JPH06212261A - Production of high magnetic flux density silicon steel sheet excellent in magnetic property and film property - Google Patents

Production of high magnetic flux density silicon steel sheet excellent in magnetic property and film property

Info

Publication number
JPH06212261A
JPH06212261A JP5002892A JP289293A JPH06212261A JP H06212261 A JPH06212261 A JP H06212261A JP 5002892 A JP5002892 A JP 5002892A JP 289293 A JP289293 A JP 289293A JP H06212261 A JPH06212261 A JP H06212261A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
primary
recrystallization annealing
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5002892A
Other languages
Japanese (ja)
Inventor
Katsuro Kuroki
克郎 黒木
Hiroaki Masui
浩昭 増井
Osamu Tanaka
收 田中
Hodaka Honma
穂高 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5002892A priority Critical patent/JPH06212261A/en
Publication of JPH06212261A publication Critical patent/JPH06212261A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To improve the surface film and magnetic properties of a steel sheet by specifying the oxygen content and nitrogen content after nitriding in a sheet subjected to primary recrystallization annealing. CONSTITUTION:Molten steel contg. 1 to 7% Si and >0.045 to 0.20% P is subjected to hot rolling and cold rolling, and primary recrystallization annealing is executed. Next, at the time of adding N required for an inhibitor, the oxygen content by a chemical analysis method in the sheet subjected to the primary recrystallization annealing is regulated to 25 to 900ppm. The nitrogen content after the subsequent nitriding is regulated to 120 to 400ppm. The nitrided steel sheet is coated with a separation agent for annealing, and secondary recrystallization annealing is executed. Since N required for an inhibitor is efficiently added after the primary recrystallization annealing and a primary film is stably formed on the surface of the silicon steel in the case of the secondary recrystallization annealing, the grain-oriented silicon steel sheet having high magnetic flux density and low iron loss can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表面被膜及び磁気特性に
優れた珪素鋼板の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon steel sheet having excellent surface coating and magnetic properties.

【0002】[0002]

【従来の技術】トランス用等の磁気特性に優れた珪素鋼
板を製造するに際して、絶縁特性と鋼板表面に張力を与
えトランスの性能向上に必要な磁気特性を向上させ、か
つ鋼板との密着性が良好な一次被膜を形成させることは
大変重要である。通常の技術では脱炭を伴う一次焼鈍後
に、鋼板にマグネシアと呼ばれる酸化マグネシウム(M
gO)の微粉末を水溶させたスラリー状のものを塗り、
必要に応じて乾燥させたあと、二次再結晶焼鈍工程で焼
成させ、鋼板中のSiとの反応でフォルステライト(M
2 SiO4 )と呼ばれるセラミックス質状の絶縁被膜
を形成させる。これが鋼板に張力を与え、磁気特性とり
わけ鉄損と呼ばれるトランスの効率を支配する特性値を
向上させるのに有効である。
2. Description of the Related Art In manufacturing a silicon steel sheet having excellent magnetic properties for a transformer or the like, the insulating property and the magnetic property required for improving the performance of the transformer are improved by applying tension to the surface of the steel plate, and the adhesion with the steel plate is improved. It is very important to form a good primary coating. In the usual technology, after the primary annealing accompanied by decarburization, magnesium steel called magnesia (M
gO) fine powder of water is applied in a slurry form,
After drying if necessary, it is fired in the secondary recrystallization annealing step, and forsterite (M
A ceramic-like insulating film called g 2 SiO 4 ) is formed. This is effective in giving tension to the steel sheet and improving the magnetic property, especially the characteristic value called iron loss, which governs the efficiency of the transformer.

【0003】しかも、このフォルステライト形成の状態
が、二次再結晶で鋼板の結晶方位を通称GOSS方位と
呼ばれ、透磁率や磁束密度の向上に不可欠な鋼板長手方
向(圧延方向)に対して、{110}〔001〕の結晶
方位を有するやや粗大な二次再結晶粒を成長させるのに
も重要な役割を果たしていることもよく知られている。
すなわち、二次再結晶焼鈍昇温過程中に十分緻密な被膜
が形成されないまま二次再結晶させようとしても、鋼板
内のインヒビターと呼ばれる微細な窒化物や硫化物等が
そのままの状態で、あるいは分解して早く鋼板外に抜け
でてしまう。このため、昇温中にGOSS方位粒を優先
的に成長させ、他の方位粒の成長を抑制させる役目のイ
ンヒビター効果が発揮できず、通称、細粒と呼ばれ、G
OSS方位粒の二次再結晶粒の成長が部分的あるいは全
面的に行われない、極めて磁気特性の劣る鋼板を生み出
すことになる。なお、このMgOの中に酸化チタン(T
iO2 等)やその他の化合物を添加させ、さらに緻密な
一次被膜を形成させることも行われる。
In addition, this state of forsterite formation is called the GOSS orientation of the steel sheet in the secondary recrystallization, which is generally called the GOSS orientation, with respect to the steel sheet longitudinal direction (rolling direction) which is essential for improving the magnetic permeability and the magnetic flux density. It is also well known that it plays an important role also in growing slightly coarser secondary recrystallized grains having a crystal orientation of {110} [001].
That is, even when trying to carry out secondary recrystallization without forming a sufficiently dense film during the secondary recrystallization annealing temperature rising process, fine nitrides and sulfides called inhibitors in the steel sheet remain as they are, or It disassembles and falls out of the steel plate quickly. For this reason, the inhibitory effect of preferentially growing GOSS-oriented grains during the temperature rise and suppressing the growth of other oriented grains cannot be exerted, and is commonly called fine grains.
This results in a steel sheet having extremely poor magnetic properties, in which secondary recrystallized grains of OSS oriented grains are not partially or entirely grown. In addition, titanium oxide (T
(iO 2 etc.) and other compounds may be added to form a denser primary coating.

【0004】しかるに、実際は上記の技術知見があって
もなおかつ十分な一次被膜及び二次再結晶組織を安定し
て作ることは容易ではなく、特に二次再結晶焼鈍条件を
工業的必要性から種々変化させることがあるが、この場
合にも十分な一次被膜を作りこなし、さらに十分適正な
方位の二次再結晶を生成せしめることは容易なことでは
ない。その理由の一つとして、一次被膜の形成とインヒ
ビターと称される二次再結晶過程での適切な添加物の形
成に関する製法上の解明が未だ十分でないことが挙げら
れる。
In practice, however, it is not easy to stably produce a sufficient primary coating film and secondary recrystallization structure even with the above technical knowledge. Especially, various secondary recrystallization annealing conditions are required due to industrial necessity. Although it may be changed, it is not easy in this case to form a sufficient primary film and to generate secondary recrystallization having a sufficiently proper orientation. One of the reasons for this is that the elucidation in the manufacturing process regarding the formation of the primary film and the formation of an appropriate additive in the secondary recrystallization process called an inhibitor is not yet sufficient.

【0005】とりわけ、一次再結晶焼鈍後にNを添加す
るインヒビター制御技術においては、いかに最適なN量
を効率よく添加するかが詳細に詰められていないため
に、個々の経験に依存していた部分があり、前述のよう
に安定した一次被膜及び二次再結晶を自由にコントロー
ルするまで至っていないのが実状である。
In particular, in the inhibitor control technique for adding N after the primary recrystallization annealing, it is not detailed in detail how to optimally add the optimum amount of N, so that it depends on individual experience. However, the actual situation is that the stable primary coating and the secondary recrystallization have not been freely controlled as described above.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術に
おける課題を解決し、インヒビターに必要なNを一次再
結晶焼鈍後に効率的に付加し、さらに二次再結晶時に一
次被膜を安定して珪素鋼表面に形成し、安定したGOS
S方位の二次再結晶粒を有する方向性珪素鋼板の製造法
を提供するものである。
The present invention solves the problems in the prior art, efficiently adds N necessary for an inhibitor after primary recrystallization annealing, and further stabilizes the primary coating during secondary recrystallization. Stable GOS formed on the surface of silicon steel
The present invention provides a method for producing a grain-oriented silicon steel sheet having S-oriented secondary recrystallized grains.

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。 (1)Si:1〜7%、P:0.045%超〜0.20
%を含む鋼を溶製し、熱間圧延、冷間圧延、一次再結晶
焼鈍、焼鈍分離材塗布及び二次再結晶焼鈍を基本工程と
する方向性電磁鋼板の製造において、二次再結晶焼鈍を
行わせしめるのに必要なインヒビターの機能を付与せし
める目的で一次再結晶焼鈍後にNを添加せしめる際、一
次再結晶焼鈍板の化学分析法での酸素(O)量を25〜
900ppm とし、一次再結晶焼鈍に続く窒化後の窒素
(N)量を120〜400ppm とすることを特徴とする
磁性及び被膜特性の優れた高磁束密度珪素鋼板の製造
法。
The gist of the present invention is as follows. (1) Si: 1 to 7%, P: more than 0.045% to 0.20
% In steel, and hot-rolled, cold-rolled, primary recrystallization annealing, annealing separation material application and secondary recrystallization annealing in the production of grain-oriented electrical steel sheets, the secondary recrystallization annealing When N is added after the primary recrystallization annealing for the purpose of imparting the inhibitor function necessary for carrying out the heat treatment, the amount of oxygen (O) in the chemical analysis method of the primary recrystallization annealed plate is 25 to
A method for producing a high magnetic flux density silicon steel sheet having excellent magnetic properties and coating characteristics, which is set to 900 ppm and the amount of nitrogen (N) after nitriding following primary recrystallization annealing is set to 120 to 400 ppm.

