密度の向上に不
可欠な鋼板長手方向(圧延方向)に対して{110}
〔001〕の結晶方位を有するやや粗大な二次再結晶粒
を成長させるのにも重要な役割を果たしていることもよ
く知られている。
2. Description of the Related Art In manufacturing a silicon steel sheet having excellent magnetic properties for a transformer or the like, the insulating property and the magnetic property required for improving the performance of the transformer are improved by applying tension to the surface of the steel plate, and the adhesion with the steel plate is improved. It is very important to form a good primary coating. In the usual technique, magnesium oxide (MgS) called magnesia is applied to the steel sheet after primary annealing accompanied by decarburization.
(O) fine powder of water is applied as a slurry, dried as necessary, and then fired in the secondary recrystallization annealing step, and forsterite (Mg
A ceramic-like insulating coating called 2 SiO 4 ) is formed. This is effective in giving tension to the steel sheet and improving the magnetic property, especially the characteristic value called iron loss, which governs the efficiency of the transformer. Moreover, this state of forsterite formation is called the GOSS orientation of the steel sheet in the secondary recrystallization annealing, which is {110 to the steel sheet longitudinal direction (rolling direction) which is essential for improving the magnetic permeability and the magnetic flux density. }
It is well known that it also plays an important role in growing slightly coarse secondary recrystallized grains having a [001] crystal orientation.

【0003】すなわち、二次再結晶焼鈍昇温過程中に十
分緻密な被膜が形成されないまま二次再結晶させようと
しても鋼板内のインヒビターと呼ばれる微細な窒化物や
硫化物等がそのままの状態で、あるいは分解して早く鋼
板外に抜けでてしまう。このため昇温中にGOSS方位
粒を優先的に成長させ、他の方位粒の成長を抑制させる
役目のインヒビター効果が発揮できず、通称、細粒と呼
ばれ、GOSS方位粒の二次再結晶粒の成長が部分的あ
るいは全面的に行われない、極めて磁気特性の劣る鋼板
を生み出すことになる。なお、このMgOの中に酸化チ
タン(TiO2等)やその他の化合物を添加させ、さら
に緻密な一次被膜を形成させることも行われる。
That is, even if an attempt is made to carry out secondary recrystallization during the temperature rising process of secondary recrystallization annealing without forming a sufficiently dense film, fine nitrides and sulfides called inhibitors in the steel sheet remain as they are. Or, it disassembles and falls out of the steel plate quickly. For this reason, the GOSS oriented grains are preferentially grown during the temperature rise, and the inhibitor effect of the role of suppressing the growth of other oriented grains cannot be exhibited. This is commonly called fine grain, and secondary recrystallization of the GOSS oriented grains is performed. This results in a steel sheet with extremely poor magnetic properties in which grain growth does not occur partially or entirely. It should be noted that titanium oxide (TiO 2 or the like) or another compound may be added to this MgO to form a denser primary coating.

【0004】しかるに、実際は上記の技術知見があって
もなおかつ十分な一次被膜および二次再結晶組織を安定
して作ることは容易ではなく、特に二次再結晶焼鈍条件
を工業的必要性から種々変化させることがあるがこの場
合にも十分な一次被膜を作りこなし、さらに十分適正な
方位の二次再結晶を生成せしめることは容易なことでは
ない。その理由の一つとして、一次被膜の形成とインヒ
ビターと称される二次再結晶過程での適切な析出物の形
成に関する製法上の解明が未だ十分でないことが挙げら
れる。
In practice, however, it is not easy to stably produce a sufficient primary coating film and secondary recrystallization structure even with the above technical knowledge, and in particular, various secondary recrystallization annealing conditions are industrially necessary. Although it may be changed, it is not easy in this case to form a sufficient primary coating and to generate a secondary recrystallization having a sufficiently proper orientation. One of the reasons for this is that the elucidation in the manufacturing process regarding the formation of the primary coating and the formation of an appropriate precipitate in the secondary recrystallization process called an inhibitor is not yet sufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術における課題を解決し、二次再結晶時に一次被膜を安
定して珪素鋼表面に形成し、かつ磁区制御を行う前の磁
束密度B8 ≧1.92T(テスラ)および鉄損W17/50
≦1.10w/kgを常時安定して出せる、GOSS方位の
集積した二次再結晶粒を有する方向性珪素鋼板およびそ
の製造法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, stably forming a primary coating on the surface of silicon steel during secondary recrystallization, and magnetic flux density B before magnetic domain control. 8 ≧ 1.92T (tesla) and iron loss W 17/50
The present invention provides a grain-oriented silicon steel sheet having secondary recrystallized grains in which GOSS orientation is integrated, and a method for producing the same, capable of constantly producing ≤ 1.10 w / kg.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。 (1)Si:1〜7%および鉄中の拡散の活性化エネル
ギーQが70kcal/mol以上の元素の1種類以上の合計が
0.001%以上0.50%以下を含む鋼を溶製し、熱
間圧延、冷間圧延、一次再結晶焼鈍および二次再結晶焼
鈍を基本工程とする方向性電磁鋼板の製造において、二
次再結晶焼鈍前に塗布するマグネシアの中にアンチモン
系の化合物を0.05〜5.0%添加し、一次再結晶粒
径(断面粒径)の測定の平均値を5〜35μ、かつその
それぞれの粒径の標準偏差値が該平均値の10〜70%
であることを特徴とし、かつ二次再結晶焼鈍での800
℃から最高到達温度までの平均昇温速度を毎時0.1〜
80℃とし、かつ二次再結晶焼鈍での板間の面圧を0.
3kg/mm2 以下とすることを特徴とする高磁束密度低鉄
損一方向性電磁鋼板の製造法。
The gist of the present invention is as follows. (1) Si: 1 to 7% and a steel containing at least one kind of elements having an activation energy Q of diffusion in iron of 70 kcal / mol or more in a total amount of 0.001% or more and 0.50% or less , Hot rolling, cold rolling, primary recrystallization annealing and secondary recrystallization annealing in the production of grain-oriented electrical steel sheet as the basic process, in the magnesia applied before the secondary recrystallization annealing compound of antimony-based 0.05 to 5.0% is added, the average value of the measurement of the primary recrystallized grain size (cross-sectional grain size) is 5 to 35 μ, and the standard deviation value of each grain size is 10 to 70% of the average value.
And 800 in secondary recrystallization annealing
Average heating rate from ℃ to the highest temperature
The surface pressure between the plates in the secondary recrystallization annealing is set to 80 ° C.
A method for producing a high magnetic flux density low iron loss unidirectional electrical steel sheet characterized by being set to 3 kg / mm 2 or less.

【0007】(2)Si:1〜7%および鉄中の拡散の
活性化エネルギーQが70kcal/mol以上の元素の1種類
以上の合計が0.001%以上0.50%以下を含む鋼
を溶製し、熱間圧延、冷間圧延、一次再結晶焼鈍および
二次再結晶焼鈍を基本工程とする方向性電磁鋼板の製造
において、一次再結晶粒径(断面粒径)の測定の平均値
を5〜35μ、かつそのそれぞれの粒径の標準偏差値が
該平均値の10〜70%であることを特徴とし、二次再
結晶焼鈍前に塗布するマグネシアの中にボロン系、スト
ロンチウム・バリウム系、炭・窒化物系、硫化物系、塩
化物系の1種または2種以上を合計0.05〜5.0%
添加し、かつ二次再結晶焼鈍での800℃から最高到達
温度までの平均昇温速度を毎時5〜400℃とし、かつ
二次再結晶焼鈍で板間の面圧を0.3kg/mm2 以下とす
ることを特徴とする高磁束密度低鉄損一方向性電磁鋼板
の製造法。 (3)上記(1),(2)において活性化エネルギーQ
が70kcal/mol以上の元素をHf,Bi,W,Nb,C
o,Ni,Cu,Moに特定する方法。 (4)上記(1),(2)において活性化エネルギーQ
が80kcal/mol以上の元素のHf,Bi,Wに特定する
こと。 (5)フォルステライトを主成分とする一次被膜を含め
た鋼板中に、Hf,Bi,W,Nb,Co,Ni,C
u,Moの元素の1種類以上を合計で0.003〜0.
30%含有し、かつ磁束密度B8 が1.92T(テス
ラ)以上および鉄損W17/50 が1.10w/kg以下である
高磁束密度低鉄損一方向性電磁鋼板。 (6)フォルステライトを主成分とする一次被膜を含め
た鋼板中に、Hf,Bi,Wの元素の1種類以上を合計
で0.003〜0.30%含有し、かつ磁束密度B8
1.92T(テスラ)以上および鉄損W17/50 が1.1
0w/kg以下である高磁束密度低鉄損一方向性電磁鋼板。
(2) Si: steel containing 1 to 7% and a total of one or more elements having an activation energy Q of diffusion in iron of 70 kcal / mol or more of 0.001% or more and 0.50% or less. Average value of the measurement of primary recrystallized grain size (cross-sectional grain size) in the production of grain-oriented electrical steel sheet with the basic steps of melting, hot rolling, cold rolling, primary recrystallization annealing and secondary recrystallization annealing Is 5 to 35 μm, and the standard deviation value of the respective grain sizes is 10 to 70% of the average value, and the boron-based, strontium-barium-based boron is contained in the magnesia applied before the secondary recrystallization annealing. System, charcoal / nitride system, sulfide system, chloride system, total of 0.05-5.0%
The average temperature rising rate from 800 ° C to the highest temperature reached in the secondary recrystallization annealing was 5 to 400 ° C per hour, and the interplanar surface pressure was 0.3 kg / mm 2 in the secondary recrystallization annealing. A method for producing a high magnetic flux density low iron loss grain-oriented electrical steel sheet characterized by the following. (3) Activation energy Q in (1) and (2) above
Hf, Bi, W, Nb, C with an element of 70 kcal / mol or more
Method of specifying o, Ni, Cu, Mo. (4) Activation energy Q in (1) and (2) above
Should be specified as Hf, Bi, W of elements with a value of 80 kcal / mol or more. (5) Hf, Bi, W, Nb, Co, Ni, and C in a steel sheet including a primary coating containing forsterite as a main component.
A total of one or more elements of u and Mo is 0.003 to 0.
A high magnetic flux density low iron loss unidirectional electrical steel sheet containing 30% and having a magnetic flux density B 8 of 1.92 T (tesla) or more and an iron loss W 17/50 of 1.10 w / kg or less. (6) In the steel sheet including the primary coating containing forsterite as a main component, 0.003 to 0.30% of one or more elements of Hf, Bi, and W are contained in total, and the magnetic flux density B 8 is ≥1.92T (tesla) and iron loss W 17/50 is 1.1
High magnetic flux density of less than 0 w / kg, low iron loss, grain-oriented electrical steel sheet.

