JPH05320769A - Production of silicon steel sheet excellent in magnetism and film property - Google Patents

Production of silicon steel sheet excellent in magnetism and film property

Info

Publication number
JPH05320769A
JPH05320769A JP4123412A JP12341292A JPH05320769A JP H05320769 A JPH05320769 A JP H05320769A JP 4123412 A JP4123412 A JP 4123412A JP 12341292 A JP12341292 A JP 12341292A JP H05320769 A JPH05320769 A JP H05320769A
Authority
JP
Japan
Prior art keywords
recrystallization annealing
primary
annealing
steel sheet
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4123412A
Other languages
Japanese (ja)
Inventor
Hiroaki Masui
浩昭 増井
Katsuro Kuroki
克郎 黒木
Osamu Tanaka
収 田中
Hodaka Honma
穂高 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4123412A priority Critical patent/JPH05320769A/en
Publication of JPH05320769A publication Critical patent/JPH05320769A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain good magnetism and film properties by regulating the oxygen content in a steel sheet subjected to primary recrystallization annealing into specified one and regulating the nitrogen content after the subsequent nitriding into specified one. CONSTITUTION:Steel contg. 1 to 7% Si is subjected to fundamental stages of hot and cold rolling, primary recrystallization annealing, the coating of a separation agent for annealing and secondary recrystallization annealing to manufacture the objective grain oriented silicon steel iron sheet. At the time of adding N after the primary recrystallization annealing for the purpose of imparting the function of an inhibitor required for executing the secondary recrystallization annealing, the oxygen (O) content by a chemical analysis method of the sheet subjected to the primary recrystallization annealing is regulated to 25 to 900ppm, and the nitrogen content (N) after the subsequent nitriding is regulated to 120 to 600ppm. In this way, the nitrogen content in the grain-oriented silicon steel sheet can be optimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表面被膜および磁気特性
に優れた珪素鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface coating and a method for producing a silicon steel sheet having excellent magnetic properties.

【0002】[0002]

【従来の技術】トランス用等の磁気特性に優れた1〜7
%のSiを含んだ珪素鋼板を製造するに際して、絶縁特
性と鋼板表面に張力を与えトランスの性能向上に必要な
磁気特性を向上させ、かつ鋼板との密着性が良好な一次
被膜を形成させることは重要である。
2. Description of the Related Art 1-7 excellent in magnetic characteristics for transformers and the like
% Of Si to produce a silicon steel sheet, the primary characteristics of the steel sheet are to improve the magnetic properties necessary for improving the performance of the transformer by imparting a tensile force to the surface of the steel sheet and providing good adhesion to the steel sheet. Is important.

【0003】通常の技術では脱炭を伴う一次焼鈍後に鋼
板にマグネシアと呼ばれる酸化マグネシウム(MgO)
の微粉末を水溶させたスラリー状のものを塗り、必要に
応じて乾燥させたあと、二次再結晶焼鈍工程で焼成さ
せ、鋼板中のSiとの反応でフォルステライト(Mg2
SiO4 )と呼ばれるセラミックス質状の絶縁被膜を形
成させる。これが鋼板に張力を与え、磁気特性とりわけ
鉄損と呼ばれるトランスの効率を支配する特性値を向上
させるのに有効である。
In the usual technique, magnesium oxide (MgO) called magnesia is applied to the steel sheet after primary annealing accompanied by decarburization.
Of fine powder of water is applied, dried as needed, and then fired in the secondary recrystallization annealing step, and reacted with Si in the steel sheet to forsterite (Mg 2
A ceramic insulating film called SiO 4 ) is formed. This is effective for giving tension to the steel sheet and improving the magnetic property, especially the characteristic value called iron loss, which governs the efficiency of the transformer.

【0004】しかも、このフォルステライト形成の状態
が、二次再結晶で鋼板の結晶方位を通称GOSS方位と
呼ばれ、透磁率や磁束密度の向上に不可欠な鋼板長手方
向(圧延方向)に対して、{110}〔001〕の結晶
方位を有するやや粗大な二次再結晶粒を成長させるのに
も重要な役割を果たしていることもよく知られている。
Moreover, this state of forsterite formation is called the GOSS orientation of the crystal orientation of the steel sheet in the secondary recrystallization, and with respect to the steel sheet longitudinal direction (rolling direction) which is indispensable for improving the magnetic permeability and the magnetic flux density. It is also well known that it plays an important role in growing slightly coarse secondary recrystallized grains having a crystal orientation of {110} [001].

【0005】すなわち、二次再結晶焼鈍昇温過程中に十
分緻密な被膜が形成されないまま二次再結晶させようと
しても、鋼板内のインヒビターと呼ばれる微細な窒化物
や硫化物等がそのままの状態で、あるいは分解して早く
鋼板外に抜けでてしまう。このため、昇温中にGOSS
方位粒を優先的に成長させ、他の方位粒の成長を抑制さ
せる役目のインヒビター効果が発揮できず、通称、細粒
と呼ばれ、GOSS方位粒の二次再結晶粒の成長が部分
的あるいは全面的に行われない、極めて磁気特性の劣る
鋼板を生み出すことになる。なお、このMgOの中に酸
化チタン(TiO2 等)やその他の化合物を添加させ、
さらに緻密な一次被膜を形成させることも行われる。
That is, even if an attempt is made to carry out secondary recrystallization without forming a sufficiently dense film during the secondary recrystallization annealing temperature rising process, fine nitrides and sulfides called inhibitors in the steel sheet remain as they are. Or, it disassembles and quickly falls out of the steel plate. Therefore, during the temperature rise, GOSS
The inhibitory effect of growing preferentially oriented grains and suppressing the growth of other oriented grains cannot be exerted, and is commonly called fine grain, and the growth of secondary recrystallized grains of GOSS oriented grains is partially or It will produce a steel sheet with extremely inferior magnetic properties, which is not done entirely. In addition, titanium oxide (such as TiO 2 ) or another compound is added to this MgO,
It is also performed to form a denser primary coating.

【0006】しかるに、実際は上記の技術知見があって
もなおかつ十分な一次被膜および二次再結晶組織を安定
して作ることは容易ではなく、特に二次再結晶焼鈍条件
を工業的必要性から種々変化させることがあるが、この
場合にも十分な一次被膜を作りこなし、さらに十分適正
な方位の二次再結晶を生成せしめることは容易なことで
はない。
However, in practice, it is not easy to stably produce a sufficient primary coating and secondary recrystallization structure even with the above technical knowledge, and in particular, various secondary recrystallization annealing conditions are industrially necessary. Although it may be changed, it is not easy in this case to form a sufficient primary film and to generate a secondary recrystallization having a sufficiently proper orientation.

【0007】その理由の一つとして、一次被膜の形成と
インヒビターと称される二次再結晶過程での適切な添加
物の形成に関する製法上の解明が未だ十分でないことが
挙げられる。とりわけ、一次再結晶焼鈍後にNを添加す
るインヒビター制御技術においては、いかに最適なN量
を効率よく添加するかが詳細に詰められていないため
に、個々の経験に依存していた部分があり、前述のよう
に安定した一次被膜および二次再結晶を自由にコントロ
ールするまで至っていないのが実状である。
[0007] One of the reasons for this is that the elucidation in the manufacturing process regarding the formation of the primary coating film and the formation of an appropriate additive in the secondary recrystallization process called an inhibitor is not yet sufficient. In particular, in the inhibitor control technique of adding N after the primary recrystallization annealing, there is a part that depends on individual experience because it is not detailed in detail how to efficiently add the optimum amount of N. As described above, the actual situation is that the stable primary coating and secondary recrystallization have not been freely controlled.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来技
術における課題を解決し、インヒビターに必要なNを一
次再結晶焼鈍後に効率的に付加し、さらに二次再結晶時
に一次被膜を安定して珪素鋼表面に形成し、安定したG
OSS方位の二次再結晶粒を有する方向性珪素鋼板の製
造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above problems in the prior art, efficiently adds N necessary for an inhibitor after primary recrystallization annealing, and stabilizes the primary coating during secondary recrystallization. Stable G formed on the surface of silicon steel
The present invention provides a method for producing a grain-oriented silicon steel sheet having secondary recrystallized grains of OSS orientation.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。 (1)Si:1〜7%を含む鋼を溶製し、熱間圧延、冷
間圧延、一次再結晶焼鈍、焼鈍分離材塗布および二次再
結晶焼鈍を基本工程とする方向性電磁鋼板の製造におい
て、二次再結晶焼鈍を行わせしめるのに必要なインヒビ
ターの機能を付与せしめる目的で、一次再結晶焼鈍後に
Nを添加せしめる際、一次再結晶焼鈍板の化学分析法で
の酸素(O)量を25〜900ppm とし、一次再結晶焼
鈍に続く窒化後の窒素(N)量を120〜600ppm と
することを特徴とする磁性および被膜特性の優れた珪素
鋼板の製造方法。
The gist of the present invention is as follows. (1) Si: A steel containing 1 to 7% is melted, and a hot rolled, a cold rolled, a primary recrystallization annealing, an annealing separation material coating and a secondary recrystallization annealing of the grain-oriented electrical steel sheet are the basic steps. In manufacturing, when N is added after the primary recrystallization annealing for the purpose of giving the function of an inhibitor necessary for performing the secondary recrystallization annealing, oxygen (O) in the chemical analysis method of the primary recrystallization annealed plate is added. An amount of 25 to 900 ppm, and a nitrogen (N) amount after nitriding subsequent to the primary recrystallization annealing is 120 to 600 ppm.