【0008】(2)Si:1〜7%、P:0.045%
超〜0.20%、Sn:0.02〜0.20%を含む鋼
を溶製し、熱間圧延、冷間圧延、一次再結晶焼鈍、焼鈍
分離材塗布及び二次再結晶焼鈍を基本工程とする方向性
電磁鋼板の製造において、二次再結晶焼鈍を行わせしめ
るのに必要なインヒビターの機能を付与せしめる目的で
一次再結晶焼鈍後にNを添加せしめる際、一次再結晶焼
鈍板の化学分析法での酸素(O)量を25〜900ppm
とし、一次再結晶焼鈍に続く窒化後の窒素(N)量を1
20〜400ppm とすることを特徴とする磁性及び被膜
特性の優れた高磁束密度珪素鋼板の製造法。
(2) Si: 1 to 7%, P: 0.045%
Steel containing super-0.20%, Sn: 0.02-0.20% is smelted, and is basically hot-rolled, cold-rolled, primary recrystallization annealing, annealing separation material coating and secondary recrystallization annealing. In the production of grain-oriented electrical steel sheet as a process, chemical analysis of the primary recrystallization annealed plate when N is added after the primary recrystallization annealing for the purpose of imparting the inhibitor function necessary for performing the secondary recrystallization annealing. Amount of oxygen (O) in the method is 25-900ppm
And the amount of nitrogen (N) after nitriding following the primary recrystallization annealing is 1
A method for producing a high magnetic flux density silicon steel sheet having excellent magnetic properties and coating properties, which is characterized by 20 to 400 ppm.

【0009】(3)二次再結晶焼鈍前にフォルステライ
トを主体とする一次被膜形成のために塗布するマグネシ
アの中にアンチモン系の化合物を0.05〜5.0%添
加し、かつ二次再結晶焼鈍での800℃〜最高到達温度
の平均昇温速度を毎時0.1〜80℃とすることを特徴
とする(1)または(2)記載の磁性及び被膜特性の優
れた高磁束密度珪素鋼板の製造法。
(3) Before secondary recrystallization annealing, 0.05 to 5.0% of an antimony compound is added to magnesia applied for forming a primary coating mainly composed of forsterite, and secondary magnesia is added. A high magnetic flux density excellent in magnetic properties and coating properties according to (1) or (2), characterized in that an average rate of temperature increase from 800 ° C. to the highest reached temperature in recrystallization annealing is 0.1 to 80 ° C. per hour. Manufacturing method of silicon steel sheet.

【0010】(4)一次被膜形成のために塗布するマグ
ネシアの中にボロン系、ストロンチウム・バリウム系、
炭・窒化物系、硫化物系、塩化物系化合物の1種または
2種以上を合計0.05〜5.0%添加し、かつ二次再
結晶焼鈍での800℃〜最高到達温度の平均昇温速度を
毎時5〜400℃とすることを特徴とする(1)または
(2)または(3)記載の磁性及び被膜特性の優れた高
磁束密度珪素鋼板の製造法。 (5)一次焼鈍雰囲気の窒素と水素の分圧の比をP N2
/P H2 ≦0.5とすることを特徴とする磁性及び被膜
特性の優れた高磁束密度珪素鋼板の製造法。
(4) Boron-based, strontium-barium-based, magnesia is applied to form a primary coating,
Addition of one or more of carbon / nitride-based, sulfide-based, and chloride-based compounds in a total amount of 0.05 to 5.0%, and an average of maximum temperature reached from 800 ° C in secondary recrystallization annealing The method for producing a high magnetic flux density silicon steel sheet having excellent magnetic properties and coating properties according to (1), (2) or (3), characterized in that the temperature rising rate is 5 to 400 ° C. per hour. (5) The ratio of the partial pressures of nitrogen and hydrogen in the primary annealing atmosphere is set to P N 2
/ P H 2 ≦ 0.5, a method for producing a high magnetic flux density silicon steel sheet having excellent magnetic properties and coating properties.

【0011】以下に本発明を詳細に説明する。方向性珪
素鋼板の二次再結晶はGOSS方位と呼ばれる{11
0}〈001〉方位の粒を二次再結晶焼鈍(仕上げ焼鈍
とも呼ばれる)時に十分成長させることが肝要である。
これは一次再結晶焼鈍(以下、一次焼鈍と呼ぶ)の中の
ある特定粒のみを粗大再結晶させるもので、この時にイ
ンヒビター(Inhibitor)と呼ばれるAlN等
の微細析出物を仕上げ焼鈍前に十分作っておくことが技
術上必要であることがよく知られている。そして、この
ために必要なNを鋼溶製時または一次焼鈍後または他の
工程中に添加することが行われる。
The present invention will be described in detail below. Secondary recrystallization of grain-oriented silicon steel sheet is called GOSS orientation {11
It is essential that grains having a 0} <001> orientation are sufficiently grown during secondary recrystallization annealing (also called finish annealing).
This is to coarsely recrystallize only certain specific grains in the primary recrystallization annealing (hereinafter referred to as primary annealing). At this time, fine precipitates such as AlN called an inhibitor (Inhibitor) are sufficiently formed before finish annealing. It is well known that it is technically necessary to keep. Then, N necessary for this purpose is added during steel melting, after primary annealing, or during other steps.

【0012】本発明は一次焼鈍後にNを添加する場合の
最適添加法に関する技術的発見をその構成の一つとする
ものである。ここで一次焼鈍後と呼ぶ内容を補足する
が、これは通常脱炭反応も機能する一次焼鈍の設備の一
部に窒化反応を行う設備を内部または近接して設置し、
一次焼鈍後またはそれと平行させて窒化反応させる方法
である。鋼溶製時に十分低炭化した鋼では脱炭機能より
も一次焼鈍後の表面層の酸化物層を変えて、被膜形成に
有利な形にすることがむしろ重要な役割となる。ここ
で、一次焼鈍後に窒化する実験を行った結果を示す。表
1は試料の化学成分及び製造方法である。かかる材料の
一次焼鈍板の酸素量と窒化後の板のN量を表2に示す。
この関係を図1に示す。この図で明瞭なことは一次焼鈍
後の鋼板中の酸素量と窒化量とは明瞭な正の相関がある
ということである。
[0012] One of the constitutions of the present invention is the technical finding concerning the optimum addition method when N is added after the primary annealing. Here, I will supplement what is called after primary annealing, but this is to install equipment for performing a nitriding reaction inside or close to a part of the equipment for primary annealing that also normally functions for decarburization,
This is a method of performing a nitriding reaction after the primary annealing or in parallel with it. In the case of steel having a sufficiently low carbonization during steel melting, it is more important than the decarburizing function to change the oxide layer of the surface layer after the primary annealing so as to form a film advantageous for film formation. Here, the result of the experiment of nitriding after the primary annealing is shown. Table 1 shows the chemical composition of the sample and the manufacturing method. Table 2 shows the amount of oxygen in the primary annealed plate of this material and the amount of N in the plate after nitriding.
This relationship is shown in FIG. What is clear in this figure is that there is a clear positive correlation between the oxygen content and the nitriding content in the steel sheet after the primary annealing.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【表4】 [Table 4]

【0017】ここで酸素量が変化する理由は一次焼鈍時
に表面が酸化するということであり、これは一次焼鈍が
脱炭を伴うことからくる下記の反応の結果である。
The reason why the amount of oxygen changes here is that the surface is oxidized during the primary annealing, which is a result of the following reaction resulting from decarburization in the primary annealing.

【0018】 C+H2 O→CO+H2 (1) Fe+H2 O→FeO+H2 (2)C + H 2 O → CO + H 2 (1) Fe + H 2 O → FeO + H 2 (2)

【0019】これらの反応は通常同時に起こり、脱炭が
進むほど鋼板中の酸素も増加する。さて、一次焼鈍後の
窒化について以下の検討を行った。窒化反応は次式で示
される。
These reactions usually occur simultaneously, and oxygen in the steel sheet increases as decarburization progresses. Now, the following study was conducted on the nitriding after the primary annealing. The nitriding reaction is expressed by the following equation.

