JPH06188116A - Oriented silicon steel plate for low core loss and high flux density and manufacture thereof - Google Patents

Oriented silicon steel plate for low core loss and high flux density and manufacture thereof

Info

Publication number
JPH06188116A
JPH06188116A JP4340746A JP34074692A JPH06188116A JP H06188116 A JPH06188116 A JP H06188116A JP 4340746 A JP4340746 A JP 4340746A JP 34074692 A JP34074692 A JP 34074692A JP H06188116 A JPH06188116 A JP H06188116A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
oriented silicon
recrystallization annealing
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4340746A
Other languages
Japanese (ja)
Inventor
Katsuro Kuroki
克郎 黒木
Hiroaki Masui
浩昭 増井
Osamu Tanaka
収 田中
Isao Iwanaga
功 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4340746A priority Critical patent/JPH06188116A/en
Priority to DE69332394T priority patent/DE69332394T2/en
Priority to EP93110517A priority patent/EP0577124B1/en
Priority to KR93012299A priority patent/KR960009170B1/en
Priority to US08/257,765 priority patent/US5507883A/en
Publication of JPH06188116A publication Critical patent/JPH06188116A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To provide an oriented silicon steel plate for low core loss and high flux density. CONSTITUTION:An oriented silicon steel plate for low core loss and high flux density contains 1-7% Si, 0.03-0.15% P, and, if necessary, 0.02-0.20% Sn. On the surface of the steel plate, grooves whose average maximum depth is 2-50mum and which have forsterite left behind on parts of the bottom are made at intervals of 45-90 deg. from the longitudinal direction of the steel plate. This silicon steel plate has a primary film mainly composed of forsterite of the average thickness of 0.3mum or smaller and whose core loss W17/50 is 0.70Watt/kg or lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は極めて鉄損の優れた高磁
束密度方向性珪素鋼板及びその製造法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high magnetic flux density grain-oriented silicon steel sheet having extremely excellent iron loss and a method for producing the same.

【0002】[0002]

【従来技術】トランス用等の磁気特性に優れた1〜7%
のSiを含んだ方向性珪素鋼板を製造するに際して、絶
縁特性の確保と鋼板表面に張力を与えトランスの性能向
上に必要な磁気特性を向上させ、かつ鋼板との密着性が
良好な一次被膜を形成させることは従来技術においては
方向性珪素鋼板の一つの重要な課題であった。すなわ
ち、通常の技術では脱炭を伴う一次焼鈍後に、鋼板にマ
グネシアと呼ばれる酸化マグネシウム(MgO)の微粉
末を水溶させたスラリー状のものを塗り、必要に応じて
乾燥させたあと、二次再結晶焼鈍工程で焼成させ、鋼板
中のSiO2 やSiとの反応でフォルステライト(Mg
2 SiO4 )と呼ばれるセラミックス質状の絶縁被膜を
形成させる。これが鋼板に張力を与え、磁気特性とりわ
け鉄損と呼ばれるトランスの効率を支配する特性値を向
上させるのに有効である。しかも、このフォルステライ
ト形成の状態が、二次再結晶で鋼板の結晶方位を、通称
GOSS方位と呼ばれ、透磁率や磁束密度の向上に不可
欠な鋼板長手方向(圧延方向)に対して{110}<0
01>の結晶方位を有するやや粗大な二次再結晶粒を成
長させるのにも重要な役割を果たしていることもよく知
られている。逆に、二次再結晶焼鈍昇温過程中に十分緻
密な被膜が形成されないまま二次再結晶させようとして
も鋼板内のインヒビターと呼ばれる微細な窒化物や硫化
物等がそのままの状態で、あるいは分解して早く鋼板外
に抜け出てしまう。このため、昇温中にGOSS方位粒
を優先的に成長させ、他の方位粒の成長を抑制させる役
目のインヒビター効果が発揮できず、通称で細粒と呼ば
れ、GOSS方位粒の二次再結晶粒の成長が部分的ある
いは全面的に行われない、極めて磁気特性の劣る鋼板を
生み出すことになる。なお、このMgOの中に酸化チタ
ン(TiO2 等)やその他の化合物を添加させ、さらに
緻密な一次被膜を形成させることも行われる。
2. Description of the Related Art 1-7% with excellent magnetic properties for transformers, etc.
When manufacturing a grain-oriented silicon steel sheet containing Si, a primary coating that secures insulation properties and imparts tension to the steel sheet surface to improve the magnetic characteristics necessary for improving the performance of the transformer and that has good adhesion to the steel sheet is formed. Forming has been one of the important problems of grain oriented silicon steel sheets in the prior art. That is, in the usual technique, after the primary annealing accompanied by decarburization, a steel sheet is coated with a slurry of magnesium oxide (MgO) fine powder called magnesia dissolved in water, dried if necessary, and then the secondary re-treatment is performed. burned by recrystallization annealing step, forsterite reaction with SiO 2 and Si in the steel sheet (Mg
A ceramic-like insulating coating called 2 SiO 4 ) is formed. This is effective in giving tension to the steel sheet and improving the magnetic property, especially the characteristic value called iron loss, which governs the efficiency of the transformer. Moreover, the state of formation of this forsterite is called the GOSS orientation of the steel sheet in the secondary recrystallization, and is {110 relative to the steel sheet longitudinal direction (rolling direction), which is essential for improving the magnetic permeability and the magnetic flux density. } <0
It is well known that it also plays an important role in growing slightly coarse secondary recrystallized grains having a crystal orientation of 01>. On the contrary, during the secondary recrystallization annealing temperature rising process, even if it is attempted to perform secondary recrystallization without forming a sufficiently dense film, fine nitrides and sulfides called inhibitors in the steel sheet remain as they are, or It disassembles and quickly escapes from the steel plate. For this reason, the inhibitor effect of growing the GOSS-oriented grains preferentially during the temperature rise and suppressing the growth of other oriented grains cannot be exhibited, and it is commonly called fine grain. This results in a steel sheet with extremely poor magnetic properties, in which crystal grains do not grow partially or entirely. It should be noted that titanium oxide (TiO 2 or the like) or another compound may be added to this MgO to form a denser primary coating.

【0003】しかるに、近年アモルファスの登場に見ら
れるようにエネルギー節減のためトランスのエネルギー
変換効率に影響の大きい電磁鋼板の鉄損低減への要求は
大きく、上記の従来技術の延長ではこの要望に応えるこ
とは困難となってきた。従来技術においては上記の方法
以外にも二次再結晶後のいわゆる製品鋼板表面に機械的
あるいはレーザー等のエネルギー照射的な方法で溝ある
いは何らかの損傷を意図的に与え、磁区細分化を行い、
鉄損を向上せしめる方法が行われている。しかしなが
ら、この方法を以てしてもまだアルモルファスに対抗で
きるような低鉄損は実現困難であった。一方、フォルス
テライトを主成分とする一次被膜は硬質な固形物質なる
がゆえに製品のせん断等の加工性に難点があり、工具寿
命の低下をもたらしていた。
However, there is a great demand for iron loss reduction of magnetic steel sheets, which has a great influence on the energy conversion efficiency of the transformer for energy saving as seen in the advent of amorphous materials in recent years, and the extension of the above-mentioned prior art meets this demand. Things have become difficult. In the conventional technique, in addition to the above method, a so-called product steel sheet surface after secondary recrystallization is intentionally imparted with a groove or some damage by a method of energy irradiation such as mechanical or laser to perform magnetic domain subdivision,
Methods are being taken to improve iron loss. However, even with this method, it was still difficult to realize a low iron loss that can counter Almorphus. On the other hand, since the primary coating containing forsterite as a main component is a hard solid substance, there is a problem in workability such as shearing of the product, resulting in a shortened tool life.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような問
題点を解決し、以下のような骨子に示される技術的知見
から一次被膜とよばれるフォルステライトを主成分とす
る固形物質の形成を極力抑え、かつ極めて低鉄損の高磁
束密度方向性珪素鋼板を得るべく、新たな製品開発技術
を見出したものである。
SUMMARY OF THE INVENTION The present invention solves these problems and, based on the technical knowledge shown in the skeleton below, forms a solid substance containing forsterite as a main component called a primary film. In order to obtain a high magnetic flux density grain-oriented silicon steel sheet with extremely low iron loss while suppressing it as much as possible, a new product development technology was discovered.

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1) Si:1〜7%、P:0.03〜0.15%を
含み、鋼板表面に最大部の深さの平均が2〜50μm
で、底部にフォルステライトが一部残留した溝が、鋼板
の長手方向から45〜90度の方向に間隔を開けて付与
され、かつフォルステライトを主成分とする一次被膜の
平均厚みが0.3μm以下で、鉄損がW17 /50 で0.7
0Watt/kg以下であることを特徴とする極めて鉄
損の優れた高磁束密度方向性珪素鋼板。
The gist of the present invention is as follows. (1) Si: 1 to 7% and P: 0.03 to 0.15% are included, and the average of the maximum depths on the steel plate surface is 2 to 50 μm.
Then, the grooves in which forsterite partially remains at the bottom are provided at intervals in the direction of 45 to 90 degrees from the longitudinal direction of the steel sheet, and the average thickness of the primary coating mainly composed of forsterite is 0.3 μm. in the following, the iron loss at W 17/50 0.7
A high magnetic flux density grain-oriented silicon steel sheet having an extremely excellent iron loss, which is characterized in that it is 0 Watt / kg or less.