【0010】(2)上記(1)において二次再結晶焼鈍
前にフォルステライトを主体とする一次被膜形成のため
に塗布するマグネシアの中に、アンチモン系の化合物を
0.05〜5.0%添加し、かつ二次再結晶焼鈍での8
00℃〜最高到達温度の平均昇温速度を毎時0.1〜8
0℃とすることを特徴とする鋼の製造法。 (3)上記(1)においてマグネシアの中にボロン系、
ストロンチウム・バリウム系、炭・窒化物系、硫化物
系、塩化物系化合物の1種または2種以上を合計0.0
5〜5.0%添加し、かつ二次再結晶焼鈍での800℃
〜最高到達温度の平均昇温速度を毎時5〜400℃とす
ることを特徴とする鋼の製造法。 (4)上記(1)において一次再結晶焼鈍雰囲気の窒素
と酸素の分圧の比がPN2 /P H2 ≦0.5とする珪素
鋼板の製造方法。
(2) In the above (1), 0.05 to 5.0% of an antimony-based compound is contained in magnesia applied for forming a primary film mainly composed of forsterite before secondary recrystallization annealing. 8 in addition and secondary recrystallization annealing
The average rate of temperature increase from 00 ° C to the highest temperature reached is 0.1 to 8 per hour.
A method for producing steel, which is characterized in that the temperature is 0 ° C. (3) In the above (1), boron series in magnesia,
Strontium / barium-based, carbon / nitride-based, sulfide-based, and chloride-based compounds totaling one or more of 0.0
Addition of 5 to 5.0%, and 800 ℃ in secondary recrystallization annealing
~ A method for producing steel, characterized in that the average temperature rising rate of the highest reached temperature is 5 to 400 ° C per hour. (4) The method for producing a silicon steel sheet according to (1) above, wherein the partial pressure ratio of nitrogen and oxygen in the primary recrystallization annealing atmosphere is PN 2 / P H 2 ≦ 0.5.

【0011】以下に本発明を詳細に説明する。方向性珪
素鋼板の二次再結晶はGOSS方位と呼ばれる{11
0}〈001〉方位の粒を二次再結晶焼鈍(仕上げ焼鈍
とも呼ばれる)時に十分成長させることが肝要である。
これは一次再結晶焼鈍(以下、一次焼鈍と呼ぶ)の中に
ある特定粒のみを粗大再結晶させるもので、この時にイ
ンヒビター(Inhibitor)と呼ばれるAlN,
Si3 4 等の微細析出物を仕上げ焼鈍前に十分作って
おくことが技術上必要であることがよく知られている。
そして、このために必要なNを鋼溶製時または一次焼鈍
後または他の工程中に添加することが行われる。
The present invention will be described in detail below. Secondary recrystallization of grain-oriented silicon steel sheet is called GOSS orientation {11
It is important to grow grains of 0} <001> orientation sufficiently during secondary recrystallization annealing (also called finish annealing).
This is to coarsely recrystallize only specific grains in the primary recrystallization annealing (hereinafter referred to as primary annealing). At this time, AlN called an inhibitor (Inhibitor),
It is well known in the art that it is technically necessary to prepare fine precipitates such as Si 3 N 4 before finish annealing.
Then, N necessary for this purpose is added during steel melting, after primary annealing, or during other steps.

【0012】本発明は一次焼鈍後にNを添加する場合の
最適添加法に関する技術的知見をその構成の一つとする
ものである。ここで一次焼鈍後と呼ぶ内容を補足する
が、これは通常脱炭反応も機能する一次焼鈍の設備の一
部に窒化反応を行う設備を内部にまたは近接して設置
し、一次焼鈍後またはそれと平行させて窒化反応させる
方法である。
One of the constitutions of the present invention is the technical knowledge regarding the optimum addition method when N is added after the primary annealing. Here, I will supplement what is called after primary annealing, but this is because after the primary annealing or after that, the equipment that performs the nitriding reaction is installed inside or in close proximity to a part of the equipment for the primary annealing that also normally functions the decarburization reaction. This is a method of nitriding reaction in parallel.

【0013】鋼溶製時に十分低炭化した鋼では、脱炭機
能よりも一次焼鈍後の表面層の酸化物層を変えて、被膜
形成に有利な形にすることがむしろ重要な役割となる。
ここで、一次焼鈍後に窒化する実験を行った結果を示
す。表1は試料の化学成分および製造方法である。
In the case of steel having sufficiently low carbonization during steel melting, it is more important than the decarburizing function to change the oxide layer of the surface layer after the primary annealing so that the oxide film has a shape advantageous for film formation.
Here, the result of the experiment of nitriding after the primary annealing is shown. Table 1 shows the chemical composition of the sample and the manufacturing method.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】かかる材料の一次焼鈍板の酸素量と窒化後
の板のN量を表2に示す。この関係を図1に示す。この
図で明瞭なことは一次焼鈍後の鋼板中の酸素量と窒化量
とは明瞭な正の相関がある、ということである。
Table 2 shows the oxygen content of the primary annealed sheet of such a material and the N content of the sheet after nitriding. This relationship is shown in FIG. What is clear in this figure is that there is a clear positive correlation between the oxygen content and the nitriding content in the steel sheet after the primary annealing.

【0018】[0018]

【表4】 [Table 4]

【0019】ここで酸素量が変化する理由は一次焼鈍時
に表面が酸化するということであり、これは一次焼鈍が
脱炭を伴うことからくる下記の反応の結果である。 C+H2 O→CO+H2 (1) Fe+H2 O→FeO+H2 (2)
The reason why the amount of oxygen changes here is that the surface is oxidized during the primary annealing, which is a result of the following reaction which is accompanied by decarburization in the primary annealing. C + H 2 O → CO + H 2 (1) Fe + H 2 O → FeO + H 2 (2)

【0020】これらの反応は通常同時に起こり、脱炭が
進むほど鋼板中の酸素も増加する。さて、一次焼鈍後の
窒化について以下の検討を行った。窒化反応は次式で示
される。 NH3 →N+(3/2)H2 (3)
These reactions usually occur simultaneously, and the oxygen in the steel sheet increases as the decarburization proceeds. Now, the following study was conducted on the nitriding after the primary annealing. The nitriding reaction is expressed by the following equation. NH 3 → N + (3/2) H 2 (3)

【0021】しかし、この反応式では鋼板の酸素量の影
響を見ることはできない。そこで、鋼板の酸素量に相当
するものを上記(2)式から鋼板表層部のFeO量と考
え、以下の二つのケースを考えた。 1.表層部に酸化層(FeO等)が実質存在しないとし
た場合 このときはJ.F.Enriettoの式から以下のよ
うに表される。 N+(3/2)H2 ←NH3 (4) 平衡定数:K=1.77*10-5exp (19250/RT) =PNH3 /(N・P H2 3/2 ) (5)
However, in this reaction equation, the effect of the oxygen content of the steel sheet cannot be seen. Therefore, the amount corresponding to the oxygen content of the steel sheet was considered as the FeO content in the surface layer of the steel sheet from the above equation (2), and the following two cases were considered. 1. When it is assumed that an oxide layer (FeO or the like) does not substantially exist in the surface layer portion. F. It is expressed as follows from the Enrietto formula. N + (3/2) H 2 ← NH 3 (4) Equilibrium constant: K = 1.77 * 10 −5 exp (19250 / RT) = PNH 3 / (N · P H 2 3/2 ) (5)

【0022】2.表層部に酸化層(FeO等)の存在す
る場合 このときは鋼板と外部雰囲気との境界面で起こる(4)
式の反応の際のH2 をいかに反応系として取り除くかが
窒化に影響すると考えた。このときは次の二つの反応系
が同時に起こる界面領域を考えなければならない。
2. When an oxide layer (FeO, etc.) exists on the surface layer At this time, it occurs at the interface between the steel sheet and the external atmosphere (4)
It was thought that how to remove H 2 in the reaction of the formula as a reaction system affects the nitriding. In this case, we must consider the interface region where the following two reaction systems occur simultaneously.

【0023】 I.N+(3/2)H2 ←NH3 (4) K=1.77*10-5exp (19250/RT) =PNH3 /(N・P H2 3/2 ) (5) II.FeO+H2 →Fe+H2 O (6) log K=log(P H2 O /P H2 )=827/T−0.468 (7) ΔF=−3784+2.14T (8) ここで(7),(8)式は沢村の式である。なおTは絶
対温度(°K)、Rは気体定数である。以上の1.およ
び2.の場合について計算を行った。
I. N + (3/2) H 2 ← NH 3 (4) K = 1.77 * 10 −5 exp (19250 / RT) = PNH 3 / (N · P H 2 3/2 ) (5) II. FeO + H 2 → Fe + H 2 O (6) log K = log (P H 2 O / P H 2 ) = 827 / T−0.468 (7) ΔF = −3784 + 2.14T (8) where (7), ( Equation 8) is Sawamura's equation. Note that T is an absolute temperature (° K) and R is a gas constant. 1. And 2. The calculation was performed for the case.

【0024】計算結果 I.酸化層(FeO)のない場合…(5)式(T=750℃の場合) Case1 Case2 Case3 P H2 :0.60 :0.50 :0.35 PNH3 :0.15 :0.35 :0.40 P N2 :0.25 :0.15 :0.25 ↓ ↓ ↓ N=1.4ppm N=4.3ppm N=8.4ppmCalculation Results I. If no oxide layer (FeO) ... (5) formula (T = 750 For ℃) Case1 Case2 Case3 P H 2 : 0.60: 0.50: 0.35 PNH 3: 0.15: 0.35: 0.40 P N 2: 0.25: 0.15: 0.25 ↓ ↓ ↓ N = 1.4ppm N = 4.3ppm N = 8.4ppm

【0025】II.酸化層(FeO)のある場合…(5)
式+(7)式 この場合、Fe,FeOの界面で反応が起こるので前記
の二つの反応系となり、存在するGas系はNH3 ,H
2 ,H2 O三元系を基本的に考えれば良い(N2 は分圧
調整のみ)。
II. When there is an oxide layer (FeO) ... (5)
Formula + (7) Formula In this case, since the reaction occurs at the interface between Fe and FeO, the two reaction systems described above are obtained, and the existing Gas system is NH 3 , H 2.
2 , H 2 O ternary system can be basically considered (N 2 is only partial pressure adjustment).

【0026】従って前記(2)式の他に、 PNH3 +P H2 +P H2 O =1 (9) が加わらねばならない(P N2 を考慮するときは多少分
圧を調整すれば良い。)。
Therefore, in addition to the above formula (2), PNH 3 + P H 2 + P H 2 O = 1 (9) must be added (when considering P N 2 , the partial pressure may be adjusted to some extent). ..

【0027】(5)式,(7)式および(9)式より以
下が求まる。
The following is obtained from the equations (5), (7) and (9).