【0020】 NH3 →N+(3/2)H2 (3)NH 3 → N + (3/2) H 2 (3)

【0021】しかし、この反応式では鋼板の酸素量の影
響を見ることはできない。そこで、鋼板の酸素量に相当
するものを上記(2)式から鋼板表層部のFeO量と考
え、以下の二つのケースを考えた。 1.表層部に酸化層(FeO等)が実質存在しないとし
た場合 このときはJ.F.Enriettoの式から以下のよ
うに表される。 N+(3/2)H2 ←NH3 (4) 平衡定数:K=1.77×10-5exp (19250/RT) =PNH3 /(N・P H2 3/2 ) (5)
However, in this reaction equation, the effect of the oxygen content of the steel sheet cannot be seen. Therefore, the amount corresponding to the oxygen content of the steel sheet was considered as the FeO content in the surface layer of the steel sheet from the above equation (2), and the following two cases were considered. 1. When it is assumed that an oxide layer (FeO or the like) does not substantially exist in the surface layer portion. F. It is expressed as follows from the Enrietto formula. N + (3/2) H 2 ← NH 3 (4) Equilibrium constant: K = 1.77 × 10 −5 exp (19250 / RT) = PNH 3 / (N · P H 2 3/2 ) (5)

【0022】2.表層部に酸化層(FeO等)の存在す
る場合 このときは鋼板と外部雰囲気との境界面で起こる(4)
式の反応の際のH2 をいかに反応系として取り除くかが
窒化に影響すると考えた。このときは次の二つの反応系
が同時に起こる界面領域を考えなければならない。
2. When an oxide layer (FeO, etc.) exists on the surface layer At this time, it occurs at the interface between the steel sheet and the external atmosphere (4)
It was thought that how to remove H 2 in the reaction of the formula as a reaction system affects the nitriding. In this case, we must consider the interface region where the following two reaction systems occur simultaneously.

【0023】 I.N+(3/2)H2 ←NH3 (4) K=1.77×10-5exp (19250/RT) =PNH3 /(N・P H2 3/2 ) (5) II.FeO+H2 →Fe+H2 O (6) log K=log(P H2 O /P H2 )=827/T−0.468 (7) ΔF=−3784+2.14T (8) ここで(7),(8)式は沢村の式である。なおTは絶
対温度(°K)、Rは気体定数である。以上の1.及び
2.の場合について計算を行った。
I. N + (3/2) H 2 ← NH 3 (4) K = 1.77 × 10 −5 exp (19250 / RT) = PN H 3 / (N · P H 2 3/2 ) (5) II. FeO + H 2 → Fe + H 2 O (6) log K = log (P H 2 O / P H 2 ) = 827 / T−0.468 (7) ΔF = −3784 + 2.14T (8) where (7), ( Equation 8) is Sawamura's equation. Note that T is an absolute temperature (° K) and R is a gas constant. 1. And 2. The calculation was performed for the case.

【0024】 計算結果 I.酸化層(FeO)のない場合…(5)式(T=750℃の場合) Case1 Case2 Case3 P H2 :0.60 : 0.50 : 0.35 PNH3 :0.15 : 0.35 : 0.40 P N2 :0.25 : 0.15 : 0.25 ↓ ↓ ↓ N=1.4ppm N=4.3ppm N=8.4ppm Calculation Results I. If no oxide layer (FeO) ... (5) (case of T = 750 ° C.) formula Case1 Case2 Case3 P H 2: 0.60 : 0.50: 0.35 PNH 3: 0.15: 0.35: 0.40 P N 2 : 0.25: 0.15: 0.25 ↓ ↓ ↓ ↓ N = 1.4ppm N = 4.3ppm N = 8.4ppm

【0025】 II.酸化層(FeO)のある場合…(5)式+(7)式 この場合、Fe,FeOの界面で反応が起こるので前記
の二つの反応系となり、存在するGas系はNH3 ,H
2 ,H2 O三元系を基本的に考えればよい(N2 は分圧
調整のみ)。従って前記(2)式の他に、 PNH3 +P H2 +P H2 O =1 (9) が加わらねばならない(P N2 を考慮するときは多少分
圧を調整すればよい。)。(5)式,(7)式及び
(9)式より以下が求まる。
II. In the case where there is an oxide layer (FeO) ... (5) + (7) In this case, the reaction occurs at the interface between Fe and FeO, so that the two reaction systems described above occur, and the existing Gas system is NH 3 , H 2.
2 , H 2 O ternary system can be basically considered (N 2 is only partial pressure adjustment). Therefore, in addition to the above formula (2), PNH 3 + P H 2 + P H 2 O = 1 (9) must be added (when considering P N 2 , the partial pressure may be adjusted to some extent). The following is obtained from the equations (5), (7) and (9).

【0026】 (T=750℃の場合) Case1 Case2 Case3 P H2 :0.20 :0.10 :0.05 P H2 O :0.44((2)式の制約) :0.22 :0.11 PNH3 :0.36((3)式) :0.68 :0.84 ↓ ↓ ↓ N=18ppm N=93ppm N=333ppm (T=850℃の場合) Case4 Case5 Case6 P H2 :0.20 :0.10 :0.05 P H2 O :0.37 :0.19 :0.09 PNH3 :0.43 :0.71 :0.86 ↓ ↓ ↓ N=49ppm N=224ppm N=790ppm 上記のようにFeOが存在する場合は、N(窒化量)は
桁違いに多い。
[0026] (T = 750 For ℃) Case1 Case2 Case3 P H 2 : 0.20: 0.10: 0.05 P H 2 O: 0.44 ((2) expression of constraints): 0.22: 0.11 PNH 3: 0.36 ((3 ) formula): 0.68: 0.84 ↓ ↓ ↓ N = 18ppm N = 93ppm N = ( the case of T = 850 ℃) 333ppm Case4 Case5 Case6 P H 2: 0.20: 0.10: 0.05 P H 2 O: 0.37: 0.19: 0.09 PNH 3: 0.43: 0.71: 0.86 ↓ ↓ ↓ N = 49ppm N = 224ppm N = 790 ppm When FeO is present as described above, N (nitriding amount) is extremely large.

【0027】尚、N2 分圧を考慮した場合は下記のよう
になる。 (T=750℃の場合) Case1 Case2 Case3 P H2 :0.20 :0.10 :0.05 P H2 O :0.44 :0.22 :0.11 P N2 :0.2 :0.2 :0.2 PNH3 :0.16 :0.48 :0.64 ↓ ↓ ↓ N=8ppm N=66ppm N=254ppm つまり、N2 分圧が大きくなると、むしろ窒化量は減る
ことがわかる。このように理論的にも一次焼鈍板に酸化
層(FeO等)のある場合の方が窒化しやすいことが確
かめられたことになる。また、一次焼鈍窒化時の雰囲気
は窒素と水素の分圧比P N2 /P H2 の小さいほど窒化
量が多くなることが予測される。
When the N 2 partial pressure is taken into consideration, it is as follows. (T = 750 For ℃) Case1 Case2 Case3 P H 2 : 0.20: 0.10: 0.05 P H 2 O: 0.44: 0.22: 0.11 P N 2: 0.2: 0.2: 0.2 PNH 3 : 0.16: 0.48: 0.64 ↓ ↓ ↓ ↓ N = 8ppm N = 66ppm N = 254ppm In other words, if the N 2 partial pressure increases, the nitriding amount may decrease. Recognize. Thus, theoretically, it has been confirmed that nitriding is easier when the primary annealed plate has an oxide layer (FeO or the like). Further, it is expected that the nitriding amount will increase as the partial pressure ratio P N 2 / PH 2 of nitrogen and hydrogen in the atmosphere during the primary annealing and nitriding decreases.

【0028】ここで一次焼鈍板の酸化層の量を計る方法
について述べたい。通称スピード(SPEED:Sel
ective Potentiostatic Etc
hing by Electrolytic Diss
olution)法と称する方法により、金属材料中の
析出相の析出形態を分析することが可能である。この方
法は金属表面を非水溶媒系電解液を用いて数μm溶解し
て、不安定な析出相をマトリックス表面にそのままの状
態で残し、SEM−EDX,EPMA,AES等を使用
して局所にける析出相の分析を行う方法である。また、
エッチング表面をレプリカ法で剥離し、析出相の組成等
を解析する。この方法を一次焼鈍板にも適用し、表面層
の酸化物の組成と定量化を行うことが可能であり、この
方法によって酸化層のFeO,MnO,Al2 3 ,S
iO2 等の定量化も可能である。
Here, a method of measuring the amount of the oxide layer of the primary annealed plate will be described. Commonly known speed (SPEED: Sel
active Potentiostatic Etc
Hing by Electronic Diss
It is possible to analyze the precipitation morphology of the precipitation phase in the metal material by a method called the “solution method”. In this method, the metal surface is dissolved by a few μm using a non-aqueous solvent-based electrolytic solution, leaving an unstable precipitation phase on the matrix surface as it is, and locally using SEM-EDX, EPMA, AES, etc. This is a method for analyzing the precipitation phase. Also,
The etching surface is peeled off by the replica method, and the composition of the precipitation phase and the like are analyzed. It is possible to apply this method to the primary annealed plate and to perform the composition and quantification of the oxide of the surface layer. By this method, FeO, MnO, Al 2 O 3 , S of the oxide layer can be obtained.
Quantification of iO 2 etc. is also possible.

