JPH06220542A - Production of high magnetic flux density silicon steel sheet excellent in core loss - Google Patents

Production of high magnetic flux density silicon steel sheet excellent in core loss

Info

Publication number
JPH06220542A
JPH06220542A JP2604293A JP2604293A JPH06220542A JP H06220542 A JPH06220542 A JP H06220542A JP 2604293 A JP2604293 A JP 2604293A JP 2604293 A JP2604293 A JP 2604293A JP H06220542 A JPH06220542 A JP H06220542A
Authority
JP
Japan
Prior art keywords
steel sheet
recrystallization annealing
primary
steel plate
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2604293A
Other languages
Japanese (ja)
Inventor
Katsuro Kuroki
克郎 黒木
Hiroaki Masui
浩昭 増井
Osamu Tanaka
収 田中
Isao Iwanaga
功 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2604293A priority Critical patent/JPH06220542A/en
Publication of JPH06220542A publication Critical patent/JPH06220542A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To provide the method for producing a high magnetic flux density silicon steel sheet excellent in core loss. CONSTITUTION:In the SL process for a silicon steel sheet contg. 1 to 7% Si and in which >0.045 to 0.20% P and 0.02 to 0.20% Sn are coexistent, between 300 to 950 deg.C in the intermediate stage (before and after primary annealing), intermediate domain control such as groove formation is executed, by which the grain-oriented silicon steel sheet having extremely high magnetic flux density and ultralow core loss can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気特性に優れた方向性
電磁鋼板の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.

【0002】[0002]

【従来の技術】トランス用等の磁気特性に優れた珪素鋼
板を製造するに関して、絶縁特性の確保と鋼板表面に張
力を与えトランスの性能向上に必要な磁気特性を向上さ
せ、かつ鋼板との密着性が良好な一次皮膜を形成させる
ことは従来技術においては方向性電磁鋼板の一つの重要
な課題であった。
2. Description of the Related Art In manufacturing silicon steel sheets having excellent magnetic properties for transformers, etc., it is necessary to secure insulation properties and to give tension to the steel plate surface to improve the magnetic properties necessary for improving the performance of the transformer and to adhere to the steel plate. The formation of a primary coating having good properties has been one of the important issues of grain oriented electrical steel sheets in the prior art.

【0003】すなわち、通常の技術では脱炭を伴う一次
焼鈍後に鋼板にマグネシアと呼ばれる酸化マグネシウム
(MgO)の微粉末を水溶させたスラリー状のものを塗
り、必要に応じて乾燥させたあと、二次再結晶焼鈍工程
で焼成させ、鋼板中のSiO2 やSiとの反応でフォル
ステライト(Mg2 SiO4 )と呼ばれるセラミックス
質状の絶縁性の一次皮膜を形成させる。
That is, in the conventional technique, after the primary annealing accompanied by decarburization, a steel sheet is coated with a slurry of magnesium oxide (MgO) fine powder called magnesia, which is water-soluble, and dried if necessary. It is fired in the subsequent recrystallization annealing step, and a ceramic-like insulating primary film called forsterite (Mg 2 SiO 4 ) is formed by a reaction with SiO 2 and Si in the steel sheet.

【0004】これが鋼板に張力を与え、磁気特性とりわ
け鉄損と呼ばれるトランスの効率を支配する特性値を向
上させるのに有効である。しかも、このフォルステライ
ト形成の状態が、二次再結晶で鋼板の結晶方位を通称G
OSS方位と呼ばれ、透磁率や磁束密度の向上に不可欠
な鋼板長手方向(圧延方向)に対して{110}[00
1]の結晶方位を有するやや粗大な二次再結晶粒を成長
させるのにも重要な役割を果たしていることもよく知ら
れている。
This is effective for imparting tension to the steel sheet and improving the magnetic characteristics, especially the characteristic value called iron loss, which governs the efficiency of the transformer. Moreover, this state of forsterite formation is commonly referred to as G
This is called the OSS orientation and is {110} [00] with respect to the longitudinal direction (rolling direction) of the steel plate, which is essential for improving magnetic permeability and magnetic flux density.
It is well known that it also plays an important role in growing slightly coarse secondary recrystallized grains having the crystal orientation of [1].

【0005】逆に、二次再結晶焼鈍昇温過程中に十分緻
密な皮膜が形成されないまま二次再結晶をさせようとし
ても鋼板内のインヒビターと呼ばれる微細な窒化物や硫
化物等がそのままの状態で、あるいは分解して早く鋼板
外に抜けでてしまう。このため、昇温中にGOSS方位
粒を優先的に成長させ、他の方位粒の成長を抑制させる
役目のインヒビター効果が発揮できず、通称、細粒と呼
ばれ、GOSS方位粒の二次再結晶粒の成長が部分的あ
るいは全面的に行われない、極めて磁気特性の劣る鋼板
を生み出すことになる。
On the contrary, even if an attempt is made to carry out secondary recrystallization without forming a sufficiently dense film during the secondary recrystallization annealing temperature rising process, fine nitrides and sulfides called inhibitors in the steel sheet remain as they are. In the state or disassembled, it quickly comes out of the steel plate. Therefore, the inhibitor effect of growing the GOSS-oriented grains preferentially during the temperature rise and suppressing the growth of other oriented grains cannot be exhibited, and is commonly called fine grain. This results in a steel sheet with extremely poor magnetic properties, in which crystal grains do not grow partially or entirely.

【0006】なお、このMgOの中に酸化チタン(Ti
2 等)やその他の化合物を添加させ、さらに緻密な一
次皮膜を形成させることも行われる。しかるに、近年ア
モルファスの登場に見られるようにエネルギー節減のた
めのトランスのエネルギー変換効率に影響の大きい電磁
鋼板の鉄損低減への要求は大きく、上記の従来技術の延
長ではこの要望に耐えることは困難となってきた。
In this MgO, titanium oxide (Ti
(O 2 etc.) and other compounds may be added to form a denser primary film. However, there is a great demand for iron loss reduction of electrical steel sheets, which has a great influence on the energy conversion efficiency of transformers for energy saving as seen in the appearance of amorphous materials in recent years, and it is not possible to withstand this demand with the extension of the above conventional technology. It has become difficult.

【0007】従来技術においては上記の方法以外にも二
次再結晶後のいわゆる製品鋼板表面に機械的あるいはレ
ーザー等のエネルギー照射的な方法で溝あるいはなんら
かの損傷を意図的に与え、磁区細分化を行い、鉄損を向
上せしめる方法がおこなわれている。しかしながら、こ
の方法を持ってしてもまだアモルファスに対抗できるよ
うな低鉄損は実現困難であった。一方、フォルステライ
トを主成分とする一次皮膜は硬質な固形物質なるがゆえ
に製品のせん断等の加工性に難点があり、工具寿命の低
下をもたらしていた。
In the prior art, in addition to the above method, a so-called product steel plate surface after secondary recrystallization is intentionally provided with a groove or some damage by a method such as mechanical irradiation or energy irradiation such as a laser, so as to subdivide magnetic domains. The method is carried out to improve iron loss. However, even with this method, it was still difficult to realize a low iron loss that can counter amorphous. On the other hand, since the primary coating containing forsterite as a main component is a hard solid substance, it has a difficulty in workability such as shearing of the product, resulting in a shortened tool life.

【0008】[0008]

【発明が解決しようとする課題】本発明はこのような問
題点を解明し、以下のような骨子に示される技術的知見
から一次皮膜とよばれるフォルステライトを主成分とす
る固形物質の形成を極力抑え、かつ極めて低鉄損の方向
性電磁鋼板を得るべく新たな鉄損の優れた高磁束密度珪
素鋼板の製造法を提供する。
DISCLOSURE OF THE INVENTION The present invention has clarified such problems, and based on the technical knowledge shown in the following outline, the formation of a solid substance containing forsterite as a main component called a primary film is formed. Provided is a new method for producing a high magnetic flux density silicon steel sheet having excellent iron loss in order to obtain a grain-oriented electrical steel sheet having an extremely low iron loss as much as possible.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1)Si:1〜7%を含む鋼を溶製し、熱間圧延、冷
間圧延、一次再結晶焼鈍および二次再結晶焼鈍を基本工
程とする方向性電磁鋼板の製造において、一次再結晶焼
鈍昇温開始から冷却終了までの間の鋼板温度300℃〜
950℃の間に鋼板表面に最大部の深さの平均が2〜5
0μmの溝を鋼板長手方向から、45度〜90度の方向
に、間隔を開けて付与せしめ、その後に鋼板表面に塩化
物および硫化物の少なくとも一種類以上を含む物質を鋼
板表面に塗布し、その後に二次再結晶焼鈍を行い、二次
再結晶焼鈍時に生成されるフォルステライトを主成分と
する絶縁性の一次皮膜の平均厚みを0.3μm以下とす
ることを特徴とする極めて鉄損の優れた珪素鋼板の製造
法。
The gist of the present invention is as follows. (1) In the production of a grain-oriented electrical steel sheet in which a steel containing Si: 1 to 7% is smelted and hot rolling, cold rolling, primary recrystallization annealing and secondary recrystallization annealing are the basic steps, Steel plate temperature from the start of temperature rising of crystal annealing to the end of cooling 300 ° C ~
The average maximum depth of the steel plate surface was 2 to 5 during 950 ° C.
From the longitudinal direction of the steel plate, a groove of 0 μm is provided in a direction of 45 to 90 degrees at intervals, and then a substance containing at least one kind of chloride and sulfide is applied to the steel plate surface. After that, secondary recrystallization annealing is performed, and the average thickness of the insulative primary coating mainly composed of forsterite produced during the secondary recrystallization annealing is set to 0.3 μm or less. Excellent manufacturing method of silicon steel sheet.