【0006】(2) Si:1〜7%、P:0.03〜
0.15%、Sn:0.02〜0.20%を含み、鋼板
表面に最大部の深さの平均が2〜50μmで、底部にフ
ォルステライトが一部残留した溝が、鋼板の長手方向か
ら45〜90度の方向に間隔を開けて付与され、かつフ
ォルステライトを主成分とする一次被膜の平均厚みが
0.3μm以下で、鉄損がW17/50 で0.70Watt
/kg以下であることを特徴とする極めて鉄損の優れた
高磁束密度方向性珪素鋼板。
(2) Si: 1 to 7%, P: 0.03 to
0.15%, Sn: 0.02 to 0.20%, the average depth of the maximum part is 2 to 50 μm on the surface of the steel plate, and the groove in which forsterite partially remains at the bottom is the longitudinal direction of the steel plate. From 45 to 90 degrees, and the average thickness of the primary coating mainly composed of forsterite is 0.3 μm or less and the iron loss is 0.70 Watt at W 17/50 .
/ Kg or less, a high magnetic flux density grain-oriented silicon steel sheet having an extremely excellent iron loss.

【0007】(3) 溝の間隔が2〜20mmであるこ
とを特徴とする前項1または2記載の極めて鉄損の優れ
た高磁束密度方向性珪素鋼板。 (4) Si:1〜7%、P:0.045%超〜0.2
0%を含む鋼を溶製し、熱間圧延、冷間圧延、一次再結
晶焼鈍、焼鈍分離剤塗布、及び二次再結晶焼鈍を基本工
程とする方向性珪素鋼板の製造において、冷間圧延中ま
たは冷間圧延後に、鋼板表面に最大部の深さの平均が2
〜50μmの溝を鋼板の長手方向から45〜90度の方
向に間隔を開けて付与し、次いで一次再結晶焼鈍以降の
工程を行い、一次再結晶焼鈍から二次再結晶焼鈍の間
に、鋼板表面に塩化物及び硫化物の少なくとも1種類以
上を含む物質を塗布し、二次再結晶焼鈍時に生成される
フォルステライトを主成分とする絶縁性の一次被膜の平
均厚みを0.3μm以下とすることを特徴とする極めて
鉄損の優れた高磁束密度方向性珪素鋼板の製造法。
(3) A high magnetic flux density grain-oriented silicon steel sheet having extremely excellent iron loss as set forth in the above item 1 or 2, wherein the groove interval is 2 to 20 mm. (4) Si: 1 to 7%, P: more than 0.045% to 0.2
Steel containing 0% is melted and cold rolled in hot rolling, cold rolling, primary recrystallization annealing, application of an annealing separator, and secondary recrystallization annealing in the production of grain-oriented silicon steel sheets. After medium or cold rolling, the average maximum depth of the steel sheet surface is 2
~ 50 μm grooves are provided at intervals from the longitudinal direction of the steel sheet in the direction of 45 to 90 degrees, and then the steps from the primary recrystallization annealing are performed, and the steel sheet is removed from the primary recrystallization annealing to the secondary recrystallization annealing. The surface is coated with a substance containing at least one kind of chloride and sulfide, and the average thickness of the insulative primary coating mainly composed of forsterite produced during the secondary recrystallization annealing is 0.3 μm or less. A method for producing a high magnetic flux density grain-oriented silicon steel sheet having extremely excellent iron loss, which is characterized by the following.

【0008】(5) Si:1〜7%、P:0.045
%超〜0.20%、Sn:0.02〜0.20%を含む
鋼を溶製し、熱間圧延、冷間圧延、一次再結晶焼鈍、焼
鈍分離剤塗布、及び二次再結晶焼鈍を、基本工程とする
方向性珪素鋼板の製造において、冷間圧延中または冷間
圧延後に鋼板表面に最大部の深さの平均が2〜50μm
の溝を鋼板の長手方向から45〜90度の方向に、間隔
を開けて付与し、次いで一次再結晶焼鈍以降の工程を行
い、一次再結晶焼鈍から二次再結晶焼鈍の間に、鋼板表
面に塩化物及び硫化物の少なくとも1種類以上を含む物
質を塗布し、二次再結晶焼鈍時に生成されるフォルステ
ライトを主成分とする絶縁性の一次被膜の平均厚みを
0.3μm以下とすることを特徴とする極めて鉄損の優
れた高磁束密度方向性珪素鋼板の製造法。
(5) Si: 1 to 7%, P: 0.045
% Steel to 0.20%, Sn: 0.02 to 0.20%, and then hot-rolling, cold-rolling, primary recrystallization annealing, applying an annealing separator, and secondary recrystallization annealing. In the production of the grain-oriented silicon steel sheet, which is a basic step, the average maximum depth of the steel sheet surface during cold rolling or after cold rolling is 2 to 50 μm.
Grooves are provided in the direction of 45 to 90 degrees from the longitudinal direction of the steel sheet at intervals, then the steps from the primary recrystallization annealing are performed, and the steel sheet surface is subjected from the primary recrystallization annealing to the secondary recrystallization annealing. A material containing at least one kind of chloride and sulfide is applied to, and the average thickness of the insulative primary coating mainly composed of forsterite formed during secondary recrystallization annealing is 0.3 μm or less. And a method for producing a high magnetic flux density grain-oriented silicon steel sheet having excellent iron loss.

【0009】(6) 冷間圧延後付与する溝の間隔が2
〜20mmであることを特徴とする前項4または5記載
の極めて鉄損の優れた高磁束密度方向性珪素鋼板の製造
法。 (7) 一次再結晶焼鈍時に窒化を行うことを特徴とす
る前項4〜6のいずれか1項に記載の極めて鉄損の優れ
た高磁束密度方向性珪素鋼板の製造法。 (8) 焼鈍分離剤に含有させる塩化物として塩化カル
シウムを、硫化物として硫化カリウムを添加することを
特徴とする前項4〜7のいずれか1項に記載の極めて鉄
損の優れた高磁束密度方向性珪素鋼板の製造法。
(6) The interval between grooves provided after cold rolling is 2
-20 mm, The method for producing a high magnetic flux density grain-oriented silicon steel sheet having extremely excellent iron loss according to item 4 or 5 above. (7) The method for producing a high magnetic flux density grain-oriented silicon steel sheet having extremely excellent iron loss as described in any one of the above items 4 to 6, wherein nitriding is performed during the primary recrystallization annealing. (8) Calcium chloride is added as a chloride contained in the annealing separator, and potassium sulfide is added as a sulfide. The high magnetic flux density with extremely excellent iron loss according to any one of items 4 to 7 above. Manufacturing method of grain-oriented silicon steel sheet.

【0010】(9) 二次再結晶焼鈍時の昇温速度を毎
時30℃以下、また雰囲気ガス中の窒素分圧を30%以
上とすることを特徴とする前4〜8のいずれか1項に記
載の極めて鉄損の優れた高磁束密度方向性珪素鋼板の製
造法。 以下に本発明を詳細に説明する。方向性珪素鋼板の二次
再結晶はGOSS方位と呼ばれる{110}<001>
方位の粒を二次再結晶焼鈍(仕上焼鈍とも呼ばれる)時
に十分成長させることが肝要である。これは一次再結晶
焼鈍(以下、一次焼鈍と呼ぶ)の中のある特定粒のみを
粗大再結晶させるもので、この時にインヒビター(In
hibitor)と呼ばれるAlN等の微細析出物を仕
上焼鈍前に十分作っておくことが技術上必要であること
がよく知られている。そして、このために必要な窒素を
鋼溶製時または一次焼鈍後または他の工程中に添加する
ことが行われる。本発明の目的からはむしろ一次焼鈍後
に窒素を添加する方法が最適な窒素の添加法であること
もわかった。もし、一次焼鈍中またはその直後に窒素添
加する場合は、通常、脱炭反応も機能する一次焼鈍の設
備の一部に窒化反応を行う設備を内部または近接して設
置し、一次焼鈍後またはそれと平行させて窒化反応させ
る方法も有効である。鋼溶製時に十分低炭素化した鋼で
は脱炭機能よりも一次焼鈍後の表面層の酸化物層を変え
て、被膜反応に有利な形にすることがむしろ重要な役割
となる。
(9) Any one of the above 4 to 8 characterized in that the temperature rising rate during the secondary recrystallization annealing is 30 ° C. or less per hour, and the nitrogen partial pressure in the atmosphere gas is 30% or more. The method for producing a high magnetic flux density grain-oriented silicon steel sheet having extremely excellent iron loss described in 1. The present invention will be described in detail below. Secondary recrystallization of grain-oriented silicon steel sheet is called GOSS orientation {110} <001>
It is important to grow grains of orientation sufficiently during secondary recrystallization annealing (also called finish annealing). This is to coarsely recrystallize only certain specific grains in the primary recrystallization annealing (hereinafter referred to as primary annealing).
It is well known in the art that it is technically necessary to prepare fine precipitates such as AlN called "hibitor)" before finish annealing. Then, nitrogen necessary for this purpose is added during steel melting, after primary annealing, or during other steps. For the purpose of the present invention, it was also found that the method of adding nitrogen after the primary annealing is the optimum method of adding nitrogen. If nitrogen is added during or immediately after the primary annealing, the equipment for nitriding reaction is usually installed inside or close to a part of the equipment for the primary annealing that also functions as a decarburizing reaction, and after or after the primary annealing. A method of nitriding reaction in parallel is also effective. In the case of steel that has been sufficiently carbonized during the melting of steel, it is rather important to change the oxide layer of the surface layer after primary annealing so that it has an advantageous shape for the coating reaction, rather than the decarburizing function.