【0008】以下に本発明を詳細に説明する。方向性珪
素鋼板の二次再結晶はGOSS方位と呼ばれる{11
0}〈001〉方位の粒を二次再結晶焼鈍(仕上げ焼鈍
とも呼ばれる)時に十分成長させることが肝要である。
これは一次再結晶焼鈍(以下、一次焼鈍と呼ぶ)板の中
のある特定粒のみを粗大再結晶させるもので、この時に
インヒビター(Inhibitor)と呼ばれるAlN等の微細析
出物を仕上げ焼鈍前に十分作っておくことが技術上必要
であることがよく知られている。そして、AlN,Si
3 4 等を利用する場合は、このために必要なNを鋼溶
製時または一次焼鈍後または他の工程中に添加すること
が行われる。後者の場合は、通常脱炭反応も機能する一
次焼鈍の設備の一部に窒化反応を行う設備を内部または
近接して設置し、一次焼鈍後またはそれと平行させて窒
化反応させる方法がある。
The present invention will be described in detail below. Secondary recrystallization of grain-oriented silicon steel sheet is called GOSS orientation {11
It is essential that grains having a 0} <001> orientation are sufficiently grown during secondary recrystallization annealing (also called finish annealing).
This is to coarsely recrystallize only certain grains in the primary recrystallization annealing (hereinafter referred to as primary annealing) plate. At this time, fine precipitates such as AlN called an inhibitor are sufficient before finish annealing. It is well known that it is technically necessary to make it. And AlN, Si
When 3 N 4 or the like is used, N necessary for this purpose is added during steel melting, after primary annealing, or during other steps. In the latter case, there is a method in which a facility for performing a nitriding reaction is installed inside or in close proximity to a part of the facility for primary annealing that also normally functions as a decarburizing reaction, and the nitriding reaction is performed after the primary annealing or in parallel with it.

【0009】鋼溶製時に十分低炭素化した鋼では脱炭機
能よりも一次焼鈍後の表面層の酸化物層を変えて、被膜
形成に有利な形にすることがむしろ重要な役割となる。
このように一次焼鈍し、その前か後の工程で窒素を添加
した鋼板にMgOを主体とする通称MgOパウダーとい
うものをスラリー状に鋼板表面に塗布し、仕上げ焼鈍工
程で被膜生成および二次再結晶を生ぜしめるのが一つの
方法であるが、この一次被膜形成に関連し、次の実験を
行った。
In the case of steel having a sufficiently low carbon content at the time of steel melting, it is more important than the decarburizing function to change the oxide layer of the surface layer after the primary annealing so that the oxide layer has an advantageous shape for film formation.
In this way, the so-called MgO powder mainly composed of MgO is applied to the surface of the steel sheet in a slurry form on the steel sheet to which nitrogen is added in the step before or after the primary annealing, and the film is formed in the finish annealing step and the secondary re-annealing is performed. One method is to generate crystals, and the following experiment was conducted in connection with this primary film formation.

【0010】表1は一次焼鈍および窒化後の3%Si鋼
板にMgOパウダーをスラリー状に塗布して、二次再結
晶焼鈍の途中の仕上げ焼鈍引き出し実験を行った結果で
ある。ここでパウダーにSb系、B系とあるのはここで
はそれぞれMgOパウダーに微量のTiO2 (5%)と
Sb2 (SO4 3 (0.2%)、TiO2 (5%)と
Na2 4 7 (0.3%)を添加し、フォルステライ
ト形成等を促進させたものである。二次再結晶焼鈍は図
1の方法で途中まで行い、各温度で引き出す、いわゆる
引き出し実験を行った。かくして引き出した鋼板を表面
からGDS分析(Glow Discharge Optical Emission Sp
ectrometry:グロー放電発光分光分析法)を行い、フォ
ルステライト、つまり、Mgピークがどの引き出し温度
から出現するかを調べた結果を表1に示してある。ここ
で( )の温度は測定温度の中間に出現があったと判定
されたものである。表1の結果で明瞭なことは、Sb系
の方がB系よりも低い温度でフォルステライトの形成が
あることである。
Table 1 shows the results of a finish annealing pull-out experiment in which a MgO powder was applied in a slurry form to a 3% Si steel sheet after the primary annealing and nitriding and the secondary recrystallization annealing was performed. Here, the powders are referred to as Sb-based and B-based, respectively. Here, a small amount of TiO 2 (5%) and Sb 2 (SO 4 ) 3 (0.2%), TiO 2 (5%) and Na are included in the MgO powder, respectively. 2 B 4 O 7 (0.3%) was added to promote the formation of forsterite. Secondary recrystallization annealing was performed halfway by the method shown in FIG. 1 and a so-called pull-out experiment was performed at each temperature. GDS analysis (Glow Discharge Optical Emission Sp
ectrometry: glow discharge emission spectroscopy), and Table 1 shows the results of investigating from which extraction temperature forsterite, that is, the Mg peak appears. Here, the temperature in () is determined to have appeared in the middle of the measured temperature. What is clear from the results in Table 1 is that forsterite is formed at a lower temperature in the Sb system than in the B system.

【0011】[0011]

【表1】 [Table 1]

【0012】フォルステライトの生成はMgOと鋼板中
の表面濃化したSiが反応し、2MgO+SiO2 →M
2 SiO4 の反応を起こしたものと一般的に考えられ
ている。ところで珪素鋼板の製造工程とこれらの鋼板の
性質とはどのようにコントロールできるのであるのか、
という点について検討してみた。上述のように一次被膜
の形成過程と珪素鋼板の諸性質との因果関係が明確にな
れば、当然工業的にそれを製造に反映させることができ
ることになる。
[0012] Forsterite is formed by reacting MgO with surface-enriched Si in the steel sheet, and 2MgO + SiO 2 → M
It is generally considered that the reaction of g 2 SiO 4 has occurred. By the way, how can the manufacturing process of silicon steel sheets and the properties of these steel sheets be controlled?
I examined the point. If the causal relationship between the formation process of the primary coating film and the various properties of the silicon steel sheet is clarified as described above, naturally it can be industrially reflected in the production.

【0013】表1の実験結果にみられるようにSb系の
化合物をMgOに微量添加した場合、MgOの溶融は比
較的低温で行われるので、たとえば二次再結晶焼鈍の昇
温速度を比較的小さくした方がより早くフォルステライ
トの生成を促進させ、優れた一次被膜を生成させやすい
ことになる。なおアンチモン(Sb)系の化合物とは当
実験で用いたSb2 (SO4 3 のみならずSbを含む
他の化合物を意味する。一方、同じ低融点化合物でもB
系の化合物をMgOに微量添加した場合はMgOの溶融
はSb系の化合物よりも比較的高温で行われるので、た
とえば二次再結晶焼鈍の昇温速度を比較的大きくした方
が、より早くフォルステライトの生成を促進させる。な
おボロン(B)系の化合物とはNa系のみならずNaの
代わりにCa,Mg等を含む化合物やほう酸(H3 BO
3 )やほう酸ソーダをも意味する。
As can be seen from the experimental results in Table 1, when a small amount of Sb-based compound is added to MgO, the melting of MgO is performed at a relatively low temperature, so that the temperature rising rate of the secondary recrystallization annealing is relatively high. The smaller the size, the faster the production of forsterite is promoted and the easier it is to form an excellent primary coating. The antimony (Sb) -based compound means not only Sb 2 (SO 4 ) 3 used in this experiment but other compounds containing Sb. On the other hand, even with the same low melting point compound, B
When a small amount of a system-based compound is added to MgO, the melting of MgO is performed at a relatively higher temperature than that of the Sb-based compound. Therefore, for example, it is faster to make the temperature rising rate of the secondary recrystallization annealing faster. Promotes the production of stellite. The boron (B) -based compound is not only a Na-based compound, but also a compound containing Ca, Mg, etc. instead of Na or boric acid (H 3 BO).
3 ) Also means sodium borate.

【0014】さらに、アンチモン系よりも高融点系とい
う点でストロンチウム・バリウム系、炭・窒化物系、硫
化物系、塩化物系もボロン系と同等の作用が認められ
る。これらの化合物を総称して非アンチモン系と呼ぶこ
とにする。なお、通常MgOにはTiO2 等の酸化物を
添加させ高温反応を容易にすることが行われるが、本発
明の上記の添加物の効果はその酸化物の添加量に関係な
く発揮されるのでMgOに酸化物が添加されても、これ
をプレインと称してベース材の一部とみなすことができ
る。このように珪素鋼板の特性に重要な支配要因となる
一次被膜は本発明により、その組成分布の解明およびそ
れと相関を有する製造方法との組み合わせにより、ある
程度自由にコントロールすることが可能となった。
Further, strontium / barium type, carbon / nitride type, sulfide type, and chloride type have the same action as boron type in that they are higher melting point type than antimony type. These compounds will be collectively called non-antimony compounds. It should be noted that, although oxides such as TiO 2 are usually added to MgO to facilitate the high temperature reaction, the effects of the above additives of the present invention are exhibited regardless of the amount of the oxide added. Even if an oxide is added to MgO, it can be regarded as a part of the base material by calling it a plane. As described above, according to the present invention, the primary coating, which is an important controlling factor for the properties of the silicon steel sheet, can be controlled to some extent freely by elucidating its composition distribution and combining it with a manufacturing method having a correlation therewith.

【0015】さて、ここで珪素鋼板の製造方法に触れる
必要がある。前述のように本発明が適用可能な珪素鋼板
は必要に応じてAlを含有し、AlNあるいはSi3
4 を主要インヒビターの一部とすることが可能である。
もちろんSi,Al以外に、後述する本発明の擬インヒ
ビター元素およびMn,S,Se,Sb,B,Ti,S
n,V,Cr,P等の他の添加元素を付加的に添加さ
せ、磁気特性の向上を図ることは本発明の基本を変える
ものではない。ところでAlNあるいはSi3 4 をイ
ンヒビターとする鋼は公知であり、そのいずれの場合に
おいても本発明の技術を適用することが可能である。し
かしながら、これだけでは本発明の目標の磁区制御を行
う前のB8 ≧1.92TおよびW17/50 ≦1.10w/kg
を安定して達成することは困難である。すなわち本発明
の主要の考えの一部は以下の通りである。
Now, it is necessary to touch on the method of manufacturing a silicon steel sheet. As described above, the silicon steel sheet to which the present invention is applicable contains Al as necessary, and contains AlN or Si 3 N
It is possible that 4 is part of the major inhibitor.
Of course, in addition to Si and Al, the pseudo-inhibitor element of the present invention described below and Mn, S, Se, Sb, B, Ti and S
The addition of other additive elements such as n, V, Cr and P to improve the magnetic characteristics does not change the basics of the present invention. By the way, steels using AlN or Si 3 N 4 as an inhibitor are known, and the technique of the present invention can be applied to any of them. However, with this alone, B 8 ≧ 1.92T and W 17/50 ≦ 1.10 w / kg before performing the target magnetic domain control of the present invention.
Is difficult to achieve in a stable manner. That is, some of the main ideas of the present invention are as follows.

【0016】従来の一方向性電磁鋼板の二次再結晶でG
OSS方位を鋭く得るためには、インヒビターと称する
析出物を二次再結晶前または二次再結晶時に鉄中に析出
させることが知られている。これはGOSS方位を持っ
た結晶粒が優先的に成長するべく、他の方位の結晶粒の
成長を抑制するためであると一般的に言われている。事
実AlNやMnSやMnSe等に代表される一方向性電
磁鋼板はこれらの析出物を使い、優れた磁性の鋼板を製
造している。しかしながらこのような方法だけでは、い
かなる条件下でも安定して上記の本発明の特性の鋼板を
製造することは困難である。その理由はこれらの析出物
が高温、例えば1000℃以上では基本的に分解してし
まうことによると考えられる。従って1000℃以上の
粒成長でのインヒビターフリーの状況下で粒成長させて
もGOSS方位から多少逸脱して粒成長することがある
と考えられる。
G is produced by secondary recrystallization of a conventional unidirectional electrical steel sheet.
In order to obtain a sharp OSS orientation, it is known to precipitate a precipitate called an inhibitor in iron before or during secondary recrystallization. It is generally said that this is because crystal grains having a GOSS orientation preferentially grow so as to suppress the growth of crystal grains in other orientations. In fact, unidirectional electrical steel sheets represented by AlN, MnS, MnSe, etc. use these precipitates to produce excellent magnetic steel sheets. However, it is difficult to stably produce the steel sheet having the above-mentioned characteristics of the present invention under any conditions by such a method alone. It is considered that the reason is that these precipitates basically decompose at a high temperature, for example, 1000 ° C. or higher. Therefore, it is considered that even if grain growth is performed under the inhibitor-free condition at grain growth of 1000 ° C. or higher, the grain growth may slightly deviate from the GOSS direction.