【0029】一方、表2のデータでもわかるように、一
次焼鈍板を直接通常の化学分析法で酸素(O)量を測定
しても酸化物の量は測定可能である。そして前述のよう
にその値と窒化量とは実験でよく対応している。したが
って、本発明では簡便な通常の化学分析法での酸素
(O)量を技術指標とする。そして、実験で示したよう
に一次焼鈍後の鋼板の酸素量が25ppm 以上であれば、
安定して鋼板への窒化量が後の仕上げ焼鈍中のAlNや
Si3 4 等のインヒビター量確保に必要な窒素量12
0ppm 以上を、一次焼鈍板で得ることが可能である。
On the other hand, as can be seen from the data in Table 2, the amount of oxide can be measured by directly measuring the amount of oxygen (O) in the primary annealed plate by a normal chemical analysis method. As described above, the value and the nitriding amount correspond well in the experiment. Therefore, in the present invention, the amount of oxygen (O) in a simple ordinary chemical analysis method is used as a technical index. Then, as shown in the experiment, if the oxygen content of the steel sheet after the primary annealing is 25 ppm or more,
Stable nitriding amount of steel sheet Nitrogen amount required to secure the amount of inhibitors such as AlN and Si 3 N 4 during the subsequent finish annealing 12
It is possible to obtain 0 ppm or more with a primary annealed plate.

【0030】さて一次焼鈍し、窒化した鋼板にMgOを
主体とする通称MgOパウダーというものをスラリー状
に鋼板表面に塗布し、次の仕上げ焼鈍工程で被膜生成及
び二次再結晶を行わしめるが、ここで本発明の方法で窒
化せしめた一次焼鈍板とこれらの条件にある技術的関連
が認められた。表3は一次焼鈍及び窒化後の3%Si鋼
板にMgOパウダーをスラリー状に塗布して、二次再結
晶焼鈍の途中の仕上げ焼鈍引き出し実験を行った結果で
ある。
Now, a so-called MgO powder mainly composed of MgO is applied to the surface of the steel sheet in the form of a slurry on the steel sheet that has undergone primary annealing and is nitrided, and film formation and secondary recrystallization are performed in the next finish annealing step. Here, the technical relationship under these conditions and the primary annealed plate nitrided by the method of the present invention was recognized. Table 3 shows the results of a finish annealing drawing experiment in which the MgO powder was applied in a slurry form to the 3% Si steel sheet after the primary annealing and nitriding and the secondary annealing was performed during the secondary recrystallization annealing.

【表5】 [Table 5]

【0031】ここでパウダーにSb系、B系とあるの
は、ここではそれぞれMgOパウダーに微量のTiO2
(5%)とSb2 (SO4 3 (0.2%)、TiO2
(5%)とNa2 4 7 (0.3%)を添加し、フォ
ルステライト形成等を促進させたものである。二次再結
晶焼鈍は図2の方法で途中まで行い、各温度で引き出
す、いわゆる引き出し実験を行った。
Here, the powders are referred to as Sb-based and B-based, respectively, because here, respectively, a trace amount of TiO 2 is added to MgO powder.
(5%), Sb 2 (SO 4 ) 3 (0.2%), TiO 2
(5%) and Na 2 B 4 O 7 (0.3%) were added to promote the formation of forsterite. The secondary recrystallization annealing was carried out halfway by the method shown in FIG. 2, and a so-called pull-out experiment was carried out at each temperature.

【0032】かくして引き出した鋼板を表面からGDS
分析を行い、フォルステライト、つまりMgピークがど
の引き出し温度から出現するかを調べた結果を表3に示
してある。ここで( )の温度は測定温度の中間に出現
があったと判定されたものである。表3の結果で明瞭な
ことは、Sb系の方がB系よりも低い温度でフォルステ
ライトの形成があることである。
The steel sheet thus drawn out is subjected to GDS from the surface.
Table 3 shows the results obtained by conducting an analysis to determine from which extraction temperature the forsterite, that is, the Mg peak appears. Here, the temperature in () is determined to have appeared in the middle of the measured temperature. What is clear from the results in Table 3 is that forsterite is formed at a lower temperature in the Sb system than in the B system.

【0033】フォルステライトの生成はMgOと鋼板中
の表面濃化したSiが反応し、 2MgO+SiO2 →Mg2 SiO4 の反応を起こしたものと一般的に考えられている。とこ
ろで珪素鋼板の製造工程とこれらの鋼板の性質とはどの
ようにコントロールできるのであるのか、という点につ
いて検討してみた。上述のように一次被膜の形成過程と
珪素鋼板の諸性質との因果関係が明確になれば、当然工
業的にそれを製造に反映させることができることにな
る。
It is generally considered that forsterite is produced by the reaction of MgO and surface-concentrated Si in the steel sheet to cause a reaction of 2MgO + SiO 2 → Mg 2 SiO 4 . By the way, I examined how the manufacturing process of silicon steel sheets and the properties of these steel sheets can be controlled. If the causal relationship between the formation process of the primary coating film and the various properties of the silicon steel sheet is clarified as described above, naturally it can be industrially reflected in the production.

【0034】表3の実験結果にみられるようにSb系の
化合物をMgOに微量添加した場合、MgOの溶融は比
較的低温で行われるので、たとえば二次再結晶焼鈍の昇
温速度を比較的小さくした方が、より早くフォルステラ
イトの生成を促進させ、優れた一次被膜を生成させ易い
ことになる。なおアンチモン(Sb)系の化合物とは、
当実験で用いたSb2 (SO4 3 のみならずSbを含
む他の化合物を含む。一方、同じ低融点化合物でもB系
の化合物をMgOに微量添加した場合は、MgOの溶融
はSb系の化合物よりも比較的高温で行われるので、た
とえば二次再結晶焼鈍の昇温速度を比較的大きくした方
が、より早くフォルステライトの生成を促進させる。な
おボロン(B)系はNa系のみならずNaの代わりにC
a,Mg等を含む化合物や、ほう酸(H3 BO3 )やほ
う酸ソーダも含まれる。
As can be seen from the experimental results in Table 3, when a small amount of Sb-based compound is added to MgO, the melting of MgO is performed at a relatively low temperature, so that the temperature rising rate of the secondary recrystallization annealing is relatively high. The smaller the size, the faster the production of forsterite, and the easier the formation of an excellent primary coating. The antimony (Sb) -based compound is
In addition to Sb 2 (SO 4 ) 3 used in this experiment, other compounds containing Sb are included. On the other hand, even if the B-based compound is added to MgO in a small amount even with the same low-melting-point compound, the MgO is melted at a relatively higher temperature than the Sb-based compound. The larger the target, the faster the production of forsterite. The boron (B) system is not only Na system, but C instead of Na system.
Compounds containing a, Mg, etc., boric acid (H 3 BO 3 ) and sodium borate are also included.

【0035】さらに、アンチモン系よりも高融点系とい
う点でストロンチウム・バリウム系、炭・窒化物系、硫
化物系、塩化物系もボロン系と同等の作用が認められ
る。これらの化合物を総称して非アンチモン系と呼ぶこ
とにする。なお、通常MgOにはTiO2 等の酸化物を
添加させ高温反応を容易にすることが行われるが、本発
明の上記の添加物の効果は、その酸化物の添加量に関係
なく発揮されるのでMgOに酸化物が添加されても、こ
れをプレインと称してベース材の一部とみなしている。
このように珪素鋼板の特性に重要な支配要因となる一次
被膜は、本発明によりその組成分布の解明及びそれと相
関を有する製造方法との組み合わせにより、ある程度自
由にコントロールすることが可能となった。
Further, strontium / barium system, carbon / nitride system, sulfide system, and chloride system are recognized to have the same action as boron system in that they have higher melting point than antimony system. These compounds will be collectively called non-antimony compounds. It should be noted that, usually, an oxide such as TiO 2 is added to MgO to facilitate the high temperature reaction, but the effects of the above-mentioned additives of the present invention are exhibited regardless of the amount of the oxide added. Therefore, even if an oxide is added to MgO, this is referred to as a plane and is regarded as a part of the base material.
As described above, according to the present invention, the primary coating, which is an important controlling factor for the properties of the silicon steel sheet, can be controlled to some extent freely by elucidating its composition distribution and combining it with a manufacturing method having a correlation therewith.

【0036】表4にPの量のみを変えた鋼の一次再結晶
後のX線による結晶方位の{111}の面指数強度を同
表に示す。これを一次再結晶後窒化し、二次再結晶させ
た鋼板の磁束密度を同表に示す。明らかに、Pの量とと
もにこれらの値は変化していることが解る。一方、Pと
共存してSnが添加されると0.06%P−3%Si鋼
の例の図3のように鉄損までも低減され好ましい。これ
はSnによる製品の細粒化結果と考えられる。
Table 4 shows the {111} plane index strength of the crystal orientation by X-ray after primary recrystallization of the steel in which only the amount of P was changed. The magnetic flux densities of the steel sheets obtained by primary recrystallization, nitriding and secondary recrystallization are shown in the same table. Obviously, these values change with the amount of P. On the other hand, when Sn is added in coexistence with P, even iron loss is reduced as shown in FIG. 3 of the example of 0.06% P-3% Si steel, which is preferable. This is considered to be the result of fine graining of the product by Sn.

