JPH06184763A - High magnetic flux density extra-low iron loss grain-oriented silicon steel sheet and its production - Google Patents

High magnetic flux density extra-low iron loss grain-oriented silicon steel sheet and its production

Info

Publication number
JPH06184763A
JPH06184763A JP4339310A JP33931092A JPH06184763A JP H06184763 A JPH06184763 A JP H06184763A JP 4339310 A JP4339310 A JP 4339310A JP 33931092 A JP33931092 A JP 33931092A JP H06184763 A JPH06184763 A JP H06184763A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
annealing
silicon steel
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4339310A
Other languages
Japanese (ja)
Inventor
Katsuro Kuroki
克郎 黒木
Hiroaki Masui
浩昭 増井
Osamu Tanaka
収 田中
Hodaka Honma
穂高 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4339310A priority Critical patent/JPH06184763A/en
Publication of JPH06184763A publication Critical patent/JPH06184763A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide an extra-low iron loss grain-oriented silicon steel sheet and to provide its producing method. CONSTITUTION:In this steel sheet, the average thickness of an insulating primary film contg. 1 to 7% Si and 0.03 to 0.15% P and essentially consisting of forsterite is regulated to 0.3mum. Steel contg. 1 to 7% Si and >0.45 to 0.20% P is coated with chloride or sulfide in such a manner that it is mixed to MgO before being subjected to finish annealing to regulate the average thickness of the primary film in the product into <=0.3mum, and furthermore, domain regulation is executed to produce the extra-low iron loss grain-oriented silicon steel sheet. Moreover, Sn is added thereto to obtain further lower iron loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気特性に優れた方向性
珪素鋼板およびその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented silicon steel sheet having excellent magnetic properties and a method for producing the same.

【0002】[0002]

【従来技術】トランス用等の磁気特性に優れた1〜7%
のSiを含んだ方向性珪素鋼板を製造するに際して、絶
縁特性の確保と鋼板表面に張力を与え、トランスの性能
向上に必要な磁気特性を向上させ、かつ鋼板との密着性
が良好な一次被膜を形成させることは従来技術において
は方向性珪素鋼板の一つの重要な課題であった。すなわ
ち、通常の技術では脱炭を伴う一次焼鈍後に鋼板にマグ
ネシアと呼ばれる酸化マグネシウム(MgO)の微粉末
を水溶させたスラリー状のものを塗り、必要に応じて乾
燥させたあと、二次再結晶焼鈍工程で焼成させ、鋼板中
のSiO2 やSiとの反応でフォルステライト(Mg2
SiO4 )と呼ばれるセラミックス質状の絶縁被膜を形
成させる。これが鋼板に張力を与え、磁気特性とりわけ
鉄損と呼ばれるトランスの効率を支配する特性値を向上
させるのに有効である。しかも、このフォルステライト
形成の状態が、二次再結晶で鋼板の結晶方位を、通称G
OSS方位と呼ばれ、透磁率や磁束密度の向上に不可欠
な鋼板長手方向(圧延方向)に対して{110}<00
1>の結晶方位を有するやや粗大な二次再結晶粒を成長
させるのにも重要な役割を果たしていることもよく知ら
れている。逆に、二次再結晶焼鈍昇温過程中に十分緻密
な被膜が形成されないまま二次再結晶させようとしても
鋼板内のインヒビターと呼ばれる微細な窒化物や硫化物
等がそのままの状態で、あるいは分解して早く鋼板外に
抜け出てしまう。このため、昇温中にGOSS方位粒を
優先的に成長させ、他の方位粒の成長を抑制させる役目
のインヒビター効果が発揮できず、通称細粒と呼ばれ、
GOSS方位粒の二次再結晶粒の成長が部分的あるいは
全面的に行われない、極めて磁気特性の劣る鋼板を生み
出すことになる。
2. Description of the Related Art 1-7% with excellent magnetic properties for transformers, etc.
A primary coating that secures insulation properties and imparts tension to the steel plate surface to improve the magnetic properties necessary for improving the performance of the transformer when manufacturing a grain-oriented silicon steel plate containing Si, and that has good adhesion to the steel plate. In the prior art, the formation of slag was one of the important problems of grain-oriented silicon steel sheets. That is, in the usual technique, after the primary annealing accompanied by decarburization, a steel sheet is coated with a slurry of magnesium oxide (MgO) fine powder called magnesia dissolved in water, dried if necessary, and then subjected to secondary recrystallization. It burned in the annealing step, forsterite reaction with SiO 2 and Si in the steel sheet (Mg 2
A ceramic insulating film called SiO 4 ) is formed. This is effective in giving tension to the steel sheet and improving the magnetic property, especially the characteristic value called iron loss, which governs the efficiency of the transformer. Moreover, the state of formation of this forsterite corresponds to the crystal orientation of the steel sheet by the secondary recrystallization, commonly known as G.
It is called the OSS orientation, and {110} <00 with respect to the steel plate longitudinal direction (rolling direction), which is indispensable for improving magnetic permeability and magnetic flux density.
It is well known that it also plays an important role in growing slightly coarse secondary recrystallized grains having a crystal orientation of 1>. On the contrary, during the secondary recrystallization annealing temperature rising process, even if it is attempted to perform secondary recrystallization without forming a sufficiently dense film, fine nitrides and sulfides called inhibitors in the steel sheet remain as they are, or It disassembles and quickly escapes from the steel plate. Therefore, the inhibitor effect of the role of preferentially growing GOSS oriented grains during the temperature rise and suppressing the growth of other oriented grains cannot be exhibited, and is commonly called fine grains.
This results in a steel sheet having extremely poor magnetic properties, in which the secondary recrystallized grains of GOSS oriented grains are not partially or entirely grown.

【0003】しかるに、近年アモルファスの登場に見ら
れるようにエネルギー節減のため、トランスのエネルギ
ー変換効率に影響の大きい電磁鋼板の鉄損低減への要求
は大きく、上記の従来技術の延長ではこの要望に応える
ことは困難となってきた。従来技術においては上記の方
法以外にも二次再結晶後のいわゆる製品鋼板表面に機械
的あるいはレーザー等のエネルギー照射的な方法で溝あ
るいは何らかの損傷を意図的に与え、磁区細分化を行
い、鉄損を向上せしめる方法が行われている。しかしな
がら、この方法を以てしてもまだアルモルファスに対抗
できるような低鉄損は実現困難であった。一方、フォル
ステライトを主成分とする一次被膜は硬質な固形物質な
るがゆえに製品のせん断等の加工性に難点があり、工具
寿命の低下をもたらしていた。
However, in order to save energy as seen in the appearance of amorphous materials in recent years, there is a great demand for reducing iron loss of magnetic steel sheets, which greatly affects the energy conversion efficiency of transformers. It has become difficult to respond. In the prior art, in addition to the above method, a so-called product steel sheet surface after secondary recrystallization is intentionally provided with grooves or some damage by a method of energy irradiation such as mechanical or laser, and magnetic domain subdivision is performed. There are ways to improve the loss. However, even with this method, it was still difficult to realize a low iron loss that can counter Almorphus. On the other hand, since the primary coating containing forsterite as a main component is a hard solid substance, there is a problem in workability such as shearing of the product, resulting in a shortened tool life.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような問
題点を解決し、以下のような骨子に示される技術的知見
から一次被膜とよばれるフォルステライトを主成分とす
る固形物質の形成を極力抑え、かつ極めて低鉄損の方向
性珪素鋼板を得るべく、新たな製品開発技術を見出した
ものである。
SUMMARY OF THE INVENTION The present invention solves these problems and, based on the technical knowledge shown in the skeleton below, forms a solid substance containing forsterite as a main component called a primary film. This is a finding of a new product development technology in order to obtain a grain-oriented silicon steel sheet with an extremely low iron loss while suppressing it as much as possible.