【0017】このような状況に対応するためにまず10
00℃以上で安定して存在する析出物が極めて重要であ
ることがわかる。従来の知見では残念ながら適当な技術
が見つかっていない。その理由は例えば、Tiは高温で
も安定な化合物、TiN等をつくるし、その他の元素で
も酸化物等が比較的高温、たとえば1200℃以上でも
安定である。しかしながら、これらの化合物はその生成
量が結晶粒の粒界を万遍なく覆うほど数が多くはなく、
インヒビターとしての機能が期待できない。仮に量を多
くするべく多量に入れても今度は純化の目的もある二次
再結晶焼鈍(仕上げ焼鈍とも言う)では十分抜けないで
残存し製品の鉄損を劣化させる。一方、1000℃以上
でインヒビター強度が全く変わらず頑固なままでは、1
000℃までに成長したGOSS方位から多少ずれた二
次再結晶粒がそのまま軌道修正せずに製品に残ることが
考えられる。
In order to deal with such a situation, firstly 10
It can be seen that the precipitates that exist stably at 00 ° C or higher are extremely important. Unfortunately, conventional knowledge has not found a suitable technology. The reason is that, for example, Ti forms a compound that is stable even at high temperatures, such as TiN, and oxides of other elements are stable even at relatively high temperatures, for example, 1200 ° C. or higher. However, the number of these compounds is not large enough to evenly cover the grain boundaries of crystal grains,
The function as an inhibitor cannot be expected. Even if a large amount is added to increase the amount, the secondary recrystallization annealing (also referred to as finish annealing), which also has the purpose of purification this time, does not sufficiently escape and remains and deteriorates the iron loss of the product. On the other hand, if the inhibitor strength remains unchanged at 1000 ° C or higher and remains stubborn,
It is conceivable that secondary recrystallized grains that have grown slightly up to 000 ° C. and are slightly deviated from the GOSS orientation may remain in the product as they are without correcting the trajectory.

【0018】本発明ではかかる従来知見の状況を打開す
るべく画期的な技術知見を見いだしたものである。本発
明が着目したのは従来の析出物の概念にとらわれないで
粒界移動を抑制する物質がないか、という観点からスタ
ートした。その結果、粒界に偏析しやすくかつ1000
℃以上の高温でもそれが比較的残存し、かつさらに高温
になったときに鋼板表面から徐々に消えていくような元
素はないかという点に帰結した。その結果、鉄の中に入
って拡散の活性化エネルギーQ(kcal/mol)の大きい元
素に着目した。その理由は以下の通りである。いわゆる
拡散係数Dは式で表される。 D=D0 exp(−Q/RT) …………………………………… ここでD:拡散定数、D0 :定数、R:気体定数、T:
絶対温度 この式は対数をとると、式となる。 InD=InD0 +(−Q/RT) ……………………………………
The present invention has found breakthrough technical knowledge in order to overcome the situation of the conventional knowledge. The present invention was focused on from the viewpoint that there is a substance that suppresses grain boundary migration without being bound by the conventional concept of precipitates. As a result, it is easy to segregate at grain boundaries and 1000
It came to the point that there is an element that remains relatively even at high temperatures above ℃, and that gradually disappears from the steel sheet surface when the temperature becomes higher. As a result, we focused on the element that has a large diffusion activation energy Q (kcal / mol) after entering iron. The reason is as follows. The so-called diffusion coefficient D is expressed by an equation. D = D 0 exp (−Q / RT) …………………………………… where D: diffusion constant, D 0 : constant, R: gas constant, T:
Absolute temperature This formula becomes the formula when the logarithm is taken. InD = InD 0 + (-Q / RT) …………………………………………

【0019】つまり、拡散定数Dは、活性化エネルギー
Qが大きいほど、高温でも小さいことを示し、つまり拡
散に長時間を必要とすることを示している。このことは
もし高温までこの式が通用するならば、Qの大きい元素
(高拡散エネルギー元素)は高温でも安定していること
を示している。このような元素はそれ自体インヒビター
としての可能性があるのではないかと予測される。その
結果、本発明によれば、Qが70kcal/mol以上の場合に
は元素それ自体のインヒビターとしての効果(本発明で
は擬インヒビター効果と以下呼ぶ)が認められることが
明らかとなった。一方、このQの大きい元素の添加だけ
では必ずしも十分、本発明の目標の磁区制御前に磁束密
度B8 ≧1.92Tおよび鉄損W17/50 ≦1.10w/kg
を安定して満たしてくれる一方向性電磁鋼板を製造する
ことが困難であることが明らかになった。その理由は以
下の通りである。
That is, the diffusion constant D shows that the larger the activation energy Q is, the smaller it is at high temperature, that is, the diffusion requires a long time. This means that if this equation holds even at high temperatures, elements with large Q (high diffusion energy elements) are stable even at high temperatures. It is predicted that such elements may themselves have potential as inhibitors. As a result, according to the present invention, it was revealed that when Q is 70 kcal / mol or more, the effect of the element itself as an inhibitor (hereinafter referred to as a pseudo-inhibitor effect in the present invention) is recognized. On the other hand, the addition of this element having a large Q is not always sufficient, and the magnetic flux density B 8 ≧ 1.92T and the iron loss W 17/50 ≦ 1.10 w / kg before the target magnetic domain control of the present invention.
It has been revealed that it is difficult to manufacture a grain-oriented electrical steel sheet that satisfies the above requirements. The reason is as follows.

【0020】前述のように一方向性電磁鋼板はフォルス
テライトを主成分とする一次被膜が十分にできないとイ
ンヒビターが逃げてしまい、GOSS方位の揃った二次
再結晶が十分成長しないばかりか、その一次被膜の張力
による鉄損も十分向上せず、よい磁気特性の製品は得ら
れない。一方、本発明が上記のように元素の拡散定数の
特性からくる擬インヒビターを使用するためにさらに重
要な条件がある。それは二次再結晶終了後の保定または
冷却中に表面に出てくるHf,Bi等の擬インヒビター
元素が、表面に存在する他の元素と反応して化合物を作
り、せっかく生成した表面被膜のフォルステライト等を
侵食し、これらの一次被膜が十分残存しないか、全く存
在しなくなるという現象である。このため、二次再結晶
時のコイルの板間の面圧は0.3kg/mm2 以下であるこ
とが必要となった。これ以上ではHf,Bi等が表面か
ら雰囲気中に十分抜けず、一次被膜が十分生成されな
い。
As described above, in the case of the grain-oriented electrical steel sheet, if the primary coating containing forsterite as a main component cannot be sufficiently formed, the inhibitor will escape, and not only the secondary recrystallization having the aligned GOSS orientation will not grow sufficiently. Iron loss due to the tension of the primary coating is not sufficiently improved, and a product with good magnetic properties cannot be obtained. On the other hand, there are more important conditions for the present invention to use the pseudo-inhibitor which is based on the characteristics of the diffusion constant of the element as described above. This is because pseudo-inhibitor elements such as Hf and Bi that appear on the surface during retention or cooling after the completion of secondary recrystallization react with other elements present on the surface to form a compound, and the form of the surface coating generated with care. This is a phenomenon that erodes stellite and the like, and these primary coatings do not sufficiently remain or do not exist at all. Therefore, the surface pressure between the plates of the coil during the secondary recrystallization needs to be 0.3 kg / mm 2 or less. Above this, Hf, Bi, etc. do not sufficiently escape from the surface into the atmosphere, and the primary coating is not sufficiently formed.

【0021】さらに別の観点から二次再結晶時の昇温速
度は当然ながら極めて重要な因子となる。この組み合わ
せがいわば本発明のもう一つの重要な技術要素を構成し
ている。1000℃以上でもなお安定する擬インヒビタ
ー元素は昇温速度によって拡散量は変化する。たとえ
ば、Biの場合、その拡散式は式のように表されるこ
とが本発明で明らかになった。 D=3.9×103 exp(−85,000/RT)………………… (ここでBiのQは85kcal/mol)
From another point of view, the rate of temperature rise during secondary recrystallization is naturally a very important factor. This combination, so to speak, constitutes another important technical element of the present invention. The diffusion amount of the pseudo-inhibitor element, which is still stable even at 1000 ° C. or higher, changes depending on the heating rate. For example, in the case of Bi, it was revealed in the present invention that the diffusion formula is expressed as follows. D = 3.9 × 10 3 exp (−85,000 / RT) …………………… (where Q of Bi is 85 kcal / mol)

【0022】これをもとに二次再結晶焼鈍(仕上げ焼
鈍)の昇温速度を図2のように変えて昇温すると、その
ときのBiの拡散量(移動量)は式から計算すると図
3に示すように変化し、昇温速度の小さいほど拡散移動
量は多くなる。一方、式は鉄中のAsの拡散式であ
る。 D=4.3×exp(−52,500/RT) …………………
Based on this, when the temperature rise rate of the secondary recrystallization annealing (finish annealing) is changed as shown in FIG. 2, the diffusion amount (movement amount) of Bi at that time is calculated from the equation. 3, the diffusion movement amount increases as the heating rate decreases. On the other hand, the formula is a diffusion formula of As in iron. D = 4.3 × exp (−52,500 / RT) ……………………

【0023】このAsの場合は昇温速度と拡散移動量と
の関係も図3のように表される。つまりBiに比べれば
活性化エネルギーQが52.5kcal/molと小さいAsで
はどの昇温速度でも拡散移動量がはるかに大きく、イン
ヒビターとしての機能ははるかに弱いことがこれからも
わかる。そして、どちらの場合も昇温速度が小さいほど
拡散移動量は多くなる。そして、二次再結晶が熱活性過
程で行われる以上、鉄(Fe)元素固有の自己拡散との
競争になる。Feの自己拡散の活性化エネルギーQは6
0kcal前後の値であり、本発明の擬インヒビター元素の
Q(≧70kcal/mol)よりも小さい。このことはFeの
自己拡散に基づく二次再結晶粒の自己粒成長の駆動力の
方が擬インヒビター元素の拡散の移動の駆動力よりも大
きいことを示す。このことが、とりもなおさず擬インヒ
ビター元素が1種のブレーキとして二次再結晶のインヒ
ビターとしての1種のドラッグ(drag)効果をもたらし
ていることに他ならないと考えられる。従って、ドラッ
グ効果は鉄の自己拡散の活性化エネルギーの60kcal/m
ol台の値よりも大きい70kcal/mol以上の元素ならば、
当然ドラッグ効果が期待できる。この元素としてはB
i,Hf,W,Nb,Co,Ni,Cu,Moである。
In the case of As, the relationship between the rate of temperature rise and the amount of diffusion movement is also represented as shown in FIG. That is, it can be seen from this that As has a smaller activation energy Q of 52.5 kcal / mol than Bi, the diffusion transfer amount is much larger at any heating rate, and the inhibitor function is much weaker. In both cases, the smaller the heating rate is, the larger the diffusion movement amount is. Then, as long as the secondary recrystallization is performed in the thermal activation process, there is competition with self-diffusion specific to the iron (Fe) element. The activation energy Q of Fe self-diffusion is 6
The value is around 0 kcal, which is smaller than the Q (≧ 70 kcal / mol) of the pseudo-inhibitor element of the present invention. This indicates that the driving force for the self-grain growth of the secondary recrystallized grains based on the self-diffusion of Fe is larger than the driving force for the diffusion movement of the pseudo-inhibitor element. It is considered that this is the reason why the pseudo-inhibitor element is, as a brake, a kind of drag effect as an inhibitor of secondary recrystallization. Therefore, the drag effect is 60 kcal / m of activation energy of iron self-diffusion.
If the element is 70 kcal / mol or more, which is larger than the ol value,
Naturally, a drug effect can be expected. B as this element
i, Hf, W, Nb, Co, Ni, Cu, Mo.