【0010】(2)Si:1〜7%,P:0.045%
超〜0.20%,Sn:0.02〜0.20%を含む鋼
を溶製し、熱間圧延、冷間圧延、一次再結晶焼鈍および
二次再結晶焼鈍を基本工程とする方向性電磁鋼板の製造
において、一次再結晶焼鈍昇温開始から冷却終了までの
間の鋼板温度300℃〜950℃の間に鋼板表面に最大
部の深さの平均が2〜50μmの溝を鋼板長手方向か
ら、45度〜90度の方向に、間隔を開けて付与せし
め、その後に鋼板表面に塩化物および硫化物の少なくと
も一種類以上を含む物質を鋼板表面に塗布し、その後に
二次再結晶焼鈍を行い、二次再結晶焼鈍時に生成される
フォルステライトを主成分とする絶縁性の一次皮膜の平
均の厚みを0.3μm以下とすることを特徴とする極め
て鉄損の優れた珪素鋼板の製造法。
(2) Si: 1 to 7%, P: 0.045%
Directionality based on smelting steel containing super-0.20%, Sn: 0.02 to 0.20%, hot rolling, cold rolling, primary recrystallization annealing and secondary recrystallization annealing In the production of an electromagnetic steel sheet, a groove having an average maximum depth of 2 to 50 μm is formed on the surface of the steel sheet at a steel sheet temperature of 300 ° C. to 950 ° C. from the start of the primary recrystallization annealing to the end of cooling. From 45 degrees to 90 degrees, it is given with an interval, and then a steel sheet surface is coated with a substance containing at least one of chloride and sulfide, and then secondary recrystallization annealing is performed. And an average thickness of the insulative primary coating mainly composed of forsterite produced during the secondary recrystallization annealing is set to 0.3 μm or less. Law.

【0011】(3)鋼板に付与する溝の間隔を2〜20
mmとすることを特徴とする、鉄損の優れた珪素鋼板の製
造法。 (4)一次再結晶焼鈍時に窒化を行うことを特徴とす
る、鉄損の優れた珪素鋼板の製造法。 (5)鋼板表面に塗布する物質に含有させる塩化物とし
て塩化カルシュウム、硫化物として硫化カリウムを使用
する鉄損の優れた珪素鋼板の製造法。
(3) The distance between the grooves provided on the steel plate is set to 2 to 20.
mm is a method for producing a silicon steel sheet having excellent iron loss. (4) A method for producing a silicon steel sheet with excellent iron loss, which comprises nitriding during primary recrystallization annealing. (5) A method for producing a silicon steel sheet having excellent iron loss, which uses calcium chloride as a chloride and potassium sulfide as a sulfide to be contained in the substance to be applied to the surface of the steel sheet.

【0012】(6)二次再結晶焼鈍時の昇温速度を毎時
30℃以下、また雰囲気ガス中の窒素分圧を30%以上
とする珪素鋼板の製造法。 (7)Si:1〜7%,P:0.01〜0.15%を含
み、鋼板表面に鋼板の長手方向から45度〜90度の方
向で最大部の深さの平均が2〜50μmの底部にフォル
ステライトが一部残留した溝を有し、かつフォルステラ
イトを主成分とする固形硬質一次皮膜の平均厚みが0.
3μm以下の鉄損がW17/50で0.70Watt/kg以
下であることを特徴とする鉄損の優れた珪素鋼板。
(6) A method for producing a silicon steel sheet in which the temperature rising rate during the secondary recrystallization annealing is 30 ° C. or less per hour and the nitrogen partial pressure in the atmosphere gas is 30% or more. (7) Si: 1 to 7% and P: 0.01 to 0.15% are included, and the average depth of the maximum portion is 2 to 50 μm on the steel plate surface in the direction of 45 ° to 90 ° from the longitudinal direction of the steel plate. Has a groove in which forsterite partially remains, and the average thickness of the solid hard primary coating mainly composed of forsterite is 0.
A silicon steel sheet with excellent iron loss, which has an iron loss of 3 μm or less at W17 / 50 of 0.70 Watt / kg or less.

【0013】(8)Si:1〜7%,P:0.01〜
0.15%,Sn:0.02〜0.20%を含み、鋼板
表面に鋼板の長手方向から45度〜90度の方向で最大
部の深さの平均が2〜50μmの底部にフォルステライ
トが一部残留した溝を有し、かつフォルステライトを主
成分とする固形硬質一次皮膜の平均厚みが0.3μm以
下の鉄損がW17/50で0.70Watt/kg以下である
ことを特徴とする鉄損の優れた珪素鋼板。
(8) Si: 1 to 7%, P: 0.01 to
0.15%, Sn: 0.02 to 0.20%, and the forsterite on the bottom of the steel plate surface has an average maximum depth of 2 to 50 μm in the direction of 45 to 90 degrees from the longitudinal direction of the steel plate. Has a groove partially remaining therein, and has an iron loss of 0.70 Watt / kg or less at W17 / 50 when the solid hard primary coating containing forsterite as a main component has an average thickness of 0.3 μm or less. A silicon steel sheet with excellent iron loss.

【0014】(9)溝の間隔が2〜20mmであることを
特徴とする鉄損の優れた珪素鋼板。以下に本発明を詳細
に説明する。方向性珪素鋼板の二次再結晶はGOSS方
位と呼ばれる{110}[001]方位の粒を二次再結
晶焼鈍(仕上げ焼鈍とも呼ばれる)時に十分成長させる
ことが肝要である。これは1次再結晶焼鈍(以下、1次
焼鈍と呼ぶ)の中のある特定粒のみを粗大再結晶させる
もので、この時にインヒビター(Inhibitor)
と呼ばれるAlN等の微細析出物を仕上げ焼鈍前に十分
作っておくことが技術上必要であることがよく知られて
いる。
(9) A silicon steel sheet having excellent iron loss, characterized in that the groove interval is 2 to 20 mm. The present invention will be described in detail below. In the secondary recrystallization of the grain-oriented silicon steel sheet, it is important to grow grains of {110} [001] orientation called GOSS orientation during secondary recrystallization annealing (also called finish annealing). This is to coarsely recrystallize only certain specific grains in the primary recrystallization annealing (hereinafter referred to as primary annealing). At this time, an inhibitor (Inhibitor) is used.
It is well known in the art that it is technically necessary to make fine precipitates called AlN etc. before finish annealing.

【0015】そして、このために必要な窒素を鋼溶製時
または1次焼鈍後または他の工程中に添加することがお
こなわれる。本発明の目的からはむしろ1次焼鈍後に窒
素を添加する方法が最適な窒素の添加法であることもわ
かった。もし、一次焼鈍中または直後に窒素添加する場
合は、通常、脱炭反応も機能する1次焼鈍の設備の一部
に窒化反応を行う設備を内部または近接して設置し、1
次焼鈍後またはそれと平行させて窒化反応させる方法も
有効である。
Then, nitrogen necessary for this purpose is added during steel melting, after primary annealing, or during other steps. For the purpose of the present invention, it has been found that the method of adding nitrogen after the primary annealing is rather the optimum method of adding nitrogen. If nitrogen is added during or immediately after the primary annealing, the equipment for the nitriding reaction is usually installed inside or close to a part of the equipment for the primary annealing that also functions the decarburization reaction.
A method of performing a nitriding reaction after the subsequent annealing or in parallel with it is also effective.

【0016】鋼溶製時に十分低炭化した鋼では脱炭機能
よりも1次焼鈍後の表面層の酸化物層を変えて、被膜反
応に有利な形にすることがむしろ重要な役割となる。さ
て、本発明では一次再結晶焼鈍の昇温開始から冷却終了
までの間の鋼板温度300℃〜950℃の間に鋼板表面
に最大部の深さの平均が2〜50μmの溝を機械的、化
学的、光学的、熱的、電気的その他のエネルギー照射的
な方法で規則的な配列で付与せしめることが重要であ
る。
In the case of steel having a sufficiently low carbonization during steel melting, it is more important than the decarburizing function to change the oxide layer of the surface layer after the primary annealing so as to make it advantageous for the coating reaction. By the way, in the present invention, during the steel plate temperature 300 ° C. to 950 ° C. from the start of the temperature rise of the primary recrystallization annealing to the end of cooling, a groove having an average maximum depth of 2 to 50 μm is mechanically formed on the steel plate surface. It is important to apply them in a regular array by chemical, optical, thermal, electrical or other energy irradiation methods.

【0017】これはこの溝によって製品の磁区細分化が
より細かくすることが可能で鉄損低減に寄与するからで
ある。この溝の付与の仕方は溝付きロール、溝付きプレ
ス等の機械的方法、レーザー、プラズマ等のエネルギー
照射方法、水、油等を高圧で吹き付ける方法、酸等によ
る化学的腐食、電気的腐食による方法、あるいはそれら
を組み合わせた方法等、基本的に手段はどれでも良く、
要は上記の溝の要件を満たしていれば効果が認められ
る。
This is because the grooves can make the magnetic domains of the product finer and contribute to the reduction of iron loss. This groove can be applied by a mechanical method such as a grooved roll or a grooved press, an energy irradiation method such as laser or plasma, a method of spraying water or oil at a high pressure, a chemical corrosion by an acid or an electrical corrosion. Basically, any method such as a method or a method combining them,
The point is that the effect is recognized if the above groove requirements are met.