【0011】さて、本発明では冷間圧延後または冷間圧
延中に鋼板表面に最大部の深さの平均が2〜50μmの
溝を規則的に付与することが重要である。これはこの溝
によって製品の磁区細分化をより細かくすることが可能
で鉄損低減に寄与するからである。この溝の付与の仕方
は溝付きロール、溝付きまたは刃型プレス等の機械的方
法、レーザー、プラズマ等のエネルギー照射的な方法、
水、油等を高圧で吹き付ける方法、酸等による化学的腐
食、電気的腐食による方法、あるいはそれらを組み合わ
せた方法等、基本的に手段はどれでも良く、要は上記の
溝の要件を満たしていれば効果が認められる。しかし、
これだけでは本発明の狙いとする低鉄損は得られない。
In the present invention, it is important to regularly provide grooves having an average maximum depth of 2 to 50 μm on the surface of the steel sheet after or during cold rolling. This is because the grooves can make the magnetic domains of the product finer and contribute to the reduction of iron loss. The method of providing the groove is a grooved roll, a mechanical method such as a grooved or blade type press, an energy irradiation method such as laser and plasma,
Basically, any method such as a method of spraying water, oil, etc. at high pressure, a method of chemical corrosion by acid, etc., a method of electrical corrosion, or a combination thereof is essential. If the effect is recognized. But,
This alone cannot obtain the low iron loss targeted by the present invention.

【0012】本発明で最も重要な技術的な要件は鋼板表
面のフォルステライトを主成分とする一次被膜の平均厚
みとの組み合わせである。この厚みが0.3μm以下の
とき上記との組み合わせで極めて磁気特性が向上するこ
とがわかった。また仕上焼鈍前に溝をつけた場合、溝の
底にフォルステライトが一部残留するが、これも鉄損向
上効果を助長すると想定される。この理由は必ずしも明
らかではないが、この一次被膜は厚いと鋼板の磁束の流
れを妨げ、とりわけ被膜に凹凸が多い場合や、フォルス
テライト直下にスピネル(MgO・Al2 3 )等の酸
化物が多い場合はその傾向が大きいことは容易に想像で
きる。したがって表面の一次被膜を極力減らして薄くす
るか、あるいは完全になくしてしまい、そのかわりに規
則的な溝を形成させれば磁束は規則的に円滑に流れる。
この結果、鉄損も十分に低減できることになる。当然な
がら溝の深さとピッチには制約がつくことになる。
The most important technical requirement in the present invention is the combination with the average thickness of the primary coating mainly composed of forsterite on the surface of the steel sheet. It has been found that when the thickness is 0.3 μm or less, the magnetic characteristics are remarkably improved in combination with the above. Further, when a groove is formed before finish annealing, some of the forsterite remains at the bottom of the groove, which is also supposed to promote the iron loss improving effect. The reason for this is not always clear, but if this primary coating is thick, it obstructs the flow of magnetic flux in the steel sheet, especially if the coating has many irregularities, or if oxides such as spinel (MgO.Al 2 O 3 ) are formed directly under forsterite. It can be easily imagined that the tendency is large when there are many. Therefore, if the primary coating on the surface is reduced as much as possible to be thin or completely eliminated, and if regular grooves are formed instead, the magnetic flux flows smoothly and regularly.
As a result, iron loss can be sufficiently reduced. Of course, there will be restrictions on the depth and pitch of the grooves.

【0013】本発明での重要な知見はさらに次の点にあ
る。従来技術において、いわゆる一次被膜を形成した後
のいわば製品に近いものに溝を付けて磁区細分化する方
法が行われている。これは同じく従来技術にある、中間
工程で溝を付けた方法よりも磁区制御効果が大きく出易
いためである。しかしながら、本発明で明らかになった
ことは、一次被膜厚みが極端に少ないか、あるいは被膜
がない場合はコスト的にも安価な冷間圧延後または冷間
圧延中に溝を付ける方法でも十分な磁区細分化効果が発
揮されるという事実を見出し点である。
The important findings of the present invention are as follows. In the prior art, a method is used in which a so-called primary product after forming a so-called primary coating is provided with grooves to subdivide magnetic domains. This is because the magnetic domain control effect is larger than that of the prior art method in which a groove is formed in the intermediate step. However, what has been made clear by the present invention is that a method of forming a groove after cold rolling or during cold rolling, which is inexpensive in terms of cost, is also sufficient when the primary coating thickness is extremely small or there is no coating. The key point is the fact that the magnetic domain subdivision effect is exerted.

【0014】表1の化学成分(但し、S1のN量は一次
焼鈍窒化後の値)を有する方向性珪素鋼板を熱延し、熱
延板焼鈍後、0.23mmに冷間圧延し、これにロール
で深さ15μm、ピッチ5mmの溝を付けた後、一次焼
鈍を行い、次いで鋼板にMgOパウダーに添加物を種々
変えて添加した焼鈍分離剤を塗布して仕上焼鈍を行い、
一次被膜の平均厚みを変えて、さらに張力を有する絶縁
コーティングを塗布したサンプルの鉄損を調べたのが図
1である。これをみても明らかなように一次被膜の厚み
が小さくなるほど鉄損の低減(向上)が見られ、とりわ
け0.3μm以下でそれが顕著であることがわかる。こ
れは溝を冷間圧延後という中間工程で付けるため、溝の
中に後工程でフォルステライト等が詰まって磁区制御効
果が劣化しても、鋼板表面の一次被膜の平均厚みが少な
いか、あるいは被膜がない場合は十分磁区細分化される
ことを示している。
A grain-oriented silicon steel sheet having the chemical composition shown in Table 1 (however, the amount of N in S1 is the value after primary annealing and nitriding) is hot-rolled, and after hot-rolled sheet annealing, cold-rolled to 0.23 mm. After making a groove having a depth of 15 μm and a pitch of 5 mm with a roll, primary annealing is performed, and then a steel sheet is coated with an annealing separating agent in which various additives are added to MgO powder, and finish annealing is performed.
FIG. 1 shows the results of examining the iron loss of the samples to which the insulating coating having tension was applied while changing the average thickness of the primary coating. As can be seen from this, the iron loss is reduced (improved) as the thickness of the primary coating becomes smaller, and it can be seen that it is particularly remarkable at 0.3 μm or less. This is because the groove is attached in an intermediate step after cold rolling, so even if forsterite etc. is clogged in the groove in the post step and the magnetic domain control effect deteriorates, the average thickness of the primary coating on the steel plate surface is small, or It is shown that the magnetic domains are sufficiently subdivided when there is no coating.

【0015】[0015]

【表1】 [Table 1]

【0016】次に、二次再結晶を行う場合にAlを添加
する場合はインヒビターとしてAlNやSi3 4 を主
に使うが、ここで本発明の方法の一つとして一次焼鈍中
か、あるいはその後に窒化せしめる方法の方がより本発
明の目的に好ましいことがわかった。これは以下の理由
による。鋼溶製時に窒素を多く添加する場合と異なり、
後で窒化する方がAlN、Si3 4 の最適量はコント
ロールしやすく、二次再結晶焼鈍時に、本発明のように
フォルステライト等の一次被膜が薄くなるかあるいは消
失しても雰囲気中の窒素分圧(PN2)をコントロールす
ることで最適窒素量を確保しやすいからであろうと考え
られる。
Next, when Al is added for secondary recrystallization, AlN or Si 3 N 4 is mainly used as an inhibitor. Here, one of the methods of the present invention is during primary annealing, or It was found that the method of nitriding thereafter is more preferable for the purpose of the present invention. This is for the following reason. Unlike adding a large amount of nitrogen during steel melting,
It is easier to control the optimal amounts of AlN and Si 3 N 4 by nitriding later, and even if the primary coating such as forsterite becomes thin or disappears as in the present invention during the secondary recrystallization annealing, the amount of AlN and Si 3 N 4 in the atmosphere is reduced. It is considered that this is because it is easy to secure the optimum nitrogen amount by controlling the nitrogen partial pressure (P N2 ).