【0024】一方、80kcal/mol以上ではさらにこのド
ラッグ効果が大きくなり、よりGOSS方位の先鋭な二
次再結晶組織の高磁束密度の一方向性電磁鋼板が得られ
ることがわかった。80kcal/mol以上の元素はHf,B
i,Wである。そしてとりわけ本発明で重要なことは仕
上げ焼鈍の昇温速度との関係である。つまり、昇温速度
の大きい場合、自己拡散の活性化エネルギーQが本発明
の擬インヒビター元素の拡散のQよりも小さい鉄の自己
拡散が擬インヒビター元素の拡散の移動よりも相対的に
移動しやすく、つまり鉄が粒成長しようとする駆動力の
方が擬インヒビターの駆動力をはるかに大きく上回って
しまう。
On the other hand, it was found that at 80 kcal / mol or more, this drag effect is further enhanced, and a high magnetic flux density unidirectional electrical steel sheet having a sharper secondary recrystallized structure in the GOSS direction can be obtained. Hf and B for elements above 80 kcal / mol
i and W. What is particularly important in the present invention is the relationship with the temperature rising rate of finish annealing. That is, when the temperature rising rate is high, the self-diffusion activation energy Q is smaller than the diffusion Q of the pseudo-inhibitor element of the present invention. That is, the driving force for iron grain growth is far greater than the driving force for pseudo-inhibitor.

【0025】ところが図3に示すように昇温速度が大き
い場合は擬インヒビターの移動量は減る(残存量が増え
る)のでそれだけインヒビター効果は強くなり、これが
うまく昇温速度を大きくすることによる粒成長の駆動力
の急増とバランスする。一方、昇温速度が小さいとこの
逆の現象が起こり、この場合もうまく粒成長とインヒビ
ター強度がバランスする。この擬インヒビター元素の自
己調整作用が昇温速度の変動に対して工業的に安定して
GOSSの先鋭な二次再結晶の形成に寄与していると考
えられる。とりわけ拡散の活性化エネルギーQが80kc
al/mol以上の元素Hf,Bi,Wではこの効果が十分に
発揮され極めてGOSS方位の先鋭な磁束密度の高い一
方向性電磁鋼板が得られることがわかった。
However, as shown in FIG. 3, when the heating rate is high, the migration amount of the pseudo-inhibitor is reduced (the remaining amount is increased), so that the inhibitor effect is strengthened accordingly. Balance with the sudden increase in driving force of. On the other hand, when the heating rate is low, the opposite phenomenon occurs, and in this case as well, the grain growth and the inhibitor strength are well balanced. It is considered that the self-adjusting action of this pseudo-inhibitor element contributes to the formation of sharp secondary recrystallization of GOSS in an industrially stable manner with respect to the fluctuation of the heating rate. Especially the activation energy Q of diffusion is 80kc
It was found that the elements Hf, Bi, and W of al / mol or more exert this effect sufficiently, and that a grain-oriented electrical steel sheet having an extremely sharp magnetic flux density in the GOSS direction is obtained.

【0026】当然ながら、鉄の自己拡散エネルギー(6
0kcal/mol台)よりも大きい拡散の活性化エネルギーQ
が70kcal/mol以上の他の元素のNb,Co,Ni,C
u,Mo等の元素も程度は少し弱いが類似の効果が認め
られた。また、Qが60kcal/mol台でも70kcal/molに
近いV,Cr,Pも補助的な効果は期待できるが、本発
明では必須ではない。従って、仕上げ焼鈍の昇温速度を
決めるのはむしろ一次被膜の形成がそれに追従できるこ
とが必要条件であり、この点から以下の制約がでてく
る。Sb系のたとえばSb2 (SO4 3 系の添加物を
マグネシアに添加する場合は、仕上げ焼鈍の比較的小さ
い昇温速度でかつ低い温度からよい一次被膜ができやす
い。一方、ボロン系の添加物を添加する場合には、比較
的高温でかつ比較的高い昇温速度でもよい一次被膜がで
きやすい。
Naturally, the self-diffusion energy of iron (6
Activation energy Q of diffusion larger than 0 kcal / mol)
Nb, Co, Ni, C of other elements with a value of 70 kcal / mol or more
Elements such as u and Mo have similar effects, although to a lesser extent. Further, even if Q is in the order of 60 kcal / mol, V, Cr, and P close to 70 kcal / mol can be expected to have an auxiliary effect, but they are not essential in the present invention. Therefore, the temperature rising rate of finish annealing is rather determined by the requirement that the formation of the primary coating can follow it, and from this point, the following restrictions occur. When an Sb-based additive such as Sb 2 (SO 4 ) 3- based additive is added to magnesia, a good primary coating is likely to be formed at a relatively low temperature rising rate of finish annealing and from a low temperature. On the other hand, when a boron-based additive is added, it is easy to form a primary coating at a relatively high temperature and at a relatively high temperature rising rate.

【0027】さらに本発明の構成要素で重要な点は以下
の技術的知見である。本発明の擬インヒビター効果をも
たらす拡散の活性化エネルギーQが、70kcal/mol以上
の元素を添加しただけでは十分先鋭なGOSS方位の二
次再結晶組織を安定して得ることが困難である。図4は
擬インヒビター元素のBiを0.025%含む3.20
%Si鋼の画像解析装置で求めた一次再結晶焼鈍後の結
晶粒径の断面組織の平均粒径および標準偏差の該平均粒
径への割合(%)と、製品の磁束密度B8 との関係を示
したものである。なお、ここで粒径の標準偏差の求め方
を式で表す。 標準偏差:σn=((ΣX2 −(ΣX)2 /n))/n)1/2 ……… ここでX:各結晶粒径 n:結晶粒の数
Further important points of the constituent elements of the present invention are the following technical findings. It is difficult to stably obtain a secondary recrystallized structure having a sufficiently sharp GOSS orientation only by adding an element having an activation energy Q of diffusion of 70 kcal / mol or more which brings about the pseudo-inhibitor effect of the present invention. FIG. 4 shows 3.20 containing 0.025% of the pseudo-inhibitor element Bi.
% Of the average grain size and standard deviation of the cross-sectional structure of the crystal grain size after primary recrystallization annealing obtained by an image analyzer of the% Si steel and the magnetic flux density B 8 of the product It shows the relationship. Here, the method of obtaining the standard deviation of the particle diameter is expressed by an equation. Standard deviation: σn = ((ΣX 2 − (ΣX) 2 / n)) / n) 1/2 ... where X: each crystal grain size n: number of crystal grains

【0028】また、標準偏差を平均粒径で割り、これに
100を乗じ、この値を百分率(%)で表した値を本発
明では、標準偏差の平均粒径への割合として、重要な指
標の一つとして扱う。これをみても明らかのように、高
磁束密度を安定して得られる断面一次粒径の平均粒径お
よび標準偏差の該平均粒径への割合の最適範囲があるこ
とがわかる。この理由は必ずしも明確ではないが以下の
ように考えられる。すなわち、これも擬インヒビター元
素の拡散の活性化エネルギーと関係があると考えられ
る。一次再結晶粒径の平均値は一次粒径の粒界エネルギ
ーの大きさと対応しており、粒径の小さいほど、粒界面
積が多いので粒界エネルギーは大きい。
In the present invention, the standard deviation is divided by the average particle size, multiplied by 100, and expressed as a percentage (%), which is an important index in the present invention as the ratio of the standard deviation to the average particle size. Treated as one of. As is clear from this, it can be seen that there is an optimum range of the ratio of the average particle diameter of the primary particle diameter in the cross section and the standard deviation to the average particle diameter that can stably obtain a high magnetic flux density. The reason for this is not clear, but it is considered as follows. That is, this is also considered to be related to the activation energy for diffusion of the pseudo-inhibitor element. The average value of the primary recrystallized grain size corresponds to the magnitude of the grain boundary energy of the primary grain size. The smaller the grain size, the larger the grain boundary area, and therefore the larger the grain boundary energy.

【0029】本発明の場合、擬インヒビター元素は一次
再結晶粒の粒界にも当然偏析しており、その粒成長過程
でも粒成長を抑制している。従って平均粒径が大き過ぎ
ると粒界エネルギーが弱すぎて仕上げ焼鈍で粒成長が十
分行われずに、いわゆる細粒組織となって極めて磁性は
悪い。一方、一次粒径の平均値が小さすぎると粒界エネ
ルギーが大きすぎて、どの方位の粒も成長しやすいた
め、分散した方位の二次再結晶組織となりやすく磁性は
安定して高くならない。これが一次再結晶組織の平均粒
径の最適範囲が存在する理由である。
In the case of the present invention, the pseudo-inhibitor element is naturally segregated at the grain boundaries of the primary recrystallized grains, and also suppresses grain growth during the grain growth process. Therefore, if the average grain size is too large, the grain boundary energy is too weak, and grain growth is not sufficiently performed in finish annealing, resulting in a so-called fine grain structure, which is extremely poor in magnetism. On the other hand, if the average value of the primary grain size is too small, the grain boundary energy is too large and grains in any orientation are likely to grow, and secondary recrystallized structures in dispersed orientations are likely to be formed and the magnetism is not stably increased. This is the reason why the optimum range of the average grain size of the primary recrystallized structure exists.

【0030】一方、大きい粒と小さい粒が混ざって存在
すると、粒界偏析している擬インヒビター元素の濃度が
局所的に異なり、仕上げ焼鈍の一次再結晶粒の成長過程
で擬インヒビター元素の拡散の移動の絶対量が部分的に
異なってしまう。このため、いわゆる鉄の自己拡散をベ
ースとする粒成長の駆動力と擬インヒビター元素の拡散
の移動量の局部遍在によるインヒビター効果の局部的ば
らつきとの不均衡により、二次再結晶の粒成長とインヒ
ビター効果との不一致が生じ、二次再結晶粒の成長と共
に徐々にインヒビター強度が一様に弱まっていくことに
よるGOSSの優先成長という本発明の基本思想からの
ずれが生じていき、磁性の安定が見られないと考えられ
る。
On the other hand, when the large grains and the small grains are mixedly present, the concentration of the pseudo-inhibitor element segregated at the grain boundaries is locally different, and the pseudo-inhibitor element is diffused during the growth process of the primary recrystallized grains in the finish annealing. The absolute amount of movement is partially different. Therefore, due to the imbalance between the so-called iron self-diffusion-based grain growth driving force and the local variability of the inhibitor effect due to the local ubiquity of the migration amount of the pseudo-inhibitor element, grain growth of secondary recrystallization occurs. And the inhibitor effect are inconsistent with each other, and the inhibitor strength is gradually weakened uniformly with the growth of the secondary recrystallized grains, which causes a deviation from the basic idea of the present invention of preferential growth of GOSS. It seems that stability is not seen.