【0028】[0028]

【0029】 (T=750℃の場合) Case1 Case2 Case3 P H2 :0.20 :0.10 :0.05 P H2 O :0.44((2)式の制約) :0.22 :0.11 PNH3 :0.36((3)式) :0.68 :0.84 ↓ ↓ ↓ N=18ppm N=93ppm N=333ppm[0029] (T = 750 For ℃) Case1 Case2 Case3 P H 2 : 0.20: 0.10: 0.05 P H 2 O: 0.44 ((2) equation constraints): 0.22: 0.11 PNH 3: 0.36 ((3) formula ): 0.68: 0.84 ↓ ↓ ↓ N = 18ppm N = 93ppm N = 333ppm

【0030】 (T=850℃の場合) Case4 Case5 Case6 P H2 :0.20 :0.10 :0.05 P H2 O :0.37 :0.19 :0.09 PNH3 :0.43 :0.71 :0.86 ↓ ↓ ↓ N=49ppm N=224ppm N=790ppm 上記のようにFeOが存在する場合は、N(窒化量)は
桁違いに多い。
[0030] (T = 850 For ℃) Case4 Case5 Case6 P H 2 : 0.20: 0.10: 0.05 P H 2 O: 0.37: 0.19: 0.09 PNH 3: 0.43: 0.71: 0.86 ↓ ↓ ↓ N = 49ppm N = 224ppm N = 790 ppm When FeO is present as described above, N (nitriding amount) is extremely large.

【0031】尚、N2 分圧を考慮した場合は、下記のよ
うになる。 (T=750℃の場合) Case1 Case2 Case3 P H2 :0.20 :0.10 :0.05 P H2 O :0.44 :0.22 :0.11 P N2 :0.2 :0.2 :0.2 PNH3 :0.16 :0.48 :0.64 ↓ ↓ ↓ N=8ppm N=66ppm N=254ppm つまり、N2 分圧が大きくなると、むしろ窒化量は減る
ことがわかる。このように理論的にも一次焼鈍板に酸化
層(FeO等)のある場合の方が窒化しやすいことが確
かめられたことになる。また、一次焼鈍窒化時の雰囲気
は窒素と酸素の分圧比P N2 /P H2 の小さいほど窒化
量が多くなることが予測される。
When N 2 partial pressure is taken into consideration, it becomes as follows. (T = 750 For ℃) Case1 Case2 Case3 P H 2 : 0.20: 0.10: 0.05 P H 2 O: 0.44: 0.22: 0.11 P N 2: 0.2: 0.2: 0.2 PNH 3: 0.16: 0.48: 0.64 ↓ ↓ ↓ N = 8ppm N = 66ppm N = 254ppm That is, it can be seen that the nitriding amount rather decreases as the N 2 partial pressure increases. Thus, theoretically, it has been confirmed that nitriding is easier when the primary annealed plate has an oxide layer (FeO or the like). Further, it is expected that the nitriding amount will increase as the partial pressure ratio P N 2 / P H 2 of nitrogen and oxygen in the atmosphere during the primary annealing and nitriding decreases.

【0032】ここで一次焼鈍板の酸化層の量を計る方法
について述べたい。通称スピード(SPEED:Sel
ective Potentiostatic Etc
hing by Electrolytic Diss
olution)法と称する方法により、金属材料中の
析出相の析出形態を分析することが可能である。この方
法は金属表面を非水溶媒系電解液を用いて数μm(ミク
ロンメーター)溶解して、不安定な析出相をマトリック
ス表面にそのままの状態で残し、SEM−EDX,EP
MA,AES等を使用して局所における析出相の分析を
行う方法である。
Here, a method for measuring the amount of the oxide layer of the primary annealed plate will be described. Commonly known speed (SPEED: Sel
active Potentiostatic Etc
Hing by Electronic Diss
It is possible to analyze the precipitation morphology of the precipitation phase in the metal material by a method called the “solution method”. In this method, a metal surface is dissolved by a few μm (micrometer) using a non-aqueous solvent type electrolyte solution, and an unstable precipitation phase is left as it is on the matrix surface, and SEM-EDX, EP is used.
This is a method of locally analyzing the precipitation phase using MA, AES or the like.

【0033】また、エッチング表面をレプリカ法で剥離
し、析出相の組成等を解析する。この方法を一次焼鈍板
にも適用し、表面層の酸化物の組成と定量化を行うこと
が可能であり、この方法によって酸化層のFeO,Mn
O,Al2 3 ,SiO2 等の定量化も可能である。
The etching surface is peeled off by the replica method, and the composition of the precipitation phase and the like are analyzed. By applying this method to the primary annealed plate, it is possible to carry out the composition and quantification of the oxide of the surface layer.
It is also possible to quantify O, Al 2 O 3 , SiO 2 and the like.

【0034】一方、表2のデータでもわかるように一次
焼鈍板を直接通常の化学分析法で酸素(O)量を測定し
ても酸化物の量は測定可能である。そして前述のように
その値と窒化量とは実験で良く対応している。
On the other hand, as can be seen from the data in Table 2, the amount of oxide can be measured by directly measuring the oxygen (O) amount of the primary annealed plate by a usual chemical analysis method. As described above, the value and the nitriding amount correspond well in the experiment.

【0035】従って、本発明では簡便な通常の化学分析
法での酸素(O)量を技術指標とする。そして、実験で
示したように一次焼鈍後の鋼板の酸素量が25ppm 以上
であれば、安定して鋼板への窒化量が後の仕上げ焼鈍中
のAlNやSi3 4 等のインヒビター量確保に必要な
窒素量120ppm 以上を、一次焼鈍板で得ることが可能
である。
Therefore, in the present invention, the amount of oxygen (O) in a simple ordinary chemical analysis method is used as a technical index. Then, as shown in the experiment, if the oxygen content of the steel sheet after the primary annealing is 25 ppm or more, the nitriding amount of the steel sheet is stable to secure the amount of inhibitors such as AlN and Si 3 N 4 during the subsequent finish annealing. It is possible to obtain the required nitrogen amount of 120 ppm or more with the primary annealed plate.

【0036】さて一次焼鈍し、窒化した鋼板にMgOを
主体とする通称MgOパウダーというものをスラリー状
に鋼板表面に塗布し、次の仕上げ焼鈍工程で被膜生成お
よび二次再結晶を行わしめるが、ここで本発明の方法で
窒化せしめた一次焼鈍板とこれらの条件にある技術的関
連が認められた。
A so-called MgO powder mainly composed of MgO is applied to the steel sheet surface in a slurry form on the steel sheet which has undergone primary annealing and is nitrided, and film formation and secondary recrystallization are carried out in the next finish annealing step. Here, the technical relationship under these conditions and the primary annealed plate nitrided by the method of the present invention was recognized.

【0037】表3は一次焼鈍および窒化後の3%Si鋼
板にMgOパウダーをスラリー状に塗布して、二次再結
晶焼鈍の途中の仕上げ焼鈍引き出し実験を行った結果で
ある。ここでパウダーにSb系、B系とあるのはここで
はそれぞれMgOパウダーに微量のTiO2 (5%)と
Sb2 (SO4 3 (0.2%)、TiO2 (5%)と
Na2 4 7 (0.3%)を添加し、フォルステライ
ト形成等を促進させたものである。
Table 3 shows the results of a finish annealing pull-out experiment in which MgO powder was applied in a slurry form to a 3% Si steel sheet after primary annealing and nitriding, and the secondary annealing was performed during the secondary recrystallization annealing. Here, the powders are referred to as Sb-based and B-based, respectively. Here, a small amount of TiO 2 (5%) and Sb 2 (SO 4 ) 3 (0.2%), TiO 2 (5%) and Na are included in the MgO powder, respectively. 2 B 4 O 7 (0.3%) was added to promote the formation of forsterite.

【0038】二次再結晶焼鈍は図2の方法で途中まで行
い、各温度で引き出す、いわゆる引き出し実験を行っ
た。かくして引き出した鋼板を表面からGDS分析を行
い、フォルステライト、つまり、Mgピークがどの引き
出し温度から出現するかを調べた結果を表3に示してあ
る。ここで()の温度は測定温度の中間に出現があった
と判定されたものである。
The secondary recrystallization annealing was carried out halfway by the method shown in FIG. 2, and a so-called pull-out experiment was conducted at each temperature. Table 3 shows the results obtained by conducting GDS analysis from the surface of the steel sheet drawn out in this way and examining from which drawing temperature forsterite, that is, the Mg peak appears. Here, the temperature in () is determined to appear in the middle of the measured temperature.

【0039】[0039]

【表5】 [Table 5]

【0040】表3の結果で明瞭なことは、Sb系の方が
B系よりも低い温度でフォルステライトの形成があるこ
とである。フォルステライトの生成はMgOと鋼板中の
表面濃化したSiが反応し、 2MgO+SiO2 →Mg2 SiO4 の反応を起こしたものと一般的に考えられている。
What is clear from the results in Table 3 is that forsterite is formed at a lower temperature in the Sb system than in the B system. It is generally considered that the formation of forsterite is caused by the reaction of MgO and surface-concentrated Si in the steel sheet, and the reaction of 2MgO + SiO 2 → Mg 2 SiO 4 .

【0041】ところで珪素鋼板の製造工程とこれらの鋼
板の性質とはどのようにコントロールできるのであるの
か、という点について検討してみた。上述のように一次
被膜の形成過程と珪素鋼板の諸性質との因果関係が明確
になれば、当然工業的にそれを製造に反映させることが
できることになる。
By the way, we examined how the manufacturing process of silicon steel sheets and the properties of these steel sheets can be controlled. If the causal relationship between the formation process of the primary coating and various properties of the silicon steel sheet is clarified as described above, naturally it can be industrially reflected in the production.

【0042】表3の実験結果にみられるようにSb系の
化合物をMgOに微量添加した場合、MgOの溶融は比
較的低温で行われるので、たとえば二次再結晶焼鈍の昇
温速度を比較的小さくした方がより早くフォルステライ
トの生成を促進させ、優れた一次被膜を生成させ易いこ
とになる。なおアンチモン(Sb)系の化合物とは当実
験で用いたSb2 (SO4 3 のみならずSbを含む他
の化合物を含む。
As can be seen from the experimental results shown in Table 3, when a small amount of Sb-based compound is added to MgO, the melting of MgO is performed at a relatively low temperature, so that the temperature rising rate of the secondary recrystallization annealing is relatively high. The smaller the size, the more quickly the production of forsterite is promoted and the excellent primary coating is easily produced. The antimony (Sb) -based compound includes not only Sb 2 (SO 4 ) 3 used in this experiment but other compounds containing Sb.