【0017】次に、仕上焼鈍時の一次被膜を極力少なく
するか、あるいはなくすために、本発明では一次焼鈍後
の鋼板表面に塩化物、硫化物を通常のマグネシア(Mg
O)パウダーのなかに混ぜて添加することが有効である
ことがわかった。この中でもとりわけ塩化カルシウム
(CaCl2 )、硫化カリウム(K2 S)は有効であ
る。なお、通常法でもMgO以外にTiO2 やアンチモ
ン系の化合物(Sb2 (SO4 3 )やボロン系の化合
物(Na2 4 7 )、ストロンチウム・バリウム系、
炭・窒化物系等を添加して反応を容易にすることが行わ
れるが、本発明でもこれらの添加物の効果は発揮される
ので、添加しても本発明の本質を変えるものではない。
Next, in order to reduce or eliminate the primary coating film during finish annealing as much as possible, according to the present invention, chlorides and sulfides are added to the surface of the steel sheet after the primary annealing by ordinary magnesia (Mg).
O) It was found to be effective to add it by mixing it in the powder. Among these, calcium chloride (CaCl 2 ) and potassium sulfide (K 2 S) are particularly effective. Even in the conventional method, in addition to MgO, TiO 2 and antimony compounds (Sb 2 (SO 4 ) 3 ), boron compounds (Na 2 B 4 O 7 ), strontium and barium compounds,
Although the reaction is facilitated by adding a charcoal / nitride system or the like, the effects of these additives are exerted also in the present invention, and therefore the addition does not change the essence of the present invention.

【0018】本発明で極めて重要な点はPの挙動であ
る。表2にPの量のみを変えた3%Si鋼の一次再結晶
後のX線による結晶方位の{111}の面指数強度を示
す。これを一次再結晶後窒化し、二次再結晶させた鋼板
の磁束密度を同表に示す。明らかに、Pの量と共にこれ
らの値は変化していることがわかる。一方、Pと共存し
てSnが添加されると0.06%P−3%Si鋼の例の
図2のように鉄損までも著しく低減され好ましい。これ
はSnによる製品の細粒化効果と考えられる。
A very important point in the present invention is the behavior of P. Table 2 shows the {111} plane index strength of the crystal orientation by X-ray after primary recrystallization of 3% Si steel in which only the amount of P was changed. The magnetic flux densities of the steel sheets obtained by primary recrystallization, nitriding and secondary recrystallization are shown in the same table. Obviously, these values change with the amount of P. On the other hand, when Sn is added in coexistence with P, iron loss is also significantly reduced as shown in FIG. 2 of the example of 0.06% P-3% Si steel, which is preferable. This is considered to be the effect of Sn grain refinement.

【0019】[0019]

【表2】 [Table 2]

【0020】さて、ここで方向性珪素鋼板の製造方法に
触れる必要がある。前述のように本発明が可能な方向性
珪素鋼板はSi以外に必要に応じてAlを含有し、Si
3 4 あるいはAlN、および鋼中のSが多い場合はM
nSを主要インヒビターとする鋼に限定される。もちろ
んSi、Al、P、Sn以外に、Se、Sb、Cu、
B、Nb、Ti、V、Ni、Cr等の他の添加元素を付
加的に添加させ、磁気特性の向上をはかることは本発明
の基本を変えるものではない。
Now, it is necessary to touch on the method of manufacturing the grain-oriented silicon steel sheet. As described above, the grain-oriented silicon steel sheet according to the present invention contains Al as necessary in addition to Si, and Si
3 N 4 or AlN, and M when there is a large amount of S in steel
Limited to steels with nS as the primary inhibitor. Of course, in addition to Si, Al, P, Sn, Se, Sb, Cu,
The addition of other additive elements such as B, Nb, Ti, V, Ni and Cr to improve the magnetic characteristics does not change the basics of the present invention.

【0021】ところでAlNあるいはSi3 4 、Mn
Sをインヒビターとする鋼は公知であり、そのいずれの
場合においても本発明の技術を適用することが可能であ
る。しかしながら、本発明の特徴をより一層発揮させる
にはとりわけ以下に示す製造法が最適である。すなわち
Siを1〜7%含む鋼で、必要に応じてAlを鋼溶製時
に0.1%以下含み、かつ方向性珪素鋼板製造工程にお
ける冷延後の一次焼鈍中の脱炭焼鈍中またはその後に鋼
板に直接窒化反応を介して強制的にNを添加する方法に
より、二次再結晶焼鈍前にNを30〜600ppmに含
むことを特徴とする。
By the way, AlN or Si 3 N 4 , Mn
Steel containing S as an inhibitor is known, and the technique of the present invention can be applied to any of the cases. However, the following production method is most suitable for further exerting the characteristics of the present invention. That is, it is a steel containing 1 to 7% of Si, containing 0.1% or less of Al when steel is melted, if necessary, and during or after decarburization annealing during primary annealing after cold rolling in the grain-oriented silicon steel sheet manufacturing process. In addition, N is contained in an amount of 30 to 600 ppm before secondary recrystallization annealing by a method of forcibly adding N to the steel sheet directly through a nitriding reaction.

【0022】Siは本発明においては上記のようにフォ
ルステライト形成のために最低1%は必要である。一
方、7%を超えると加工性が極端に劣化し、工業生産に
適さない。AlはAlNインヒビター形成に有効であ
る。しかし0.1%を超えるとAl 2 3 生成量が多く
なり健全な鋼の清浄度を損ない、ひいては磁気特性に悪
影響をもたらす。
In the present invention, Si is used as a source as described above.
A minimum of 1% is required for the formation of rusterite. one
On the other hand, if it exceeds 7%, the workability is extremely deteriorated, and it is suitable for industrial production.
Not suitable. Al is effective in forming AlN inhibitor
It However, if it exceeds 0.1%, Al 2O3Large amount of production
It impairs the cleanliness of sound steel, which in turn impairs magnetic properties.
Bring an impact.

【0023】NはSi3 4 インヒビターを形成するの
に不可欠であり、本発明においては一次焼鈍後、つまり
仕上焼鈍の二次再結晶開始前で最低30ppmは必要で
ある。一方、Alを意図的に使う場合にはAlNの量確
保の点で60ppm以上は必要である。ただし、600
ppmを超えるとAlやSiを食いすぎて好ましくはな
い。
N is indispensable for forming the Si 3 N 4 inhibitor, and in the present invention, a minimum of 30 ppm is required after the primary annealing, that is, before the secondary recrystallization of the finish annealing is started. On the other hand, when Al is intentionally used, 60 ppm or more is necessary to secure the amount of AlN. However, 600
If it exceeds ppm, Al and Si are eaten too much, which is not preferable.

【0024】Pは本発明では極めて重要である。鋼溶製
時に0.045%以下では磁束密度を高める効果が少な
く、一方0.20%超では脆性が大きくなって、冷間圧
延が困難である。なお、製品中のPの量は本発明では重
要である。Pは鉄に固溶し、また、一部は析出して存在
するが、製品中の鉄損低減に極めて有効であり、最低
0.03%存在しないとその効果は発揮できない。一
方、0.15%超も存在すると製品の脆化をもたらし、
例えば製品の加工性、打抜き性を損い、使用に耐えな
い。
P is extremely important in the present invention. When steel is melted, if it is less than 0.045%, the effect of increasing the magnetic flux density is small, while if it exceeds 0.20%, the brittleness becomes large and cold rolling is difficult. The amount of P in the product is important in the present invention. P is present as a solid solution in iron and partly exists as a precipitate, but it is extremely effective in reducing iron loss in the product, and its effect cannot be exhibited unless it is present at least 0.03%. On the other hand, the presence of more than 0.15% causes embrittlement of the product,
For example, the workability and punchability of the product are impaired and the product cannot be used.

【0025】Sはこれを積極的に利用する場合は最低
0.01%はMnSをインヒビターとして有効に使うの
に必要である。一方、0.05%超では凝集して好まし
くはない。この他の元素は本発明では従来の鋼に較べて
特に特徴的ではないが、以下に制約することが好まし
い。
When S is positively used, at least 0.01% of S is necessary for effectively using MnS as an inhibitor. On the other hand, if it exceeds 0.05%, aggregation is not preferable. In the present invention, the other elements are not particularly characteristic as compared with the conventional steel, but the following restrictions are preferable.

【0026】Cは鋼溶製中に十分低くするか、または一
次焼鈍の脱炭焼鈍時に十分低くする必要があり、二次再
結晶焼鈍開始時には0.03%以下が好ましい。Mnは
0.5%以下ならばSと反応してMnSインヒビターを
形成する。0.15%以下だとさらに磁束密度の向上に
好ましい。Oは鋼溶製後に0.05%以下であればAl
2 3 を多量に作りすぎず清浄度的に好ましい。
C must be sufficiently low during steel melting or sufficiently low during decarburization annealing of primary annealing, and is preferably 0.03% or less at the start of secondary recrystallization annealing. If Mn is 0.5% or less, it reacts with S to form a MnS inhibitor. If it is 0.15% or less, it is preferable for further improving the magnetic flux density. O is Al if 0.05% or less after steel is melted
It is preferable for cleanliness without making too much 2 O 3 .