【0037】[0037]

【表6】 [Table 6]

【0038】さて、ここで珪素鋼板の製造方法に触れる
必要がある。前述のように本発明が可能な珪素鋼板は必
要に応じてAlを含有し、AlNあるいはSi3 4
主要インヒビターとする鋼に限定される。もちろんS
i,Al,P,Sn以外に、Mn,S,Se,Sb,C
u,B,Nb,Ti,V,Ni,Cr等の他の添加元素
を付加的に添加させ、磁気特性の向上をはかることは本
発明の基本を変えるものではない。ところでAlNある
いはSi3 4 をインヒビターとする鋼は公知であり、
そのいずれかの場合においても本発明の技術を適用する
ことが可能である。しかしながら、本発明の特徴をより
一層発揮させるにはとりわけ以下に示す製造法が最適で
ある。
Now, it is necessary to touch on the method of manufacturing a silicon steel sheet. As described above, the silicon steel sheet which can be used in the present invention is limited to steel containing Al as necessary and AlN or Si 3 N 4 as a main inhibitor. Of course S
In addition to i, Al, P and Sn, Mn, S, Se, Sb and C
The addition of other additive elements such as u, B, Nb, Ti, V, Ni and Cr to improve the magnetic characteristics does not change the basis of the present invention. By the way, steels using AlN or Si 3 N 4 as an inhibitor are known,
The technique of the present invention can be applied to either case. However, the following production method is most suitable for further exerting the characteristics of the present invention.

【0039】すなわちSiを1〜7%含む鋼で必要に応
じAlを鋼溶製時に0.1%以下含み、Nを珪素鋼板製
造工程における冷延後の一次焼鈍中の脱炭焼鈍中または
後に鋼板に直接窒化反応を介して、鋼にNを強制的に添
加せしめる方法により、二次再結晶焼鈍前にNを120
ppm 〜400ppm 鋼に含むことを特徴とする。Siは本
発明においては上記のようにフォルステライト形成のた
めに最低1%は必要である。一方、7%を超えると加工
性が極端に劣化し工業生産に適さない。AlはAlNイ
ンヒビター形成に有効である。しかし0.1%を超える
とAl2 3 生成量が多くなり健全な鋼の清浄度を損な
い、ひいては磁気特性に悪影響をもたらす。
That is, in a steel containing 1 to 7% of Si, if necessary, Al is contained in an amount of 0.1% or less when the steel is melted, and N is included in the decarburization annealing during the primary annealing after cold rolling in the silicon steel sheet manufacturing process. By the method of forcibly adding N to the steel sheet through the direct nitriding reaction, N of 120 is added before the secondary recrystallization annealing.
ppm to 400 ppm It is characterized in that it is contained in steel. In the present invention, at least 1% of Si is necessary for forming forsterite as described above. On the other hand, if it exceeds 7%, the workability is extremely deteriorated and it is not suitable for industrial production. Al is effective in forming an AlN inhibitor. However, if it exceeds 0.1%, the amount of Al 2 O 3 produced increases, impairing the cleanliness of sound steel, and adversely affecting the magnetic properties.

【0040】NはAlNやSi3 4 インヒビターを形
成するのに不可欠であり、本発明においては一次焼鈍後
つまり、仕上げ焼鈍前で最低120ppm は必要である。
一方400ppm を超えるとAlやSiを食いすぎて好ま
しくはない。この他の元素は本発明では従来の鋼に較べ
て特に特徴的ではないが、以下に制約することが好まし
い。Cは鋼溶製中に十分低くするかまたは一次焼鈍の脱
炭焼鈍時に十分低くする必要があり、二次再結晶焼鈍開
始時には0.03%以下が好ましい。Mnは0.5%以
下ならばSと反応してMnSインヒビターを形成する。
0.15%以下だとさらに磁束密度の向上に好ましい。
Pは本発明では重要である、鋼溶製時に0.045%以
下では磁束密度の高い値が得られず、一方、0.20%
超では脆化が進み、冷間圧延性が著しく劣化する。
N is indispensable for forming AlN and Si 3 N 4 inhibitors, and in the present invention, a minimum of 120 ppm is required after primary annealing, that is, before finish annealing.
On the other hand, when it exceeds 400 ppm, Al and Si are excessively eaten, which is not preferable. In the present invention, the other elements are not particularly characteristic as compared with the conventional steel, but the following restrictions are preferable. C needs to be sufficiently low during steel melting or sufficiently low during decarburization annealing of primary annealing, and is preferably 0.03% or less at the start of secondary recrystallization annealing. If Mn is 0.5% or less, it reacts with S to form a MnS inhibitor.
If it is 0.15% or less, it is preferable for further improving the magnetic flux density.
P is important in the present invention, a high value of magnetic flux density cannot be obtained at 0.045% or less during steel melting, while 0.20%
If it exceeds the range, embrittlement proceeds, and cold rolling property deteriorates significantly.

【0041】Oは鋼溶製後に0.05%以下であれはA
2 3 を多量に作りすぎず清浄度的に好ましい。そし
てとりわけ重要なのは本発明では一次焼鈍後か焼鈍中に
窒化を行うが、この窒化も含む一次焼鈍後の鋼板のO量
を25〜900ppm にしておかないといけない。25pp
m 未満では二次再結晶時に必要なAlN,Si3 4
成のためのN量が十分窒化されず、一方900ppm 超で
はN量が多くなりすぎて、十分なインヒビターとしての
役割がむしろできにくくなる。Snは本発明ではPと共
存する場合に鉄損低減に極めて有効である。0.02%
未満ではその効果は認められないが、一方0.20%超
では窒化が十分行えず、インヒビターが弱くなり、一方
一次被膜も十分できなく特性は劣化する。
O is A if it is 0.05% or less after the steel is melted.
It is preferable in terms of cleanliness without making too much l 2 O 3 . In the present invention, it is particularly important to perform nitriding after or during primary annealing, but the O content of the steel sheet after primary annealing including this nitriding must be 25 to 900 ppm. 25pp
If it is less than m, the amount of N required for secondary recrystallization for forming AlN and Si 3 N 4 is not sufficiently nitrided, while if it exceeds 900 ppm, the amount of N becomes too large, and it is rather difficult to perform a sufficient inhibitor role. Become. In the present invention, Sn is extremely effective in reducing iron loss when it coexists with P. 0.02%
If it is less than 0.20%, the effect is not recognized. On the other hand, if it exceeds 0.20%, nitriding cannot be performed sufficiently, the inhibitor becomes weak, and on the other hand, the primary coating cannot be sufficiently performed and the characteristics deteriorate.

【0042】次に化学成分以外の本発明の製造方法につ
いて述べる。鋼を転炉または電気炉等で出鋼し、必要に
応じて精錬工程を加えて成分調整を行った溶鋼を連続鋳
造法、造塊分塊圧延法あるいは熱延工程省略のための薄
スラブ連続鋳造法等により、厚さ30〜400mm(薄ス
ラブ連続鋳造法では50mm以下)のスラブとする。ここ
で30mmは生産性の下限であり、400mmは中心偏析で
Al2 3 等の分布が異常になることを防ぐための上限
である。また50mmは冷速が小さくなって粗大粒が出て
くることを抑制するための上限である。
Next, the production method of the present invention other than the chemical components will be described. Continuous casting method, ingot-agglomeration and rolling method, or thin slab continuous method for omitting hot rolling step, in which steel is tapped in a converter or electric furnace, and a refining step is added as necessary to adjust the composition. A slab having a thickness of 30 to 400 mm (50 mm or less in the thin slab continuous casting method) is formed by a casting method or the like. Here, 30 mm is the lower limit of productivity, and 400 mm is the upper limit for preventing abnormal distribution of Al 2 O 3 etc. due to center segregation. Further, 50 mm is the upper limit for suppressing the generation of coarse particles due to the low cooling rate.

【0043】該スラブをガス加熱、電気利用加熱等によ
り1000〜1400℃に再加熱を行い、引き続き熱間
圧延を行って厚さ10mm以下のホットコイルとする。こ
こで1000℃はAlN溶解の下限であり、1400℃
は表面肌あれと材質劣化の上限である。また10mmは適
正な析出物を生成する冷速を得る上限である。なお、薄
スラブ連続鋳造法では直接コイル状にすることも可能で
あり、そのためには10mm以下が好ましい。このように
作ったホットコイルを再び800〜1250℃で焼鈍
し、磁性向上をはかることもしばしば行われる。ここで
800℃はAlN再溶解の下限であり、1250℃はA
lN粗粒化防止の上限である。
The slab is reheated to 1000 to 1400 ° C. by gas heating, electric heating, etc., and then hot rolled to obtain a hot coil having a thickness of 10 mm or less. Here, 1000 ° C. is the lower limit of AlN melting, and 1400 ° C.
Is the upper limit of surface roughness and material deterioration. Further, 10 mm is an upper limit for obtaining a cold speed at which an appropriate precipitate is formed. In the thin slab continuous casting method, it is possible to directly form a coil, and for that purpose, it is preferably 10 mm or less. The hot coil thus produced is often annealed again at 800 to 1250 ° C. to improve the magnetism. Here, 800 ° C is the lower limit of remelting of AlN, and 1250 ° C is A
1N is the upper limit for preventing coarsening.