【0043】一方、同じ低融点化合物でもB系の化合物
をMgOに微量添加した場合は、MgOの溶融はSb系
の化合物よりも比較的高温で行われるので、たとえば二
次再結晶焼鈍の昇温速度を比較的大きくした方がより早
くフォルステライトの生成を促進させる。なおボロン
(B)系はNa系のみならずNaの代わりにCa,Mg
等を含む化合物やほう酸(H3 BO3 )やほう酸ソーダ
も含まれる。
On the other hand, even when the B-based compound is added to MgO in a small amount even with the same low melting point compound, the melting of MgO is performed at a relatively higher temperature than that of the Sb-based compound. A relatively high velocity accelerates the production of forsterite. The boron (B) type is not only Na type, but Ca, Mg instead of Na.
Compounds containing, etc., boric acid (H 3 BO 3 ) and sodium borate are also included.

【0044】さらに、アンチモン系よりも高融点系とい
う点でストロンチウム・バリウム系、炭・窒化物系、硫
化物系、塩化物系もボロン系と同等の作用が認められ
る。これらの化合物を総称して非アンチモン系と呼ぶこ
とにする。なお、通常MgOにはTiO2 等の酸化物を
添加させ高温反応を容易にすることが行われるが、本発
明の上記の添加物の効果は、その酸化物の添加量に関係
なく発揮されるのでMgOに酸化物が添加されても、こ
れをプレインと称してベース材の一部とみなしている。
Further, strontium / barium system, carbon / nitride system, sulfide system, and chloride system have the same action as boron system in that they are higher melting point system than antimony system. These compounds will be collectively called non-antimony compounds. It should be noted that, although it is usual to add an oxide such as TiO 2 to MgO to facilitate the high temperature reaction, the effects of the above additives of the present invention are exhibited regardless of the amount of the oxide added. Therefore, even if an oxide is added to MgO, this is referred to as a plane and is regarded as a part of the base material.

【0045】このように珪素鋼板の特性に重要な支配要
因となる一次被膜は本発明により、その組成分布の解明
およびそれと相関を有する製造方法との組み合わせによ
り、ある程度自由にコントロールすることが可能となっ
た。
As described above, according to the present invention, the primary coating, which is an important controlling factor for the properties of the silicon steel sheet, can be controlled to some extent freely by elucidating its composition distribution and combining it with a manufacturing method having a correlation therewith. became.

【0046】さて、ここで珪素鋼板の製造方法に触れる
必要がある。前述のように本発明が可能な珪素鋼板は必
要に応じてAlを含有し、AlNあるいはSi3 4
主要インヒビターとする鋼に限定される。もちろんS
i,Al以外に、Mn,S,Sn,Se,Sb,Cu,
B,Nb,Ti,V等の他の添加元素を付加的に添加さ
せ、磁気特性の向上をはかることは本発明の基本を変え
るものではない。
Now, it is necessary to touch on the method of manufacturing a silicon steel sheet. As described above, the silicon steel sheet which can be used in the present invention is limited to steel containing Al as necessary and AlN or Si 3 N 4 as a main inhibitor. Of course S
In addition to i and Al, Mn, S, Sn, Se, Sb, Cu,
The addition of other additive elements such as B, Nb, Ti and V to improve the magnetic characteristics does not change the basics of the present invention.

【0047】ところでAlNあるいはSi3 4 をイン
ヒビターとする鋼は公知であり、そのいずれの場合にお
いても本発明の技術を適用することが可能である。しか
しながら、本発明の特徴をより一層発揮させるにはとり
わけ以下に示す製造法が最適である。すなわちSiを1
〜7%含む鋼で必要に応じAlを鋼溶製時に0.1%以
下含み、Nを珪素鋼板製造工程における冷延後の一次焼
鈍中の脱炭焼鈍中または後に鋼板に直接窒化反応を介し
て鋼にNを強制的に添加せしめる方法により、二次再結
晶焼鈍前にNを120〜600ppm 鋼に含むことを特徴
とする方法である。
By the way, steels using AlN or Si 3 N 4 as an inhibitor are known, and in any case, the technique of the present invention can be applied. However, the following production methods are most suitable for further exerting the characteristics of the present invention. That is, Si is 1
Steel containing 0.1% or less of Al at the time of smelting the steel, if necessary, in a steel containing 7% to 7%, and N through denitrification annealing during or after primary annealing after cold rolling in a silicon steel sheet manufacturing process directly through a nitriding reaction to the steel sheet. The steel is characterized by including N in 120 to 600 ppm steel before secondary recrystallization annealing by a method of forcibly adding N to steel.

【0048】Siは本発明においては上記のようにフォ
ルステライト形成のために最低1%は必要である。一
方、7%を超えると加工性が極端に劣化し工業生産に適
さない。
In the present invention, at least 1% of Si is necessary for forming forsterite as described above. On the other hand, if it exceeds 7%, the workability is extremely deteriorated and it is not suitable for industrial production.

【0049】AlはAlNインヒビター形成に有効であ
る。しかし0.1%を超えるとAl2 3 生成量が多く
なり健全な鋼の清浄度を損ない、ひいては磁気特性に悪
影響をもたらす。
Al is effective in forming an AlN inhibitor. However, if it exceeds 0.1%, the amount of Al 2 O 3 produced increases, impairing the cleanliness of sound steel, and adversely affecting the magnetic properties.

【0050】NはAlNやSi3 4 インヒビターを形
成するのに不可欠であり、本発明においては一次焼鈍後
つまり、仕上げ焼鈍前で最低120ppm は必要である。
一方600ppm を超えるとAlやSiと不適切な形態の
化合物を形成するので好ましくない。二次再結晶の安定
化のためには、300ppm 以上が好ましい。この他の元
素は本発明では従来の鋼に較べて特に特徴的ではないが
以下に制約することが好ましい。
N is indispensable for forming AlN and Si 3 N 4 inhibitors, and in the present invention, at least 120 ppm is necessary after primary annealing, that is, before finish annealing.
On the other hand, if it exceeds 600 ppm, a compound having an inappropriate form with Al or Si is formed, which is not preferable. In order to stabilize the secondary recrystallization, 300 ppm or more is preferable. The other elements are not particularly characteristic in the present invention as compared with the conventional steel, but the following restrictions are preferable.

【0051】Cは鋼溶製中に十分低くするかまたは一次
焼鈍の脱炭焼鈍時に十分低くする必要があり、二次再結
晶焼鈍開始時には0.03%以下が好ましい。
C must be sufficiently low during steel melting or sufficiently low during decarburization annealing of primary annealing, and is preferably 0.03% or less at the start of secondary recrystallization annealing.

【0052】Mnは0.5%以下ならばSと反応してM
nSインヒビターを形成する。0.15%以下だとさら
に磁束密度の向上に好ましい。
If Mn is less than 0.5%, it reacts with S and becomes M.
Form an nS inhibitor. If it is 0.15% or less, it is preferable for further improving the magnetic flux density.

【0053】酸素は鋼溶製後に0.05%以下であれば
Al2 3 を多量に作りすぎず清浄度的に好ましい。そ
してとりわけ重要なのは本発明では一次焼鈍後か焼鈍中
に窒化を行うが、この窒化も含む一次焼鈍後の鋼板の酸
素量を25〜900ppm にしておかないといけない。酸
素量のコントロールは主に露点によって行うが、ガス組
成によってもかなり変化する。25ppm 未満では二次再
結晶時に必要なAlN,Si3 4 形成のためのN量が
十分窒化されない。特に100ppm 以上だとガス組成や
ガス流量によらず十分な窒化が行われる。一方900pp
m 超ではN量が多くなりすぎて十分なインヒビターとし
ての役割がむしろできにくくなる。
If the oxygen content is 0.05% or less after the steel has been melted, a large amount of Al 2 O 3 is not produced, which is preferable for cleanliness. In the present invention, it is particularly important to perform nitriding after or during the primary annealing, but the oxygen content of the steel sheet after the primary annealing including this nitriding must be 25 to 900 ppm. The oxygen content is controlled mainly by the dew point, but it also varies considerably depending on the gas composition. If it is less than 25 ppm, the amount of N required for secondary recrystallization for forming AlN and Si 3 N 4 is not sufficiently nitrided. Particularly, if it is 100 ppm or more, sufficient nitriding is performed regardless of the gas composition and gas flow rate. On the other hand, 900pp
If it exceeds m, the amount of N becomes too large, and it becomes rather difficult to perform a sufficient role as an inhibitor.

【0054】次に化学成分以外の本発明の製造方法につ
いて述べる。鋼を転炉または電気炉等で出鋼し、必要に
応じて精錬工程を加えて成分調整を行った溶鋼を連続鋳
造法で、造塊分塊圧延法あるいは熱延工程省略のための
薄スラブ連続鋳造法等により、厚さ30〜400mm(薄
スラブ連続鋳造法では50mm以下)のスラブとする。こ
こで30mmは生産性の下限であり、400mmは中心偏析
でAl2 3 等の分布が異常になることを防ぐための上
限である。また50mmは冷速が小さくなって粗大粒が出
てくることを抑制するための上限である。
Next, the production method of the present invention other than the chemical components will be described. A thin slab that is used to cast steel in a converter or electric furnace and to adjust the composition by adding a refining process if necessary, by a continuous casting method, ingot slabbing method, or to omit the hot rolling step. A slab having a thickness of 30 to 400 mm (50 mm or less in the thin slab continuous casting method) is formed by the continuous casting method or the like. Here, 30 mm is the lower limit of productivity, and 400 mm is the upper limit for preventing abnormal distribution of Al 2 O 3 etc. due to center segregation. Further, 50 mm is the upper limit for suppressing the generation of coarse particles due to the low cooling rate.

【0055】該スラブをガス加熱、電気利用加熱等によ
り1000〜1400℃に再加熱を行い、ひき続き熱間
圧延を行って厚さ10mm以下のホットコイルとする。こ
こで1000℃はAlN溶解の下限であり、1400℃
は表面肌あれと材質劣化の上限である。また10mmは適
正な析出物を生成する冷速を得る上限である。なお、薄
スラブ連続鋳造法では直接コイル状にすることも可能で
あり、そのためには10mm以下が好ましい。
The slab is reheated to 1000 to 1400 ° C. by gas heating, electric heating, etc., and then hot rolled to obtain a hot coil having a thickness of 10 mm or less. Here, 1000 ° C. is the lower limit of AlN melting, and 1400 ° C.
Is the upper limit of surface roughness and material deterioration. Further, 10 mm is the upper limit for obtaining a cold speed at which an appropriate precipitate is formed. In the thin slab continuous casting method, it is possible to directly form a coil, and for that purpose, it is preferably 10 mm or less.