【0027】Snは本発明ではPと共存するとき鉄損低
減に著しく効果がある。0.02%未満ではその効果が
なく、一方、0.20%超では窒化が十分でなく、イン
ヒビターが弱くなり、一方一次被膜も十分できず特性は
劣化する。次に化学成分以外の本発明の製造方法につい
て述べる。鋼を転炉または電気炉等で溶製して出鋼し、
必要に応じて精錬工程を加えて成分調整を行った溶鋼を
連続鋳造法、造塊分塊圧延法あるいは熱延工程省略のた
めの薄スラブ連続鋳造法等により、厚さ30〜400m
m(薄スラブ連続鋳造法では50mm以下)のスラブと
する。ここで30mmは生産性を確保するための下限で
あり、400mmは中心偏析でAl2 3 等の分布が異
常になることを防ぐための上限である。また薄スラブ連
続鋳造法での厚さ50mmは冷速が小さくなって粗大粒
が出てくることを抑制するための上限である。
In the present invention, Sn is remarkably effective in reducing iron loss when coexisting with P. If it is less than 0.02%, the effect is not obtained. On the other hand, if it exceeds 0.20%, nitriding is not sufficient and the inhibitor becomes weak, while the primary coating cannot be sufficiently formed, resulting in deterioration of characteristics. Next, the production method of the present invention other than the chemical components will be described. Steel is melted in a converter or electric furnace, etc.
The molten steel, whose composition has been adjusted by adding a refining process as necessary, has a thickness of 30 to 400 m by a continuous casting method, an ingot slab rolling method, or a thin slab continuous casting method for omitting the hot rolling step.
The slab has a thickness of m (50 mm or less in the thin slab continuous casting method). Here, 30 mm is a lower limit for ensuring productivity, and 400 mm is an upper limit for preventing abnormal distribution of Al 2 O 3 etc. due to center segregation. Further, the thickness of 50 mm in the thin slab continuous casting method is the upper limit for suppressing the generation of coarse particles due to the low cooling rate.

【0028】該スラブをガス加熱、電気利用加熱等によ
り1000〜1400℃に再加熱を行い、引き続き熱間
圧延を行って厚さ10mm以下のホットコイルとする。
ここで1000℃はAlN溶解の下限であり、1400
℃は表面肌あれと材質劣化防止のための上限である。ま
た板厚10mmは適正な析出物を生成する冷速を得る上
限である。なお、薄スラブ連続鋳造法では直接コイル状
にすることも可能であり、そのためには10mm以下が
好ましい。
The slab is reheated to 1000 to 1400 ° C. by gas heating, electric heating, etc., and then hot rolled to obtain a hot coil having a thickness of 10 mm or less.
Here, 1000 ° C. is the lower limit of AlN melting,
C is the upper limit for preventing surface roughness and material deterioration. Further, the plate thickness of 10 mm is the upper limit for obtaining a cold speed at which an appropriate precipitate is formed. In the thin slab continuous casting method, it is also possible to directly form a coil, and for that purpose, 10 mm or less is preferable.

【0029】このように作ったホットコイルを再び80
0〜1250℃で焼鈍し、磁性向上をはかることもしば
しば行われる。ここで800℃はAlN再溶解の下限で
あり、1250℃はAlN粗粒化防止の上限である。か
かる処理工程の後、ホットコイルを直接またはバッチ的
に酸洗後冷間圧延を行う。冷間圧延は圧下率60〜95
%で行うが、60%は本発明で再結晶可能な限界であ
り、好ましくは70%以上が一次焼鈍で{111}<1
12>方位粒を多くして、二次再結晶焼鈍時のGOSS
方位粒の生成を促進させるための下限であり、一方95
%超では二次再結晶焼鈍で首振りGOSS粒と称するG
OSS方位粒が板面内回転した磁気特性に好ましくない
粒が生成される。
The hot coil made in this way is reapplied to 80
Annealing at 0 to 1250 ° C. is often performed to improve magnetism. Here, 800 ° C. is the lower limit for remelting AlN, and 1250 ° C. is the upper limit for preventing AlN coarsening. After such a treatment step, the hot coil is pickled directly or batchwise and then cold rolled. Cold rolling has a reduction rate of 60 to 95.
%, But 60% is the limit at which recrystallization is possible in the present invention, and preferably 70% or more by primary annealing {111} <1.
12> GOSS with a large number of oriented grains during secondary recrystallization annealing
This is the lower limit for promoting the production of oriented grains, while 95
If more than 100%, G is referred to as swinging GOSS grains in secondary recrystallization annealing
When the OSS-oriented grains rotate in the plane of the plate, grains that are not favorable for the magnetic properties are generated.

【0030】以上はいわゆる一回冷延法で製造する場合
だが、二回冷延法と称して冷延−焼鈍−冷延を行う場合
は、一回目の圧下率は10〜80%、二回目の圧下率は
50〜95%となる。ここで10%は再結晶に必要な最
低圧下率、80%と95%はそれぞれ二次再結晶時に適
正なGOSS方位粒を生成させるための上限圧下率、ま
た50%は二回冷延法においては一次焼鈍時の{11
1}<112>方位粒を適正に残す下限圧下率である。
The above is the case of manufacturing by the so-called single cold rolling method, but in the case of cold rolling-annealing-cold rolling called the double cold rolling method, the first rolling reduction is 10 to 80%, and the second rolling is The rolling reduction is 50 to 95%. Here, 10% is the minimum reduction ratio necessary for recrystallization, 80% and 95% are the upper limit reduction ratios for producing proper GOSS-oriented grains during secondary recrystallization, respectively, and 50% in the double cold rolling method. Is {11 at the time of primary annealing
1} <112> It is the lower limit of the reduction ratio that appropriately leaves grains.

【0031】なお、通称パス間エージングと称し、冷間
圧延の途中で鋼板を適当な方法で100〜400℃の範
囲で加熱することも磁気特性の向上に有効である。10
0℃未満ではエージングの効果がなく、一方、400℃
超では転位が回復してしまう。さて、本発明で重要な要
件は冷間圧延中またはその後の溝形成である。これが仕
上焼鈍後に残り、フォルステライトを主成分とする一次
被膜を平均0.3μm以下と極めて少なくする方法との
組み合わせで従来にみられない低鉄損が得られるわけで
ある。溝の形成方法は前述の通りであるが、溝の最大部
の平均の深さが2μm未満では磁区細分化効果がない。
一方、50μm超では深すぎて磁束の円滑な流れを妨げ
てかえって鉄損も悪くなる。好ましくは5〜30μmが
良い。溝は規則的に配列されている方が良い。これは、
磁区細分化が規則的に行われるからである。通常、鋼板
長手方向に対し45度から直角までの角度を有するほぼ
一定のピッチで刻まれることが好ましい。45度未満で
は磁区細分化の方向が磁性に好ましい結晶学的方位とあ
わないからである。また、溝のピッチは2〜10mmが
好ましい。2mm未満では磁区細分化が進みすぎて90
°磁区が増え、鉄損も磁歪も悪い。一方、10mm超で
は磁区細分化の効果がでない。なお、二回冷間圧延法に
おいては二回目の圧延後または圧延時に溝を形成するこ
とが好ましいことはいうまでもない。しかる後に一次焼
鈍を行い、このとき必要に応じて窒化を行う。一回冷延
法でも二回冷延法でも一次焼鈍を行うわけであるが、こ
の焼鈍で脱炭を行うことは有効である。前述のようにC
は二次再結晶粒の成長に好ましくないばかりか、不純物
として残ると鉄損の劣化を招く。なお、鋼の溶製時にC
を下げておくと脱炭工程が短縮化されるばかりか{11
1}<112>方位粒も増やすので好ましい。なお、こ
の脱炭焼鈍工程で適正な露点を設定することで後の一次
被膜生成に必要な酸化層の確保が行われる。
It is also commonly called "interpass aging", and heating the steel sheet in the range of 100 to 400 ° C by an appropriate method during the cold rolling is also effective for improving the magnetic properties. 10
Below 0 ℃, there is no effect of aging, while at 400 ℃
If it exceeds the limit, dislocations will be recovered. Now, an important requirement in the present invention is groove formation during or after cold rolling. This remains after finishing annealing, and a low iron loss, which cannot be seen in the past, can be obtained in combination with a method of reducing the primary coating containing forsterite as the main component to an average of 0.3 μm or less. The method of forming the groove is as described above, but if the average depth of the maximum part of the groove is less than 2 μm, there is no magnetic domain subdivision effect.
On the other hand, if it exceeds 50 μm, it is too deep and the smooth flow of the magnetic flux is hindered, and the iron loss deteriorates. It is preferably 5 to 30 μm. The grooves should be regularly arranged. this is,
This is because the magnetic domain is subdivided regularly. Usually, it is preferable to be engraved at a substantially constant pitch having an angle of 45 degrees to a right angle with respect to the longitudinal direction of the steel sheet. If it is less than 45 degrees, the direction of magnetic domain subdivision does not match the crystallographic orientation preferred for magnetism. The groove pitch is preferably 2 to 10 mm. If it is less than 2 mm, the magnetic domain is subdivided too much and 90
° Magnetic domains increase, iron loss and magnetostriction are bad. On the other hand, if it exceeds 10 mm, the effect of subdividing the magnetic domain is not obtained. Needless to say, in the double cold rolling method, it is preferable to form the groove after or during the second rolling. After that, primary annealing is performed, and at this time, nitriding is performed if necessary. Both the single cold rolling method and the double cold rolling method perform primary annealing, but it is effective to perform decarburization by this annealing. As mentioned above, C
Is not preferable for the growth of secondary recrystallized grains, and if it remains as an impurity, iron loss is deteriorated. When melting steel, C
Not only will the decarburization process be shortened by lowering {11
1} <112> oriented grains are also increased, which is preferable. By setting an appropriate dew point in this decarburization annealing step, the oxide layer necessary for the subsequent formation of the primary coating can be secured.