【0044】かかる処理工程の後、ホットコイルを直接
またはバッチ的に酸洗後冷間圧延を行う。冷間圧延は圧
下率60〜95%で行うが、60%は本発明で再結晶可
能な限界であり、好ましくは70%以上が一次焼鈍で
{111}〔112〕方位粒を多くして、二次再結晶焼
鈍時のGOSS方位粒の生成を促進させる下限であり、
一方95%超では二次再結晶焼鈍で首振りGOSS粒と
称するGOSS方位粒が板面内回転した磁気特性に好ま
しくない粒が生成される。
After this treatment step, the hot coil is pickled directly or batchwise and then cold rolled. Cold rolling is performed at a rolling reduction of 60 to 95%, 60% being the limit of recrystallization in the present invention, preferably 70% or more by primary annealing and increasing {111} [112] oriented grains, It is a lower limit for promoting the generation of GOSS oriented grains during secondary recrystallization annealing,
On the other hand, if the content exceeds 95%, secondary recrystallization annealing causes GOSS-oriented grains, which are called swinging GOSS grains, to rotate in the plane of the plate to produce grains unfavorable to the magnetic properties.

【0045】以上はいわゆる一回冷延法で製造する場合
だが、なお、二回冷延法と称して冷延−焼鈍−冷延を行
う場合は、一回目の圧下率は10〜80%、二回目の圧
下率は50〜95%となる。ここで10%は再結晶に必
要な最低圧下率、80%と95%はそれぞれ二次再結晶
時に適正なGOSS方位粒を生成させるための上限圧下
率、また50%は二回冷延法においては一次焼鈍時の
{111}〔112〕方位粒を適正に残す下限圧下率で
ある。なお、通称パス間エージングと称し、冷間圧延の
途中で鋼板を適当な方法で100〜400℃の範囲で加
熱することも磁気特性の向上に有効である。100℃未
満ではエージングの効果がなく、一方、400℃超では
転位が回復してしまう。
The above is the case of manufacturing by the so-called single cold rolling method. However, in the case of performing cold rolling-annealing-cold rolling called the double cold rolling method, the first reduction is 10 to 80%, The second rolling reduction is 50 to 95%. Here, 10% is the minimum reduction ratio necessary for recrystallization, 80% and 95% are the upper limit reduction ratios for producing proper GOSS-oriented grains during secondary recrystallization, respectively, and 50% in the double cold rolling method. Is the lower limit of the reduction ratio that appropriately leaves the {111} [112] oriented grains during the primary annealing. It is also commonly referred to as interpass aging, and heating the steel sheet in the range of 100 to 400 ° C. by an appropriate method during cold rolling is also effective for improving the magnetic properties. If it is less than 100 ° C, the effect of aging is not obtained, while if it exceeds 400 ° C, dislocations are recovered.

【0046】しかる後、一回冷延法でも二回冷延法でも
一次焼鈍を行うわけであるが、この焼鈍で脱炭を行うこ
とは有効である。前述のようにCは二次再結晶粒の成長
に好ましくないばかりか、不純物として残ると鉄損の劣
化を招く。なお、鋼の溶製時にCを下げておくと、脱炭
工程が短縮化されるばかりか{111}〔112〕方位
粒も増すので好ましい。なお、この脱炭焼鈍工程で適正
な露点を設定することで、後の一次被膜生成に必要な酸
化層の確保が行われる。一次焼鈍温度は700〜950
℃が好ましい。ここで700℃は再結晶可能な下限温度
であり、950℃は粗大粒の発生を抑制する上限温度で
ある。
Thereafter, the primary annealing is carried out by either the single cold rolling method or the double cold rolling method, and it is effective to carry out decarburization by this annealing. As described above, C is not preferable for the growth of secondary recrystallized grains, and if it remains as an impurity, it causes deterioration of iron loss. It is preferable to lower C during the melting of steel because not only the decarburization step is shortened but also {111} [112] oriented grains are increased. By setting an appropriate dew point in this decarburization annealing step, an oxide layer necessary for subsequent primary film formation is secured. Primary annealing temperature is 700-950
C is preferred. Here, 700 ° C. is the lower limit temperature at which recrystallization is possible, and 950 ° C. is the upper limit temperature for suppressing the generation of coarse particles.

【0047】さらに、AlNやSi3 4 インヒビター
のNをこの一次焼鈍時に窒化法等で強制添加する本発明
においては、上記の一次焼鈍中または直後に引き続きア
ンモニア(NH3 )等で窒化法により窒化することが行
われる。この場合の窒化法の温度は600〜950℃が
好ましい。ここで600℃は窒化反応を起こす下限であ
り、一方950℃は粗大粒発生を抑える上限である。本
発明においては窒化は一次再結晶焼鈍後に行うのが好ま
しいが、工業的には同じ炉内の後面に仕切りを設けて雰
囲気を必要に応じて多少変えて、NH3 ガスを流すか、
近接した設備で行うため一次再結晶と平行して窒化され
ることもしばしばある。この際前述したようにN2 分圧
が低い方が窒化量は大きく、好ましくは窒素と水素の分
圧比P N2 /P H2 は0.5%以下が好ましい。
Further, in the present invention in which AlN or N of Si 3 N 4 inhibitor is forcibly added by the nitriding method during the primary annealing, the nitriding method is performed with ammonia (NH 3 ) or the like during or immediately after the above primary annealing. Nitriding is performed. In this case, the temperature of the nitriding method is preferably 600 to 950 ° C. Here, 600 ° C. is the lower limit for causing the nitriding reaction, while 950 ° C. is the upper limit for suppressing the generation of coarse particles. In the present invention, the nitriding is preferably performed after the primary recrystallization annealing, but industrially, a partition is provided on the rear surface in the same furnace and the atmosphere is slightly changed as necessary, or NH 3 gas is flowed,
Since they are performed in close proximity to each other, they are often nitrided in parallel with primary recrystallization. At this time, as described above, the lower the N 2 partial pressure is, the larger the nitriding amount is, and the partial pressure ratio P N 2 / P H 2 of nitrogen and hydrogen is preferably 0.5% or less.

【0048】一次焼鈍あるいは上記窒化法を行い、その
後、酸化マグネシウム(MgOを主成分とする。以下M
gOと呼ぶ)パウダーを水または水を主成分とする水溶
液に溶かしスラリー状にして鋼板に塗布する。この際、
後の二次再結晶焼鈍時にMgOパウダーの溶融を容易に
させ、フォルステライト生成反応を促進させる目的で、
適当な化合物を微量添加することも行われる。TiO2
を添加する場合は1〜15%が好ましいが、ここで1%
はフォルステライト反応促進効果を発揮する下限であ
り、15%超ではMgOが少なくなってかえってフォル
ステライト反応が進まない。
Primary annealing or the above nitriding method is performed, and then magnesium oxide (MgO is the main component.
The powder is called gO) is dissolved in water or an aqueous solution containing water as a main component to form a slurry, which is applied to a steel sheet. On this occasion,
For the purpose of facilitating the melting of MgO powder during the subsequent secondary recrystallization annealing and promoting the forsterite formation reaction,
It is also possible to add a trace amount of an appropriate compound. TiO 2
When adding, 1 to 15% is preferable, but here 1%
Is the lower limit for exerting the effect of promoting the forsterite reaction, and if it exceeds 15%, the amount of MgO decreases and the forsterite reaction does not proceed.

【0049】Sb2 (SO4 3 等のアンチモン系の化
合物はMgOを比較的低温で溶融させるのに効果があ
り、添加を行う場合は0.05〜5%が好ましい。ここ
で、0.05%は上記低温溶融を起こす下限であり、一
方、5%を超える場合は多すぎてMgOのフォルステラ
イトの本来の反応を不活性化する。Na2 4 7 等の
ボロン系の化合物及びそれと同様の作用を持つストロン
チウム・バリウム系、炭・窒化物系、硫化物系、塩化物
系の化合物はアンチモン系よりは比較的高温でMgOを
溶融させるのに効果があり、添加する場合は0.05〜
5%が好ましい。ここで、0.05%は上記の効果を発
揮する下限であり、一方5%超ではやはりMgOのフォ
ルステライトの本来の反応を不活性化するので好ましく
ない。
Antimony compounds such as Sb 2 (SO 4 ) 3 are effective in melting MgO at a relatively low temperature, and when added, 0.05 to 5% is preferable. Here, 0.05% is the lower limit for causing the above-mentioned low-temperature melting, while if it exceeds 5%, it is too much to inactivate the original reaction of MgO forsterite. Boron-based compounds such as Na 2 B 4 O 7 and strontium / barium-based, carbon / nitride-based, sulfide- and chloride-based compounds that have similar effects to MgO at a relatively higher temperature than antimony-based compounds. It is effective in melting, and if added, 0.05 to
5% is preferable. Here, 0.05% is the lower limit for exhibiting the above-mentioned effect, while if it exceeds 5%, the original reaction of MgO forsterite is inactivated, which is not preferable.