【0056】このように作ったホットコイルを再び80
0〜1250℃で焼鈍し、磁性向上をはかることもしば
しば行われる。ここで800℃はAlN再溶解の下限で
あり、1250℃はAlN粗粒化防止の上限である。
The hot coil made in this way is again heated to 80
Annealing at 0 to 1250 ° C. is often performed to improve magnetism. Here, 800 ° C. is the lower limit for remelting AlN, and 1250 ° C. is the upper limit for preventing AlN coarsening.

【0057】かかる処理工程の後、ホットコイルを直接
またはバッチ的に酸洗後冷間圧延を行う。冷間圧延は圧
下率60〜95%で行うが、60%は本発明で再結晶可
能な限界であり、好ましくは70%以上が一次焼鈍で
{111}〔112〕方位粒を多くして、二次再結晶焼
鈍時のGOSS方位粒の生成を促進させる下限であり、
一方95%超では二次再結晶焼鈍で首振りGOSS粒と
称するGOSS方位粒が板面内回転した磁気特性に好ま
しくない粒が生成される。
After this treatment step, the hot coil is pickled directly or batchwise and then cold rolled. Cold rolling is performed at a rolling reduction of 60 to 95%, 60% being the limit of recrystallization in the present invention, preferably 70% or more by primary annealing and increasing {111} [112] oriented grains, It is the lower limit for promoting the generation of GOSS oriented grains during secondary recrystallization annealing,
On the other hand, if it exceeds 95%, secondary recrystallization annealing causes GOSS-oriented grains, which are called swinging GOSS grains, to rotate in the plane of the plate to produce grains unfavorable to the magnetic properties.

【0058】以上はいわゆる一回冷延法で製造する場合
だが、なお、二回冷延法と称して冷延−焼鈍−冷延を行
う場合は、一回目の圧下率は10〜80%、二回目の圧
下率は50〜95%となる。ここで10%は再結晶に必
要な最低圧下率、80%と95%はそれぞれ二次再結晶
時に適正なGOSS方位粒を生成させるための上限圧下
率、また50%は二回冷延法においては一次焼鈍時の
{111}〔112〕方位粒を適正に残す下限圧下率で
ある。
The above is the case of manufacturing by the so-called single cold rolling method. However, in the case of performing cold rolling-annealing-cold rolling called the double cold rolling method, the first rolling reduction is 10 to 80%, The second rolling reduction is 50 to 95%. Here, 10% is the minimum reduction ratio necessary for recrystallization, 80% and 95% are the upper limit reduction ratios for producing proper GOSS-oriented grains during secondary recrystallization, respectively, and 50% in the double cold rolling method. Is the lower limit of the reduction ratio that appropriately leaves the {111} [112] oriented grains during the primary annealing.

【0059】なお、通称パス間エージングと称し、冷間
圧延の途中で鋼板を適当な方法で100〜400℃の範
囲で加熱することも磁気特性の向上に有効である。10
0℃未満ではエージングの効果がなく、一方、400℃
超では転位が回復してしまう。
It is also commonly called "interpass aging", and it is effective to improve the magnetic properties by heating the steel sheet in the range of 100 to 400 ° C by an appropriate method during the cold rolling. 10
Below 0 ℃, there is no effect of aging, while at 400 ℃
If it exceeds the limit, dislocations will be recovered.

【0060】しかる後、一回冷延法でも二回冷延法でも
一次焼鈍を行うわけであるが、この焼鈍で脱炭を行うこ
とは有効である。前述のようにCは二次再結晶粒の成長
に好ましくないばかりか、不純物として残ると鉄損の劣
化を招く。なお、鋼の溶製時にCを下げておくと脱炭工
程が短縮化されるばかりか{111}〔112〕方位粒
も増やすので好ましい。なお、この脱炭焼鈍工程で適正
な露点を設定することで、後の一次被膜生成に必要な酸
化層の確保が行われる。一次焼鈍温度は700〜950
℃が好ましい。ここで700℃は再結晶可能な下限温度
であり、950℃は粗大粒の発生を抑制する上限温度で
ある。
Thereafter, the primary annealing is carried out by either the single cold rolling method or the double cold rolling method, and it is effective to carry out decarburization by this annealing. As described above, C is not preferable for the growth of secondary recrystallized grains, and if it remains as an impurity, it causes deterioration of iron loss. It is preferable that C be lowered during the melting of the steel because not only the decarburization step is shortened but also {111} [112] oriented grains are increased. By setting an appropriate dew point in this decarburization annealing step, the oxide layer necessary for subsequent primary film formation is secured. Primary annealing temperature is 700-950
C is preferred. Here, 700 ° C. is the lower limit temperature at which recrystallization is possible, and 950 ° C. is the upper limit temperature at which the generation of coarse particles is suppressed.

【0061】さらに、AlNやSi3 4 インヒビター
のNをこの一次焼鈍時に窒化法等で強制添加する本発明
においては、上記の一次焼鈍中または直後に引き続きア
ンモニア(NH3 )等で窒化法により窒化することが行
われる。この場合の窒化法の温度は600〜950℃が
好ましい。ここで600℃は窒化反応を起こす下限であ
り、一方950℃は粗大粒発生を抑える上限である。
Further, in the present invention in which AlN or N of Si 3 N 4 inhibitor is forcibly added by the nitriding method or the like during the primary annealing, the nitriding method with ammonia (NH 3 ) or the like is continuously performed during or immediately after the primary annealing. Nitriding is performed. In this case, the temperature of the nitriding method is preferably 600 to 950 ° C. Here, 600 ° C. is the lower limit for causing the nitriding reaction, while 950 ° C. is the upper limit for suppressing the generation of coarse particles.

【0062】本発明において窒化は一次再結晶焼鈍後に
行うのが好ましいが、工業的には同じ炉内の後面に仕切
りを設けて雰囲気を必要に応じて多少変えて、NH3
スを流すか、近接した設備で行うため一次再結晶と平行
して窒化されることもしばしばある。この際前述のよう
にN2 分圧が低い方が窒化量は大きく、窒素と酸素の分
圧比P N2 /P H2 は0.5以下が好ましい。
In the present invention, the nitriding is preferably performed after the primary recrystallization annealing, but industrially, a partition is provided on the rear surface of the same furnace, the atmosphere is slightly changed as necessary, and NH 3 gas is flowed, or Since they are performed in close proximity to each other, they are often nitrided in parallel with primary recrystallization. At this time, as described above, the lower the N 2 partial pressure is, the larger the nitriding amount is, and the partial pressure ratio P N 2 / P H 2 of nitrogen and oxygen is preferably 0.5 or less.

【0063】一次焼鈍あるいは上記窒化法を行い、その
後、酸化マグネシウム(MgOを主成分とする。以下M
gOと呼ぶ)パウダーを水または水を主成分とする水溶
液に溶かし、スラリー状にして鋼板に塗布する。この
際、後の二次再結晶焼鈍時にMgOパウダーの溶融を容
易にさせ、フォルステライト生成反応を促進させる目的
で、適当な化合物を微量添加することも行われる。Ti
2 を添加する場合は1〜15%が好ましいが、ここで
1%はフォルステライト反応促進効果を発揮する下限で
あり、15%超ではMgOが少なくなってかえってフォ
ルステライト反応が進まない。
Primary annealing or the above nitriding method is performed, and then magnesium oxide (MgO is the main component.
A powder (referred to as gO) is dissolved in water or an aqueous solution containing water as a main component to form a slurry, which is applied to a steel sheet. At this time, a trace amount of an appropriate compound may be added for the purpose of facilitating the melting of the MgO powder during the subsequent secondary recrystallization annealing and promoting the forsterite formation reaction. Ti
When O 2 is added, it is preferably 1 to 15%, but 1% is the lower limit at which the effect of promoting the forsterite reaction is exhibited, and if it exceeds 15%, the amount of MgO decreases and the forsterite reaction does not proceed.

【0064】Sb2 (SO4 3 等のアンチモン系の化
合物はMgOを比較的低温で溶融させるのに効果があ
り、添加を行う場合は0.05〜5%が好ましい。ここ
で、0.05%は上記低温溶融を起こす下限であり、一
方、5%を超える場合は多すぎてMgOのフォルステラ
イトの本来の反応を不活性化する。
Antimony compounds such as Sb 2 (SO 4 ) 3 are effective in melting MgO at a relatively low temperature, and when added, 0.05 to 5% is preferable. Here, 0.05% is the lower limit for causing the above-mentioned low-temperature melting, while if it exceeds 5%, it is too much to inactivate the original reaction of MgO forsterite.

【0065】Na2 4 7 等のボロン系の化合物およ
びそれと同様の作用を持つストロンチウム・バリウム
系、炭・窒化物系、硫化物系、塩化物系の化合物はアン
チモン系より比較的高温でMgOを溶融させるのに効果
があり、添加する場合は0.05〜5%が好ましい。こ
こで、0.05%は上記の効果を発揮する下限であり、
一方5%超ではMgOのフォルステライトの本来の反応
を不活性化するので好ましくない。
Boron-based compounds such as Na 2 B 4 O 7 and strontium / barium-based, carbon / nitride-based, sulfide- and chloride-based compounds having the same action as those at a relatively higher temperature than antimony-based compounds. It is effective in melting MgO, and when added, 0.05 to 5% is preferable. Here, 0.05% is the lower limit for exerting the above effect,
On the other hand, if it exceeds 5%, the original reaction of MgO forsterite is inactivated, which is not preferable.

【0066】なおこれらの化合物は互いに複合して添加
することも可能である。ただしアンチモン系の低温溶融
型とボロン系他の比較的高温溶融型の化合物を混ぜて使
用するときは、その効果は高温溶融型に近いことになる
が、本発明の主旨と矛盾するものではなく、その場合は
本発明の高温溶融型の昇温速度をとることが好ましい。
It should be noted that these compounds can be added in combination with each other. However, when an antimony low-temperature melting type compound and a boron-based or other relatively high-temperature melting type compound are mixed and used, the effect is close to that of the high-temperature melting type compound, but it does not contradict the gist of the present invention. In that case, it is preferable to adopt the high temperature melting type temperature rising rate of the present invention.