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1)Si:1〜7%、P:0.03〜0.15%を含
み、かつフォルステライトを主成分とする絶縁性の一次
被膜の平均の厚みが0.3μm以下であることを特徴と
する高磁束密度極低鉄損方向性珪素鋼板。
The gist of the present invention is as follows. (1) Si: 1 to 7%, P: 0.03 to 0.15%, and the average thickness of the insulating primary coating containing forsterite as a main component is 0.3 μm or less. High magnetic flux density and extremely low iron loss grain oriented silicon steel sheet.

【0006】(2)Si:1〜7%、P:0.03〜
0.15%、Sn:0.02〜0.20%を含み、かつ
フォルステライトを主成分とする絶縁性の一次被膜の平
均の厚みが0.3μm以下であることを特徴とする高磁
束密度極低鉄損方向性珪素鋼板。 (3)Si:1〜7%、P:0.045%超0.20%
以下を含む鋼を溶製し、熱間圧延、冷間圧延、一次再結
晶焼鈍および二次再結晶焼鈍を基本工程とする方向性珪
素鋼板の製造において、二次再結晶焼鈍時に生成される
フォルステライトを主成分とする絶縁性の一次被膜の平
均の厚みを0.3μm以下とすることを特徴とする高磁
束密度極低鉄損方向性珪素鋼板の製造法。
(2) Si: 1 to 7%, P: 0.03 to
0.15%, Sn: 0.02 to 0.20%, and a high magnetic flux density, characterized in that the average thickness of the insulating primary coating containing forsterite as a main component is 0.3 μm or less. Ultra low iron loss grain oriented silicon steel sheet. (3) Si: 1 to 7%, P: more than 0.045% and 0.20%
In the production of a grain-oriented silicon steel sheet in which the steel containing the following is melted and hot rolling, cold rolling, primary recrystallization annealing and secondary recrystallization annealing are the basic steps, the form produced during secondary recrystallization annealing is performed. A method for producing a high magnetic flux density ultra-low iron loss grain oriented silicon steel sheet, characterized in that an average thickness of an insulating primary coating containing stellite as a main component is 0.3 μm or less.

【0007】(4)一次再結晶焼鈍から二次再結晶焼鈍
の間に鋼板表面にマグネシアの中にMgO100重量部
に対し、Li、K、Na、Ba、Ca、Mg、Zn、F
e、Zr、Sn、Sr、Alの硫化物の1種または2種
以上を0.5〜20重量部および/または、これらの元
素の炭酸塩、硝酸塩、塩化物の中から選ばれる1種また
は2種以上を0.5〜20重量部添加した焼鈍分離剤を
塗布することを特徴とする前項3記載の高磁束密度極低
鉄損方向性珪素鋼板の製造法。 (5)一次再結晶焼鈍から二次再結晶焼鈍の間にAl、
Zr、Ti、Caの酸化物の1種または2種以上を焼鈍
分離剤として塗布することを特徴とする前項3記載の高
磁束密度極低鉄損方向性珪素鋼板の製造法。 (6)鋼板に板の長手方向から45〜90度の角度に、
間隔をあけて溝または照射痕を付与することを特徴とす
る前項3〜5のいずれか1項に記載の高磁束密度極低鉄
損方向性珪素鋼板の製造法。 (7)鋼成分としてSi:1〜7%、P:0.045%
超0.20%以下、Sn:0.02〜0.20%を含有
させることを特徴とする前項3〜6のいずれか1項に記
載の高磁束密度極低鉄損方向性珪素鋼板の製造法。
(4) Li, K, Na, Ba, Ca, Mg, Zn, F with respect to 100 parts by weight of MgO in magnesia on the surface of the steel sheet between the primary recrystallization annealing and the secondary recrystallization annealing.
0.5 to 20 parts by weight of one or more sulfides of e, Zr, Sn, Sr, and Al and / or one selected from carbonates, nitrates, and chlorides of these elements, or The method for producing a high magnetic flux density ultra-low iron loss grain-oriented silicon steel sheet according to the above item 3, characterized by applying an annealing separator containing two or more kinds added in an amount of 0.5 to 20 parts by weight. (5) Al between the primary recrystallization annealing and the secondary recrystallization annealing,
4. The method for producing a high magnetic flux density ultra-low iron loss grain oriented silicon steel sheet according to the above 3, wherein one or more oxides of Zr, Ti and Ca are applied as an annealing separator. (6) At an angle of 45 to 90 degrees from the longitudinal direction of the plate on the steel plate,
The method for producing a high magnetic flux density ultra-low iron loss grain oriented silicon steel sheet according to any one of items 3 to 5 above, wherein grooves or irradiation marks are provided at intervals. (7) Si: 1 to 7% as a steel component, P: 0.045%
Manufacture of a high magnetic flux density ultra-low iron loss grain-oriented silicon steel sheet according to any one of items 3 to 6 above, which contains more than 0.20% and Sn: 0.02 to 0.20%. Law.

【0008】以下に本発明を詳細に説明する。方向性珪
素鋼板の二次再結晶はGOSS方位と呼ばれる{11
0}<001>方位の粒を二次再結晶焼鈍(仕上焼鈍と
も呼ばれる)時に十分成長させることが肝要である。こ
れは一次再結晶焼鈍(一次焼鈍とも呼ぶ)の中のある特
定粒のみを粗大再結晶させるもので、この時にインヒビ
ター(Inhibitor)と呼ばれるAlN等の微細
析出物を仕上焼鈍前に十分作っておくことが技術上必要
であることがよく知られている。そして、このために必
要な窒素を鋼溶製時または一次焼鈍後または他の工程中
に添加することが行われる。その場合、本発明の目的か
らはむしろ一次焼鈍後に窒素を添加する方法が最適な窒
素の添加法であることもわかった。もし、一次焼鈍中ま
たはその直後に窒素添加する場合は、通常、脱炭反応も
機能する一次焼鈍の設備の一部に窒化反応を行う設備を
内部または近接して設置し、一次焼鈍後またはそれと平
行させて窒化反応させる方法も有効である。鋼溶製時に
十分低炭素化した鋼では脱炭機能よりも一次焼鈍後の表
面層の酸化物層を変えて、被膜反応に有利な形にするこ
とがむしろ重要な役割となる。
The present invention will be described in detail below. Secondary recrystallization of grain-oriented silicon steel sheet is called GOSS orientation {11
It is essential that grains having a 0} <001> orientation are sufficiently grown during secondary recrystallization annealing (also called finish annealing). This is to coarsely recrystallize only certain specific grains in the primary recrystallization annealing (also called primary annealing). At this time, fine precipitates such as AlN called an inhibitor (Inhibitor) are sufficiently prepared before finish annealing. It is well known that there is a technical need. Then, nitrogen necessary for this purpose is added during steel melting, after primary annealing, or during other steps. In that case, it was also found that the method of adding nitrogen after the primary annealing is the optimum method of adding nitrogen for the purpose of the present invention. If nitrogen is added during or immediately after the primary annealing, the equipment for nitriding reaction is usually installed inside or close to a part of the equipment for the primary annealing that also functions as a decarburizing reaction, and after or after the primary annealing. A method of nitriding reaction in parallel is also effective. In the case of steel that has been sufficiently carbonized during the melting of steel, it is rather important to change the oxide layer of the surface layer after primary annealing so that it has an advantageous shape for the coating reaction, rather than the decarburizing function.