【0050】なおこれらの化合物は互いに複合して添加
することも可能である。ただしアンチモン系の低温溶融
型とボロン系他の比較的高温溶融型の化合物を混ぜて使
用するときは、その効果は高温溶融型に近いことになる
が、本発明の主旨と矛盾するものではなく、その場合は
本発明の高温溶融型の昇温速度をとることが好ましい。
なお、ここで添加する化合物の%はMgOの重量を10
0%としたときの重量比を%で示してある。二次再結晶
焼鈍は最高到達温度を1100〜1300℃で行うのが
好ましい。1100℃は二次再結晶が行われる下限の温
度であり、一方1300℃超は結晶粒が粗大化し過ぎて
鉄損の劣化を招く。なお、前述のように、この二次再結
晶焼鈍中の比較的前段階で雰囲気等よりNを追加添加す
る窒化法が行われることもある。
It should be noted that these compounds can be added in combination with each other. However, when an antimony low-temperature melting type compound and a boron-based or other relatively high-temperature melting type compound are mixed and used, the effect is close to that of the high-temperature melting type compound, but it does not contradict the gist of the present invention. In that case, it is preferable to adopt the high temperature melting type temperature rising rate of the present invention.
The percentage of the compound added here is 10% by weight of MgO.
The weight ratio when 0% is shown in%. The secondary recrystallization annealing is preferably performed at the highest temperature reached of 1100 to 1300 ° C. 1100 ° C. is the lower limit temperature at which the secondary recrystallization is performed, while if it exceeds 1300 ° C., the crystal grains become too coarse, and the iron loss is deteriorated. Note that, as described above, the nitriding method in which N is additionally added from the atmosphere or the like may be performed at a relatively previous stage during the secondary recrystallization annealing.

【0051】さて、この二次再結晶焼鈍の昇温速度はと
りわけ本発明では重要である。すなわち、MgO中に添
加する化合物の種類によって昇温速度を変化させること
が必要である。アンチモン系の化合物をMgOに添加す
る場合は、800℃〜最高到達温度の平均昇温速度は毎
時0.1〜80℃の比較的小さいことが必要である。こ
こで、0.1℃/時は工業的昇温速度の下限であり、一
方前述のようにMgOがアンチモン系の化合物の添加で
は低温で溶融するため、より早く確実にフォルステライ
トの生成を行っておく必要があり、それには昇温速度は
80℃/時以下にしておく必要がある。
Now, the temperature rising rate of the secondary recrystallization annealing is particularly important in the present invention. That is, it is necessary to change the temperature rising rate depending on the type of compound added to MgO. When an antimony-based compound is added to MgO, it is necessary that the average heating rate from 800 ° C. to the highest reached temperature is 0.1 to 80 ° C. per hour, which is relatively small. Here, 0.1 ° C./hour is the lower limit of the industrial heating rate, while MgO melts at a low temperature when an antimony-based compound is added as described above, so that forsterite is formed more quickly and reliably. It is necessary to keep the temperature rise rate to 80 ° C./hour or less.

【0052】一方、ボロン系、ストロンチウム・バリウ
ム系、炭・窒化物系、硫化物系及び塩化物系では上記平
均昇温速度は毎時5〜400℃が好ましい。すなわち、
高温溶融型の化合物の添加ではMgOの溶融を比較的高
温で起こすため早く高温に到達するため5℃/時以上の
昇温速度が必要であり、一方、400℃/時超では二次
再結晶そのものがインヒビターとの関係で十分行われな
い。以上が本発明の珪素鋼板の製造方法での重要な部分
であるが、工業的にはさらに絶縁特性や磁気特性を向上
させる目的で、鋼板に有機質や無機質による二次被膜
(コーティング法やゾルゲル法)の生成や、さらに機械
的またはレーザー付加等の非接触型の方法による磁区制
御法、さらにはその後の発粉防止のための三次被膜の生
成等のいくつかの工程を伴なうことが多い。
On the other hand, in the case of boron type, strontium / barium type, carbon / nitride type, sulfide type and chloride type, the average heating rate is preferably 5 to 400 ° C. per hour. That is,
When a high temperature melting type compound is added, melting of MgO takes place at a relatively high temperature, and a high temperature rising rate of 5 ° C./hour or more is required in order to reach a high temperature quickly. That itself is not done well in relation to the inhibitor. The above is an important part in the method for producing a silicon steel sheet of the present invention, but industrially, for the purpose of further improving the insulation characteristics and magnetic characteristics, a secondary coating film (organization method or sol-gel method) made of an organic material or an inorganic material is applied to the steel sheet. ), A magnetic domain control method by a non-contact type method such as mechanical or laser addition, and then several steps such as subsequent formation of a tertiary film for preventing dusting. .

【0053】[0053]

【実施例】表5に示すような化学成分の鋼を転炉で溶製
し、表6に示すような条件で製造した。熱延板焼鈍を一
部行ったがこの条件は1120℃×30秒間である。ま
た冷間圧延時のパス間エージングを一部行ったがその条
件は250℃である。なお、ここで本発明にとりわけ重
要な一次再結晶焼鈍に引き続く窒化は、同一炉内に仕切
りを設けた炉中内部分で同一ガス組成で雰囲気をドライ
にし、NH3 ガスを一定量流して行ったものである。か
かる一次焼鈍後の鋼板酸素量及び窒化量(窒素量)を同
表に示す。さらにこの鋼板にパウダーを塗布したが、パ
ウダーは水に溶解させスラリー状にして塗布後、350
℃で乾燥させた。
EXAMPLE Steels having chemical compositions shown in Table 5 were melted in a converter and manufactured under the conditions shown in Table 6. The hot-rolled sheet was partially annealed under the condition of 1120 ° C. for 30 seconds. A part of aging between passes during cold rolling was carried out under the condition of 250 ° C. The nitriding subsequent to the primary recrystallization annealing, which is particularly important in the present invention, is performed by making the atmosphere dry with the same gas composition in the inner part of the furnace where the partition is provided in the same furnace and flowing a certain amount of NH 3 gas. It is a thing. The amount of oxygen and the amount of nitriding (nitrogen amount) of the steel sheet after such primary annealing are shown in the same table. Furthermore, powder was applied to this steel sheet. The powder was dissolved in water to form a slurry, and then 350
It was dried at ° C.

【0054】パウダーの種類で、プレインとはMgO+
TiO2 (5%)の組成であり、Sb系とはMgO+T
iO2 (5%)+Sb2 (SO4 3 (0.2%)のこ
とであり、また、B系とはMgO+TiO2 (5%)+
Na2 4 7 (0.3%)のことを示す。ここで、%
はMgOの重量を100%としたときの重量比率であ
る。しかる後に、800℃〜最高到達温度の平均昇温速
度を種々変えて二次再結晶焼鈍を行った。ここでは最高
到達速度は1200℃である。さらに水洗後、リン酸系
の絶縁被膜(二次被膜)を加熱塗布した後、板取りし、
歪取り焼鈍850℃×4時間(N2 90−H2 10,D
ry)を行い、被膜及びマクロ外観検査、磁気測定、密
着性試験等を行った。表6にその結果を示す。
The type of powder, plain is MgO +
TiO 2 (5%) composition, Sb-based is MgO + T
iO 2 (5%) + Sb 2 (SO 4 ) 3 (0.2%), and B system is MgO + TiO 2 (5%) +
It shows that it is Na 2 B 4 O 7 (0.3%). here,%
Is the weight ratio when the weight of MgO is 100%. After that, secondary recrystallization annealing was performed while changing the average heating rate from 800 ° C. to the highest reached temperature variously. The maximum reaching speed is 1200 ° C. here. After washing with water, a phosphoric acid-based insulating coating (secondary coating) is applied by heating, and then the plate is removed
Strain relief annealing 850 ° C. × 4 hours (N 2 90-H 2 10, D
ry), and a film and macro appearance inspection, magnetic measurement, adhesion test, etc. were performed. Table 6 shows the results.