【0018】しかし、これだけでは本発明の狙いとする
低鉄損はえられない。本発明でもっとも重要な技術的な
要件は鋼板表面のフォルステライトを主成分とする一次
被膜の平均厚みとの組み合わせである。この厚みが0.
3μm以下のとき上記との組み合わせで極めて磁気特性
が向上することがわかった。この理由は必ずしもわかっ
ていないが、この一次被膜は厚いと鋼板の磁束の流れを
妨げ、とりわけ被膜に凹凸が多い場合や、フォルステラ
イト直下にスピネル(MgO・Al2 2 )等の酸化物
が多い場合はその傾向が大きいことは容易に想像でき
る。
However, the low iron loss, which is the object of the present invention, cannot be obtained by this alone. The most important technical requirement in the present invention is the combination with the average thickness of the primary coating mainly composed of forsterite on the surface of the steel sheet. This thickness is 0.
It was found that when the thickness is 3 μm or less, the magnetic properties are remarkably improved in combination with the above. The reason for this is not necessarily understood, but if this primary coating is thick, it obstructs the flow of magnetic flux in the steel sheet, especially if the coating has many irregularities, or if oxides such as spinel (MgO.Al 2 O 2 ) are formed directly under forsterite. It can be easily imagined that the tendency is large when there are many.

【0019】したがって表面の一次被膜を極力減らし薄
くするか、完全になくしてしまい、そのかわりに、規則
的な溝を形成させれば磁束は規則的に円滑に流れる。こ
の結果、鉄損も十分に低減できることになる。当然なが
ら溝の深さとピッチは制約されることになる。本発明で
の重要な点はさらに次の点にある。従来技術において、
いわゆる一次被膜を形成した後のいわば製品に近いもの
に溝をつけて磁区細分化する方法が行われている。これ
は同じく従来技術にある、中間工程で溝をつけた方法よ
り磁区制御効果が大きく出易いためである。
Therefore, if the primary coating on the surface is reduced as much as possible to be thin or completely eliminated, and if regular grooves are formed instead, the magnetic flux flows regularly and smoothly. As a result, iron loss can be sufficiently reduced. Of course, the depth and pitch of the groove will be limited. Further important points in the present invention are as follows. In the prior art,
A method is used in which a so-called primary product after forming a so-called primary coating is provided with grooves to subdivide magnetic domains. This is because the magnetic domain control effect is larger than that of the prior art method in which a groove is formed in the intermediate step.

【0020】しかしながら、本発明で明らかになったこ
とは、一次被膜厚みが極端に少ないか、ない場合はコス
ト的にも安価な一次再結晶焼鈍中または前後に溝を付け
る方法でも十分な磁区細分化効果が発揮されると言う事
実を見いだした点である。表1の化学成分(但し、Nは
一次焼鈍窒化後の値)を有する方向性電磁鋼板を熱延、
熱延焼鈍後0.23mmに冷間圧延し、一次再結晶焼鈍直
後の鋼板温度600℃〜700℃の温度範囲でこれにロ
ールで深さ15μm、ピッチ5mmの溝を付けて、冷却
後、この鋼板にMgOパウダーに添加物を種々変えて仕
上げ焼鈍を行い、一次被膜の平均厚みを変えて、さらに
張力を有する絶縁コーティングを塗布したサンプルの鉄
損を調べたのが図1である。
However, what has been made clear by the present invention is that if the thickness of the primary coating is extremely small or is not present, sufficient magnetic domain refinement can be achieved by the method of forming grooves during or before and after the primary recrystallization annealing which is inexpensive in terms of cost. This is the point that we found the fact that the chemical effect is exhibited. Hot-rolling a grain-oriented electrical steel sheet having the chemical composition shown in Table 1 (where N is a value after primary annealing and nitriding),
After hot rolling annealing, cold rolling was performed to 0.23 mm, and a steel plate immediately after primary recrystallization annealing was provided with a roll having a groove with a depth of 15 μm and a pitch of 5 mm in the temperature range of 600 ° C. to 700 ° C., and after cooling, FIG. 1 shows the iron loss of a sample in which a steel sheet was finish-annealed by changing various additives to MgO powder, the average thickness of the primary coating was changed, and an insulating coating having tension was further applied.

【0021】[0021]

【表1】 [Table 1]

【0022】これをみても明らかに一次被膜の厚みが小
さくなるほど鉄損の低減(向上)が見られ、とりわけ
0.3μm以下でそれが顕著であることがわかる。これ
は溝が一次再結晶焼鈍直後という中間工程につけて溝の
中に後工程でフォルステライト等が詰まって磁区制御効
果が劣化しても鋼板表面の一次被膜の平均厚みが少ない
か、ない場合は十分磁区細分化されることを示してい
る。
From this, it can be seen that as the thickness of the primary coating becomes smaller, the iron loss is reduced (improved), and particularly at 0.3 μm or less, this is remarkable. This is because the average thickness of the primary coating on the surface of the steel sheet is small or absent even if the groove is subjected to an intermediate step immediately after primary recrystallization annealing and forsterite etc. is clogged in the groove in the subsequent step and the magnetic domain control effect deteriorates. It shows that the magnetic domains are sufficiently subdivided.

【0023】さらに本発明で重要な点は一次再結晶焼鈍
中または前後の比較的高温域で鋼板に溝をつけるという
点である。表2の化学成分の鋼について(a)一次再結
晶焼鈍後の鋼板を常温(25℃)でロール法で溝をつけ
た場合、(b)600℃で溝をつけた場合、のそれぞれ
について二次再結晶させた結果を図2に示す。
Further, an important point in the present invention is that the steel sheet is grooved in a relatively high temperature region before or after the primary recrystallization annealing. Regarding the steels having the chemical compositions shown in Table 2, (a) when the steel sheet after primary recrystallization annealing is grooved by the roll method at room temperature (25 ° C), and (b) when it is grooved at 600 ° C. The result of the subsequent recrystallization is shown in FIG.

【0024】[0024]

【表2】 [Table 2]

【0025】これではっきり云えることは、(a)の常
温で溝をつけた場合は溝の周辺に細粒が発生するが、
(b)の600℃で溝をつけた場合はそのような現象は
みられない。つまり、一次再結晶板に高温で溝を付けた
場合は二次再結晶後も正常な組織になり、磁性も良好に
なる。
What is clear from this is that when the groove is formed at room temperature (a), fine grains are generated around the groove.
When a groove is formed at 600 ° C. in (b), such a phenomenon is not observed. That is, when grooves are formed on the primary recrystallized plate at a high temperature, the structure becomes normal even after the secondary recrystallization, and the magnetism becomes good.

【0026】次に、二次再結晶を行う場合にAlを添加
する場合はインヒビターとしてAlNやSi3 4 をメ
インに使うが、ここで本発明の方法の一つとして一次焼
鈍中か後に窒化せしめる方法の方がより本発明の目的に
好ましいことがわかった。これは以下の理由による。鋼
溶製時に窒素を多く添加する場合とことなり、後で窒化
する方がAlN,Si3 4 の最適量はコントロールし
やすく、二次再結晶焼鈍時に、本発明のようにフォルス
テライト等の一次被膜が薄くなるか消失しても雰囲気中
の窒素分圧(PN2)をコントロールすることで最適窒素
量を確保しやすいからであろう、と考えられる。
Next, when Al is added during the secondary recrystallization, AlN or Si 3 N 4 is mainly used as an inhibitor. Here, as one of the methods of the present invention, nitriding is performed during or after the primary annealing. It has been found that the buffing method is more preferable for the purpose of the present invention. This is for the following reason. Unlike the case where a large amount of nitrogen is added during steel melting, it is easier to control the optimum amount of AlN and Si 3 N 4 by nitriding later, and during secondary recrystallization annealing, forsterite etc. like the present invention is used. It is considered that even if the primary coating becomes thin or disappears, the optimum nitrogen amount can be easily secured by controlling the nitrogen partial pressure (P N2 ) in the atmosphere.

【0027】次に、仕上げ焼鈍時の一次被膜を極力少な
くするか無くするために、本発明では一次焼鈍後の鋼板
表面に塩化物、硫化物を通常のマグネシア(MgO)パ
ウダーのなかに混ぜて添加することが有効であることが
わかった。この中でもとりわけ塩化カルシウム(CaC
2 )、硫化カリウム(K2 S)は有効である。なお、
通常法でもMgO以外にTiO2 やアンチモン系の化合
物(Sb2 (SO4 3 )やボロン系の化合物(Na2
4 7 )、ストロンチウム・バリウム系、炭・窒化物
系等を添加して反応を容易にすることが行われるが、本
発明でもこれらの添加物の効果は発揮されるので添加し
ても本発明の本質を変えるものではない。
Next, in order to reduce or eliminate the primary coating film during finish annealing as much as possible, in the present invention, chloride and sulfide are mixed on the surface of the steel sheet after primary annealing in ordinary magnesia (MgO) powder. It has been found effective to add. Among these, calcium chloride (CaC
1 2 ) and potassium sulfide (K 2 S) are effective. In addition,
In the conventional method, in addition to MgO, TiO 2 and antimony compounds (Sb 2 (SO 4 ) 3 ) and boron compounds (Na 2
B 4 O 7 ), strontium-barium-based, carbon-nitride-based, etc. are added to facilitate the reaction. However, even in the present invention, the effects of these additives are exerted, so that they can be added. It does not change the essence of the invention.