【0009】さて、本発明では二次再結晶焼鈍し、必要
に応じてヒートフラットニング焼鈍、絶縁被膜塗布を行
うが、その前後に鋼板表面に最大部の深さの平均が2〜
50μmの溝を規則的に付与することが重要である。こ
れはこの溝によって製品の磁区細分化をより細かくする
ことが可能で、これが鉄損低減に寄与するからである。
この溝の付与の仕方は溝付きロール、溝付きプレス等の
機械的方法、レーザー、プラズマ等のエネルギー照射的
方法、水、油等を高圧で吹き付ける方法、酸等による化
学的腐食、電気的腐食による方法、あるいはそれらを組
み合わせた方法等、基本的に手段はどれでも良く、要は
上記の溝の要件を満たしていれば効果が認められる。し
かし、これだけでは本発明の狙いとする極低鉄損は得ら
れない。
In the present invention, secondary recrystallization annealing, heat flattening annealing, and coating of an insulating film are performed as necessary. Before and after that, the average maximum depth of the steel sheet surface is 2 to 2.
It is important to provide grooves of 50 μm regularly. This is because it is possible to make the magnetic domain subdivision of the product finer by this groove, which contributes to the reduction of iron loss.
This groove can be applied by mechanical methods such as grooved rolls and presses, energy irradiation methods such as laser and plasma, high-pressure spraying of water, oil, etc., chemical corrosion by acids, etc. Basically, any method such as the method according to (1) or a method combining them may be used, and the effect is recognized as long as the above requirements for the groove are satisfied. However, with this alone, the extremely low iron loss targeted by the present invention cannot be obtained.

【0010】本発明で最も重要な技術的な要件は鋼板表
面のフォルステライトを主成分とする一次被膜の平均厚
みとの組み合わせである。この厚みが0.3μm以下の
とき上記との組み合わせで極めて磁気特性が向上するこ
とがわかった。この理由は必ずしも明らかでないが、こ
の一次被膜は厚いと鋼板の磁束の流れを妨げ、とりわけ
被膜に凹凸が多い場合や、フォルステライト直下にスピ
ネル(MgO・Al23 )等の酸化物が多い場合はそ
の傾向が大きいことは容易に想像できる。したがって表
面の一次被膜を極力減らして薄くするか、あるいは完全
になくしてしまい、そのかわりに規則的な溝を形成させ
れば磁束は規則的に円滑に流れる。この結果、鉄損も十
分に低減できることになる。当然ながら溝の深さとピッ
チには制約がつくことになる。本発明ではさらに次の点
が重要である。本発明で明らかになったことは、一次被
膜厚みが0.3μm以下でも本発明の成分で十分極低鉄
損が得られ、かつ十分な磁区細分化効果が発揮されると
いう事実を見出した点である。表1の化学成分を有する
方向性珪素鋼板(R1のN量は一次焼鈍、窒化後の値)
を熱延し、熱延板焼鈍後、0.27mmに冷間圧延し、
得られた冷延板にロールで深さ15μm、ピッチ5mm
の溝を付けた後、一次焼鈍を行い、次いでMgOパウダ
ーに添加物を種々変えて添加した焼鈍分離剤を塗布して
仕上焼鈍を行い、一次被膜の平均厚みを変えて、さらに
張力を有する絶縁コーティングを塗布したサンプルの鉄
損を調べたのが図1である。これをみても明らかなよう
に一次被膜の厚みが小さくなるほど鉄損の低減(向上)
が見られ、とりわけ0.3μm以下でそれが顕著である
ことがわかる。
The most important technical requirement in the present invention is the combination with the average thickness of the forsterite-based primary coating on the surface of the steel sheet. It has been found that when the thickness is 0.3 μm or less, the magnetic characteristics are remarkably improved in combination with the above. The reason for this is not always clear, but if this primary coating is thick, it blocks the flow of magnetic flux in the steel sheet, especially if the coating has many irregularities, or if there are many oxides such as spinel (MgO.Al 2 O 3 ) directly under forsterite. It is easy to imagine that the tendency is large. Therefore, if the primary coating on the surface is reduced as much as possible to be thin or completely eliminated, and if regular grooves are formed instead, the magnetic flux flows smoothly and regularly. As a result, iron loss can be sufficiently reduced. Of course, there will be restrictions on the depth and pitch of the grooves. The following points are further important in the present invention. What has been clarified in the present invention is that the fact that even if the thickness of the primary coating is 0.3 μm or less, the components of the present invention provide a sufficiently low iron loss and a sufficient magnetic domain refining effect is exhibited. Is. Grain-oriented silicon steel sheet having the chemical composition shown in Table 1 (N content of R1 is the value after primary annealing and nitriding)
Is hot-rolled, after hot-rolled sheet annealing, cold-rolled to 0.27 mm,
The obtained cold-rolled sheet was rolled with a depth of 15 μm and a pitch of 5 mm.
After making the groove, the primary annealing is carried out, and then the annealing separator which is added to the MgO powder by changing various additives is applied to finish annealing, and the average thickness of the primary coating is changed, and the insulation having more tension is obtained. FIG. 1 shows the iron loss of the sample applied with the coating. As is clear from this, iron loss decreases (improves) as the thickness of the primary coating decreases.
It can be seen that, especially, it is remarkable at 0.3 μm or less.

【0011】[0011]

【表1】 [Table 1]

【0012】次に、二次再結晶を行う場合にAlを有意
に添加する場合はインヒビターの一つとしてAlNやS
3 4 を使うが、ここで本発明の方法の一つとして一
次焼鈍中か、あるいはその後に窒化せしめる方法が本発
明の目的達成のためにさらに好ましいこともわかった。
これは以下の理由による。鋼溶製時に窒素を多く添加す
る場合と異なり、後で窒化する方がAlN、Si3 4
の最適量はコントロールしやすく、二次再結晶焼鈍時
に、本発明のようにフォルステライト等の一次被膜が薄
くなるかあるいは消失しても、雰囲気中の窒素分圧(P
N2)をコントロールすることで最適窒素量を確保しやす
いからであろうと考えられる。
Next, in the case of significantly adding Al when performing secondary recrystallization, AlN or S is used as one of the inhibitors.
It was also found that i 3 N 4 is used, and that one of the methods of the present invention is nitriding during or after the primary annealing is more preferable for the purpose of the present invention.
This is for the following reason. Unlike the case where a large amount of nitrogen is added when steel is melted, it is better to nitride it later with AlN and Si 3 N 4
It is easy to control the optimum amount of P. Even if the primary coating such as forsterite becomes thin or disappears as in the present invention during the secondary recrystallization annealing, the nitrogen partial pressure (P
This is probably because it is easy to secure the optimum amount of nitrogen by controlling N2 ).