【0055】[0055]

【表7】 [Table 7]

【0056】[0056]

【表8】 [Table 8]

【0057】[0057]

【表9】 [Table 9]

【0058】[0058]

【表10】 [Table 10]

【0059】[0059]

【表11】 [Table 11]

【0060】ここで、被膜外観検査は、○:スケール、
シモフリ欠陥なし、△:若干のシモフリ欠陥あり、×:
スケール、シモフリが多く被膜が十分できていないこと
を示す。ここでスケールとは被膜がある程度広くはがれ
ており、シモフリとは点状のはがれ欠陥である。また、
マクロ外観検査は、○:十分な二次再結晶ができてい
る、△:部分的に細粒が認められる、×:全面に細粒が
認められることを示す。磁気測定は60×300mmの単
板のSST試験法で測定し、B8 (800A/mの磁束密
度、単位はガウス)及びW17/50 (50Hzで1.7テス
ラのときの鉄損、単位はワット/kg)を測定した。密着
性試験は直径20mmの円柱に鋼板を巻き付けるような曲
げ試験において、その判定を、○:被膜のクラックな
し、△:被膜の微細クラックあり、×:ほぼ全幅にクラ
ックで評価した。さて、表6に示すように、一次焼鈍条
件のとりわけ酸素量が本発明の範囲に入っているものは
窒化量(窒素量)が十分本発明の範囲に入っているも
の、またとりわけMgOパウダーの種類と仕上げ焼鈍の
平均昇温速度が本発明のなかに入っているものは磁気特
性値等が良好である。本発明の成分からなるものは極め
て磁束密度が高く、また鉄損が低い。
Here, the film appearance inspection is carried out by: ○: scale,
No shimou defect, △: Some shimmi defect, ×:
It shows that there are many scales and shimofuri and the film is not sufficiently formed. Here, the scale means that the coating is widely peeled off to some extent, and the shimofuri is a point-like peeling defect. Also,
The macroscopic visual inspection shows that ◯: sufficient secondary recrystallization is formed, Δ: fine grains are partially observed, and x: fine grains are observed on the entire surface. The magnetic measurement is made by the SST test method of a single plate of 60 × 300 mm, and is B 8 (magnetic flux density of 800 A / m, unit is Gauss) and W 17/50 (iron loss at 1.7 Tesla at 50 Hz, unit. Watt / kg). The adhesion test was a bending test in which a steel plate was wound around a cylinder having a diameter of 20 mm, and the judgment was evaluated by ◯: no crack in the coating, Δ: fine cracks in the coating, and x: cracks in almost the entire width. Now, as shown in Table 6, the primary annealing conditions, particularly those in which the oxygen amount is within the range of the present invention, are those in which the nitriding amount (nitrogen amount) is sufficiently within the range of the present invention. The magnetic characteristic values and the like are good when the type and the average temperature rising rate of finish annealing are included in the present invention. The composition of the present invention has extremely high magnetic flux density and low iron loss.

【0061】[0061]

【発明の効果】本発明により磁気特性及び被膜特性の良
好な方向性電磁鋼板を得ることができる。
According to the present invention, a grain-oriented electrical steel sheet having good magnetic properties and coating properties can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次焼鈍板の酸素量と窒化板のN量の関係を示
す図表である。
FIG. 1 is a chart showing the relationship between the oxygen content of a primary annealed sheet and the N content of a nitrided sheet.

【図2】仕上げ焼鈍サイクルを示す図表である。FIG. 2 is a chart showing a finish annealing cycle.

【図3】0.06%P−3%Si鋼製品の諸特性に及ぼ
す溶鋼時のSn%の影響を示す図表である。
FIG. 3 is a table showing the effect of Sn% during molten steel on various properties of 0.06% P-3% Si steel products.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/02 (72)発明者 本間 穂高 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location C22C 38/02 (72) Inventor Hodaka Hodaka 1-1 No. 1 Tobita-cho, Tobata-ku Kitakyushu Nippon Steel Hachiman Co., Ltd. Inside the steelworks

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Si:1〜7%、P:0.045%超〜
0.20%を含む鋼を溶製し、熱間圧延、冷間圧延、一
次再結晶焼鈍、焼鈍分離材塗布及び二次再結晶焼鈍を基
本工程とする方向性電磁鋼板の製造において、二次再結
晶焼鈍を行わせしめるのに必要なインヒビターの機能を
付与せしめる目的で一次再結晶焼鈍後にNを添加せしめ
る際、一次再結晶焼鈍板の化学分析法での酸素(O)量
を25〜900ppm とし、一次再結晶焼鈍に続く窒化後
の窒素(N)量を120〜400ppm とすることを特徴
とする磁性及び被膜特性の優れた高磁束密度珪素鋼板の
製造法。
1. Si: 1 to 7%, P: more than 0.045%
In the production of a grain-oriented electrical steel sheet having the basic steps of smelting steel containing 0.20%, hot rolling, cold rolling, primary recrystallization annealing, annealing separation material application and secondary recrystallization annealing, When N is added after the primary recrystallization annealing for the purpose of imparting an inhibitor function necessary for performing the recrystallization annealing, the oxygen (O) amount in the chemical analysis method of the primary recrystallization annealed plate is set to 25 to 900 ppm. A method for producing a high magnetic flux density silicon steel sheet having excellent magnetic properties and coating properties, wherein the amount of nitrogen (N) after nitriding following primary recrystallization annealing is 120 to 400 ppm.
【請求項2】 Si:1〜7%、P:0.045%超〜
0.20%、Sn:0.02〜0.20%を含む鋼を溶
製することを特徴とする請求項1記載の磁性及び被膜特
性の優れた高磁束密度珪素鋼板の製造法。
2. Si: 1 to 7%, P: more than 0.045%
The method for producing a high magnetic flux density silicon steel sheet having excellent magnetic and coating properties according to claim 1, wherein a steel containing 0.20% and Sn: 0.02 to 0.20% is melted.
【請求項3】 二次再結晶焼鈍前にフォルステライトを
主体とする一次被膜形成のために塗布するマグネシアの
中にアンチモン系の化合物を0.05〜5.0%添加
し、かつ二次再結晶焼鈍での800℃〜最高到達温度の
平均昇温速度を毎時0.1〜80℃とすることを特徴と
する請求項1または2記載の磁性及び被膜特性の優れた
高磁束密度珪素鋼板の製造法。
3. An antimony-based compound is added in an amount of 0.05 to 5.0% to magnesia which is applied to form a primary film mainly composed of forsterite before secondary recrystallization annealing, and the secondary recrystallization is performed. An average heating rate from 800 ° C. to the highest temperature reached in crystal annealing is set to 0.1 to 80 ° C. per hour, and the high magnetic flux density silicon steel sheet having excellent magnetic properties and coating properties according to claim 1 or 2. Manufacturing method.
【請求項4】 一次被膜形成のために塗布するマグネシ
アの中にボロン系、ストロンチウム・バリウム系、炭・
窒化物系、硫化物系、塩化物系化合物の1種または2種
以上を合計0.05〜5.0%添加し、かつ二次再結晶
焼鈍での800℃〜最高到達温度の平均昇温速度を毎時
5〜400℃とすることを特徴とする請求項1または2
または3記載の磁性及び被膜特性の優れた高磁束密度珪
素鋼板の製造法。
4. A magnesia applied for forming a primary film contains boron, strontium / barium, charcoal.
Addition of one or more of nitride-based, sulfide-based, and chloride-based compounds in a total amount of 0.05 to 5.0%, and an average temperature rise from 800 ° C to the maximum reached temperature in the secondary recrystallization annealing. The speed is set to 5 to 400 ° C./hour, and the speed is set to 5 ° C./hour.
Alternatively, the method for producing a high magnetic flux density silicon steel sheet having excellent magnetic properties and coating properties as described in 3 above.
【請求項5】 一次焼鈍雰囲気の窒素と水素の分圧の比
をP N2 /P H2 ≦0.5とすることを特徴とする磁性
及び被膜特性の優れた高磁束密度珪素鋼板の製造法。
5. Production of a high magnetic flux density silicon steel sheet having excellent magnetic properties and coating characteristics, characterized in that the ratio of the partial pressures of nitrogen and hydrogen in the primary annealing atmosphere is P N 2 / P H 2 ≤0.5. Law.
JP5002892A 1993-01-11 1993-01-11 Production of high magnetic flux density silicon steel sheet excellent in magnetic property and film property Withdrawn JPH06212261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5002892A JPH06212261A (en) 1993-01-11 1993-01-11 Production of high magnetic flux density silicon steel sheet excellent in magnetic property and film property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5002892A JPH06212261A (en) 1993-01-11 1993-01-11 Production of high magnetic flux density silicon steel sheet excellent in magnetic property and film property

Publications (1)

Publication Number Publication Date
JPH06212261A true JPH06212261A (en) 1994-08-02

Family

ID=11542015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5002892A Withdrawn JPH06212261A (en) 1993-01-11 1993-01-11 Production of high magnetic flux density silicon steel sheet excellent in magnetic property and film property

Country Status (1)

Country Link
JP (1) JPH06212261A (en)

Similar Documents

Publication Publication Date Title
JP5782527B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
KR20160063244A (en) Annealing separating agent composition for base coating free electrical steel sheet, and method for manufacturing base coating free electrical steel sheet using the same
JP2019501282A (en) Oriented electrical steel sheet and manufacturing method thereof
JP2020507673A (en) Grain-oriented electrical steel sheet and its manufacturing method
KR940008932B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JPH06200325A (en) Production of silicon steel sheet having high magnetism
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP2003193134A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JPH06158167A (en) High magnetic flux density grain-oriented silicon steel sheet and its production
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
JPH07258802A (en) Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production
JPH06100937A (en) Production of silicon steel sheet having no glass film and extremely excellent in core loss
JPH06172939A (en) High magnetic flux density/low core loss grain-oriented silicon steel sheet and its production
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JPH06212261A (en) Production of high magnetic flux density silicon steel sheet excellent in magnetic property and film property
JPH08199239A (en) Production of grain oriented magnetic steel sheet with high magnetic flux density
JPH05295440A (en) Production of grain-oriented silicon steel sheet using rapidly solidified thin cast slab
JPH06220541A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH06220540A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic property after domain control
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404