【0028】さて、本発明で極めて重要な点はPの挙動
である。表3にPの量のみを変えた鋼の一次再結晶後の
X線による結晶方位の{111}の面指数強度を同表に
示す。これを一次再結晶後窒化し、二次再結晶させた鋼
板の磁束密度を同表に示す。明らかに、の量と共にこ
れらの値は変化していることがわかる。一方、Pと共存
してSnが添加されると0.06%P−3%Si鋼の例
の図3のように鉄損までも低減され好ましい。これはS
nによる製品の細粒化効果と考えられる。
A very important point in the present invention is the behavior of P. Table 3 shows the {111} plane index strength of the crystal orientation by X-ray after primary recrystallization of the steel in which only the amount of P was changed. The magnetic flux densities of the steel sheets obtained by primary recrystallization, nitriding and secondary recrystallization are shown in the same table. Clearly, it can be seen that these values change with the amount of P. On the other hand, when Sn is added in coexistence with P, even iron loss is reduced as shown in FIG. 3 of the example of 0.06% P-3% Si steel, which is preferable. This is S
It is considered that this is due to the product refining effect of n.

【0029】[0029]

【表3】 [Table 3]

【0030】さて、次に珪素鋼板の製造方法について説
明する。前述のように本発明が可能な珪素鋼板はSi以
外に必要に応じてAlを含有し、Si3 4 あるいはA
lN、および鋼中のSが多いばあいはMnSを主要イン
ヒビターとする鋼に限定される。もちろんSi,Al,
P,Sn以外に、Se,Sb,Cu,B,Nb,Ti,
V,Ni,Cr等の他の添加元素を付加的に添加させ、
磁気特性の向上をはかることは本発明の基本を変えるも
のではない。
Now, a method for manufacturing a silicon steel sheet will be described. As described above, the silicon steel sheet according to the present invention contains Al as needed in addition to Si, and contains Si 3 N 4 or A
In the case of 1N and a large amount of S in the steel, the steel is limited to MnS as a main inhibitor. Of course Si, Al,
In addition to P and Sn, Se, Sb, Cu, B, Nb, Ti,
Other additive elements such as V, Ni and Cr are additionally added,
Improving the magnetic properties does not change the basics of the invention.

【0031】ところでAlNあるいはSi3 4 ,Mn
Sをインヒビターとする鋼は公知であり、そのいずれの
場合においても本発明の技術を適用することが可能であ
る。しかしながら、本発明の特徴をより一層発揮させる
にはとりわけ以下に示す製造法が最適である。すなわち
Siを1〜7%含む鋼で必要に応じAlを鋼溶製時に
0.1%以下含み、Nを珪素鋼板製造工程における冷延
後の一次焼鈍中の脱炭焼鈍中または後に鋼板に直接窒化
反応を介して鋼にNを強制的に添加せしめる方法によ
り、二次再結晶焼鈍前にNを30ppm 〜600ppm 鋼に
含むことを特徴とする。
By the way, AlN or Si 3 N 4 , Mn
Steel containing S as an inhibitor is known, and the technique of the present invention can be applied to any of the cases. However, the following production method is most suitable for further exerting the characteristics of the present invention. That is, in a steel containing 1 to 7% of Si, if necessary, Al is contained in an amount of 0.1% or less when the steel is melted, and N is directly applied to the steel sheet during or after decarburization annealing during primary annealing after cold rolling in the silicon steel sheet manufacturing process. It is characterized in that N is contained in the steel in an amount of 30 ppm to 600 ppm before the secondary recrystallization annealing by the method of forcibly adding N to the steel through the nitriding reaction.

【0032】Siは本発明においては上記のようにフォ
ルステライト形成のために最低1%は必要である。一
方、7%を越えると加工性が極端に劣化し工業生産に適
さない。AlはAlNインヒビター形成に有効である。
しかし0.1%を越えるとAl2 3 生成量が多くなり
健全な鋼の清浄度を損ない、ひいては磁気特性に悪影響
をもたらす。
In the present invention, at least 1% of Si is necessary for forming forsterite as described above. On the other hand, if it exceeds 7%, the workability is extremely deteriorated and it is not suitable for industrial production. Al is effective in forming an AlN inhibitor.
However, if it exceeds 0.1%, the amount of Al 2 O 3 produced increases, impairing the cleanliness of sound steel, and thus adversely affecting the magnetic properties.

【0033】NはSi3 4 インヒビターを形成するの
に不可欠であり、本発明においては1次焼鈍後つまり、
仕上げ焼鈍前で最低30ppm は必要である。一方Alを
意図的に使う場合にはAlNの量確保の点で60ppm 以
上は必要である。ただし、600ppm を越えるとAlや
Siを食いすぎて好ましくない。Sはこれを積極的に利
用する場合は最低0.01%はMnSをインヒビターと
して有効に使うのに必要である。一方、0.05%超で
は凝集して好ましくない。
N is indispensable for forming the Si 3 N 4 inhibitor, and in the present invention, after the primary annealing, that is,
A minimum of 30 ppm is required before finish annealing. On the other hand, when Al is intentionally used, 60 ppm or more is necessary to secure the amount of AlN. However, if it exceeds 600 ppm, Al and Si are excessively eaten, which is not preferable. When S is positively used, at least 0.01% of S is necessary for effectively using MnS as an inhibitor. On the other hand, if it exceeds 0.05%, aggregation is not preferable.

【0034】この他の元素は本発明では従来の鋼に較べ
て特に特徴的ではないが以下に制約することが好まし
い。Pは本発明では極めて重要である。鋼溶製時に0.
045%以下では磁束密度を高める効果が薄く、一方
0.20%超では脆性が大きくなって、冷間圧延が困難
である。
The other elements are not particularly characteristic in the present invention as compared with the conventional steel, but the following restrictions are preferable. P is extremely important in the present invention. When steel is melted, 0.
If it is 045% or less, the effect of increasing the magnetic flux density is small, while if it exceeds 0.20%, brittleness becomes large, and cold rolling is difficult.

【0035】なお、製品中のの量は本発明では重要で
ある。は鉄に固溶し、又、一部析出して存在するが、
製品中の鉄損低減に極めて有効であり、最低0.03%
存在しないとその効果は発揮できない。一方0.15%
超も存在すると製品の脆化をもたらし、たとえば製品の
加工性、打抜き性を損い、使用に耐えない。Cは鋼溶製
中に十分低くするかまたは一次焼鈍の脱炭焼鈍時に十分
低くする必要があり、二次再結晶焼鈍開始時には0.0
3%以下が好ましい。
The amount of P in the product is important in the present invention. P exists as a solid solution in iron and is also partly precipitated,
Extremely effective in reducing iron loss in products, at least 0.03%
If it does not exist, its effect cannot be exerted. On the other hand, 0.15%
If it is present too much, it causes brittleness of the product, impairs workability and punchability of the product, and cannot be used. C must be sufficiently low during steel melting or sufficiently low during decarburization annealing of the primary annealing, and 0.0 at the start of secondary recrystallization annealing.
It is preferably 3% or less.

【0036】Mnは0.5%以下ならばSと反応してM
nSインヒビターを形成する。0.15以下だとさらに
磁束密度の向上に好ましい。Oは鋼溶製後に0.05%
以下であればAl2 3 を多量に作りすぎず清浄度的に
好ましい。Snは本発明ではPと共存するとき鉄損低減
効果が著しくある。0.02%未満ではその効果はな
く、一方、0.20%超では窒化が十分でないインヒビ
ターが弱くなり、一方一次皮膜も十分できず特性は劣下
する。
If Mn is less than 0.5%, it reacts with S and becomes M.
Form nS inhibitors. When it is 0.15 or less, it is preferable for further improvement of the magnetic flux density. O is 0.05% after steel is melted
The following is preferable in terms of cleanliness without making too much Al 2 O 3 . In the present invention, Sn has a remarkable iron loss reducing effect when coexisting with P. If it is less than 0.02%, there is no effect. On the other hand, if it exceeds 0.20%, the inhibitor which is not sufficiently nitrided becomes weak, while the primary film cannot be sufficiently formed and the properties are deteriorated.

【0037】次に化学成分以外の本発明の製造方法につ
いて述べる。鋼を転炉または電気炉等で出鋼し、必要に
応じて精練工程を加えて成分調整を行った溶鋼を連続鋳
造法、造塊分塊圧延法あるいは熱延工程省略のための薄
スラブ連続鋳造法等により、厚さ30〜400mm(薄ス
ラブ連続鋳造法では50mm以下)のスラブとする。ここ
で30mmは生産性の下限であり、400mmは中心偏析で
Al2 3 等の分布が異常になることを防ぐための上限
である。また50mmは冷速が小さくなって粗大粒が出て
くることを抑制するための上限である。
Next, the manufacturing method of the present invention other than the chemical components will be described. Continuous casting method, ingot slabbing method, or thin slab continuous method for skipping hot rolling process, where steel is tapped in a converter or electric furnace, and a refining process is added as necessary to adjust the composition. A slab having a thickness of 30 to 400 mm (50 mm or less in the thin slab continuous casting method) is formed by a casting method or the like. Here, 30 mm is the lower limit of productivity, and 400 mm is the upper limit for preventing abnormal distribution of Al 2 O 3 etc. due to center segregation. Further, 50 mm is the upper limit for suppressing the generation of coarse particles due to the low cooling rate.