【0032】一次焼鈍温度は700〜950℃が好まし
い。ここで700℃は再結晶可能な下限温度であり、9
50℃は粗大粒の発生を抑制し得る上限温度である。さ
らに、AlNやSi3 4 インヒビターのNをこの一次
焼鈍時に窒化法等で強制添加する本発明においては、上
記の一次焼鈍中またはその直後に引き続きアンモニア
(NH3 )等で窒化法により窒化することが行われる。
この場合の窒化法の温度は600〜950℃が好まし
い。ここで600℃は窒化反応を起こし得る下限であ
り、一方950℃は粗大粒発生を抑え得る上限である。
The primary annealing temperature is preferably 700 to 950 ° C. Here, 700 ° C. is the lower limit temperature at which recrystallization is possible, and
50 ° C. is an upper limit temperature that can suppress the generation of coarse particles. Further, in the present invention in which AlN or N of Si 3 N 4 inhibitor is forcibly added by the nitriding method or the like during this primary annealing, the nitriding method is performed with ammonia (NH 3 ) or the like during or immediately after the above primary annealing. Is done.
In this case, the temperature of the nitriding method is preferably 600 to 950 ° C. Here, 600 ° C. is the lower limit that can cause the nitriding reaction, while 950 ° C. is the upper limit that can suppress the generation of coarse particles.

【0033】本発明においては窒化は一次再結晶焼鈍後
に行うのが好ましいが、工業的には同じ炉内の後面に仕
切りを設けて雰囲気を必要に応じて多少変えて、NH3
ガスを流すか、近接した設備で行うため、一次再結晶と
平行して窒化されることもしばしばある。その際前述の
ようにN2 分圧が低い方が窒化量は大きく、窒素と酸素
の分圧比PN2/PH2は0.5以下が好ましい。
In the present invention, the nitriding is preferably carried out after the primary recrystallization annealing, but industrially, a partition is provided on the rear surface of the same furnace and the atmosphere is slightly changed according to need, and NH 3 is used.
Nitrogen is often nitrided in parallel with the primary recrystallization because the gas is supplied or it is carried out in close proximity. At that time, as described above, the lower the N 2 partial pressure is, the larger the nitriding amount is, and the partial pressure ratio P N2 / P H2 of nitrogen and oxygen is preferably 0.5 or less.

【0034】一次焼鈍あるいは上記窒化法を行い、その
後、酸化マグネシウム(MgOを主成分とする。以下M
gOと呼ぶ)パウダーを水または水を主成分とする水溶
液に溶かし、スラリー状にして鋼板に塗布する。その
際、後の二次再結晶焼鈍時にMgOパウダーの溶融を容
易にさせ、フォルステライト生成反応を促進させる目的
で、適当な化合物を微量添加することも行われる。
Primary annealing or the above nitriding method is performed, and then magnesium oxide (MgO is the main component.
A powder (referred to as gO) is dissolved in water or an aqueous solution containing water as a main component to form a slurry, which is applied to a steel sheet. At this time, a trace amount of an appropriate compound may be added for the purpose of facilitating the melting of the MgO powder during the subsequent secondary recrystallization annealing and promoting the forsterite formation reaction.

【0035】TiO2 を添加する場合は1〜15%が好
ましいが、ここで1%はフォルステライト反応促進効果
を発揮し得る下限であり、15%超ではMgOが少なく
なってかえってフォルステライト反応が進まない。Sb
2 (SO4 3 等のアンチモン系の化合物はMgOを比
較的低温で溶融させるのに効果があり、添加を行う場合
は0.05〜5%が好ましい。ここで、0.05%は上
記低温溶融を起こし得る下限であり、一方5%を超える
場合は多すぎてMgOのフォルステライトの本来の反応
を不活性化する。
When TiO 2 is added, 1 to 15% is preferable, but 1% is the lower limit at which the forsterite reaction accelerating effect can be exhibited, and if it exceeds 15%, the amount of MgO decreases and the forsterite reaction is rather reduced. Not proceed. Sb
An antimony-based compound such as 2 (SO 4 ) 3 is effective in melting MgO at a relatively low temperature, and when added, its content is preferably 0.05 to 5%. Here, 0.05% is the lower limit at which the above-mentioned low temperature melting can occur, while on the other hand, when it exceeds 5%, it is too large to inactivate the original reaction of MgO forsterite.

【0036】Na2 4 7 等のボロン系の化合物およ
びそれと同様の作用を持つストロンチウム・バリウム
系、炭・窒化物系、硫化物系、塩化物系の化合物はアン
チモン系よりは比較的高温でMgOを溶融させるのに効
果があり、添加する場合は0.05〜5%が好ましい。
ここで、0.05%は上記の効果を発揮し得る下限であ
り、一方5%超ではやはりMgOのフォルステライトの
本来の反応を不活性化するので好ましくない。
Boron-based compounds such as Na 2 B 4 O 7 and strontium / barium-based, carbon / nitride-based, sulfide-based, and chloride-based compounds having the same action as those of the compounds are relatively hotter than antimony-based compounds. Is effective in melting MgO, and when added, 0.05 to 5% is preferable.
Here, 0.05% is the lower limit at which the above effect can be exhibited, while if it exceeds 5%, the original reaction of MgO forsterite is inactivated, which is not preferable.

【0037】なお、これらの化合物は互いに複合して添
加することも可能である。ここで添加する化合物の%は
MgOの重量を100%としたときの重量比を%で示し
てある。本発明においては、さらにMgOパウダーに前
述の塩化物あるいは硫化物の1種類以上を添加すると、
仕上焼鈍後の一次被膜の厚みを平均0.3μm以下にで
き、かつ十分な二次再結晶方位が得られるが、これらの
中でもとりわけ塩化カルシウム(CaCl2 )、硫化カ
リウム(K2 S)は有効である。これらは最低0.5%
(MgO重量を100としたときの重量割合)以上ある
と効果的である。20%超ではかえって二次膜形成過程
が不安定となる。
It is also possible to add these compounds in combination with each other. The% of the compound added here indicates the weight ratio when the weight of MgO is 100%. In the present invention, if one or more of the above-mentioned chlorides or sulfides is further added to the MgO powder,
The average thickness of the primary coating after finish annealing can be 0.3 μm or less, and sufficient secondary recrystallization orientation can be obtained. Among them, calcium chloride (CaCl 2 ) and potassium sulfide (K 2 S) are effective. Is. These are at least 0.5%
(Weight ratio when the weight of MgO is 100) is more effective. If it exceeds 20%, the secondary film formation process becomes rather unstable.

【0038】二次再結晶焼鈍は最高到達温度を1100
〜1300℃で行うのが好ましい。1100℃は二次再
結晶が行われる下限の温度であり、一方1300℃超は
結晶粒が粗大化し過ぎて鉄損の劣化を招く。この二次再
結晶焼鈍で重要な点は以下の通りである。本発明ではM
gOパウダーへ添加する特殊添加物の効果でフォルステ
ライトを主成分とする一次被膜が極端に少なくなるか、
あるいはなくなるので、焼鈍中に二次再結晶に必要な窒
素系のインヒビター(AlN、Si3 4 等)も仕上焼
鈍中に逃げ易い傾向があり、このため仕上焼鈍の雰囲気
ガス中の窒素分圧(PN2)を30%以上とすることでこ
れを防ぐことができ、安定した二次再結晶を得ることが
可能である。さらに二次再結晶焼鈍の昇温速度があまり
大きすぎると、十分な二次再結晶を起こす前にインヒビ
ターが逃げ易いので、むしろ昇温速度を毎時30℃以下
に抑えた方が安定した磁気特性が得られる。なお、前述
のように、この二次再結晶焼鈍中の比較的前段階で雰囲
気等より窒素を追加添加する窒化法が行われることもあ
る。
The maximum reachievable temperature of the secondary recrystallization annealing is 1100.
It is preferable to carry out at ˜1300 ° C. 1100 ° C. is the lower limit temperature at which the secondary recrystallization is performed, while if it exceeds 1300 ° C., the crystal grains become too coarse, and the iron loss is deteriorated. The important points in this secondary recrystallization annealing are as follows. In the present invention, M
Does the effect of the special additive added to the gO powder significantly reduce the primary coating mainly composed of forsterite?
Since it disappears, nitrogen-type inhibitors (AlN, Si 3 N 4, etc.) necessary for secondary recrystallization during annealing also tend to escape during the finishing annealing. Therefore, the nitrogen partial pressure in the atmosphere gas during the finishing annealing tends to increase. This can be prevented by setting (P N2 ) to 30% or more, and stable secondary recrystallization can be obtained. Furthermore, if the rate of temperature rise in the secondary recrystallization annealing is too high, the inhibitor easily escapes before sufficient secondary recrystallization occurs. Therefore, it is rather preferable to keep the rate of temperature rise below 30 ° C. for more stable magnetic properties. Is obtained. Note that, as described above, the nitriding method in which nitrogen is additionally added from the atmosphere or the like may be performed at a relatively previous stage during the secondary recrystallization annealing.