【0013】次に、後述するように、仕上焼鈍時の一次
被膜を極力少なくするかあるいはなくすために、本発明
では一次焼鈍後の鋼板表面に塩化物、硫化物を通常のマ
グネシア(MgO)パウダーの中に混ぜて添加すること
が有効であることがわかった。この中でもとりわけ塩化
カルシウム(CaCl2 )、硫化カリウム(K2 S)は
有効である。なお、通常法でもMgO以外にTiO2
アンチモン系の化合物(Sb2 (SO4 3 )やボロン
系の化合物(Na2 (BO4 3 )、ストロンチウム・
バリウム系、炭・窒化物系等を添加して反応を容易にす
ることが行われるが、本発明でもこれらの添加物の効果
は発揮されるので添加しても本発明の本質を変えるもの
ではない。なお、マグネシア以外の焼鈍分離剤としてア
ルミナ(Al2 3 )等の酸化物を使用することでも十
分一次被膜を少なくし、二次再結晶を得ることも可能で
ある。
Next, as described later, in order to reduce or eliminate the primary coating film during finish annealing as much as possible, in the present invention, chloride and sulfide are added to the surface of the steel sheet after primary annealing in a normal magnesia (MgO) powder. It was found to be effective to add it by mixing in. Among these, calcium chloride (CaCl 2 ) and potassium sulfide (K 2 S) are particularly effective. In addition to MgO, TiO 2 and antimony compounds (Sb 2 (SO 4 ) 3 ), boron compounds (Na 2 (BO 4 ) 3 ), strontium
Barium-based, carbon / nitride-based, etc. are added to facilitate the reaction. However, since the effects of these additives are exerted in the present invention as well, addition of them does not change the essence of the present invention. Absent. By using an oxide such as alumina (Al 2 O 3 ) as an annealing separator other than magnesia, it is possible to sufficiently reduce the primary coating and obtain secondary recrystallization.

【0014】さて、次に本発明で極めて重要な点はPの
挙動である。表2にPの量のみを変えた鋼の一次再結晶
後のX線による結晶方位の{111}の面指数強度を示
す。これを一次再結晶後窒化し、二次再結晶させた鋼板
の磁束密度を同表に示す。明らかに、Pの量と共にこれ
らの値は変化していることがわかる。
Next, the extremely important point in the present invention is the behavior of P. Table 2 shows the {111} plane index strength of the crystal orientation by X-ray after primary recrystallization of the steel in which only the amount of P was changed. The magnetic flux densities of the steel sheets obtained by primary recrystallization, nitriding and secondary recrystallization are shown in the same table. Obviously, these values change with the amount of P.

【0015】[0015]

【表2】 [Table 2]

【0016】さらにSnも本発明では重要である。特に
Pと共存する場合は鉄損低減に極めて有効であることが
わかった。図2は3%Si鋼におけるその結果を示す。
Further, Sn is also important in the present invention. In particular, it was found that when coexisting with P, it is extremely effective in reducing iron loss. Figure 2 shows the results for 3% Si steel.

【0017】さて、ここで方向性珪素鋼板の製造方法に
触れる必要がある。前述のように本発明が可能な方向性
珪素鋼板はSi以外に必要に応じてAlを含有し、Si
3 4 あるいはAlN、および鋼中のSが多い場合はM
nSを主要インヒビターとし、これにP、またさらに低
鉄損化のためにはSnを添加する鋼に限定される。もち
ろんSi、Al、P、Sn以外に、Se、Sb、Cu、
B、Nb、Ti、V、Ni、Mo、Cr、Bi、W、H
f等の他の添加元素を付加的に添加させ、磁気特性の向
上をはかることは本発明の基本を変えるものではない。
Now, it is necessary to touch on the method of manufacturing the grain-oriented silicon steel sheet. As described above, the grain-oriented silicon steel sheet according to the present invention contains Al as necessary in addition to Si, and Si
3 N 4 or AlN, and M when there is a large amount of S in steel
nS is the main inhibitor, and it is limited to the steel to which P is added and Sn is added to further reduce iron loss. Of course, in addition to Si, Al, P, Sn, Se, Sb, Cu,
B, Nb, Ti, V, Ni, Mo, Cr, Bi, W, H
Adding other additive elements such as f to improve the magnetic properties does not change the basics of the present invention.

【0018】ところでAlNあるいはSi3 4 、Mn
Sをインヒビターとする鋼は公知であり、そのいずれの
場合においても本発明の技術を適用することが可能であ
る。しかしながら、本発明の特徴をより一層発揮させる
にはとりわけ以下に示す製造法が最適である。すなわ
ち、その製造法は、Siを1〜7%含み、必要に応じて
Alを鋼溶製時に0.1%以下含ませた珪素鋼に、方向
性珪素鋼板製造工程における冷延後の一次焼鈍過程の脱
炭焼鈍中またはその後に、鋼板の状態においてNを直接
窒化反応を介して強制的に添加せしめることにより、二
次再結晶焼鈍前に鋼中のN量を30〜600ppmとす
ることを特徴とする。
By the way, AlN or Si 3 N 4 , Mn
Steel containing S as an inhibitor is known, and the technique of the present invention can be applied to any of the cases. However, the following production method is most suitable for further exerting the characteristics of the present invention. That is, the manufacturing method is such that the primary annealing after cold rolling in the grain-oriented silicon steel sheet manufacturing process is performed on silicon steel containing 1 to 7% of Si and 0.1% or less of Al at the time of steel melting, if necessary. During or after the decarburization annealing in the process, by forcibly adding N in the state of the steel sheet through the direct nitriding reaction, it is possible to adjust the N content in the steel to 30 to 600 ppm before the secondary recrystallization annealing. Characterize.

【0019】Siは本発明においては上記のようにフォ
ルステライト形成のために最低1%は必要である。一
方、7%を超えると加工性が極端に劣化し工業生産に適
さない。AlはAlNインヒビター形成に有効である。
しかし0.1%を超えるとAl 2 3 生成量が多くなり
健全な鋼の清浄度を損ない、ひいては磁気特性に悪影響
をもたらす。
In the present invention, Si is used as a source as described above.
A minimum of 1% is required for the formation of rusterite. one
On the other hand, if it exceeds 7%, the workability is extremely deteriorated and it is suitable for industrial production.
I don't. Al is effective in forming an AlN inhibitor.
However, if it exceeds 0.1%, Al 2O3The amount of production increases
Impairs the cleanliness of sound steel, which in turn adversely affects magnetic properties
Bring

【0020】NはSi3 4 およびAlNインヒビター
を形成するのに不可欠であり、本発明においては一次焼
鈍後つまり、仕上焼鈍の二次再結晶開始前で最低30p
pmは必要である。一方、Alを意図的に使う場合には
AlNの量確保の点で60ppm以上は必要である。た
だし、600ppmを超えるとAlやSiを食いすぎて
好ましくはない。
N is indispensable for forming Si 3 N 4 and AlN inhibitor, and in the present invention, it is at least 30 p after the primary annealing, that is, before the secondary recrystallization of the finish annealing.
pm is required. On the other hand, when Al is intentionally used, 60 ppm or more is necessary to secure the amount of AlN. However, if it exceeds 600 ppm, Al and Si are excessively eaten, which is not preferable.