【0038】該スラブをガス加熱、電気利用加熱等によ
り1000℃〜1400℃に再加熱を行い、ひき続き熱
間圧延を行って厚さ10mm以下のホットコイルとする。
ここで1000℃はAlN溶解の下限であり、1400
℃は表面肌あれと材質劣化の上限である。また10mmは
適正な析出物を生成する冷速を得る上限である。なお、
薄スラブ連続鋳造法では直接コイル状にすることも可能
であり、そのためには10mm以下が好ましい。このよう
に作ったホットコイルを再び800〜1250℃で焼鈍
し、磁性向上をはかることもしばしばおこなわれる。
The slab is reheated to 1000 ° C. to 1400 ° C. by gas heating, electric heating, etc., and then hot rolled to obtain a hot coil having a thickness of 10 mm or less.
Here, 1000 ° C. is the lower limit of AlN melting,
C is the upper limit of surface roughness and material deterioration. Further, 10 mm is an upper limit for obtaining a cold speed at which an appropriate precipitate is formed. In addition,
In the thin slab continuous casting method, it is possible to directly form a coil, and for that purpose, 10 mm or less is preferable. The hot coil thus produced is often annealed again at 800 to 1250 ° C. to improve magnetism.

【0039】ここで800℃はAlN再溶解の下限であ
り、1250℃はAlN粗粒化防止の上限である。かか
る処理工程の後、ホットコイルを直接またはバッチ的に
酸洗後冷間圧延を行い。冷間圧延は圧下率60〜95%
で行うが、60%は本発明で再結晶可能な限界であり、
このましくは70%以上が一次焼鈍で{111}[11
2]方位粒を多くして、二次再結晶焼鈍時のGOSS方
位粒の生成を促進させる下限であり、一方95%超では
二次再結晶焼鈍で首振りGOSS粒と称するGOSS方
位粒が板面内回転した磁気特性に好ましくない粒が生成
される。
Here, 800 ° C. is the lower limit for remelting AlN, and 1250 ° C. is the upper limit for preventing AlN coarsening. After such a treatment step, the hot coil is pickled directly or batchwise and then cold rolled. Cold rolling is 60-95% reduction
However, 60% is the limit of recrystallization in the present invention,
70% or more of primary annealing is preferably {111} [11
2] It is the lower limit of increasing the number of oriented grains to promote the generation of GOSS oriented grains during secondary recrystallization annealing, while above 95%, GOSS oriented grains called swinging GOSS grains in secondary recrystallization annealing are plates. Grains are generated which are unfavorable for the in-plane rotated magnetic properties.

【0040】以上はいわゆる一回冷延法で製造する場合
だが、なお、二回冷延法と称して冷延−焼鈍−冷延を行
う場合は、一回目の圧下率は10〜80%、二回目の圧
下率は50〜95%となる。ここで10%は再結晶に必
要な最低圧下率、80%と95%はそれぞれ二次再結晶
時に適正なGOSS方位粒を生成させるための上限圧下
率、また50%は二回冷延法においては一次焼鈍時の
{111}[112]方位粒を適正に残す下限圧下率で
ある。
The above is the case of manufacturing by the so-called single cold rolling method. However, in the case of performing cold rolling-annealing-cold rolling called the double cold rolling method, the first rolling reduction is 10 to 80%, The second rolling reduction is 50 to 95%. Here, 10% is the minimum reduction ratio necessary for recrystallization, 80% and 95% are the upper limit reduction ratios for producing proper GOSS-oriented grains during secondary recrystallization, respectively, and 50% in the double cold rolling method. Is the lower limit of the reduction ratio that appropriately leaves the {111} [112] oriented grains during the primary annealing.

【0041】なお、通称パス間エージングと称し、冷間
圧延の途中で鋼板を適当な方法で100〜400℃の範
囲で加熱することも磁気特性の向上に有効である。10
0℃未満ではエージングの効果がなく、一方、400℃
超では転位が回復してしまう。次に一次再結晶焼鈍を行
うわけであるが、本発明で重要な要件はこの過程中また
は前後での鋼板温度300℃〜950℃での溝形成であ
る。ここで、300℃未満では鋼板に歪が入り、二次再
結晶後に溝の周囲に細粒が生じ、鉄損を著しく劣化させ
る。好ましくは600℃以上が良い。一方、950℃超
では一次再結晶粒が粗大化し、二次再結晶時に鉄損に好
ましいGOSS方位が得られない。
It is also commonly called "interpass aging", and heating the steel sheet in the range of 100 to 400 ° C by an appropriate method during the cold rolling is also effective for improving the magnetic properties. 10
Below 0 ℃, there is no effect of aging, while at 400 ℃
If it exceeds the limit, dislocations will be recovered. Next, primary recrystallization annealing is performed. An important requirement in the present invention is groove formation at a steel plate temperature of 300 ° C to 950 ° C during or before this process. Here, if the temperature is less than 300 ° C., the steel sheet will be distorted, and fine grains will be formed around the groove after the secondary recrystallization, which will significantly deteriorate the iron loss. It is preferably 600 ° C. or higher. On the other hand, if it exceeds 950 ° C., the primary recrystallized grains become coarse, and a GOSS orientation that is favorable for iron loss cannot be obtained during secondary recrystallization.

【0042】溝形成は一次再結晶焼鈍の昇温開始から冷
却終了までの高温域で行う方が省エネルギー的にも好ま
しいが、本発明の効果は一次再結晶焼鈍冷却後に再加熱
して300℃〜950℃の範囲で溝をつけても同様の効
果がある。さてこのようにしてつくられた溝が仕上げ焼
鈍後に残り、フォルステライトを主成分とする一次皮膜
を平均0.3μm以下と極めて少なくする方法との組み
合わせで従来にみられない低鉄損が得られるわけであ
る。0.3μmの理由は前述の通りであり、これよりも
厚いと、本発明の中間工程で溝をつける方法では十分な
低鉄損が得られない。溝の形成方法は前述の通りである
が、溝の最大部の平均の深さが2μm未満では磁区細分
化効果がない。一方、50μm超では深すぎて磁束の円
滑な流れを妨げてかえって鉄損も悪くなる。好ましくは
5〜30μmが良い。溝は規則的に配列されている方が
良い。
It is preferable to perform the groove formation in a high temperature range from the start of the temperature rise of the primary recrystallization annealing to the end of cooling in terms of energy saving, but the effect of the present invention is to reheat after the primary recrystallization annealing to 300 ° C. The same effect can be obtained by forming a groove in the range of 950 ° C. The grooves thus formed remain after finish annealing, and a low iron loss, which cannot be seen in the past, can be obtained in combination with the method of reducing the average primary coating containing forsterite to 0.3 μm or less. That is why. The reason for 0.3 μm is as described above, and if it is thicker than this, a sufficiently low iron loss cannot be obtained by the groove forming method in the intermediate step of the present invention. The method of forming the groove is as described above, but if the average depth of the maximum part of the groove is less than 2 μm, there is no magnetic domain subdivision effect. On the other hand, if it exceeds 50 μm, it is too deep and the smooth flow of the magnetic flux is hindered, and the iron loss deteriorates. It is preferably 5 to 30 μm. The grooves should be regularly arranged.

【0043】これは、磁区細分化が規則的に行われるか
らである。通常鋼板長手方向に対し45度から直角まで
の角度を有するほぼ一定のピッチで刻まれることが好ま
しい。45度未満では磁区細分化の方向が磁性に好まし
い結晶学的方位とあわないからである。また、溝のピッ
チは2〜20mmが好ましい。2mm未満では磁区細分化が
進みすぎて90°磁区が増え、鉄損も磁歪も悪い。一
方、20mm超では磁区細分化の効果がでない。
This is because the magnetic domain subdivision is regularly performed. Usually, it is preferable to engrave at a substantially constant pitch having an angle of 45 degrees to a right angle with respect to the longitudinal direction of the steel sheet. If it is less than 45 degrees, the direction of magnetic domain subdivision does not match the crystallographic orientation preferred for magnetism. The pitch of the grooves is preferably 2 to 20 mm. If it is less than 2 mm, the magnetic domains are subdivided too much and the 90 ° magnetic domains increase, resulting in poor core loss and magnetostriction. On the other hand, if it exceeds 20 mm, the effect of domain division is not obtained.

【0044】なお、二回冷間圧延法においては一回目、
二回目のいずれの焼鈍時でも溝を形成することは可能で
あり、さらにその両者で分割して行うことも可能であ
る。一次再結晶焼鈍中または引き続いて直後に必要に応
じて窒化をおこなう。なお、一回冷延法でも二回冷延法
でも一次焼鈍を行うわけであるが、この焼鈍で脱炭を行
うことは有効である。前述のようにCは二次再結晶粒の
成長に好ましくないばかりか、不純物として残ると鉄損
の劣化を招く。
In the double cold rolling method, the first
It is possible to form the groove in any of the second annealings, and it is also possible to divide the groove into both. If necessary, nitriding is performed during the primary recrystallization annealing or immediately thereafter. Although the primary annealing is performed in both the single cold rolling method and the double cold rolling method, decarburization is effective in this annealing. As described above, C is not preferable for the growth of secondary recrystallized grains, and if it remains as an impurity, it causes deterioration of iron loss.