【0039】以上が本発明の方向性珪素鋼板の製造方法
での重要な部分であるが、工業的にはさらに絶縁特性や
磁気特性を向上させる目的で二次再結晶後の鋼板に有機
質や無機質による絶縁被膜を有する高張力被膜(コーテ
ィング法やゾルゲール法)を熱処理等と組み合わせて塗
布することがとりわけ重要である。この理由は、本発明
ではフォルステライト等の高張力特性を有する一次被膜
が極端に少ないか、あるいはないために、それを補完す
べく高張力特性を有する絶縁被膜を塗布することが効果
的であるからである。
The above is an important part of the method for producing a grain-oriented silicon steel sheet according to the present invention. Industrially, the steel sheet after secondary recrystallization is made of an organic or inorganic material for the purpose of further improving the insulating properties and magnetic properties. It is particularly important to apply a high-strength coating (a coating method or a Zolgel method) having an insulating coating according to (3) in combination with heat treatment or the like. The reason for this is that, in the present invention, the primary coating having high tensile properties such as forsterite is extremely small or absent, and it is effective to apply an insulating coating having high tensile properties to complement it. Because.

【0040】[0040]

【実施例】表3、表6に示すような化学成分の鋼を転炉
で溶製し、表4(表3のつづき−1)、表5(表3のつ
づき−2)、表7(表6のつづき−1)、表8(表6の
つづき−2)に示すような条件で製造した。熱延板焼鈍
を一部行ったが、条件は1120℃×30秒間である。
また冷間圧延時のパス間エージングをB以外は行った
が、その条件は250℃である。なお、ここで本発明に
とりわけ重要な一次再結晶焼鈍に引き続く窒化は同一炉
内に仕切りを設けた炉中内部分で同一ガス組成で雰囲気
をドライにし、NH3 ガスを一定量流して行ったもので
ある。かかる一次焼鈍後の窒化量(窒素量)を表4およ
び表7に示す。さらにこの鋼板にパウダーを塗布した
が、パウダーは水に溶解させ、スラリー状にして塗布
後、350℃で乾燥させた。ここで、%はMgOの重量
を100%としたときの重量比率である。しかる後に、
800℃〜最高到達温度の平均昇温速度を種々変えて二
次再結晶焼鈍を行った。ここでは最高到達温度は120
0℃である。さらにリン酸系の高張力絶縁被膜(二次被
膜)を加熱塗布した後、板取りし、歪取焼鈍850℃×
4時間(N2 90%−H2 10%、Dry)を行い、磁
気測定試験を行った。表5および表8にその結果を示
す。なお、溝の最大深さ、ピッチ及び圧延方向との角度
はいずれも二次再結晶焼鈍後の製品での測定である。
EXAMPLES Steels having chemical compositions shown in Tables 3 and 6 were melted in a converter, and Table 4 (Continued 1 in Table 3), Table 5 (Continued 2 in Table 3), Table 7 ( It was manufactured under the conditions shown in Table 1 (continued-1) and Table 8 (continued-2 in Table 6). The hot-rolled sheet was partially annealed under the condition of 1120 ° C. for 30 seconds.
In addition, aging between passes during cold rolling was performed except for B, and the condition was 250 ° C. Here, the nitriding subsequent to the primary recrystallization annealing, which is particularly important in the present invention, was performed by making the atmosphere dry with the same gas composition and flowing a certain amount of NH 3 gas in the inside of the furnace where the partition was provided in the same furnace. It is a thing. The nitriding amount (nitrogen amount) after such primary annealing is shown in Tables 4 and 7. Further, a powder was applied to this steel plate, and the powder was dissolved in water to form a slurry, which was then dried at 350 ° C. Here,% is the weight ratio when the weight of MgO is 100%. After that,
Secondary recrystallization annealing was performed while changing the average heating rate from 800 ° C. to the highest reached temperature variously. The maximum temperature reached here is 120
It is 0 ° C. Furthermore, after applying a phosphoric acid-based high-strength insulating coating (secondary coating) by heating, the plate is removed and strain relief annealing 850 ° C x
4 hours (N 2 90% -H 2 10 %, Dry) was carried out to perform magnetic measurements test. The results are shown in Table 5 and Table 8. The maximum depth of the groove, the pitch, and the angle with the rolling direction are all measured with the product after the secondary recrystallization annealing.

【0041】磁気測定は60×300mmの単板をSS
T試験法で測定し、B8 (800A/mの磁束密度、単
位はテスラ)およびW17/50 (50Hzで1.7テスラ
のときの鉄損、単位はワット/kg)、W13/50 (50
Hzで1.3テスラのときの鉄損)を測定した。表5お
よび表8に示すように、本発明の範囲に入っているもの
は磁束密度が高く、また鉄損が十分低く、本発明の目的
範囲に入っていることがわかる。
For magnetic measurement, a 60 × 300 mm single plate was SS
Measured by T test method, B 8 (800 A / m magnetic flux density, unit is Tesla) and W 17/50 (iron loss at 50 Tesla at 1.7 Tesla, unit is watt / kg), W 13/50 (50
The iron loss at 1.3 Tesla in Hz) was measured. As shown in Tables 5 and 8, it is understood that those falling within the range of the present invention have a high magnetic flux density and a sufficiently low iron loss, and are within the target range of the present invention.

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【0047】[0047]

【表8】 [Table 8]

【0048】[0048]

【発明の効果】本発明によれば、極めて鉄損の低い高磁
束密度方向性珪素鋼板を得ることができる。
According to the present invention, it is possible to obtain a high magnetic flux density grain-oriented silicon steel sheet having extremely low iron loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次被膜の平均厚みと鉄損の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the average thickness of a primary coating and iron loss.

【図2】0.06%P−3%Si鋼に対するSn添加量
の効果を示す図である。
FIG. 2 is a diagram showing the effect of the amount of added Sn on 0.06% P-3% Si steel.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23C 22/00 A (72)発明者 岩永 功 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location C23C 22/00 A (72) Inventor Isao Iwanaga No. 1 Hibatacho, Tobata-ku, Kitakyushu, Fukuoka Prefecture New Nippon Steel Co., Ltd., Yawata Works