【0021】Pは本発明では極めて重要である。鋼溶製
時に0.045%以下では磁束密度を高める効果が薄
く、一方0.20%超では脆性が大きくなって、冷間圧
延が困難となる。なお、製品中のPの量は本発明では重
要である。Pは鉄に固溶し、また一部は析出して存在す
るが、製品中の鉄損低減に極めて有効であり、最低0.
03%存在しないとその効果は発揮できない。一方、
0.15%超も存在すると製品の脆化をもたらし、例え
ば製品の加工性、打抜き性を損い、使用に耐えない。
P is extremely important in the present invention. When the steel is melted, if it is less than 0.045%, the effect of increasing the magnetic flux density is small, while if it exceeds 0.20%, the brittleness becomes large and cold rolling becomes difficult. The amount of P in the product is important in the present invention. P exists as a solid solution in iron and is partly precipitated, but it is extremely effective in reducing iron loss in the product, and at least 0.
If it does not exist, the effect cannot be exhibited. on the other hand,
If it exceeds 0.15%, the product becomes brittle, and the workability and punchability of the product are impaired, and the product cannot be used.

【0022】Sはこれを積極的に利用する場合は最低
0.01%はMnSをインヒビターとして有効に使うの
に必要である。一方、0.05%超では凝集して好まし
くはない。その他の元素は本発明では従来の鋼に較べて
特に特徴的ではないが、以下に制約することが好まし
い。
When S is positively used, at least 0.01% of S is necessary for effectively using MnS as an inhibitor. On the other hand, if it exceeds 0.05%, aggregation is not preferable. Other elements are not particularly characteristic in the present invention as compared with the conventional steel, but the following restrictions are preferable.

【0023】Cは鋼溶製中に十分低くするか、または一
次焼鈍の脱炭焼鈍時に十分低くする必要があり、二次再
結晶焼鈍開始時には0.03%以下が好ましい。Mnは
0.5%以下ならばSと反応してMnSインヒビターを
形成する。0.15%以下だとさらに磁束密度の向上に
好ましい。Oは鋼溶製後に0.05%以下であればAl
2 3 を多量に作りすぎず、清浄度的に好ましい。
C must be sufficiently low during steel melting or sufficiently low during decarburization annealing of primary annealing, and is preferably 0.03% or less at the start of secondary recrystallization annealing. If Mn is 0.5% or less, it reacts with S to form a MnS inhibitor. If it is 0.15% or less, it is preferable for further improving the magnetic flux density. O is Al if 0.05% or less after steel is melted
It is preferable in terms of cleanliness because it does not produce too much 2 O 3 .

【0024】Snは本発明ではPと共存するとき鉄損低
減に著しく効果がある。0.02%未満ではその効果が
なく、一方、0.20%超では一次被膜が十分できな
い。次に化学成分以外の本発明の製造方法について述べ
る。鋼を転炉または電気炉等で出鋼し、必要に応じて精
錬工程を加えて成分調整を行った溶鋼を連続鋳造法、造
塊分塊圧延法あるいは熱延工程省略のための薄スラブ連
続鋳造法等により、厚さ30〜400mm(薄スラブ連
続鋳造法では50mm以下)のスラブとする。ここで3
0mmは生産性を確保するための下限であり、400m
mは中心偏析でAl2 3 等の分布が異常になることを
防ぐための上限である。また薄スラブ連続鋳造法での5
0mmは冷速が小さくなって粗大粒が出てくることを抑
制するための上限である。
In the present invention, Sn is remarkably effective in reducing iron loss when it coexists with P. If it is less than 0.02%, the effect is not obtained, while if it exceeds 0.20%, the primary coating cannot be sufficiently formed. Next, the production method of the present invention other than the chemical components will be described. Continuous casting method, ingot-agglomeration and rolling method, or thin slab continuous method for omitting hot rolling step, in which steel is tapped in a converter or electric furnace, and a refining step is added as necessary to adjust the composition. A slab having a thickness of 30 to 400 mm (50 mm or less in the thin slab continuous casting method) is formed by a casting method or the like. Where 3
0 mm is the lower limit to ensure productivity, 400 m
m is an upper limit for preventing abnormal distribution of Al 2 O 3 etc. due to center segregation. In the thin slab continuous casting method, 5
0 mm is the upper limit for suppressing the generation of coarse particles due to the low cooling rate.

【0025】該スラブをガス加熱、電気利用加熱等によ
り1000〜1400℃に再加熱を行い、引き続き熱間
圧延を行って厚さ10mm以下のホットコイルとする。
ここで1000℃はAlNを溶解するための下限であ
り、1400℃は表面肌あれと材質劣化を生じない上限
である。また厚さ10mmは適正な析出物を生成する冷
速を得ることのできる上限である。なお、薄スラブ連続
鋳造法では直接コイル状にすることも可能であり、その
ためには厚さ10mm以下が好ましい。このように作っ
たホットコイルを再び800〜1250℃で焼鈍し、磁
性向上をはかることもしばしば行われる。ここで800
℃はAlN再溶解のための下限であり、1250℃はA
lN粗粒化防止のための上限である。
The slab is reheated to 1000 to 1400 ° C. by gas heating, electric heating, etc., and then hot rolled to obtain a hot coil having a thickness of 10 mm or less.
Here, 1000 ° C. is a lower limit for melting AlN, and 1400 ° C. is an upper limit at which surface roughness and material deterioration do not occur. Further, the thickness of 10 mm is the upper limit at which it is possible to obtain a cold speed at which an appropriate precipitate is formed. In the thin slab continuous casting method, it is possible to directly form a coil, and for that purpose, the thickness is preferably 10 mm or less. The hot coil thus produced is often annealed again at 800 to 1250 ° C. to improve the magnetism. 800 here
℃ is the lower limit for remelting AlN, 1250 ℃ is A
1N is the upper limit for preventing coarsening.