【0031】一方、一次粒径の標準偏差が平均粒径に対
し10%未満であると再び磁性が悪くなる。この理由も
明確ではないが以下のことが考えられる。つまり、一次
組織の整粒性がよく成りすぎると、どの方位の粒も均一
な比較的揃った粒界エネルギーを有するので、かえっ
て、GOSS方位粒の成長優先性が失われることが考え
られる。さて、本発明の特徴をより一層発揮させるには
とりわけ以下に示す製造法が最適である。
On the other hand, if the standard deviation of the primary particle diameter is less than 10% with respect to the average particle diameter, the magnetism deteriorates again. The reason for this is not clear, but the following can be considered. That is, if the grain size control property of the primary structure becomes too good, grains in any orientation have uniform and relatively uniform grain boundary energies, and it is conceivable that the growth priority of the GOSS oriented grains is lost. Now, in order to further exert the characteristics of the present invention, the following manufacturing method is most suitable.

【0032】すなわちSiを1〜7%含む鋼で必要に応
じAlを鋼溶製時に0.1%以下含み、また、AlN,
Si3 4 等をインヒビターとして利用する場合は、珪
素鋼板製造工程における鋼溶製時または冷延後の一次焼
鈍中の脱炭焼鈍中または後に鋼板に直接窒化反応を介し
て鋼にNを強制的に添加せしめる方法等により、二次再
結晶焼鈍前にNを60〜400ppm 鋼に含むことを特徴
とする。Siは本発明においては上記のようにフォルス
テライト形成のために最低1%は必要である。一方、7
%を超えると加工性が極端に劣化し工業生産に適さな
い。
That is, in the steel containing 1 to 7% of Si, if necessary, Al is contained in an amount of 0.1% or less when the steel is melted.
When Si 3 N 4 etc. is used as an inhibitor, N is forced into steel through direct nitriding reaction during or after decarburization annealing during steel melting in the silicon steel sheet manufacturing process or during primary annealing after cold rolling. It is characterized in that N is contained in the steel of 60 to 400 ppm before the secondary recrystallization annealing by a method such as a method of selectively adding it. In the present invention, at least 1% of Si is necessary for forming forsterite as described above. On the other hand, 7
If it exceeds%, the workability is extremely deteriorated and it is not suitable for industrial production.

【0033】Alは、AlNインヒビター形成に有効で
ある。しかし、0.1%を超えるとAl2 3 生成量が
多くなり健全な鋼の清浄度を損ない、ひいては磁気特性
に悪影響をもたらす。NはAlNやSi3 4 インヒビ
ターを形成するのに不可欠であり、本発明においてはこ
れらのインヒビターを利用する場合は一次焼鈍後、つま
り仕上げ焼鈍の二次再結晶開始前で最低60ppm は必要
である。一方、400ppm を超えるとAlやSiを食い
すぎて好ましくはない。この他の元素は本発明では従来
の鋼に較べて特に特徴的ではないが以下に制約すること
が好ましい。
Al is effective in forming an AlN inhibitor. However, if it exceeds 0.1%, the amount of Al 2 O 3 produced increases, impairing the cleanliness of sound steel, and adversely affecting the magnetic properties. N is indispensable for forming AlN and Si 3 N 4 inhibitors. In the present invention, when these inhibitors are used, a minimum of 60 ppm is required after primary annealing, that is, before the initiation of secondary recrystallization of finish annealing. is there. On the other hand, if it exceeds 400 ppm, Al and Si are eaten too much, which is not preferable. In the present invention, the other elements are not particularly characteristic as compared with the conventional steel, but the following restrictions are preferable.

【0034】Cは鋼溶製中に十分低くするかまたは一次
焼鈍の脱炭焼鈍時に十分低くする必要があり、二次再結
晶焼鈍開始時には0.03%以下が好ましい。Mnは
0.5%以下ならばSと反応してMnSインヒビターを
形成する。0.15%以下だとさらに磁束密度の向上に
好ましい。Oは鋼溶製後に0.05%以下であればAl
2 3 を多量に作りすぎず清浄度的に好ましい。Hf,
Bi,W,Nb,Co,Ni,Cu,Moの元素は鉄中
の拡散の活性化エネルギーが70kcal/mol以上で前述の
擬インヒビター効果により、磁束密度の向上、鉄損低減
の効果があり、そのためにはその1種類以上の合計が鋼
溶製時に最低0.001%以上必要である。一方、0.
50%超では熱間脆性が激しく熱延が極めて困難にな
る。これは高温での活性化エネルギーの大きいことと無
関係ではないと考えられる。V,Cr,Pは本発明では
必須元素ではないが前述のように擬インヒビター元素へ
の補助的効果が認められる。この場合、その1種類以上
の合計が0.02%以上を含まないと補助的効果はな
く、一方、0.30%超では一次被膜形成が十分でなく
なる。Snは本発明では必須元素ではないが鉄損低減に
効果があり、その場合は0.02%以上必要である。一
方、0.20%超では一次被膜が十分できない。
C needs to be sufficiently low during steel melting or sufficiently low during decarburization annealing of primary annealing, and is preferably 0.03% or less at the start of secondary recrystallization annealing. If Mn is 0.5% or less, it reacts with S to form a MnS inhibitor. If it is 0.15% or less, it is preferable for further improving the magnetic flux density. O is Al if 0.05% or less after steel is melted
It is preferable for cleanliness without making too much 2 O 3 . Hf,
The elements of Bi, W, Nb, Co, Ni, Cu and Mo have an activation energy of diffusion of 70 kcal / mol or more in iron and have the effect of improving the magnetic flux density and reducing the iron loss due to the above-mentioned pseudo-inhibitor effect. For that purpose, the total of one or more of them must be at least 0.001% at the time of steel melting. On the other hand, 0.
If it exceeds 50%, hot brittleness becomes severe and hot rolling becomes extremely difficult. It is considered that this is not related to the large activation energy at high temperature. V, Cr, and P are not essential elements in the present invention, but an auxiliary effect on the pseudo-inhibitor element is recognized as described above. In this case, if the total of one or more kinds does not include 0.02% or more, there is no auxiliary effect, while if over 0.30%, the primary film formation becomes insufficient. Although Sn is not an essential element in the present invention, it is effective in reducing iron loss, and in that case, 0.02% or more is necessary. On the other hand, if it exceeds 0.20%, the primary coating cannot be sufficiently formed.

【0035】次に化学成分以外の本発明の製造方法につ
いて述べる。鋼を転炉または電気炉等で出鋼し、必要に
応じて精錬工程を加えて成分調整を行った溶鋼を連続鋳
造法、造塊分塊圧延法あるいは熱延工程省略のための薄
スラブ連続鋳造法等により、厚さ30〜400mm(薄ス
ラブ連続鋳造法では50mm以下)のスラブとする。ここ
で30mmは生産性の下限であり、400mmは中心偏析で
Al2 3 等の分布が異常になることを防ぐための上限
である。また50mmは薄スラブ連鋳法での冷速が小さく
なって粗大粒が出てくることを抑制するための上限であ
る。
Next, the production method of the present invention other than the chemical components will be described. Continuous casting method, ingot-agglomeration and rolling method, or thin slab continuous method for omitting hot rolling step, in which steel is tapped in a converter or electric furnace, and a refining step is added as necessary to adjust the composition. A slab having a thickness of 30 to 400 mm (50 mm or less in the thin slab continuous casting method) is formed by a casting method or the like. Here, 30 mm is the lower limit of productivity, and 400 mm is the upper limit for preventing abnormal distribution of Al 2 O 3 etc. due to center segregation. Further, 50 mm is the upper limit for suppressing the generation of coarse particles due to the low cooling rate in the thin slab continuous casting method.

【0036】該スラブをガス加熱、電気利用加熱等によ
り1000〜1400℃に再加熱を行い、引き続き熱間
圧延を行って厚さ10mm以下のホットコイルとする。こ
こで1000℃はAlN溶解の下限であり、1400℃
は表面肌あれと材質劣化の上限である。また10mmは適
正な析出物を生成する冷速を得る上限である。なお、薄
スラブ連続鋳造法では直接コイル状にすることも可能で
あり、そのためには10mm以下が好ましい。このように
作ったホットコイルを再び800〜1250℃で焼鈍
し、磁性向上を図ることもしばしば行われる。ここで8
00℃はAlN等のインヒビター析出物の再溶解の下限
であり、1250℃はAlN等インヒビター析出物の粗
粒化防止の上限である。
The slab is reheated to 1000 to 1400 ° C. by gas heating, electric heating, etc., and then hot rolled to obtain a hot coil having a thickness of 10 mm or less. Here, 1000 ° C. is the lower limit of AlN melting, and 1400 ° C.
Is the upper limit of surface roughness and material deterioration. Further, 10 mm is an upper limit for obtaining a cold speed at which an appropriate precipitate is formed. In the thin slab continuous casting method, it is possible to directly form a coil, and for that purpose, it is preferably 10 mm or less. The hot coil thus produced is often annealed again at 800 to 1250 ° C. to improve the magnetism. 8 here
00 ° C. is the lower limit for re-dissolving inhibitor precipitates such as AlN, and 1250 ° C. is the upper limit for preventing coarsening of inhibitor precipitates such as AlN.

【0037】かかる処理工程の後、ホットコイルを直接
またはバッチ的に酸洗後冷間圧延を行う。冷間圧延は圧
下率60〜95%で行うが、60%は本発明で再結晶可
能な限界であり、好ましくは70%以上が一次焼鈍で
{111}〔112〕方位粒を多くして、二次再結晶焼
鈍時のGOSS方位粒の生成を促進させる下限であり、
一方95%超では二次再結晶焼鈍で首振りGOSS粒と
称するGOSS方位粒が板面内回転した磁気特性に好ま
しくない粒が生成される。以上はいわゆる一回冷延法で
製造する場合だが、なお、二回冷延法と称して冷延−焼
鈍−冷延を行う場合は、一回目の圧下率は10〜80
%、二回目の圧下率は50〜95%となる。ここで10
%は再結晶に必要な最低圧下率、80%と95%はそれ
ぞれ二次再結晶時に適正なGOSS方位粒を生成させる
ための上限圧下率、また50%は二回冷延法においては
一次焼鈍時の{111}〔112〕方位粒を適正に残す
下限圧下率である。
After this treatment step, the hot coil is pickled directly or batchwise and then cold rolled. Cold rolling is performed at a rolling reduction of 60 to 95%, 60% being the limit of recrystallization in the present invention, preferably 70% or more by primary annealing and increasing {111} [112] oriented grains, It is a lower limit for promoting the generation of GOSS oriented grains during secondary recrystallization annealing,
On the other hand, if the content exceeds 95%, secondary recrystallization annealing causes GOSS-oriented grains, which are called swinging GOSS grains, to rotate in the plane of the plate to produce grains unfavorable to the magnetic properties. Although the above is the case of manufacturing by the so-called single cold rolling method, when the cold rolling-annealing-cold rolling is performed by the double cold rolling method, the first rolling reduction is 10 to 80.
%, And the second rolling reduction is 50 to 95%. Where 10
% Is the minimum reduction ratio required for recrystallization, 80% and 95% are the upper limit reduction ratios for producing proper GOSS oriented grains during secondary recrystallization, and 50% is the primary annealing in the double cold rolling method. It is the lower limit of the reduction rate in which {111} [112] oriented grains are appropriately left.