【0067】なお、ここで添加する化合物の%はMgO
の重量を100%としたときの重量比を%で示してあ
る。二次再結晶焼鈍は最高到達温度を1100〜130
0℃で行うのが好ましい。1100℃は二次再結晶が行
われる下限の温度であり、一方1300℃超は結晶粒が
粗大化し過ぎて鉄損の劣化を招く。なお、前述のよう
に、この二次再結晶焼鈍中の比較的前段階で雰囲気等よ
りNを追加添加する窒化法が行われることもある。
The percentage of the compound added here is MgO.
The weight ratio is shown in% when the weight of 100% is taken as 100%. Secondary recrystallization annealing has a maximum temperature of 1100 to 130
It is preferably carried out at 0 ° C. 1100 ° C. is the lower limit temperature at which the secondary recrystallization is performed, while if it exceeds 1300 ° C., the crystal grains become too coarse and iron loss is deteriorated. Note that, as described above, the nitriding method in which N is additionally added from the atmosphere or the like may be performed at a relatively previous stage during the secondary recrystallization annealing.

【0068】さて、この二次再結晶焼鈍の昇温速度はと
りわけ本発明では重要である。すなわち、MgO中に添
加する化合物の種類によって昇温速度を変化させること
が必要である。アンチモン系の化合物をMgOに添加す
る場合は800℃〜最高到達温度の平均昇温速度は毎時
0.1〜80℃の比較的小さいことが必要である。ここ
で、0.1℃/時は工業的昇温速度の下限であり、一方
前述のようにMgOがアンチモン系の化合物の添加では
低温で溶融するため、より早く確実にフォルステライト
の生成を行っておく必要があり、それには昇温速度は8
0℃/時以下にしておく必要がある。
Now, the temperature rising rate of the secondary recrystallization annealing is particularly important in the present invention. That is, it is necessary to change the heating rate depending on the type of compound added to MgO. When an antimony-based compound is added to MgO, it is necessary that the average heating rate from 800 ° C. to the highest reached temperature is 0.1 to 80 ° C. per hour, which is relatively small. Here, 0.1 ° C./hour is the lower limit of the industrial heating rate, while MgO melts at a low temperature when an antimony-based compound is added as described above, so that forsterite is formed more quickly and reliably. The rate of temperature rise is 8
It is necessary to keep it at 0 ° C./hour or less.

【0069】一方、ボロン系、ストロンチウム・バリウ
ム系、炭・窒化物系、硫化物系および塩化物系では上記
平均昇温速度は毎時5〜400℃が好ましい。すなわ
ち、高温溶融型の化合物の添加ではMgOの溶融を比較
的高温で起こすため、早く高温に到達するため5℃/時
以上の昇温速度が必要であり、一方、400℃/時超で
は二次再結晶そのものがインヒビターとの関係で十分行
われない。
On the other hand, in the case of boron type, strontium / barium type, carbon / nitride type, sulfide type and chloride type, the average heating rate is preferably 5 to 400 ° C. per hour. That is, in the case of adding a high temperature melting type compound, melting of MgO occurs at a relatively high temperature, and therefore a temperature rising rate of 5 ° C./hour or more is required in order to reach a high temperature quickly. Secondary recrystallization itself is not sufficiently performed due to the relationship with the inhibitor.

【0070】以上が本発明の珪素鋼板の製造方法での重
要な部分であるが、工業的にはさらに絶縁特性や磁気特
性を向上させる目的で鋼板に有機質や無機質による二次
被膜の生成や、さらに機械的またはレーザー付加等の非
接触型の方法による磁区制御法、さらにはその後の発粉
防止のための三次被膜の生成等のいくつかの工程がとも
なうことが多い。
The above is an important part of the method for producing a silicon steel sheet according to the present invention, but industrially, for the purpose of further improving the insulation characteristics and magnetic characteristics, the production of a secondary coating film of an organic or inorganic substance on the steel sheet, Further, it is often accompanied by several steps such as a magnetic domain control method by a non-contact type method such as mechanical or laser addition, and subsequent generation of a tertiary film for preventing dusting.

【0071】[0071]

【実施例】実施例1 表4に示すような化学成分の鋼を転炉で溶製し、表5に
示すような条件で製造した。
Example 1 Steels having chemical compositions shown in Table 4 were melted in a converter and manufactured under the conditions shown in Table 5.

【0072】[0072]

【表6】 [Table 6]

【0073】[0073]

【表7】 [Table 7]

【0074】[0074]

【表8】 [Table 8]

【0075】熱延板焼鈍を一部行ったが、この条件は1
120℃×30秒間である。また冷間圧延時のパス間エ
ージングを一部行ったがその条件は250℃である。な
お、ここで本発明にとりわけ重要な一次再結晶焼鈍に引
き続く窒化は、同一炉内に仕切りを設けた炉中内部分で
同一ガス組成で雰囲気をトライにし、NH3 ガスを一定
量流して行ったものである。
The hot-rolled sheet was partially annealed under the following conditions:
120 ° C. × 30 seconds. A part of aging between passes during cold rolling was carried out under the condition of 250 ° C. Here, the nitridation subsequent to the primary recrystallization annealing, which is particularly important in the present invention, is carried out by making the atmosphere try with the same gas composition in the inner part of the furnace in which the partition is provided in the same furnace and flowing a certain amount of NH 3 gas. It is a thing.

【0076】かかる一次焼鈍後の鋼板酸素量および窒化
量(窒素量)を同表に示す。
The amount of oxygen and the amount of nitriding (the amount of nitrogen) of the steel sheet after such primary annealing are shown in the same table.

【0077】酸素量は、主として露点でかなり変化す
る。酸素量に対し、窒化量が多少変動するのは、炉内の
雰囲気の循環状態の変化によるためと考えられる。
The amount of oxygen mainly changes considerably depending on the dew point. The reason why the nitriding amount fluctuates to some extent with respect to the oxygen amount is considered to be due to a change in the circulating state of the atmosphere in the furnace.

【0078】さらにこの鋼板にパウダーを塗布したが、
パウダーは水に溶解させスラリー状にして塗布後、35
0℃で乾燥させた。パウダーの種類で、プレインとはM
gO+TiO2 (5%)の組成であり、Sb系とはMg
O+TiO2 (5%)+Sb2 (SO4 3 (0.2
%)のことであり、また、B系とはMgO+TiO
2 (5%)+Na2 4 7 (0.3%)のことを示
す。ここで、%はMgOの重量を100%としたときの
重要比率である。
Further, powder was applied to this steel plate,
Dissolve the powder in water, make a slurry, and apply 35
It was dried at 0 ° C. The type of powder, plain is M
The composition is gO + TiO 2 (5%), and Sb-based is Mg
O + TiO 2 (5%) + Sb 2 (SO 4 ) 3 (0.2
%), And the B type is MgO + TiO.
2 (5%) + Na 2 B 4 O 7 (0.3%). Here,% is an important ratio when the weight of MgO is 100%.

【0079】しかる後に、800℃〜最高到達温度の平
均昇温速度を種々変えて二次再結晶焼鈍を行った。ここ
では最高到達速度は1200℃である。さらに水洗後、
リン酸系の絶縁被膜(二次被膜)を加熱塗布した後、板
取りし、歪取り焼鈍850℃×4時間(N2 90−H2
10,Dry)を行い、被膜およびマクロ外観検査、磁
気測定、密着性試験等を行った。表5にその結果を示
す。
After that, secondary recrystallization annealing was performed while changing the average heating rate from 800 ° C. to the highest temperature reached. The maximum reaching speed is 1200 ° C. here. After further washing with water,
After applying a phosphoric acid-based insulating coating (secondary coating) by heating, the plate is removed and strain relief annealing is performed at 850 ° C. for 4 hours (N 2 90-H 2
10, Dry), and a film and macro appearance inspection, magnetic measurement, adhesion test, etc. were performed. Table 5 shows the results.

【0080】ここで、被膜外観検査は、○:スケール、
シモフリ欠陥なし、△:若干のシモフリ欠陥あり、×:
スケール、シモフリが多く被膜が十分できていない、こ
とを示す。ここでスケールとは被膜がある程度広くはが
れており、シモフリとは点状のはがれ欠陥である。ま
た、マクロ外観検査は、○:十分な二次再結晶ができて
いる、△:部分的に細粒がみとめられる、×:全面に細
粒がみとめられる、ことを示す。
Here, the film appearance inspection is conducted by ○: scale,
No shimou defect, △: Slight mottle defect, ×:
It shows that there are many scales and shimofuri and the film is not sufficiently formed. Here, the scale means that the coating is widely peeled off to some extent, and the shimofuri is a point-like peeling defect. In addition, the macroscopic visual inspection shows that ◯: sufficient secondary recrystallization is completed, Δ: fine grains are partially observed, and x: fine grains are observed on the entire surface.

【0081】磁気測定は60×300mmの単板のSST
試験法で測定し、B8 (800A/mの磁束密度、単位
はガウス)およびW17/50 (50Hzで1.7テスラのと
きの鉄損、単位はワット/kg)を測定した。密着性試験
は直径20mmの円柱に鋼板を巻き付けるような曲げ試験
において、その判定を、○:被膜のクラックなし、△:
被膜の微細クラックあり、×:ほぼ全幅にクラック、で
評価した。
The magnetic measurement is SST of a single plate of 60 × 300 mm.
The test method was used to measure B 8 (magnetic flux density of 800 A / m, unit: Gauss) and W 17/50 (iron loss at 50 Tesla at 1.7 Tesla, unit: watt / kg). The adhesion test is a bending test in which a steel plate is wound around a cylinder having a diameter of 20 mm, and the judgment is ◯: no crack in the coating, Δ:
The film was evaluated for fine cracks, and x: almost full width.

【0082】さて、表5に示すように、一次焼鈍条件の
とりわけ酸素量が本発明の範囲に入っているものは窒化
量(窒素量)が十分本発明の範囲に入っており、特に酸
素量が100ppm 以上では、安定して十分な窒化量が得
られた。一方ガス組成でH2分圧の高いものが、同程度
の酸素量でも窒化量が多い。またとりわけMgOパウダ
ーの種類の種類と仕上げ焼鈍の平均昇温速度が本発明の
なかに入っているものは磁気特性値が良好である。
As shown in Table 5, the nitriding amount (nitrogen amount) is sufficiently within the range of the present invention in the primary annealing conditions, in particular, the amount of oxygen is within the range of the present invention. Was 100 ppm or more, a stable and sufficient amount of nitriding was obtained. On the other hand, the gas composition having a high H 2 partial pressure has a large amount of nitriding even with the same oxygen content. Further, in particular, those in which the kind of MgO powder and the average temperature rising rate of finish annealing are included in the present invention have good magnetic characteristic values.