【0026】かかる処理工程の後、ホットコイルを直接
またはバッチ的に酸洗後、冷間圧延を行う。冷間圧延は
圧下率60〜95%で行うが、60%は本発明で再結晶
可能な限界であり、好ましくは70%以上が一次焼鈍で
{111}<112>方位粒を多くして、二次再結晶焼
鈍時のGOSS方位粒の生成を促進させるための下限で
あり、一方95%超では二次再結晶焼鈍で首振りGOS
S粒と称するGOSS方位粒が板面内回転した磁気特性
に好ましくない粒が生成する。以上はいわゆる一回冷延
法で製造する場合だが、二回冷延法と称して冷延−焼鈍
−冷延を行う場合は、一回目の圧下率は10〜80%、
二回目の圧下率は50〜95%となる。ここで10%は
再結晶に必要な最低圧下率、80%と95%はそれぞれ
二次再結晶時に適正なGOSS方位粒を生成させるため
の上限圧下率、また50%は二回冷延法においては一次
焼鈍時の{111}<112>方位粒を適正に残すため
の下限圧下率である。
After this treatment step, the hot coil is pickled directly or batchwise and then cold rolled. Cold rolling is carried out at a rolling reduction of 60 to 95%, but 60% is the limit at which recrystallization is possible in the present invention, and preferably 70% or more by primary annealing and increasing {111} <112> oriented grains, This is the lower limit for promoting the generation of GOSS oriented grains during secondary recrystallization annealing, while on the other hand, if it exceeds 95%, it is a swinging GOS during secondary recrystallization annealing.
GOSS-oriented grains called S grains rotate in the plane of the plate to produce grains unfavorable to the magnetic properties. The above is the case of manufacturing by the so-called single cold rolling method, but when cold rolling-annealing-cold rolling is performed by calling the double cold rolling method, the first rolling reduction is 10 to 80%,
The second rolling reduction is 50 to 95%. Here, 10% is the minimum reduction ratio necessary for recrystallization, 80% and 95% are the upper limit reduction ratios for producing proper GOSS-oriented grains during secondary recrystallization, respectively, and 50% in the double cold rolling method. Is a lower limit reduction rate for properly leaving {111} <112> oriented grains during primary annealing.

【0027】なお、通称パス間エージングと称し、冷間
圧延の途中で鋼板を適当な方法で100〜400℃の範
囲で加熱することも磁気特性の向上に有効である。10
0℃未満ではエージングの効果がなく、一方、400℃
超では転位が回復してしまう。しかる後に一次焼鈍を行
い、このとき必要に応じて窒化を行う。一回冷延法でも
二回冷延法でも一次焼鈍を行うわけであるが、この焼鈍
で脱炭を行うことは有効である。前述のようにCは二次
再結晶粒の成長に好ましくないばかりか、不純物として
残ると鉄損の劣化を招く。なお、鋼の溶製時にCを下げ
ておくと脱炭工程が短縮化されるばかりか{111}<
112>方位粒も増やすので好ましい。なお、この脱炭
焼鈍工程で適正な露点を設定することで後の一次被膜生
成に必要な酸化層の確保が行われる。
It is also commonly called "interpass aging", and it is effective to improve the magnetic properties by heating the steel sheet in the range of 100 to 400 ° C by an appropriate method during the cold rolling. 10
Below 0 ℃, there is no effect of aging, while at 400 ℃
If it exceeds the limit, dislocations will be recovered. After that, primary annealing is performed, and at this time, nitriding is performed if necessary. Both the single cold rolling method and the double cold rolling method perform primary annealing, but it is effective to perform decarburization by this annealing. As described above, C is not preferable for the growth of secondary recrystallized grains, and if it remains as an impurity, it causes deterioration of iron loss. If C is lowered during the melting of steel, the decarburization process will be shortened and {111} <
112> orientation grains are also increased, which is preferable. By setting an appropriate dew point in this decarburization annealing step, the oxide layer necessary for the subsequent formation of the primary coating can be secured.

【0028】一次焼鈍温度は700〜950℃が好まし
い。ここで700℃は再結晶可能な下限温度であり、9
50℃は粗大粒の発生を抑制するための上限温度であ
る。さらに、AlNやSi3 4 インヒビターのNをこ
の一次焼鈍時に窒化法等で強制添加する本発明において
は、上記の一次焼鈍中またはその直後に、引き続きアン
モニア(NH3 )等で窒化法により窒化することが行わ
れる。この場合の窒化法の温度は600〜950℃が好
ましい。ここで600℃は窒化反応を起こすための下限
であり、一方950℃は粗大粒発生を抑えるための上限
である。
The primary annealing temperature is preferably 700 to 950 ° C. Here, 700 ° C. is the lower limit temperature at which recrystallization is possible, and
50 ° C. is an upper limit temperature for suppressing the generation of coarse particles. Further, in the present invention in which AlN or N of Si 3 N 4 inhibitor is forcibly added by the nitriding method or the like during this primary annealing, the nitriding method with ammonia (NH 3 ) or the like is continuously performed during or immediately after the primary annealing. Is done. In this case, the temperature of the nitriding method is preferably 600 to 950 ° C. Here, 600 ° C. is the lower limit for causing the nitriding reaction, while 950 ° C. is the upper limit for suppressing the generation of coarse particles.

【0029】本発明においては窒化は一次再結晶焼鈍後
に行うのが好ましいが、工業的には同じ炉内の後面に仕
切りを設けて雰囲気を必要に応じて多少変えて、NH3
ガスを流すか、近接した設備で行うため、一次再結晶と
平行して窒化されることもしばしばある。その際前述の
ようにN2 分圧が低い方が窒化量は大きく、好ましくは
窒素と酸素の分圧比PN2/PH2は0.5以下とする。
In the present invention, the nitriding is preferably performed after the primary recrystallization annealing, but industrially, a partition is provided on the rear surface of the same furnace and the atmosphere is slightly changed as necessary, and NH 3
Nitrogen is often nitrided in parallel with the primary recrystallization because the gas is supplied or it is carried out in close proximity. At that time, as described above, the lower the N 2 partial pressure is, the larger the nitriding amount is, and the partial pressure ratio P N2 / P H2 of nitrogen and oxygen is preferably 0.5 or less.

【0030】一方、一次焼鈍中またはその後に窒化する
か、しないかに拘らず、一次焼鈍での酸素目付量も重要
である。酸素目付量は25〜1000ppmが好ましい
範囲である。25ppmは窒化に必要な最低の酸素量で
あり、一方1000ppmを超えると、必然的に一次焼
鈍板の酸化層中のSiO2 量、FeO量が多くなりす
ぎ、酸化膜も厚くなり仕上焼鈍での一次被膜を少なくす
るのに不利である。好ましくは400〜800ppmが
よい。
On the other hand, regardless of whether or not nitriding is carried out during or after the primary annealing, the oxygen basis weight in the primary annealing is also important. The preferable oxygen basis weight is 25 to 1000 ppm. 25 ppm is the minimum amount of oxygen required for nitriding. On the other hand, when it exceeds 1000 ppm, the amount of SiO 2 and FeO in the oxide layer of the primary annealed plate inevitably becomes too large, and the oxide film becomes thick, resulting in the finish annealing. It is disadvantageous in reducing the primary coating. It is preferably 400 to 800 ppm.