【0038】なお、通称パス間エージングと称し、冷間
圧延の途中で鋼板を適当な方法で100〜400℃の範
囲で加熱することも磁気特性の向上に有効である。10
0℃未満ではエージングの効果がなく、一方400℃超
では転位が回復してしまう。しかる後、一回冷延法でも
二回冷延法でも一次焼鈍を行うわけであるが、この焼鈍
で脱炭を行うことは有効である。前述のようにCは二次
再結晶粒の成長に好ましくないばかりか、不純物として
残ると鉄損の劣化を招く。なお鋼の溶製時にCを下げて
おくと脱炭工程が短縮化されるばかりか{111}〔1
12〕方位粒も増やすので好ましい。なお、この脱炭焼
鈍工程で適正な露点を設定することで後の一次被膜生成
に必要な酸化層の確保が行われる。一次焼鈍温度は70
0〜950℃が好ましい。ここで700℃は再結晶可能
な下限温度であり、950℃は粗大粒の発生を抑制する
上限温度である。
It is also commonly called "interpass aging" and it is effective to improve the magnetic properties by heating the steel sheet in the range of 100 to 400 ° C by an appropriate method during the cold rolling. 10
If it is less than 0 ° C, the effect of aging is not obtained, while if it exceeds 400 ° C, dislocations are recovered. After that, the primary annealing is performed by either the single cold rolling method or the double cold rolling method, and it is effective to perform decarburization by this annealing. As described above, C is not preferable for the growth of secondary recrystallized grains, and if it remains as an impurity, it causes deterioration of iron loss. If C is lowered during melting of steel, not only the decarburization process is shortened, but also {111} [1
12] It is preferable because the number of oriented grains is also increased. By setting an appropriate dew point in this decarburization annealing step, the oxide layer necessary for the subsequent formation of the primary coating can be secured. Primary annealing temperature is 70
0-950 degreeC is preferable. Here, 700 ° C. is the lower limit temperature at which recrystallization is possible, and 950 ° C. is the upper limit temperature for suppressing the generation of coarse particles.

【0039】さらに、AlNやSi3 4 インヒビター
のNを積極的に利用する場合は、鋼溶製時または一次焼
鈍時か後に窒化法等で強制添加することが行われるが、
一次焼鈍中または直後に行う場合は、アンモニア(NH
3 )等で窒化法により窒化することも行われる。この場
合の窒化法の温度は600〜950℃が好ましい。ここ
で600℃は窒化反応を起こす下限であり、一方950
℃は粗大粒発生を抑える上限である。
Further, in the case of positively utilizing AlN or N of Si 3 N 4 inhibitor, forcible addition is performed by a nitriding method or the like during melting of steel or during primary annealing, but
When performing during or immediately after the primary annealing, ammonia (NH
Nitriding is also performed by nitriding method such as 3 ). In this case, the temperature of the nitriding method is preferably 600 to 950 ° C. Here, 600 ° C. is the lower limit of the nitriding reaction, while 950
C is the upper limit for suppressing the generation of coarse particles.

【0040】本発明において窒化は一次再結晶焼鈍後に
行う場合は、工業的には同じ炉内の後面に仕切りを設け
て雰囲気を必要に応じて多少変えて、NH3 ガスを流す
か、近接した設備で行うため一次再結晶と平行して窒化
されることもしばしば行われる。この際前述のようにN
2 分圧が低い方が窒化量は大きく、好ましくは窒素と酸
素の分圧比P N2 /P H2 は0.5以下が好ましい。一
次焼鈍あるいは上記窒化法を行い、その後、酸化マグネ
シウム(MgOを主成分とする。以下MgOと呼ぶ)パ
ウダーを水または水を主成分とする水溶液に溶かしスラ
リー状にして鋼板に塗布する。この際、後の二次再結晶
焼鈍時にMgOパウダーの溶融を容易にさせ、フォルス
テライト生成反応を促進させる目的で、適当な化合物を
微量添加することも行われる。TiO2 を添加する場合
は1〜15%が好ましいが、ここで、1%はフォルステ
ライト反応促進効果を発揮する下限であり、15%超で
はMgOが少なくなってかえってフォルステライト反応
が進まない。
In the present invention, when the nitriding is performed after the primary recrystallization annealing, industrially, a partition is provided on the rear surface of the same furnace and the atmosphere is slightly changed according to need, and NH 3 gas is flowed or it is brought close to it. Since it is carried out at the facility, nitriding is often performed in parallel with primary recrystallization. At this time, as described above, N
The lower the partial pressure of 2 is, the larger the amount of nitriding is, and the partial pressure ratio P N 2 / P H 2 of nitrogen and oxygen is preferably 0.5 or less. Primary annealing or the above nitriding method is performed, and then magnesium oxide (MgO as a main component; hereinafter referred to as MgO) powder is dissolved in water or an aqueous solution containing water as a main component to form a slurry, which is applied to a steel sheet. At this time, a trace amount of an appropriate compound may be added for the purpose of facilitating the melting of the MgO powder during the subsequent secondary recrystallization annealing and accelerating the forsterite formation reaction. When TiO 2 is added, it is preferably 1 to 15%, but here, 1% is the lower limit for exerting the effect of promoting the forsterite reaction, and if it exceeds 15%, the amount of MgO decreases and the forsterite reaction does not proceed.

【0041】Sb2 (SO4 3 等のアンチモン系の化
合物はMgOを比較的低温で溶融させるのに効果があ
り、添加を行う場合は0.05〜5%が好ましい。ここ
で、0.05%は上記低温溶融を起こす下限であり、一
方、5%を超える場合は多すぎてMgOのフォルステラ
イトの本来の反応を不活性化する。Na2 4 7 等の
ボロン系の化合物およびそれと同様の作用を持つストロ
ンチウム・バリウム系、炭・窒化物系、硫化物系、塩化
物系の化合物は、アンチモン系よりは比較的高温でMg
Oを溶融させるのに効果があり、添加する場合は0.0
5〜5%が好ましい。ここで、0.05%は上記の効果
を発揮する下限であり、一方5%超ではやはりMgOの
フォルステライトの本来の反応を不活性化するので好ま
しくない。なおこれらの化合物は互いに複合して添加す
ることも可能である。
Antimony compounds such as Sb 2 (SO 4 ) 3 are effective in melting MgO at a relatively low temperature, and when added, 0.05 to 5% is preferable. Here, 0.05% is the lower limit for causing the above-mentioned low-temperature melting, while if it exceeds 5%, it is too much to inactivate the original reaction of MgO forsterite. Boron-based compounds such as Na 2 B 4 O 7 and strontium / barium-based, carbon / nitride-based, sulfide-based, and chloride-based compounds that have the same action as Mg have higher temperatures than antimony-based compounds.
It has the effect of melting O, and when it is added, it is 0.0
5 to 5% is preferable. Here, 0.05% is the lower limit for exhibiting the above-mentioned effect, while if it exceeds 5%, the original reaction of MgO forsterite is inactivated, which is not preferable. It should be noted that these compounds may be added in combination with each other.

【0042】ただしアンチモン系の低温溶融型とボロン
系他の比較的高温溶融型の化合物を混ぜて使用するとき
は、その効果は高温溶融型に近いことになるが、本発明
の主旨と矛盾するものではなく、その場合は本発明の高
温溶融型の昇温速度をとることが好ましい。なお、ここ
で添加する化合物の%はMgOの重量を100%とした
ときの重量比を%で示してある。二次再結晶焼鈍は最高
到達温度を1100〜1300℃で行うのが好ましい。
1100℃は二次再結晶が行われる下限の温度であり、
一方1300℃超は結晶粒が粗大化し過ぎて鉄損の劣化
を招く。なお、前述のように、この二次再結晶焼鈍中の
比較的前段階で雰囲気等よりNを追加添加する窒化法が
行われることもある。
However, when an antimony low temperature melting type compound and a boron or other relatively high temperature melting type compound are mixed and used, the effect is close to that of the high temperature melting type compound, but it contradicts the gist of the present invention. However, in that case, it is preferable to adopt the high temperature melting type temperature rising rate of the present invention. In addition,% of the compound added here is shown by the weight ratio when the weight of MgO is 100%. The secondary recrystallization annealing is preferably performed at the highest temperature reached of 1100 to 1300 ° C.
1100 ° C. is the lower limit temperature at which secondary recrystallization is performed,
On the other hand, if the temperature exceeds 1300 ° C., the crystal grains become too coarse, and the iron loss is deteriorated. Note that, as described above, the nitriding method in which N is additionally added from the atmosphere or the like may be performed at a relatively previous stage during the secondary recrystallization annealing.

【0043】さて、この二次再結晶焼鈍の昇温速度はと
りわけ本発明では重要である。すなわち、MgO中に添
加する化合物の種類によって昇温速度を変化させること
が必要である。アンチモン系の化合物をMgOに添加す
る場合は、800℃〜最高到達温度の平均昇温速度は毎
時0.1〜80℃の比較的小さいことが必要である。こ
こで、0.1℃/時は工業的昇温速度の下限であり、一
方前述のようにMgOがアンチモン系の化合物の添加で
は低温で溶融するためより早く確実にフォルステライト
の生成を行っておく必要があり、それには昇温速度は8
0℃/時以下にしておく必要がある。一方、ボロン系、
ストロンチウム・バリウム系、炭・窒化物系、硫化物系
および塩化物系では上記平均昇温速度は毎時5〜400
℃が好ましい。すなわち、高温溶融型の化合物の添加で
はMgOの溶融を比較的高温で起こすため、早く高温に
到達するため5℃/時以上の昇温速度が必要であり、一
方、400℃/時超では二次再結晶そのものがインヒビ
ターとの関係で十分行われない。
Now, the temperature rising rate of the secondary recrystallization annealing is particularly important in the present invention. That is, it is necessary to change the temperature rising rate depending on the type of compound added to MgO. When an antimony-based compound is added to MgO, it is necessary that the average heating rate from 800 ° C. to the highest reached temperature is 0.1 to 80 ° C. per hour, which is relatively small. Here, 0.1 ° C./hour is the lower limit of the industrial heating rate, while as described above, MgO melts at a low temperature when an antimony-based compound is added, so that forsterite can be formed more quickly and reliably. It is necessary to set the temperature rise rate to 8
It is necessary to keep it at 0 ° C./hour or less. On the other hand, boron series,
In the case of strontium / barium system, carbon / nitride system, sulfide system and chloride system, the average heating rate is 5 to 400 per hour.
C is preferred. That is, since the melting of MgO occurs at a relatively high temperature when a high temperature melting type compound is added, a temperature rising rate of 5 ° C./hour or more is required in order to reach a high temperature quickly. Secondary recrystallization itself is not sufficiently performed in relation to the inhibitor.

【0044】さらに二次再結晶保定または冷却中のコイ
ルの板間の面圧が0.3kg/mm2 超ではHf,Bi等の
擬インヒビター元素がコイルから抜けず化合物を作りこ
れがフォルステライトを侵食して十分な一次被膜ができ
ない。以上が本発明の珪素鋼板の製造方法での重要な部
分であるが、工業的にはさらに絶縁特性や磁気特性を向
上させる目的で鋼板にロールコータ法やコロイド法やゾ
ルゲール法等による有機質や無機質による二次被膜の生
成や、さらに機械的、化学的またはレーザー付加等の非
接触型のエネルギー照射法による磁区制御法、さらには
その後の発粉防止のための三次被膜の生成等のいくつか
の工程が伴うことが多い。
Further, when the surface pressure between the plates of the coil during secondary recrystallization retention or cooling exceeds 0.3 kg / mm 2 , pseudo-inhibitor elements such as Hf and Bi do not escape from the coil and form a compound, which corrodes forsterite. As a result, a sufficient primary coating cannot be formed. The above is an important part of the method for producing a silicon steel sheet according to the present invention, but industrially, for the purpose of further improving insulating properties and magnetic properties, a steel sheet is made of an organic or inorganic material such as a roll coater method, a colloid method or a zolgel method. To form a secondary film, and to control the magnetic domain by a non-contact type energy irradiation method such as mechanical, chemical or laser addition, and then to form a tertiary film to prevent dusting. Often involves steps.