【0045】なお、鋼の溶製時にCを下げておくと脱炭
工程が短縮化されるばかりか{111}[112]方位
粒も増やすので好ましい。なお、この脱炭焼鈍工程で適
正な露点を設定することで後の一次被膜生成に必要な酸
化層の確保がおこなわれる。一次焼鈍温度は700〜9
50℃が好ましい。ここで700℃は再結晶可能な下限
温度であり、950℃は一次再結晶の粗大粒の発生を抑
制する上限温度である。
It is preferable that C is lowered during the melting of steel because not only the decarburization process is shortened but also {111} [112] oriented grains are increased. By setting an appropriate dew point in this decarburization annealing step, an oxide layer necessary for subsequent primary film formation is secured. Primary annealing temperature is 700-9
50 ° C is preferred. Here, 700 ° C. is the lower limit temperature at which recrystallization is possible, and 950 ° C. is the upper limit temperature at which the generation of coarse grains in primary recrystallization is suppressed.

【0046】さらに、AlNやSi3 4 インヒビター
のNをこの一次焼鈍時に窒化法等で強制添加する本発明
においては上記の一次焼鈍中または直後に引き続きアン
モニア(NH3 )等で窒化法により窒化することがおこ
なわれる。この場合の窒化法の温度は600〜950℃
がこのましい。ここで600℃は窒化反応を起こす下限
であり、一方950℃は粗大粒発生を抑える上限であ
る。本発明においては窒化は一次再結晶焼鈍後に行うの
が好ましいが工業的には同じ炉内の後面に仕切りを設け
て雰囲気を必要に応じて多少変えて、NH3 ガスを流す
か、近接した設備で行うため一次再結晶と平行して窒化
させることもしばしばある。この際前述のようにN2
圧が低い方が窒化量は大きく、このましくは窒素と酸素
の分圧比PN2/PH2は0.5以下が好ましい。
Further, in the present invention in which AlN or N of Si 3 N 4 inhibitor is forcibly added during the primary annealing by the nitriding method or the like, the nitriding method is performed with ammonia (NH 3 ) or the like during or immediately after the primary annealing. Is done. The temperature of the nitriding method in this case is 600 to 950 ° C.
Is this good. Here, 600 ° C. is the lower limit for causing the nitriding reaction, while 950 ° C. is the upper limit for suppressing the generation of coarse particles. In the present invention, nitriding is preferably performed after the primary recrystallization annealing, but industrially, a partition is provided on the rear surface of the same furnace and the atmosphere is slightly changed as necessary, and NH 3 gas is passed or a nearby facility is installed. Therefore, nitriding is often performed in parallel with the primary recrystallization. At this time, as described above, the lower the partial pressure of N 2 is, the larger the amount of nitriding is, and the partial pressure ratio P N2 / P H2 of nitrogen and oxygen is preferably 0.5 or less.

【0047】一次焼鈍の昇温開始から冷却終了までの
間、また、上記窒化法を行う場合は一次再結晶焼鈍開始
から窒化後冷却終了後までの間で鋼板表面温度が300
℃〜950℃の間に鋼板表面に最大部の深さの平均が2
〜50μmの溝を機械的、化学的、光学的、熱的、電気
的その他のエネルギー照射的な方法で規則的な配列で付
与せしめる。溝の形成方法は前述の通りであるが、溝の
最大部の平均の深さが2μm未満では磁区細分化効果が
ない。
The surface temperature of the steel sheet is 300 from the start of the temperature rise of the primary annealing to the end of cooling, and in the case of performing the nitriding method, from the start of the primary recrystallization annealing to the end of cooling after nitriding.
Between ℃ and 950 ℃, the average of the maximum depth on the steel plate surface is 2
Grooves of .about.50 .mu.m are provided in a regular array by mechanical, chemical, optical, thermal, electrical or other energy irradiation method. The method of forming the groove is as described above, but if the average depth of the maximum part of the groove is less than 2 μm, there is no magnetic domain subdivision effect.

【0048】一方、50μm超では深すぎて磁束の円滑
な流れを妨げてかえって鉄損も悪くなる。このましくは
5〜30μmが良い。溝は規則的に配列されている方が
良い。これは、磁区細分化が規則的に行われるからであ
る。通常鋼板長手方向に対して45度から直角までの角
度を有するほぼ一定のピッチで刻まれることが好まし
い。45度未満では磁区細分化の方向が磁性に好ましい
結晶学的方位とあわないからである。
On the other hand, if it exceeds 50 μm, it is too deep and the smooth flow of the magnetic flux is hindered, and the iron loss becomes worse. It is preferably 5 to 30 μm. The grooves should be regularly arranged. This is because the magnetic domain is subdivided regularly. Usually, it is preferable to engrave at a substantially constant pitch having an angle of 45 degrees to a right angle with respect to the longitudinal direction of the steel sheet. If it is less than 45 degrees, the direction of magnetic domain subdivision does not match the crystallographic orientation preferred for magnetism.

【0049】また、溝のピッチは2〜20mmが好まし
い。2mm未満では磁区細分化が進みすぎて90°磁区が
増え、鉄損も磁歪も悪い。一方、20mm超では磁区細分
化の効果がでない。一次焼鈍あるいは必要に応じて上記
窒化法を行い、その後、酸化マグネシウム(MgOを主
成分とする。以下MgOと呼ぶ)パウダーを水または水
を主成分とする水溶液に溶かしスラリー状にして鋼板に
塗布する。この際、後の二次再結晶焼鈍時にMgOパウ
ダーの溶融を容易にさせ、フォルステライト生成反応を
促進させる目的で、適当な化合物を微量添加することも
おこなわれる。
The groove pitch is preferably 2 to 20 mm. If it is less than 2 mm, the magnetic domains are subdivided too much and the 90 ° magnetic domains increase, resulting in poor core loss and magnetostriction. On the other hand, if it exceeds 20 mm, the effect of domain division is not obtained. Primary annealing or, if necessary, the above nitriding method is performed, and then magnesium oxide (MgO as a main component; hereinafter referred to as MgO) powder is dissolved in water or an aqueous solution containing water as a main component to form a slurry, which is applied to a steel sheet. To do. At this time, a trace amount of an appropriate compound may be added for the purpose of facilitating the melting of the MgO powder during the subsequent secondary recrystallization annealing and promoting the forsterite formation reaction.

【0050】TiO2 を添加する場合は1〜15%が好
ましいが、ここで1%はフォルステライト反応促進効果
を発揮する下限であり、15%超ではMgOが少なくな
ってかえってフォルステライト反応が進まない。Sb2
(SO4 3 等のアンチモン系の化合物はMgOを比較
的低温で溶融させるのに効果があり、添加を行う場合は
0.05〜5%が好ましい。ここで、0.05%は上記
低温溶融を起こす下限であり、一方、5%を越える場合
は多すぎてMgOのフォルステライトの本来の反応を不
活性化する。
When TiO 2 is added, 1 to 15% is preferable. Here, 1% is the lower limit for exerting the effect of promoting the forsterite reaction, and if it exceeds 15%, the amount of MgO decreases and the forsterite reaction proceeds rather. Absent. Sb 2
An antimony-based compound such as (SO 4 ) 3 is effective in melting MgO at a relatively low temperature, and when added, 0.05 to 5% is preferable. Here, 0.05% is the lower limit for causing the above-mentioned low-temperature melting, while on the other hand, when it exceeds 5%, it is too much to inactivate the original reaction of MgO forsterite.

【0051】Na2 4 7 等のボロン系の化合物およ
びそれと同様の作用を持つストロンチウム・バリウム
系、炭・窒化物系、硫化物系、塩化物系の化合物はアン
チモン系よりは比較的高温でMgOを溶融させるのに効
果があり、添加する場合は0.05〜5%が好ましい。
ここで、0.05%は上記の効果を発揮する下限であ
り、一方5%超ではやはりMgOのフォルステライトの
本来の反応を不活性化するので好ましくない。なおこれ
らの化合物は互いに複合して添加することも可能であ
る。
Boron compounds such as Na 2 B 4 O 7 and strontium / barium compounds, carbon / nitride compounds, sulfide compounds, and chloride compounds having the same action as those of the compounds have a relatively higher temperature than antimony compounds. Is effective in melting MgO, and when added, 0.05 to 5% is preferable.
Here, 0.05% is the lower limit for exhibiting the above-mentioned effect, while if it exceeds 5%, the original reaction of MgO forsterite is inactivated, which is not preferable. It should be noted that these compounds may be added in combination with each other.