【0031】さらに、酸化層中のFeO/SiO2 の比
も重要である。この比は0.40以下であることが好ま
しい。0.40超では仕上焼鈍前半のグラス被膜形成反
応性が極端に増し、前半でのフォルステライト形成量が
増大し、同じく一次被膜を少なくすることができない。
一次焼鈍あるいは上記窒化処理を行い、その後、酸化マ
グネシウム(MgOを主成分とする。以下MgOと呼
ぶ)パウダーを水または水を主成分とする水溶液に溶か
し、スラリー状にして鋼板に塗布する。その際、前述の
ように二次再結晶焼鈍後の一次被膜の平均の厚みを3μ
m以下にするには、マグネシアの中にMgO100重量
部に対し、鋼板表面にLi、K、Na、Ba、Ca、M
g、Zn、Fe、Zr、Sn、Sr、Alの硫化物の1
種または2種以上を0.5〜20重量部および/また
は、これらの元素の炭酸塩、硝酸塩、塩化物の中から選
ばれる1種または2種以上を0.5〜20重量部を添加
した焼鈍分離剤を塗布し、塩化物、硫化物または酸化物
を添加することが好ましい。この場合、例えば塩化物の
中でも塩化カルシウム(CaCl2 )、硫化物では硫化
カリウム(K2 S)がその代表である。この添加の量は
0.5〜20重量部(MgO重量を100としたときの
重量割合)が好ましい。0.5重量部未満では一次被膜
を薄くする効果がなく、一方20重量部超では反応性が
劣化し、二次再結晶が十分行われない。
Further, the ratio of FeO / SiO 2 in the oxide layer is also important. This ratio is preferably 0.40 or less. If it exceeds 0.40, the reactivity of forming the glass film in the first half of the finish annealing is extremely increased, the amount of forsterite formed in the first half is increased, and similarly the primary film cannot be reduced.
Primary annealing or the above nitriding treatment is performed, and then magnesium oxide (MgO as a main component; hereinafter referred to as MgO) powder is dissolved in water or an aqueous solution containing water as a main component to form a slurry, which is applied to a steel sheet. At that time, as described above, the average thickness of the primary coating after the secondary recrystallization annealing was 3 μm.
In order to make m or less, 100 parts by weight of MgO in magnesia and Li, K, Na, Ba, Ca, M on the surface of the steel plate are used.
g, Zn, Fe, Zr, Sn, Sr, Al sulfide 1
0.5 to 20 parts by weight of one or more kinds and / or 0.5 to 20 parts by weight of one or more kinds selected from carbonates, nitrates and chlorides of these elements are added. It is preferable to apply an annealing separator and add chloride, sulfide or oxide. In this case, for example, among chlorides, calcium chloride (CaCl 2 ) is representative, and among sulfides, potassium sulfide (K 2 S) is representative. The amount of this addition is preferably 0.5 to 20 parts by weight (weight ratio when the weight of MgO is 100). If it is less than 0.5 parts by weight, there is no effect of thinning the primary coating, while if it exceeds 20 parts by weight, the reactivity is deteriorated and the secondary recrystallization is not sufficiently performed.

【0032】一方、後の二次再結晶焼鈍時にMgOパウ
ダーの溶融を容易にさせ、フォルステライト生成反応を
促進させる目的で、適当な化合物を微量添加することも
行われる。TiO2 を添加する場合は1〜15%が好ま
しいが、ここで1%はフォルステライト反応促進効果を
発揮する下限であり、15%超ではMgOが少なくなっ
てかえってフォルステライト反応が進まない。
On the other hand, a trace amount of an appropriate compound may be added for the purpose of facilitating the melting of the MgO powder during the subsequent secondary recrystallization annealing and promoting the forsterite formation reaction. When TiO 2 is added, it is preferably 1 to 15%, but 1% is the lower limit at which the effect of promoting the forsterite reaction is exhibited, and if it exceeds 15%, the amount of MgO decreases and the forsterite reaction does not proceed.

【0033】Sb2 (SO4 3 等のアンチモン系の化
合物はMgOを比較的低温で溶融させるのに効果があ
り、添加を行う場合は0.05〜5%が好ましい。ここ
で、0.05%は上記低温溶融を起こす下限であり、一
方、5%を超える場合は多すぎてMgOのフォルステラ
イトの本来の反応を不活性化する。Na2 4 7 等の
ボロン系の化合物およびそれと同様の作用を持つストロ
ンチウム・バリウム系、炭・窒化物系、硫化物系、塩化
物系の化合物はアンチモン系よりは比較的高温でMgO
を溶融させるのに効果があり、添加する場合は0.05
〜5%が好ましい。ここで、0.05%は上記の効果を
発揮する下限であり、一方5%超ではやはりMgOのフ
ォルステライトの本来の反応を不活性化するので好まし
くない。
Antimony compounds such as Sb 2 (SO 4 ) 3 are effective in melting MgO at a relatively low temperature, and when added, 0.05 to 5% is preferable. Here, 0.05% is the lower limit for causing the above-mentioned low-temperature melting, while if it exceeds 5%, it is too much to inactivate the original reaction of MgO forsterite. Boron-based compounds such as Na 2 B 4 O 7 and strontium / barium-based, carbon / nitride-based, sulfide-based, and chloride-based compounds having the same action as MgO are relatively higher in temperature than antimony-based MgO.
Has the effect of melting
-5% is preferable. Here, 0.05% is the lower limit for exhibiting the above-mentioned effect, while if it exceeds 5%, the original reaction of MgO forsterite is inactivated, which is not preferable.

【0034】なお、これらの化合物は互いに複合して添
加することも可能である。ここで添加する化合物の%は
MgOの重量を100%としたときの重量比を%で示し
てある。なお、本発明で焼鈍分離剤にマグネシア(Mg
O)を使用する場合は水和水分も重要であり、その量は
0.5〜5%が望ましい。0.5%未満ではマグネシア
の反応性が劣化し、一方5%超では鋼板間の露点が高く
なって昇温時前段で追加酸化を生じ、表面に酸化膜のむ
らを生じて、グラスを安定して均一に3μm以下にする
ことができない。
It is also possible to add these compounds in combination with each other. The% of the compound added here indicates the weight ratio when the weight of MgO is 100%. In the present invention, the annealing separator is magnesia (Mg
When O) is used, the water content of hydration is also important, and the amount is preferably 0.5 to 5%. If it is less than 0.5%, the reactivity of magnesia deteriorates. On the other hand, if it exceeds 5%, the dew point between the steel sheets becomes high, and additional oxidation occurs at the front stage during temperature increase, causing unevenness of the oxide film on the surface and stabilizing the glass. Cannot be evenly reduced to 3 μm or less.

【0035】一方、焼鈍分離剤としてマグネシア(Mg
O)を使用しないか、あるいは極力少なくし、代わりに
アルミナ(Al2 3 )等の酸化物を焼鈍分離剤とする
ことで一次被膜の平均厚みを3μm以下にすることも可
能である。この場合はさらに薄い、またはほとんど鏡面
に近い状態の表面の方向性珪素鋼板も製造可能であり、
本発明の成分、製造条件とあいまって鉄損をさらに低減
することも可能である。
On the other hand, magnesia (Mg
It is also possible to reduce the average thickness of the primary coating to 3 μm or less by not using O) or by reducing it as much as possible and by using an oxide such as alumina (Al 2 O 3 ) as an annealing separator. In this case, it is also possible to manufacture grain-oriented silicon steel sheets with a surface that is even thinner or almost mirror-like,
It is also possible to further reduce the iron loss in combination with the components and manufacturing conditions of the present invention.