【0083】実施例2 表6に示す化学成分の鋼を150kg真空溶解で溶製し
た。
Example 2 Steel having the chemical composition shown in Table 6 was melted by vacuum melting at 150 kg.

【0084】[0084]

【表9】 [Table 9]

【0085】[0085]

【表10】 [Table 10]

【0086】これを1150℃で加熱、熱延し、板厚
2.3mmの熱延板とした。この熱延板を一部熱延焼鈍処
理(1120℃×30秒)を行った後、酸洗後圧下率9
0%で冷延し、厚さ0.23mmとしたが、圧延中に25
0℃で加熱し、いわゆるパス間エージングを行ってい
る。
This was heated at 1150 ° C. and hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.3 mm. This hot-rolled sheet was partially hot-rolled and annealed (1120 ° C. × 30 seconds), then pickled and then rolled down 9
Cold rolled at 0% to a thickness of 0.23 mm,
So-called aging between passes is performed by heating at 0 ° C.

【0087】しかる後、これを油洗し、N2 25%−H
2 75%のガス組成で表6の露点で830℃×120秒
の脱炭をかねた一次焼鈍を行った。さらにこの一次焼鈍
板をドライのN2 25%+H2 75%のガス組成の炉の
なかでNH3 を炉内に流しながら750℃×30秒間焼
鈍して窒化を行った。この場合の一次焼鈍後の鋼板の酸
素量および窒化後の鋼板のN量を表に示している。この
鋼板に下記のパウダー塗布を行った。
Thereafter, this was washed with oil and N 2 25% -H
Were primary annealing which serves as a decarburization 830 ° C. × 120 seconds dew point Table 6 2 75% gas composition. Further, this primary annealed sheet was annealed in a furnace having a gas composition of dry N 2 25% + H 2 75% while flowing NH 3 into the furnace to anneal at 750 ° C. for 30 seconds. In this case, the table shows the oxygen content of the steel sheet after primary annealing and the N content of the steel sheet after nitriding. The following powder coating was applied to this steel sheet.

【0088】表6のパウダーの種類は以下の条件のいず
れかを採用した。 (1)MgO+TiO2 〔5%〕 (プレイン) (2)MgO+TiO2 〔5%〕+Sb2 (SO4 3
〔0.2%(=Sb系),0.02%(=低Sb系),
6.0%(=高Sb系)〕 (3)MgO+TiO2 〔5%〕+Na2 4
7 〔0.3%(=B系),0.03%(=低B系),
7.0%(=高B系)〕 (4)MgO+MgSO4 〔4.0%〕+FeSO
4 〔0.1%〕+Na2 4 7 〔0.5%〕 (硫化
物系) (5)MgO+SrCO3 〔0.08%〕+BaCl2
〔0.5%〕+Ba(OH)2 〔0.1%〕 (ストロ
ンチウム・バリウム系) (6)MgO+V2 5 〔5%〕+CrN〔3%〕
(炭・窒化物系) (7)MgO+MnO2 〔0.2%〕+TiO2 〔8
%〕+TiCl4 〔0.5%〕 (塩化物系) パウダーは水に溶解させスラリー状にして塗布後、35
0℃で乾燥させた。しかる後に、800℃〜最高到達温
度の平均昇温速度を種々変えて二次再結晶焼鈍を行っ
た。さらに水洗後、リン酸系の絶縁被膜(二次被膜)の
加熱塗布した後、板取りし、歪取り焼鈍850℃×4時
間(N2 90−H2 10,Dry)を行い、被膜および
マクロ外観検査、磁気測定、被膜張力測定、密着性試験
等を行った。表6にその結果を示す。
The types of powder in Table 6 adopted any one of the following conditions. (1) MgO + TiO 2 [5%] (plane) (2) MgO + TiO 2 [5%] + Sb 2 (SO 4 ) 3
[0.2% (= Sb system), 0.02% (= low Sb system),
6.0% (= high Sb system)] (3) MgO + TiO 2 [5%] + Na 2 B 4 O
7 [0.3% (= B type), 0.03% (= low B type),
7.0% (= high B type)] (4) MgO + MgSO 4 [4.0%] + FeSO
4 [0.1%] + Na 2 B 4 O 7 [0.5%] (Sulfide type) (5) MgO + SrCO 3 [0.08%] + BaCl 2
[0.5%] + Ba (OH) 2 [0.1%] (strontium / barium system) (6) MgO + V 2 O 5 [5%] + CrN [3%]
(Carbon / nitride type) (7) MgO + MnO 2 [0.2%] + TiO 2 [8
%] + TiCl 4 [0.5%] (Chloride type) The powder is dissolved in water to form a slurry,
It was dried at 0 ° C. After that, secondary recrystallization annealing was carried out while changing the average heating rate from 800 ° C. to the highest reached temperature variously. Further, after washing with water, a phosphoric acid-based insulating coating (secondary coating) is applied by heating, and then the plate is removed and strain relief annealing is performed at 850 ° C. for 4 hours (N 2 90-H 2 10, Dry). Appearance inspection, magnetic measurement, film tension measurement, adhesion test, etc. were performed. Table 6 shows the results.

【0089】ここで、被膜外観検査は、○:スケール、
シモフリ欠陥なし、△:若干のシモフリ欠陥あり、×:
スケール、シモフリが多く被膜が十分できていない、こ
とを示す。ここでスケールとは被膜がある程度広くはが
れており、シモフリとは点状のはがれ欠陥である。ま
た、マクロ外観検査は、○:十分な二次再結晶ができて
いる、△:部分的に細粒が認められる、×:全面に細粒
が認められる、ことを示す。
Here, the appearance of the coating film is inspected by ◯: scale,
No shimou defect, △: Slight mottle defect, ×:
It shows that there are many scales and shimofuri and the film is not sufficiently formed. Here, the scale means that the coating is widely peeled off to some extent, and the shimofuri is a point-like peeling defect. In addition, the macroscopic visual inspection shows that ◯: sufficient secondary recrystallization is formed, Δ: fine particles are partially observed, and x: fine particles are observed on the entire surface.

【0090】磁気測定は60×300mmの単板のSST
試験法で測定し、B8 (800A/mの磁束密度、単位
はガウス)およびW17/50 (50Hzで1.7テスラのと
きの鉄損、単位はワット/kg)を測定した。密着性試験
は直径20mmの円柱に鋼板を巻き付けるような曲げ試験
において、その判定を、○:被膜のクラックなし、△:
被膜の微細クラックあり、×:ほぼ全幅にクラック、で
評価した。
Magnetic measurement is SST of 60 × 300 mm single plate.
The test method was used to measure B 8 (magnetic flux density of 800 A / m, unit: Gauss) and W 17/50 (iron loss at 50 Tesla at 1.7 Tesla, unit: watt / kg). The adhesion test is a bending test in which a steel plate is wound around a cylinder having a diameter of 20 mm, and the judgment is ◯: no crack in the coating, Δ:
The film was evaluated for fine cracks, and x: almost full width.

【0091】さて、表6に示すように、アンチモン系の
化合物を添加したMgOパウダーでは、仕上げ(二次再
結晶)焼鈍の昇温速度が本発明のように小さく、かつ一
次焼鈍時の酸素量および窒素量が本発明の範囲のものは
上記の全ての特性が良好であり、一方、ボロン系、硫化
物系、ストロンチウム・バリウム系、炭・窒化物系、塩
化物系等の比較的高温でMgOを溶融させる化合物を添
加したものは二次再結晶焼鈍の昇温速度が本発明のよう
に大きく、他の条件も本発明の範囲に入っているものが
上記の全ての特性が良い。一方、プレイン材では昇温速
度が小さいほうが、諸性質も良好な傾向がみとめられる
が、アンチモン系の化合物を添加したものより若干特性
値が劣る傾向がみられる。
As shown in Table 6, in the MgO powder containing the antimony-based compound, the temperature rising rate of the finish (secondary recrystallization) annealing is small as in the present invention, and the oxygen content in the primary annealing is small. And the nitrogen content in the range of the present invention is good in all of the above-mentioned characteristics, on the other hand, at a relatively high temperature such as boron-based, sulfide-based, strontium-barium-based, carbon-nitride-based, chloride-based. The one to which the compound that melts MgO is added has a high rate of temperature rise in the secondary recrystallization annealing as in the present invention, and all the above-mentioned characteristics are good when the other conditions are within the scope of the present invention. On the other hand, in the plain material, when the temperature rising rate is smaller, various properties tend to be better, but the characteristic values tend to be slightly inferior to those when the antimony-based compound is added.

【0092】[0092]

【発明の効果】本発明により方向性電磁鋼板の窒化量を
最適化でき、良好な磁性および被膜特性を得ることがで
きる。
According to the present invention, the nitriding amount of the grain-oriented electrical steel sheet can be optimized and good magnetic properties and coating characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次焼鈍板の酸素量と窒化板の窒素量の関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of oxygen in a primary annealed plate and the amount of nitrogen in a nitrided plate.

【図2】a,bおよびcは二次再結晶焼鈍の引出し試験
の焼鈍サイクルである。
2A, 2B and 2C are annealing cycles of a pull-out test of secondary recrystallization annealing.

【手続補正書】[Procedure amendment]

【提出日】平成4年6月12日[Submission date] June 12, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Name of item to be corrected] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】(2)上記(1)において二次再結晶焼鈍
前にフォルステライトを主体とする一次被膜形成のため
に塗布するマグネシアの中に、アンチモン系の化合物を
0.05〜5.0%添加し、かつ二次再結晶焼鈍での8
00℃〜最高到達温度の平均昇温速度を毎時0.1〜8
0℃とすることを特徴とする鋼の製造法。 (3)上記(1)においてマグネシアの中にボロン系、
ストロンチウム・バリウム系、炭・窒化物系、硫化物
系、塩化物系化合物の1種または2種以上を合計0.0
5〜5.0%添加し、かつ二次再結晶焼鈍での800℃
〜最高到達温度の平均昇温速度を毎時5〜400℃とす
ることを特徴とする鋼の製造法。 (4)上記(1)において一次再結晶焼鈍雰囲気の窒素
素の分圧の比がPN2 /P H2 ≦0.5とする珪素
鋼板の製造方法。
(2) In the above (1), 0.05 to 5.0% of an antimony-based compound is contained in magnesia applied for forming a primary film mainly composed of forsterite before secondary recrystallization annealing. 8 in addition and secondary recrystallization annealing
The average rate of temperature increase from 00 ° C to the highest temperature reached is 0.1 to 8 per hour.
A method for producing steel, which is characterized in that the temperature is 0 ° C. (3) In the above (1), boron series in magnesia,
Strontium / barium-based, carbon / nitride-based, sulfide-based, and chloride-based compounds totaling one or more of 0.0
Addition of 5 to 5.0%, and 800 ℃ in secondary recrystallization annealing
~ A method for producing steel, characterized in that the average temperature rising rate of the highest reached temperature is 5 to 400 ° C per hour. (4) A method of manufacturing a silicon steel sheet the ratio of the partial pressures of nitrogen and hydrogen in the primary recrystallization annealing atmosphere in the above (1) is a PN 2 / P H 2 ≦ 0.5 .