【0045】[0045]

【実施例】【Example】

実施例1 表2に示す化学組織を有する鋼を、150kg真空溶解炉
で溶製した。これを鋳造し、加熱、熱間圧延し、厚さ
1.8mmの熱延板とした。熱延板の何枚かに1120℃
×30秒間の焼鈍を施した。熱延板焼鈍した材料および
熱間圧延ままの材料を酸洗し、次いで90%の圧下率を
適用して冷間圧延し、0.18mmの最終板厚とした。こ
の冷間圧延過程で、材料を250℃の温度に保持するパ
ス間エイジングを施した。然る後、材料を油洗し、
2 :25%+H2 :75%、露点:60℃の雰囲気で
表3の焼鈍条件で脱炭を兼ねる一次再結晶焼鈍を施した
後、下記の焼鈍分離剤を塗布した。
Example 1 Steel having the chemical structure shown in Table 2 was melted in a 150 kg vacuum melting furnace. This was cast, heated and hot rolled to obtain a hot rolled sheet having a thickness of 1.8 mm. 1120 ℃ for some hot rolled sheets
It was annealed for 30 seconds. The hot-rolled sheet annealed material and the as-hot-rolled material were pickled and then cold rolled by applying a 90% reduction to give a final sheet thickness of 0.18 mm. During this cold rolling process, the material was subjected to interpass aging to keep the material at a temperature of 250 ° C. After that, wash the material with oil,
After performing primary recrystallization annealing which also serves as decarburization under the annealing conditions of Table 3 in an atmosphere of N 2 : 25% + H 2 : 75%, dew point: 60 ° C., the following annealing separator was applied.

【0046】(1) MgO+TiO2 (5%)+Sb2 (S
4 3 (0.2%:Sb系)、(0.02%:低Sb系)、
(6.0%:高Sb系) (2) MgO+TiO2 (5%)+Na2 4 7 (0.3%:
B系)、(0.03%:低B系)、(7.0%:高B系) (3) MgO+MgSO4 (4%)+FeSO4 (0.1%)+
Na2 4 7 (0.5%)……硫化物系 (4) MgO+SrCO3 (0.08%)+BaCl2 (0.5
%)+Ba(H)2 (0.1%)……ストロンチウム・バリ
ウム系 (5) MgO+V2 5 (5%)+CrN(3%)……炭・窒
化物系 (6) MgO+MnO2 (0.2%)+TiO2 (8%)+Ti
Cl4 (0.5%)……塩化物系
(1) MgO + TiO 2 (5%) + Sb 2 (S
O 4 ) 3 (0.2%: Sb system), (0.02%: low Sb system),
(6.0%: High Sb system) (2) MgO + TiO 2 (5%) + Na 2 B 4 O 7 (0.3%:
B type), (0.03%: low B type), (7.0%: high B type) (3) MgO + MgSO 4 (4%) + FeSO 4 (0.1%) +
Na 2 B 4 O 7 (0.5%) …… Sulfide system (4) MgO + SrCO 3 (0.08%) + BaCl 2 (0.5
%) + Ba (H) 2 (0.1%) …… Strontium / barium system (5) MgO + V 2 O 5 (5%) + CrN (3%) …… Carbon / nitride system (6) MgO + MnO 2 (0.2%) + TiO 2 (8%) + Ti
Cl 4 (0.5%) …… Chloride

【0047】焼鈍分離剤はこれを水に溶解させてスラリ
ー状にしてロールコータで鋼板に塗布した後、350℃
の炉内で乾燥した。次いで、仕上げ焼鈍工程において、
800℃〜最高到達温度間の昇温速度を種々変化させて
鋼板を二次再結晶させた。焼鈍後の材料を水洗した後、
燐酸系の絶縁被膜(二次被膜)を塗布し、焼付処理し
た。得られた珪素鋼板に、N2 :90%+H2 :10%
のドライ雰囲気中、850℃×4時間の歪取焼鈍を施し
た後、被膜およびマクロ組織外観検査、磁気測定、被膜
張力測定、密着性試験を行った。その結果を表3に示
す。
The annealing separator is dissolved in water to form a slurry, which is applied to a steel sheet by a roll coater and then 350 ° C.
Dried in the oven. Then, in the finish annealing step,
The steel sheet was secondarily recrystallized by variously changing the temperature rising rate between 800 ° C. and the maximum reached temperature. After washing the annealed material with water,
A phosphoric acid type insulating film (secondary film) was applied and baked. N 2 : 90% + H 2 : 10% on the obtained silicon steel sheet
After performing stress relief annealing at 850 ° C. for 4 hours in the dry atmosphere, the film and macrostructure visual inspection, magnetic measurement, film tension measurement, and adhesion test were performed. The results are shown in Table 3.

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】被膜外観検査の結果を、○印:スケール、
霜降り状欠陥なし、△印:若干の霜降り状欠陥あり、×
印:スケール、霜降り状欠陥が多く、被膜が十分に形成
されていない、という表示方法で示した。スケールと
は、被膜がある程度広く剥離しているもの、霜降り状欠
陥とは、点状に被膜が剥離している欠陥のことである。
また、マクロ組織外観検査の結果を、○印:二次再結晶
組織が十分にできている、△印:部分的に細粒が認めら
れる、×印:全面に細粒が認められる、という表示方法
で示した。磁気測定は幅:60mm、長さ:300mmの単
板のSST(Single Sheet Tester)試験法によって行っ
た。B8 値(800A/mにおける磁束密度〔ガウ
ス〕)およびW17/50 (50Hzで1.7Tesla の交番磁
界における鉄損値〔w/kg〕)を測定した。
The results of the visual inspection of the coating film are shown by ○: scale,
No marbling defect, △: Some marbling defect, ×
Mark: Scale and marbling defects were many, and the coating was not sufficiently formed. The scale means that the coating film is peeled off to some extent, and the marbling defect is a defect in which the coating film is peeled off in spots.
In addition, the results of the macrostructure visual inspection are indicated as ○: secondary recrystallized structure is sufficiently formed, △: fine grains are partially observed, ×: fine grains are observed on the entire surface Shown by way. The magnetic measurement was performed by an SST (Single Sheet Tester) test method for a single plate having a width of 60 mm and a length of 300 mm. The B 8 value (magnetic flux density at 800 A / m [Gauss]) and W 17/50 (iron loss value at an alternating magnetic field of 1.7 Tesla at 50 Hz [w / kg]) were measured.

【0052】密着性試験においては、直径:20mmの円
柱に鋼板を巻き付け、その結果を、○印:被膜のクラッ
クなし、△印:被膜の微細クラックあり、×印:ほぼ全
面にクラックあり、という表示方法で評価した。さら
に、被膜張力は、鋼板の片面の被膜を除去し、そのとき
の鋼板の反りを測定し、計算によって被膜張力を算出す
るという方法によって測定した。算出結果の値の大きい
方が、被膜と地鉄の熱膨脹係数の差によって鋼板に生起
する張力が大きく、これによって鉄損特性が大きく改善
される。なお、板厚が薄いほど被膜張力は高めに出る傾
向がある。
In the adhesion test, a steel plate was wound around a cylinder having a diameter of 20 mm, and the results are indicated as ◯: no cracks in the coating, Δ: fine cracks in the coating, x: cracks on almost the entire surface. It was evaluated by the display method. Further, the film tension was measured by a method in which the film on one surface of the steel sheet was removed, the warpage of the steel sheet at that time was measured, and the film tension was calculated. The larger the calculated value is, the larger the tension generated in the steel sheet due to the difference in thermal expansion coefficient between the coating and the base iron is, and thus the iron loss characteristics are greatly improved. The thinner the plate, the higher the film tension.

【0053】表3から明らかなように、Sb(アンチモ
ン)系の化合物を添加した焼鈍分離剤を用いて製造され
た方向性珪素鋼板で、仕上げ焼鈍工程における昇温速度
が低く、また、B系等の化合物を添加した焼鈍分離剤を
用いて製造された方向性珪素鋼板では昇温速度が比較的
高く、かつ本発明で規定する諸条件を満足し、なかんず
く、一次再結晶組織が本発明に入るものは上記特性試験
結果が全て良好である。
As is clear from Table 3, a grain-oriented silicon steel sheet manufactured by using an annealing separator containing an Sb (antimony) -based compound has a low rate of temperature rise in the finish annealing step, and has a B-type composition. In the grain-oriented silicon steel sheet produced by using the annealing separator added with a compound such as the above, the temperature rising rate is relatively high, and the conditions defined in the present invention are satisfied. Among them, the primary recrystallization structure is in the present invention. All of the above products have good results of the above characteristic test.

【0054】実施例2 表4,表7に示す化学組成を有する鋼を転炉で溶製し、
表5,表8に示す製造条件で厚さ:0.27mmの製品を
製造した。なお、符号2−23の材料については、仕上
げ焼鈍工程における昇温中に鋼板に窒化処理を施した。
符号2−9および2−14〜2−20の材料について
は、一次再結晶焼鈍後にアンモニアガスを含む雰囲気中
で鋼板を窒化処理した。また、符号2−21の材料につ
いては、一次再結晶焼鈍後にアンモニアガスを含む雰囲
気中で鋼板を窒化処理し、さらに仕上げ焼鈍工程におけ
る昇温中に鋼板に窒化処理を施した。焼鈍分離剤に添加
する諸種の化合物は、実施例1におけると同じである。
得られた製品に、実施例1におけると同様の諸種の特性
試験を行った。その結果を表6,表9に示す。表6,表
9から明らかなように、本発明で規定する条件を満足す
るものは、上記特性試験結果が全て良好である。
Example 2 Steels having the chemical compositions shown in Tables 4 and 7 were melted in a converter,
A product having a thickness of 0.27 mm was manufactured under the manufacturing conditions shown in Tables 5 and 8. In addition, about the material of code | symbol 2-23, the nitriding process was given to the steel plate during temperature rising in the finish annealing process.
Regarding the materials 2-9 and 2-14 to 2-20, the steel sheets were nitrided in an atmosphere containing ammonia gas after the primary recrystallization annealing. Regarding the material indicated by the reference numeral 2-21, the steel sheet was nitrided in an atmosphere containing ammonia gas after the primary recrystallization annealing, and further, the steel sheet was nitrided during the temperature increase in the finish annealing step. The various compounds added to the annealing separator are the same as in Example 1.
The obtained product was subjected to various characteristics tests similar to those in Example 1. The results are shown in Tables 6 and 9. As is clear from Tables 6 and 9, those satisfying the conditions specified in the present invention have good results of the above characteristic tests.

【0055】[0055]

【表5】 [Table 5]

【0056】[0056]

【表6】 [Table 6]

【0057】[0057]

【表7】 [Table 7]

【0058】[0058]

【表8】 [Table 8]

【0059】[0059]

【表9】 [Table 9]

【0060】[0060]

【表10】 [Table 10]

【0061】[0061]

【発明の効果】本発明によれば磁気特性の優れた一方向
性電磁鋼板を得ることができる。
According to the present invention, it is possible to obtain a grain-oriented electrical steel sheet having excellent magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b),(c)は仕上げ焼鈍条件を示
す図表である。
1A, 1B, and 1C are charts showing finish annealing conditions.