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Si:1〜7%、P:0.03〜0.1
5%を含み、鋼板表面に最大部の深さの平均が2〜50
μmで、底部にフォルステライトが一部残留した溝が、
鋼板の長手方向から45〜90度の方向に間隔を開けて
付与され、かつフォルステライトを主成分とする一次被
膜の平均厚みが0.3μm以下で、鉄損がW17/50
0.70Watt/kg以下であることを特徴とする極
めて鉄損の優れた高磁束密度方向性珪素鋼板。
1. Si: 1 to 7%, P: 0.03 to 0.1
Including 5%, the average maximum depth of the steel plate surface is 2 to 50
In μm, the groove where some forsterite remained at the bottom,
An average thickness of the primary coating mainly composed of forsterite, which is applied at intervals of 45 to 90 degrees from the longitudinal direction of the steel sheet, is 0.3 μm or less, and iron loss is 0.70 Watt at W 17/50 . / Kg or less, a high magnetic flux density grain-oriented silicon steel sheet having an extremely excellent iron loss.
【請求項2】 Si:1〜7%、P:0.03〜0.1
5%、Sn:0.02〜0.20%を含み、鋼板表面に
最大部の深さの平均が2〜50μmで、底部にフォルス
テライトが一部残留した溝が、鋼板の長手方向から45
〜90度の方向に間隔を開けて付与され、かつフォルス
テライトを主成分とする一次被膜の平均厚みが0.3μ
m以下で、鉄損がW17/50 で0.70Watt/kg以
下であることを特徴とする極めて鉄損の優れた高磁束密
度方向性珪素鋼板。
2. Si: 1 to 7%, P: 0.03 to 0.1
5%, Sn: 0.02 to 0.20%, the average depth of the maximum portion was 2 to 50 μm on the surface of the steel sheet, and a groove in which forsterite was partially left at the bottom portion was 45 from the longitudinal direction of the steel sheet.
The average thickness of the primary coating mainly composed of forsterite, which is applied at intervals of 90 degrees, is 0.3 μm.
A high magnetic flux density grain-oriented silicon steel sheet having an extremely excellent iron loss, characterized in that the iron loss at W 17/50 is 0.70 Watt / kg or less at m or less.
【請求項3】 溝の間隔が2〜20mmであることを特
徴とする請求項1または2記載の極めて鉄損の優れた高
磁束密度方向性珪素鋼板。
3. The high magnetic flux density grain-oriented silicon steel sheet with extremely excellent iron loss according to claim 1 or 2, wherein the intervals between the grooves are 2 to 20 mm.
【請求項4】 Si:1〜7%、P:0.045%超〜
0.20%を含む鋼を溶製し、熱間圧延、冷間圧延、一
次再結晶焼鈍、焼鈍分離剤塗布、及び二次再結晶焼鈍を
基本工程とする方向性珪素鋼板の製造において、冷間圧
延中または冷間圧延後に、鋼板表面に最大部の深さの平
均が2〜50μmの溝を鋼板の長手方向から45〜90
度の方向に間隔を開けて付与し、次いで一次再結晶焼鈍
以降の工程を行い、一次再結晶焼鈍から二次再結晶焼鈍
の間に、鋼板表面に塩化物及び硫化物の少なくとも1種
類以上を含む物質を塗布し、二次再結晶焼鈍時に生成さ
れるフォルステライトを主成分とする絶縁性の一次被膜
の平均厚みを0.3μm以下とすることを特徴とする極
めて鉄損の優れた高磁束密度方向性珪素鋼板の製造法。
4. Si: 1 to 7%, P: more than 0.045%
Steel containing 0.20% is melted, and hot rolled, cold rolled, primary recrystallization annealing, application of an annealing separator, and secondary recrystallization annealing are the basic steps in the production of oriented silicon steel sheet. During hot rolling or after cold rolling, a groove having an average maximum depth of 2 to 50 μm is formed on the surface of the steel sheet by 45 to 90 from the longitudinal direction of the steel sheet.
Applied at intervals in the direction of the degree, then the steps after the primary recrystallization annealing are performed, and at least one or more kinds of chloride and sulfide are applied to the surface of the steel sheet between the primary recrystallization annealing and the secondary recrystallization annealing. A high magnetic flux with extremely excellent iron loss, characterized in that the average thickness of the insulative primary coating mainly composed of forsterite produced during secondary recrystallization annealing is 0.3 μm or less after coating with a substance containing Manufacturing method of density-oriented silicon steel sheet.
【請求項5】 Si:1〜7%、P:0.045%超〜
0.20%、Sn:0.02〜0.20%を含む鋼を溶
製し、熱間圧延、冷間圧延、一次再結晶焼鈍、焼鈍分離
剤塗布、及び二次再結晶焼鈍を、基本工程とする方向性
珪素鋼板の製造において、冷間圧延中または冷間圧延後
に鋼板表面に最大部の深さの平均が2〜50μmの溝を
鋼板の長手方向から45〜90度の方向に、間隔を開け
て付与し、次いで一次再結晶焼鈍以降の工程を行い、一
次再結晶焼鈍から二次再結晶焼鈍の間に、鋼板表面に塩
化物及び硫化物の少なくとも1種類以上を含む物質を塗
布し、二次再結晶焼鈍時に生成されるフォルステライト
を主成分とする絶縁性の一次被膜の平均厚みを0.3μ
m以下とすることを特徴とする極めて鉄損の優れた高磁
束密度方向性珪素鋼板の製造法。
5. Si: 1 to 7%, P: more than 0.045%
Steel containing 0.20% and Sn: 0.02 to 0.20% is smelted, and hot rolling, cold rolling, primary recrystallization annealing, application of an annealing separator, and secondary recrystallization annealing are basically performed. In the production of a grain-oriented silicon steel sheet as a step, during cold rolling or after cold rolling, a groove having an average maximum depth of 2 to 50 μm is formed on the surface of the steel sheet in a direction of 45 to 90 degrees from the longitudinal direction of the steel sheet. Apply at intervals, then perform the steps after the primary recrystallization annealing, and apply a substance containing at least one of chloride and sulfide to the surface of the steel sheet between the primary recrystallization annealing and the secondary recrystallization annealing. Then, the average thickness of the insulating primary coating mainly composed of forsterite generated during the secondary recrystallization annealing is 0.3 μm.
A method for producing a high magnetic flux density grain-oriented silicon steel sheet having an extremely excellent iron loss, which is characterized in that it is m or less.
【請求項6】 冷間圧延後付与する溝の間隔が2〜20
mmであることを特徴とする請求項4または5記載の極
めて鉄損の優れた高磁束密度方向性珪素鋼板の製造法。
6. The interval between grooves provided after cold rolling is 2 to 20.
The method for producing a high magnetic flux density grain-oriented silicon steel sheet having extremely excellent iron loss according to claim 4 or 5, wherein the grain size is mm.
【請求項7】 一次再結晶焼鈍時に窒化を行うことを特
徴とする請求項4〜6のいずれか1項に記載の極めて鉄
損の優れた高磁束密度方向性珪素鋼板の製造法。
7. The method for producing a high magnetic flux density grain-oriented silicon steel sheet having extremely excellent iron loss according to claim 4, wherein nitriding is performed during the primary recrystallization annealing.
【請求項8】 焼鈍分離剤に含有させる塩化物として塩
化カルシウムを、硫化物として硫化カリウムを添加する
ことを特徴とする請求項4〜7のいずれか1項に記載の
極めて鉄損の優れた高磁束密度方向性珪素鋼板の製造
法。
8. An extremely excellent iron loss according to claim 4, wherein calcium chloride is added as a chloride and potassium sulfide is added as a sulfide to be added to the annealing separator. Manufacturing method of high magnetic flux density grain-oriented silicon steel sheet.
【請求項9】 二次再結晶焼鈍時の昇温速度を毎時30
℃以下、また雰囲気ガス中の窒素分圧を30%以上とす
ることを特徴とする請求項4〜8のいずれか1項に記載
の極めて鉄損の優れた高磁束密度方向性珪素鋼板の製造
法。
9. The temperature rising rate during the secondary recrystallization annealing is 30 per hour.
The production of a high magnetic flux density grain-oriented silicon steel sheet having extremely excellent iron loss according to any one of claims 4 to 8, characterized in that the nitrogen partial pressure in the atmosphere gas is 30% or less and the nitrogen partial pressure is 30% or more. Law.
JP4340746A 1992-06-26 1992-12-21 Oriented silicon steel plate for low core loss and high flux density and manufacture thereof Withdrawn JPH06188116A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4340746A JPH06188116A (en) 1992-12-21 1992-12-21 Oriented silicon steel plate for low core loss and high flux density and manufacture thereof
DE69332394T DE69332394T2 (en) 1992-07-02 1993-07-01 Grain-oriented electrical sheet with high flux density and low iron losses and manufacturing processes
EP93110517A EP0577124B1 (en) 1992-07-02 1993-07-01 Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for producing the same
KR93012299A KR960009170B1 (en) 1992-07-02 1993-07-01 Grain oriented electrical steel sheet having high magnetic flux density and ultra iron loss and process for producing the same
US08/257,765 US5507883A (en) 1992-06-26 1994-06-09 Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for production the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4340746A JPH06188116A (en) 1992-12-21 1992-12-21 Oriented silicon steel plate for low core loss and high flux density and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06188116A true JPH06188116A (en) 1994-07-08

Family

ID=18339908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4340746A Withdrawn JPH06188116A (en) 1992-06-26 1992-12-21 Oriented silicon steel plate for low core loss and high flux density and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06188116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835214A (en) * 1991-02-22 1998-11-10 Applied Spectral Imaging Ltd. Method and apparatus for spectral analysis of images
JP2012126980A (en) * 2010-12-17 2012-07-05 Jfe Steel Corp Electromagnetic steel sheet and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835214A (en) * 1991-02-22 1998-11-10 Applied Spectral Imaging Ltd. Method and apparatus for spectral analysis of images
JP2012126980A (en) * 2010-12-17 2012-07-05 Jfe Steel Corp Electromagnetic steel sheet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR100526377B1 (en) Method for producing silicon-chromium grain oriented electrical steel
EP0076109B1 (en) Method of producing grain-oriented silicon steel sheets having excellent magnetic properties
CN113166892A (en) Oriented electrical steel sheet and method for manufacturing the same
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JPH06100937A (en) Production of silicon steel sheet having no glass film and extremely excellent in core loss
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP2014208895A (en) Method of producing grain oriented electrical steel
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
JPH06188116A (en) Oriented silicon steel plate for low core loss and high flux density and manufacture thereof
US5308411A (en) Ultrahigh silicon, grain-oriented electrical steel sheet and process for producing the same
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JPH06220541A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JP4291733B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet using the same
JPH06100997A (en) Silicon steel sheet free from glass film and excellent in magnetic property and its production
JPH06158167A (en) High magnetic flux density grain-oriented silicon steel sheet and its production
JPH06220540A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic property after domain control
JPH05295447A (en) Annealing method for finishing grain oriented electrical steel sheet in short time
JPH07258802A (en) Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property
JPH06136552A (en) Grain-oriented silicon steel sheet excellent in magnetic core loss and its production
KR100359242B1 (en) Low temperature heating method of high magnetic flux density oriented electrical steel sheet
JPH06172939A (en) High magnetic flux density/low core loss grain-oriented silicon steel sheet and its production
JPH06136446A (en) Production of grain-oriented silicon steel sheet having no glass coating and excellent in iron loss
JPH06220542A (en) Production of high magnetic flux density silicon steel sheet excellent in core loss
JPH05320767A (en) Silicon steel sheet extremely excellent in core loss and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307