【0052】なお、ここで添加する化合物の%はMgO
の重量を100%としたときの重量比を%で示してあ
る。本発明においては、さらにMgOパウダーに前述の
塩化物あるいは硫化物の一種類以上を添加すると、仕上
げ焼鈍後の一次被膜は平均0.3μm以下にでき、かつ
十分な二次再結晶方位が得られるが、これらの中でもと
りわけ塩化カルシウム(CaCl2 )、硫化カリウム
(K2 S)は有効である。これらは最低0.5%(Mg
O重量を100としたときの重量割合)以上あると効果
的である。
The percentage of the compound added here is MgO.
The weight ratio is shown in% when the weight of is 100%. In the present invention, when one or more kinds of the above-mentioned chlorides or sulfides are further added to the MgO powder, the primary coating film after finish annealing can be 0.3 μm or less on average, and sufficient secondary recrystallization orientation can be obtained. However, among these, calcium chloride (CaCl 2 ) and potassium sulfide (K 2 S) are particularly effective. These are at least 0.5% (Mg
It is effective if the O weight is 100 or more).

【0053】20%超ではかえって二被膜形成過程が不
安定となる。二次再結晶焼鈍は最高到達時間を1100
〜1300℃で行うのが好ましい。1100℃は二次再
結晶が行われる下限の温度であり、一方1300℃超は
結晶粒が粗大化し過ぎて鉄損の劣化を招く。この二次再
結晶焼鈍で重要な点は以下の通りである。本発明ではM
gOパウダーへ特殊添加物の効果でフォルステライトを
主成分とする一次被膜が極端に少なくなるか、なくなる
ので、焼鈍中に二次再結晶に必要な窒素系のインヒビタ
ー(AlN,Si3 4 等)も仕上げ焼鈍中に逃げ易い
傾向があり、このため仕上げ焼鈍の雰囲気ガス中の窒素
分圧(PN2)を30%以上とすることでこれを防ぐこと
が出来、安定した二次再結晶を得ることが可能である。
On the contrary, if it exceeds 20%, the process of forming two coating films becomes unstable. Secondary recrystallization annealing has a maximum arrival time of 1100
It is preferable to carry out at ˜1300 ° C. 1100 ° C. is the lower limit temperature at which the secondary recrystallization is performed, while if it exceeds 1300 ° C., the crystal grains become too coarse, and the iron loss is deteriorated. The important points in this secondary recrystallization annealing are as follows. In the present invention, M
Due to the effect of a special additive on gO powder, the primary coating containing forsterite as the main component is extremely reduced or eliminated, so nitrogen-based inhibitors (AlN, Si 3 N 4, etc.) required for secondary recrystallization during annealing. ) Also tends to escape during the finish annealing, so that it is possible to prevent this by setting the nitrogen partial pressure (P N2 ) in the atmosphere gas of the finish annealing to 30% or more, and to achieve stable secondary recrystallization. It is possible to obtain.

【0054】さらに二次再結晶焼鈍の昇温速度があまり
大きすぎると、十分な二次再結晶を起こす前にインヒビ
ターが逃げ易いのでむしろ昇温速度を毎時30℃以下に
抑えた方が安定した磁気特性が得られる。なお、前述の
ように、この二次再結晶焼鈍中の比較的前段階で雰囲気
等より窒素を追加添加する窒化法が行われることもあ
る。
Further, if the rate of temperature rise in the secondary recrystallization annealing is too high, the inhibitor easily escapes before sufficient secondary recrystallization occurs, so rather it is more stable if the rate of temperature rise is kept below 30 ° C. per hour. Magnetic properties are obtained. Note that, as described above, the nitriding method in which nitrogen is additionally added from the atmosphere or the like may be performed at a relatively previous stage during the secondary recrystallization annealing.

【0055】以上が本発明の珪素鋼板の製造方法での重
要な部分であるが、工業的にはさらに絶縁特性や磁気特
性を向上させる目的で二次再結晶後の鋼板に有機質や無
機質による絶縁被膜を有する高張力被膜(コーティン
グ)を熱処理等と組み合わせて塗布することがとりわけ
重要である。ゾルゲール法も有効である。この理由は、
本発明ではフォルステライト等の高張力特性を有する一
次被膜が極端に少ないか、ないために、それを補完する
べく高張力特性を有する絶縁被膜を塗布することが効果
的であるからである。
The above is an important part of the method for producing a silicon steel sheet according to the present invention. Industrially, for the purpose of further improving the insulation characteristics and magnetic characteristics, the steel sheet after secondary recrystallization is insulated with an organic or inorganic material. It is particularly important to apply a high-strength coating (coating) having a coating in combination with heat treatment or the like. The Zorgel method is also effective. The reason for this is
This is because, in the present invention, the primary coating having high tensile properties such as forsterite is extremely small or absent, and therefore it is effective to apply an insulating coating having high tensile properties to supplement it.

【0056】[0056]

【実施例】表4,5,および6に示すような化学成分の
鋼を転炉で溶製し、表4,5,および6に示すような条
件で製造した。熱延板焼鈍を一部行ったがこの条件は1
120℃×30秒間である。また冷間圧延時のパス間エ
ージングをB以外は行ったがその条件は250℃であ
る。
EXAMPLES Steels having chemical compositions shown in Tables 4, 5, and 6 were melted in a converter and produced under the conditions shown in Tables 4, 5, and 6. Part of the hot-rolled sheet was annealed.
120 ° C. × 30 seconds. Aging between passes during cold rolling was performed except for B, but the condition is 250 ° C.

【0057】[0057]

【表4】 [Table 4]

【0058】[0058]

【表5】 [Table 5]

【0059】[0059]

【表6】 [Table 6]

【0060】なお、ここで本発明にとりわけ重要な1次
再結晶焼鈍に引き続く窒化は同一炉内に仕切りを設けた
炉中内部分で同一ガス組成で雰囲気をドライにし、NH
3 ガスを一定量流して行ったものである。かかる1次焼
鈍後の窒化量(窒素量)を同表に示す。さらにこの鋼板
にパウダーを塗布したが、パウダーは水に溶解させスラ
リー状にして塗布後、350℃で乾燥させた。ここで、
%はMgOの重量を100%としたときの重量比率であ
る。
Here, the nitriding subsequent to the primary recrystallization annealing, which is particularly important in the present invention, is performed by drying the atmosphere with the same gas composition in the inside of the furnace where the partition is provided in the same furnace, and
It was performed by flowing a fixed amount of 3 gases. The nitriding amount (nitrogen amount) after such primary annealing is shown in the same table. Further, a powder was applied to this steel sheet, and the powder was dissolved in water to form a slurry, and the powder was dried at 350 ° C. here,
% Is the weight ratio when the weight of MgO is 100%.

【0061】しかる後に、800℃〜最高到達温度の平
均昇温速度を種々変えて二次再結晶焼鈍を行った。ここ
では最高到達速度は1200℃である。さらにリン酸系
の高張力の絶縁被膜(二次被膜)を加熱塗布した後、板
取りし、歪取り焼鈍850℃×4時間(N2 90−H2
10,Dry)を行い、磁気測定試験を行った。表4,
5,および6にその結果を示す。なお、溝の最大深さ、
ピッチおよび圧延方向との角度はいずれも2次再結晶焼
鈍後の製品での測定である。
After that, secondary recrystallization annealing was carried out by changing the average heating rate from 800 ° C. to the maximum reached temperature variously. The maximum reaching speed is 1200 ° C. here. Further, a phosphoric acid-based high-strength insulating coating (secondary coating) is applied by heating, then plate-cut and strain relief annealing 850 ° C. × 4 hours (N 2 90-H 2
10, Dry) was performed, and a magnetic measurement test was performed. Table 4,
The results are shown in 5 and 6. The maximum depth of the groove,
Both the pitch and the angle with the rolling direction are measured with the product after the secondary recrystallization annealing.

【0062】磁気測定は60×300mmの単板のSST
試験法で測定し、B8 (800A/m)の磁束密度、単
位はテスラおよびW1750(50Hzで1.7テスラのと
きの鉄損、単位はワット/kg)、W13/50(50Hzで
1.3テスラのときの鉄損)を測定した。さて、表4,
5,および6に示すように、本発明の範囲に入っている
ものは鉄損が十分低く本発明の目的範囲に入っている。
The magnetic measurement is SST of a single plate of 60 × 300 mm.
Measured by the test method, B 8 flux density (800A / m), the unit Tesla and W 17/50 (iron loss at a 1.7 Tesla at 50 Hz, in watts / kg), W13 / 50 ( 50Hz The iron loss at 1.3 Tesla) was measured. Well, Table 4,
As shown in Nos. 5 and 6, those falling within the scope of the present invention have sufficiently low iron loss and fall within the scope of the present invention.

【0063】[0063]

【発明の効果】以上に説明したごとく本発明によって、
超低鉄損の方向性電磁鋼板を得ることが可能となる。
As described above, according to the present invention,
It is possible to obtain a grain-oriented electrical steel sheet with ultra-low iron loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次被膜の平均厚みと鉄損の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the average thickness of a primary coating and iron loss.

【図2】磁区制御及び二次再結晶後の金属組織写真であ
る。
FIG. 2 is a photograph of a metal structure after magnetic domain control and secondary recrystallization.