【図2】仕上げ焼鈍速度を示す図表である。FIG. 2 is a chart showing finish annealing rates.

【図3】昇温速度と拡散移動量の関係を示す図表であ
る。
FIG. 3 is a chart showing a relationship between a temperature rising rate and a diffusion movement amount.

【図4】一次粒径の平均値および標準偏差と磁気測定の
関係を示す図表である。
FIG. 4 is a chart showing the relationship between the average value and standard deviation of primary particle diameters and magnetic measurement.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 22/00 A H01F 1/16 (72)発明者 山崎 修一 富津市新富20−1 新日本製鐵株式会社技 術開発本部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C23C 22/00 A H01F 1/16 (72) Inventor Shuichi Yamazaki 20-1 Shintomi, Futtsu-shi New Japan Technology Development Headquarters

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Si:1〜7%および鉄中の拡散の活性
化エネルギーQが70kcal/mol以上の元素の1種類以上
の合計が0.001%以上0.50%以下を含む鋼を溶
製し、熱間圧延、冷間圧延、一次再結晶焼鈍および二次
再結晶焼鈍を基本工程とする方向性電磁鋼板の製造にお
いて、一次再結晶粒径(断面粒径)の測定の平均値を5
〜35μ、かつそのそれぞれの粒径の標準偏差値が該平
均値の10〜70%であり、かつ二次再結晶焼鈍前に塗
布するマグネシアの中にアンチモン系の化合物を0.0
5〜5.0%添加し、かつ二次再結晶焼鈍での800℃
から最高到達温度までの平均昇温速度を毎時0.1〜8
0℃とし、かつ二次再結晶焼鈍での板間の面圧を0.3
kg/mm2 以下とすることを特徴とする高磁束密度低鉄損
一方向性電磁鋼板の製造法。
1. A steel containing 1: 1 to 7% of Si and a total of one or more elements having an activation energy Q of diffusion in iron of 70 kcal / mol or more of 0.001% to 0.50%. The average value of the measurement of the primary recrystallized grain size (cross-sectional grain size) in the production of grain-oriented electrical steel sheet, which is manufactured by hot rolling, cold rolling, primary recrystallization annealing and secondary recrystallization annealing. 5
.About.35 .mu.m, and the standard deviation value of the respective grain sizes is 10 to 70% of the average value, and 0.0% of the antimony-based compound is added to the magnesia applied before the secondary recrystallization annealing.
Addition of 5-5.0%, and 800 ℃ in secondary recrystallization annealing
To the maximum temperature reached from 0.1 to 8 per hour
The surface pressure between the plates in the secondary recrystallization annealing is set to 0 ° C. and 0.3
A manufacturing method of a high magnetic flux density low iron loss unidirectional electrical steel sheet characterized by being set to kg / mm 2 or less.
【請求項2】 Si:1〜7%および鉄中の拡散の活性
化エネルギーQが70kcal/mol以上の元素の1種類以上
の合計が0.001%以上0.50%以下を含む鋼を溶
製し、熱間圧延、冷間圧延、一次再結晶焼鈍および二次
再結晶焼鈍を基本工程とする方向性電磁鋼板の製造にお
いて、一次再結晶粒径(断面粒径)の測定の平均値を5
〜35μ、かつそのそれぞれの粒径の標準偏差値が該平
均値の10〜70%であり、二次再結晶焼鈍前に塗布す
るマグネシアの中にボロン系、ストロンチウム・バリウ
ム系、炭・窒化物系、硫化物系、塩化物系の1種または
2種以上を合計0.05〜5.0%添加し、かつ二次再
結晶焼鈍での800℃から最高到達温度までの平均昇温
速度を毎時5〜400℃とし、かつ二次再結晶焼鈍で板
間の面圧を0.3kg/mm2 以下とすることを特徴とする
高磁束密度低鉄損一方向性電磁鋼板の製造法。
2. A steel containing 1: 1 to 7% of Si and one or more elements having an activation energy Q of diffusion in iron of 70 kcal / mol or more in a total amount of 0.001% to 0.50%. The average value of the measurement of the primary recrystallized grain size (cross-sectional grain size) in the production of grain-oriented electrical steel sheet, which is manufactured by hot rolling, cold rolling, primary recrystallization annealing and secondary recrystallization annealing. 5
.About.35 .mu., And the standard deviation value of the respective grain sizes is 10 to 70% of the average value, and boron-based, strontium-barium-based, carbon-nitride is contained in magnesia to be applied before secondary recrystallization annealing. System, sulfide system, and chloride system, one or two or more of them are added in a total amount of 0.05 to 5.0%, and the average heating rate from 800 ° C to the maximum reached temperature in the secondary recrystallization annealing is A method for producing a high magnetic flux density low iron loss unidirectional electrical steel sheet, characterized in that the surface pressure between the sheets is set to 0.3 kg / mm 2 or less by secondary recrystallization annealing at 5 to 400 ° C. per hour.
【請求項3】 活性化エネルギーQが70kcal/mol以上
の元素としてHf,Bi,W,Nb,Co,Ni,C
u,Moの元素群から選択して用いる請求項1または2
記載の高磁束密度低鉄損一方向性電磁鋼板の製造法。
3. Hf, Bi, W, Nb, Co, Ni, C as an element having an activation energy Q of 70 kcal / mol or more.
3. The element according to claim 1, which is selected from the group of elements u and Mo.
A method for producing the described high magnetic flux density low iron loss unidirectional electrical steel sheet.
【請求項4】 活性化エネルギーQが80kcal/mol以上
の元素としてHf,Bi,Wの元素群から選択すること
を特徴とする請求項1または2記載の高磁束密度低鉄損
一方向性電磁鋼板の製造法。
4. A high magnetic flux density, low iron loss unidirectional electromagnetic field according to claim 1, wherein the element having an activation energy Q of 80 kcal / mol or more is selected from the group of elements Hf, Bi and W. Steel plate manufacturing method.
【請求項5】 フォルステライトを主成分とする一次被
膜を含めた鋼板中に、Hf,Bi,W,Nb,Co,N
i,Cu,Moの元素の1種類以上を合計で0.003
〜0.30%含有し、かつ磁束密度B8 が1.92T
(テスラ)以上および鉄損W17/50 が1.10w/kg以下
であることを特徴とする高磁束密度低鉄損一方向性電磁
鋼板。
5. Hf, Bi, W, Nb, Co, N in a steel sheet including a primary coating containing forsterite as a main component.
0.003 in total of one or more elements of i, Cu and Mo
˜0.30% and magnetic flux density B 8 is 1.92T
(Tesla) or more and iron loss W 17/50 is 1.10 w / kg or less, high magnetic flux density low iron loss unidirectional electrical steel sheet.
【請求項6】 フォルステライトを主成分とする一次被
膜を含めた鋼板中に、Hf,Bi,Wの元素の1種類以
上を合計で0.003〜0.30%含有し、かつ磁束密
度B8 が1.92T(テスラ)以上および鉄損W17/50
が1.10w/kg以下であることを特徴とする高磁束密度
低鉄損一方向性電磁鋼板。
6. A steel sheet including a primary coating containing forsterite as a main component contains 0.003 to 0.30% of one or more elements of Hf, Bi and W in total, and has a magnetic flux density B. 8 is 1.92T (tesla) or more and iron loss W 17/50
Is 1.10 w / kg or less, high magnetic flux density low iron loss unidirectional electrical steel sheet.
JP6056172A 1994-03-25 1994-03-25 Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production Withdrawn JPH07258802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6056172A JPH07258802A (en) 1994-03-25 1994-03-25 Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6056172A JPH07258802A (en) 1994-03-25 1994-03-25 Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production

Publications (1)

Publication Number Publication Date
JPH07258802A true JPH07258802A (en) 1995-10-09

Family

ID=13019690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6056172A Withdrawn JPH07258802A (en) 1994-03-25 1994-03-25 Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production

Country Status (1)

Country Link
JP (1) JPH07258802A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195536A (en) * 1997-01-07 1998-07-28 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JPH11302730A (en) * 1998-04-24 1999-11-02 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in coating characteristic and low magnetic field characteristic
JP2001506702A (en) * 1996-12-24 2001-05-22 アッキアイ スペシャリ テルニ エス.ピー.エー. Method for manufacturing oriented grain electrical steel sheet with high magnetic properties
JP2007254829A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp METHOD FOR PRODUCING HIGH Si-CONTAINING GRAIN ORIENTED SILICON STEEL SHEET HAVING EXCELLENT MAGNETIC PROPERTY
JP2022542380A (en) * 2019-08-13 2022-10-03 バオシャン アイアン アンド スティール カンパニー リミテッド Highly magnetically inductive oriented silicon steel and its manufacturing method
WO2023176855A1 (en) * 2022-03-14 2023-09-21 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506702A (en) * 1996-12-24 2001-05-22 アッキアイ スペシャリ テルニ エス.ピー.エー. Method for manufacturing oriented grain electrical steel sheet with high magnetic properties
JP4651755B2 (en) * 1996-12-24 2011-03-16 アッキアイ スペシャリ テルニ エス.ピー.エー. Method for producing oriented grain electrical steel sheet with high magnetic properties
JPH10195536A (en) * 1997-01-07 1998-07-28 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JPH11302730A (en) * 1998-04-24 1999-11-02 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in coating characteristic and low magnetic field characteristic
JP2007254829A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp METHOD FOR PRODUCING HIGH Si-CONTAINING GRAIN ORIENTED SILICON STEEL SHEET HAVING EXCELLENT MAGNETIC PROPERTY
JP4598702B2 (en) * 2006-03-23 2010-12-15 新日本製鐵株式会社 Manufacturing method of high Si content grain-oriented electrical steel sheet with excellent magnetic properties
JP2022542380A (en) * 2019-08-13 2022-10-03 バオシャン アイアン アンド スティール カンパニー リミテッド Highly magnetically inductive oriented silicon steel and its manufacturing method
WO2023176855A1 (en) * 2022-03-14 2023-09-21 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR101062127B1 (en) Method for manufacturing directional electromagnetic steel sheet with high magnetic flux density
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JP2002060842A (en) Method for producing grain oriented silicon steel sheet having high magnetic flux density
JPH07258802A (en) Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production
JPH0578743A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic property and coating film property
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH06200325A (en) Production of silicon steel sheet having high magnetism
JP2002212636A (en) Method for producing grain oriented silicon steel sheet having high magnetic flux density
JPH06172939A (en) High magnetic flux density/low core loss grain-oriented silicon steel sheet and its production
JPH06158167A (en) High magnetic flux density grain-oriented silicon steel sheet and its production
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property
JPH0733548B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JP2002030340A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
WO2024053608A1 (en) Grain-oriented electromagnetic steel sheet
JPH08199239A (en) Production of grain oriented magnetic steel sheet with high magnetic flux density
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH06220540A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic property after domain control
JP3885257B2 (en) Method for producing grain-oriented electrical steel sheet
JP2735929B2 (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic properties and coating properties
JPH06188116A (en) Oriented silicon steel plate for low core loss and high flux density and manufacture thereof
JPH06212261A (en) Production of high magnetic flux density silicon steel sheet excellent in magnetic property and film property
JPH06184763A (en) High magnetic flux density extra-low iron loss grain-oriented silicon steel sheet and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605