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】尚、N2 分圧を考慮した場合は、下記のよ
うになる。 (T=750℃の場合) Case1 Case2 Case3 P H2 :0.20 :0.10 :0.05 P H2 O :0.44 :0.22 :0.11 P N2 :0.2 :0.2 :0.2 PNH3 :0.16 :0.48 :0.64 ↓ ↓ ↓ N=8ppm N=66ppm N=254ppm つまり、N2 分圧が大きくなると、むしろ窒化量は減る
ことがわかる。このように理論的にも一次焼鈍板に酸化
層(FeO等)のある場合の方が窒化しやすいことが確
かめられたことになる。また、一次焼鈍窒化時の雰囲気
は窒素と素の分圧比P N2 /P H2 の小さいほど窒化
量が多くなることが予測される。
When N 2 partial pressure is taken into consideration, it becomes as follows. (T = 750 For ℃) Case1 Case2 Case3 P H 2 : 0.20: 0.10: 0.05 P H 2 O: 0.44: 0.22: 0.11 P N 2: 0.2: 0.2: 0.2 PNH 3: 0.16: 0.48: 0.64 ↓ ↓ ↓ N = 8ppm N = 66ppm N = 254ppm That is, it can be seen that the nitriding amount rather decreases as the N 2 partial pressure increases. Thus, theoretically, it has been confirmed that nitriding is easier when the primary annealed plate has an oxide layer (FeO or the like). The atmosphere at the time of primary annealing nitride is expected to be much nitrogen and small enough amount nitride of partial pressure ratio P N 2 / P H 2 for hydrogen.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0062[Correction target item name] 0062

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0062】本発明において窒化は一次再結晶焼鈍後に
行うのが好ましいが、工業的には同じ炉内の後面に仕切
りを設けて雰囲気を必要に応じて多少変えて、NH3
スを流すか、近接した設備で行うため一次再結晶と平行
して窒化されることもしばしばある。この際前述のよう
にN2 分圧が低い方が窒化量は大きく、窒素と素の分
圧比P N2 /P H2 は0.5以下が好ましい。
In the present invention, the nitriding is preferably performed after the primary recrystallization annealing, but industrially, a partition is provided on the rear surface of the same furnace, the atmosphere is slightly changed as necessary, and NH 3 gas is flowed, or Since they are performed in close proximity to each other, they are often nitrided in parallel with primary recrystallization. In this case it is the amount of nitride is low N 2 partial pressure as described above is large, the partial pressure ratio P N 2 / P H 2 in nitrogen and hydrogen is preferably 0.5 or less.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 A (72)発明者 本間 穂高 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01F 1/16 A (72) Inventor Hodaka Hodaka No. 1-1 Tobata-cho, Tobata-ku, Kitakyushu City Made in New Japan Inside the Yawata Works,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si:1〜7%を含む鋼を溶製し、熱間
圧延、冷間圧延、一次再結晶焼鈍、焼鈍分離材塗布およ
び二次再結晶焼鈍を基本工程とする方向性電磁鋼板の製
造において、二次再結晶焼鈍を行わせしめるのに必要な
インヒビターの機能を付与せしめる目的で、一次再結晶
焼鈍後にNを添加せしめる際、一次再結晶焼鈍板の化学
分析法での酸素(O)量を25〜900ppm とし、一次
再結晶焼鈍に続く窒化後の窒素(N)量を120〜60
0ppm とすることを特徴とする磁性および被膜特性の優
れた珪素鋼板の製造方法。
1. A directional electromagnetic system in which a steel containing Si: 1 to 7% is smelted and hot rolling, cold rolling, primary recrystallization annealing, application of an annealing separator and secondary recrystallization annealing are the basic steps. In the production of a steel sheet, when N is added after the primary recrystallization annealing for the purpose of imparting the function of an inhibitor necessary for performing the secondary recrystallization annealing, oxygen ( The amount of O) is 25 to 900 ppm, and the amount of nitrogen (N) after nitriding following the primary recrystallization annealing is 120 to 60
A method for producing a silicon steel sheet having excellent magnetic properties and coating characteristics, which is characterized by setting the content to 0 ppm.
【請求項2】 二次再結晶焼鈍前にフォルステライトを
主体とする一次被膜形成のために塗布するマグネシアの
中に、アンチモン系の化合物を0.05〜5.0%添加
し、かつ二次再結晶焼鈍での800℃〜最高到達温度の
平均昇温速度を毎時0.1〜80℃とすることを特徴と
する請求項1記載の磁性および被膜特性の優れた珪素鋼
板の製造方法。
2. An antimony-based compound is added in an amount of 0.05 to 5.0% to magnesia which is applied to form a primary film mainly composed of forsterite before secondary recrystallization annealing, and the secondary The method for producing a silicon steel sheet having excellent magnetic properties and coating properties according to claim 1, wherein an average heating rate from 800 ° C. to the maximum reached temperature in recrystallization annealing is 0.1 to 80 ° C. per hour.
【請求項3】 一次被膜形成のために塗布するマグネシ
アの中にボロン系、ストロンチウム・バリウム系、炭・
窒化物系、硫化物系、塩化物系化合物の1種または2種
以上を合計0.05〜5.0%添加し、かつ二次再結晶
焼鈍での800℃〜最高到達温度の平均昇温速度を毎時
5〜400℃とすることを特徴とする請求項1記載の磁
性および被膜特性の優れた珪素鋼板の製造方法。
3. A magnesia applied for forming a primary coating contains boron, strontium / barium, charcoal.
Addition of one or more of nitride-based, sulfide-based, and chloride-based compounds in a total amount of 0.05 to 5.0%, and an average temperature rise from 800 ° C to the maximum reached temperature in the secondary recrystallization annealing. The method for producing a silicon steel sheet having excellent magnetic properties and coating properties according to claim 1, wherein the speed is set to 5 to 400 ° C. per hour.
【請求項4】 一次再結晶焼鈍雰囲気の窒素と酸素の分
圧の比がP N2 /PH2 ≦0.5であることを特徴とす
る請求項1記載の磁性および被膜特性の優れた珪素鋼板
の製造方法。
4. Silicon having excellent magnetic properties and coating properties according to claim 1, wherein the ratio of the partial pressures of nitrogen and oxygen in the primary recrystallization annealing atmosphere is P N 2 / PH 2 ≦ 0.5. Steel plate manufacturing method.
JP4123412A 1992-05-15 1992-05-15 Production of silicon steel sheet excellent in magnetism and film property Withdrawn JPH05320769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4123412A JPH05320769A (en) 1992-05-15 1992-05-15 Production of silicon steel sheet excellent in magnetism and film property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4123412A JPH05320769A (en) 1992-05-15 1992-05-15 Production of silicon steel sheet excellent in magnetism and film property

Publications (1)

Publication Number Publication Date
JPH05320769A true JPH05320769A (en) 1993-12-03

Family

ID=14859921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4123412A Withdrawn JPH05320769A (en) 1992-05-15 1992-05-15 Production of silicon steel sheet excellent in magnetism and film property

Country Status (1)

Country Link
JP (1) JPH05320769A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3196320A4 (en) * 2014-09-04 2017-08-09 JFE Steel Corporation Method for manufacturing directional magnetic steel sheet, and nitriding treatment equipment
KR20170098300A (en) * 2015-02-13 2017-08-29 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for producing same
US20190112685A1 (en) * 2015-12-04 2019-04-18 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet
US10844452B2 (en) 2015-06-09 2020-11-24 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
US10889880B2 (en) 2015-03-05 2021-01-12 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3196320A4 (en) * 2014-09-04 2017-08-09 JFE Steel Corporation Method for manufacturing directional magnetic steel sheet, and nitriding treatment equipment
US10900113B2 (en) 2014-09-04 2021-01-26 Jfe Steel Corporation Method for manufacturing grain-oriented electrical steel sheet, and nitriding apparatus
US11761074B2 (en) 2014-09-04 2023-09-19 Jfe Steel Corporation Nitriding apparatus for manufacturing a grain-oriented electrical steel sheet
KR20170098300A (en) * 2015-02-13 2017-08-29 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for producing same
CN107250403A (en) * 2015-02-13 2017-10-13 杰富意钢铁株式会社 Grain-oriented magnetic steel sheet and its manufacture method
EP3257958A4 (en) * 2015-02-13 2018-01-24 JFE Steel Corporation Grain-oriented electrical steel sheet and method for producing same
US20180037966A1 (en) * 2015-02-13 2018-02-08 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing same
US10889880B2 (en) 2015-03-05 2021-01-12 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
US10844452B2 (en) 2015-06-09 2020-11-24 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
US20190112685A1 (en) * 2015-12-04 2019-04-18 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP2019507244A (en) Method for producing grain-oriented electrical steel sheet
KR101696627B1 (en) Annealing separating agent composition for base coating free electrical steel sheet, and method for manufacturing base coating free electrical steel sheet using the same
JPH03211232A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP6768068B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2020507673A (en) Grain-oriented electrical steel sheet and its manufacturing method
JP3481567B2 (en) Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property
JPH06200325A (en) Production of silicon steel sheet having high magnetism
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
JP2003193134A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JPH06158167A (en) High magnetic flux density grain-oriented silicon steel sheet and its production
JPH06100937A (en) Production of silicon steel sheet having no glass film and extremely excellent in core loss
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH07258802A (en) Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production
JPH06172939A (en) High magnetic flux density/low core loss grain-oriented silicon steel sheet and its production
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JPH08199239A (en) Production of grain oriented magnetic steel sheet with high magnetic flux density
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH06212261A (en) Production of high magnetic flux density silicon steel sheet excellent in magnetic property and film property
JPH06220540A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic property after domain control
JP2001192732A (en) Cold rolling method for obtaining grain oriented silicon steel sheet excellent in magnetic property
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803