【図3】0.06%P−3%Si鋼製品の諸特性に及ぼ
す溶鋼時のSn%の影響を示す図である。
FIG. 3 is a diagram showing the effect of Sn% during molten steel on various properties of 0.06% P-3% Si steel products.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩永 功 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Iwanaga 1-1 Tobahata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Si:1〜7%,P:0.045%超〜
0.20%を含む鋼を溶製し、熱間圧延、冷間圧延、一
次再結晶焼鈍および二次再結晶焼鈍を基本工程とする方
向性電磁鋼板の製造において、一次再結晶焼鈍昇温開始
から冷却終了までの間の鋼板温度300℃〜950℃の
間に鋼板表面に最大部の深さの平均が2〜50μmの溝
を鋼板長手方向から、45度〜90度の方向に、間隔を
開けて付与せしめ、その後に鋼板表面に塩化物および硫
化物の少なくとも一種類以上を含む物質を鋼板表面に塗
布し、その後に二次再結晶焼鈍を行い、二次再結晶焼鈍
時に生成されるフォルステライトを主成分とする絶縁性
の一次皮膜の平均厚みを0.3μm以下とすることを特
徴とする極めて鉄損の優れた珪素鋼板の製造法。
1. Si: 1 to 7%, P: more than 0.045%
In the production of grain-oriented electrical steel sheet with the basic steps of hot rolling, cold rolling, primary recrystallization annealing and secondary recrystallization annealing, smelting steel containing 0.20% and starting the primary recrystallization annealing temperature rise. From the steel plate longitudinal direction to the steel plate temperature 300 ℃ ~ 950 ℃ from the end of the cooling to the groove, the average of the maximum depth of 2 to 50 μm, in the direction of the steel plate longitudinal direction, in the direction of 45 ° ~ 90 °, intervals. It is opened and applied.After that, a substance containing at least one kind of chloride and sulfide is applied to the surface of the steel sheet, then secondary recrystallization annealing is performed, and the form generated during the secondary recrystallization annealing is performed. A method for producing a silicon steel sheet having extremely excellent iron loss, characterized in that an average thickness of an insulative primary coating mainly composed of stellite is 0.3 μm or less.
【請求項2】 Si:1〜7%,P:0.045%超〜
0.20%,Sn:0.02〜0.20%を含む鋼を溶
製し、熱間圧延、冷間圧延、一次再結晶焼鈍および二次
再結晶焼鈍を基本工程とする方向性電磁鋼板の製造にお
いて、一次再結晶焼鈍昇温開始から冷却終了までの間の
鋼板温度300℃〜950℃の間に鋼板表面に最大部の
深さの平均が2〜50μmの溝を鋼板長手方向から、4
5度〜90度の方向に、間隔を開けて付与せしめ、その
後に鋼板表面に塩化物および硫化物の少なくとも一種類
以上を含む物質を鋼板表面に塗布し、その後に二次再結
晶焼鈍を行い、二次再結晶焼鈍時に生成されるフォルス
テライトを主成分とする絶縁性の一次皮膜の平均の厚み
を0.3μm以下とすることを特徴とする極めて鉄損の
優れた珪素鋼板の製造法。
2. Si: 1 to 7%, P: more than 0.045% to
A grain-oriented electrical steel sheet produced by smelting steel containing 0.20% and Sn: 0.02 to 0.20% and having hot rolling, cold rolling, primary recrystallization annealing and secondary recrystallization annealing as basic steps. In the production of, during the steel plate temperature 300 ℃ ~ 950 ℃ from the start of the primary recrystallization annealing temperature rise to the end of cooling, a groove having an average maximum depth of 2 to 50 μm on the steel plate surface from the steel plate longitudinal direction, Four
It is given with an interval in the direction of 5 to 90 degrees, and then a steel sheet surface is coated with a substance containing at least one of chloride and sulfide, and then secondary recrystallization annealing is performed. A method for producing a silicon steel sheet having extremely excellent iron loss, characterized in that an average thickness of an insulative primary coating mainly composed of forsterite produced during secondary recrystallization annealing is 0.3 μm or less.
【請求項3】 前記鋼板に付与する溝の間隔を2〜20
mmとする請求項1又は2記載の鉄損の優れた珪素鋼板の
製造法。
3. The distance between the grooves provided to the steel plate is 2 to 20.
The method for producing a silicon steel sheet having excellent iron loss according to claim 1 or 2, wherein the thickness is mm.
【請求項4】 前記一次再結晶焼鈍時に窒化を行う請求
項1,2又は3記載の鉄損の優れた珪素鋼板の製造法。
4. The method for producing a silicon steel sheet with excellent iron loss according to claim 1, 2 or 3, wherein nitriding is performed during the primary recrystallization annealing.
【請求項5】 前記鋼板表面に塗布する物質に含有させ
る塩化物として塩化カルシュウム、硫化物として硫化カ
リウムを使用する請求項1,2,3、又は4記載の鉄損
の優れた珪素鋼板の製造法。
5. The production of a silicon steel sheet having excellent iron loss according to claim 1, 2, 3 or 4, wherein calcium chloride is used as a chloride and potassium sulfide is used as a sulfide contained in the substance applied to the surface of the steel sheet. Law.
【請求項6】 前記二次再結晶焼鈍時の昇温速度を毎時
30℃以下、また雰囲気ガス中の窒素分圧を30%以上
とする請求項1,2,3,4、又は5記載の珪素鋼板の
製造法。
6. The method according to claim 1, 2, 3, 4, or 5, wherein the temperature rising rate during the secondary recrystallization annealing is 30 ° C. or less per hour, and the nitrogen partial pressure in the atmosphere gas is 30% or more. Manufacturing method of silicon steel sheet.
【請求項7】 Si:1〜7%,P:0.03〜0.1
5%を含み、鋼板表面に鋼板の長手方向から45度〜9
0度の方向で最大部の深さの平均が2〜50μmの底部
にフォルステライトが一部残留した溝を有し、かつフォ
ルステライトを主成分とする固形硬質一次皮膜の平均厚
みが0.3μm以下の鉄損がW17/50で0.70Wa
tt/kg以下であることを特徴とする鉄損の優れた珪素鋼
板。
7. Si: 1 to 7%, P: 0.03 to 0.1
Including 5%, the steel plate surface is 45 degrees to 9 from the longitudinal direction of the steel plate.
In the direction of 0 degree, the average of the maximum depth is 2 to 50 μm, and the bottom has a groove in which forsterite partially remains, and the average thickness of the solid hard primary coating mainly composed of forsterite is 0.3 μm. The following iron loss is 0.70Wa at W17 / 50
Silicon steel sheet with excellent iron loss, which is less than tt / kg.
【請求項8】 Si:1〜7%,P:0.03〜0.1
5%,Sn:0.02〜0.20%を含み、鋼板表面に
鋼板の長手方向から45度〜90度の方向で最大部の深
さの平均が2〜50μmの底部にフォルステライトが一
部残留した溝を有し、かつフォルステライトを主成分と
する固形硬質一次皮膜の平均厚みが0.3μm以下の鉄
損がW17/50で0.70Watt/kg以下であることを
特徴とする鉄損の優れた珪素鋼板。
8. Si: 1 to 7%, P: 0.03 to 0.1
5%, Sn: 0.02 to 0.20%, and a forsterite is formed on the bottom surface of the steel plate surface having an average maximum depth of 2 to 50 μm in the direction of 45 to 90 degrees from the longitudinal direction of the steel plate. Iron having a residual groove and a solid hard primary coating containing forsterite as a main component and having an average thickness of 0.3 μm or less at W17 / 50 of 0.70 Watt / kg or less. Silicon steel plate with excellent loss.
【請求項9】 前記溝の間隔が2〜20mmである請求項
7又は8記載の鉄損の優れた珪素鋼板。
9. The silicon steel sheet with excellent iron loss according to claim 7, wherein the interval between the grooves is 2 to 20 mm.
JP2604293A 1993-01-22 1993-01-22 Production of high magnetic flux density silicon steel sheet excellent in core loss Withdrawn JPH06220542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2604293A JPH06220542A (en) 1993-01-22 1993-01-22 Production of high magnetic flux density silicon steel sheet excellent in core loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2604293A JPH06220542A (en) 1993-01-22 1993-01-22 Production of high magnetic flux density silicon steel sheet excellent in core loss

Publications (1)

Publication Number Publication Date
JPH06220542A true JPH06220542A (en) 1994-08-09

Family

ID=12182648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2604293A Withdrawn JPH06220542A (en) 1993-01-22 1993-01-22 Production of high magnetic flux density silicon steel sheet excellent in core loss

Country Status (1)

Country Link
JP (1) JPH06220542A (en)

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
US5261972A (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
KR960010595B1 (en) Production of grain-oriented silicon steel sheet having no glass coating and excellent in iron loss
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
CN113166892A (en) Oriented electrical steel sheet and method for manufacturing the same
JPH06100937A (en) Production of silicon steel sheet having no glass film and extremely excellent in core loss
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
US5308411A (en) Ultrahigh silicon, grain-oriented electrical steel sheet and process for producing the same
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JPH06220541A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JPH06158167A (en) High magnetic flux density grain-oriented silicon steel sheet and its production
JPH06100997A (en) Silicon steel sheet free from glass film and excellent in magnetic property and its production
JPH07258802A (en) Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production
JPH06220540A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic property after domain control
JPH06188116A (en) Oriented silicon steel plate for low core loss and high flux density and manufacture thereof
JPH06220542A (en) Production of high magnetic flux density silicon steel sheet excellent in core loss
JPH06172939A (en) High magnetic flux density/low core loss grain-oriented silicon steel sheet and its production
JPH06136446A (en) Production of grain-oriented silicon steel sheet having no glass coating and excellent in iron loss
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property
JPH06136552A (en) Grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06220539A (en) Production of domain-refined grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404