【0036】本発明においては、二次再結晶焼鈍は最高
到達温度を1100〜1300℃で行うのが好ましい。
1100℃は二次再結晶が行われる下限の温度であり、
一方1300℃超は結晶粒が粗大化し過ぎて鉄損の劣化
を招く。この二次再結晶焼鈍で重要な点は以下の通りで
ある。本発明ではMgOパウダーへ特殊添加物の効果で
フォルステライトを主成分とする一次被膜が極端に少な
くなるか、あるいはなくなるので、焼鈍中に二次再結晶
に窒素系のインヒビター(AlN、Si3 4 等)を使
う場合は仕上焼鈍中にNを含め、その化合物のインヒビ
ターが逃げ易い傾向があり、このため仕上焼鈍の雰囲気
ガス中の窒素分圧(PN2)を30%以上とすることでこ
れを防ぐことができ、安定した二次再結晶を得ることが
可能である。一方、N系のインヒビター以外にMnSや
他の化合物を使用する場合は必ずしもこの制約にとらわ
れず、特にMnSを使用する場合はむしろ窒素分圧は3
0%以下にして余分のNの侵入を防いだ方が二次再結晶
は安定しやすい傾向がある。さらに二次再結晶焼鈍の昇
温速度があまり大きすぎると、十分な二次再結晶を起こ
す前にインヒビターが逃げ易いので、むしろ昇温速度を
毎時50℃以下に抑えた方が安定した磁気特性が得られ
る。なお、前述のように、この二次再結晶焼鈍中の比較
的前段階で雰囲気等より窒素を追加添加する窒化法が行
われることもある。
In the present invention, the secondary recrystallization annealing is preferably carried out at the highest temperature reached of 1100 to 1300 ° C.
1100 ° C. is the lower limit temperature at which secondary recrystallization is performed,
On the other hand, if the temperature exceeds 1300 ° C., the crystal grains become too coarse, and the iron loss is deteriorated. The important points in this secondary recrystallization annealing are as follows. In the present invention, the primary coating containing forsterite as the main component is extremely reduced or eliminated due to the effect of the special additive to the MgO powder. Therefore, the nitrogen-based inhibitor (AlN, Si 3 N 3) is added to the secondary recrystallization during annealing. 4 etc.), N is included in the finish annealing and the inhibitor of the compound tends to escape. Therefore, by setting the nitrogen partial pressure (P N2 ) in the atmosphere gas of the finish annealing to 30% or more. This can be prevented and stable secondary recrystallization can be obtained. On the other hand, when MnS or other compounds are used in addition to the N-based inhibitor, this restriction is not always a constraint, and particularly when MnS is used, the nitrogen partial pressure is rather 3%.
The secondary recrystallization tends to be more stable if the content of N is set to 0% or less to prevent excess N from penetrating. Furthermore, if the rate of temperature rise in the secondary recrystallization annealing is too high, the inhibitor easily escapes before sufficient secondary recrystallization occurs. Is obtained. Note that, as described above, the nitriding method in which nitrogen is additionally added from the atmosphere or the like may be performed at a relatively previous stage during the secondary recrystallization annealing.

【0037】次いで、本発明で重要な要件は仕上焼鈍後
またはフラットニング焼鈍、絶縁被膜塗布の前後の溝形
成である。これがフォルステライトを主成分とする一次
被膜を平均0.3μm以下と極めて少なくする方法との
組み合わせで、従来にみられない極低鉄損が得られるわ
けである。溝の形成方法は前述の通りであるが、溝の最
大部の平均の深さが2μm未満では磁区細分化効果がな
い。一方、50μm超では深すぎて磁束の円滑な流れを
妨げてかえって鉄損も悪くなる。好ましくは5〜30μ
mが良い。溝は規則的に配列されている方が良い。これ
は、磁区細分化が規則的に行われるからである。通常、
鋼板長手方向に対し45度から直角までの角度を有する
ほぼ一定のピッチで刻まれることが好ましい。45度未
満では磁区細分化の方向が磁性に好ましい結晶学的方位
とあわないからである。また、溝のピッチは2〜10m
mが好ましい。2mm未満では磁区細分化が進みすぎて
90°磁区が増え、鉄損も磁歪も悪い。一方、10mm
超では磁区細分化の効果がでない。
Next, an important requirement in the present invention is groove formation after finish annealing or flattening annealing, and before and after applying an insulating film. This is combined with the method of reducing the primary coating containing forsterite as a main component to an average of 0.3 μm or less, and an extremely low iron loss which has never been seen in the past can be obtained. The method of forming the groove is as described above, but if the average depth of the maximum part of the groove is less than 2 μm, there is no magnetic domain subdivision effect. On the other hand, if it exceeds 50 μm, it is too deep and the smooth flow of the magnetic flux is hindered, and the iron loss deteriorates. Preferably 5 to 30 μ
m is good. The grooves should be regularly arranged. This is because the magnetic domain is subdivided regularly. Normal,
It is preferable to engrave at a substantially constant pitch having an angle of 45 degrees to a right angle with respect to the longitudinal direction of the steel sheet. If it is less than 45 degrees, the direction of magnetic domain subdivision does not match the crystallographic orientation preferred for magnetism. Also, the pitch of the grooves is 2 to 10 m.
m is preferred. If it is less than 2 mm, the subdivision of the magnetic domain proceeds too much, the 90 ° magnetic domain increases, and the core loss and magnetostriction are poor. On the other hand, 10 mm
If it is super, there is no effect of subdivision of magnetic domains.

【0038】以上が本発明の方向性珪素鋼板の製造方法
での重要な部分であるが、工業的にはさらに絶縁特性や
磁気特性を向上させる目的で二次再結晶後の鋼板に有機
質や無機質による絶縁被膜を有する高張力被膜(ロール
コーティングまたはゾルゲール法等)を熱処理等と組み
合わせて塗布することがとりわけ重要である。その理由
は、本発明ではフォルステライト等の高張力特性を有す
る一次被膜が極端に少ないか、あるいはないために、そ
れを補完すべく高張力特性を有する絶縁被膜を塗布する
ことが効果的であるからである。
The above is an important part of the method for producing a grain-oriented silicon steel sheet according to the present invention, but industrially, the steel sheet after secondary recrystallization is made of an organic or inorganic material for the purpose of further improving the insulating property and the magnetic property. It is particularly important to apply a high-strength coating (roll coating, Zolgel method, etc.) having an insulating coating according to (4) in combination with heat treatment or the like. The reason for this is that in the present invention, the primary coating having high tensile properties such as forsterite is extremely small or absent, so it is effective to apply an insulating coating having high tensile properties to complement it. Because.

【0039】[0039]

【実施例】【Example】

実施例1 表3に示すような化学成分の鋼を転炉で溶製し、表4
(表3のつづき−1)、表5(表3のつづき−2)、表
6(表3のつづき−3)に示すような条件で製造した。
熱延板焼鈍を一部行ったが、この条件は1120℃×3
0秒間である。また冷間圧延時のパス間エージングをB
以外は行ったが、その条件は250℃である。なお、こ
こで本発明にとりわけ重要な一次再結晶焼鈍に引き続く
窒化は同一炉内に仕切りを設けた炉中内部分で同一ガス
組成で雰囲気をドライにし、NH3ガスを一定量流して
行ったものである。かかる一次焼鈍後の窒化量(一次焼
鈍後の鋼中の窒素量)を表4に示す。さらにこの鋼板に
パウダーを塗布したが、MgOパウダー(各種添加剤を
加えている)は水に溶解させ、スラリー状にして塗布
後、350℃で乾燥させた。ここで、%はMgOの重量
を100%としたときの重量比率である。また、E−1
〜E−10はMgOを使わずに焼鈍分離剤にAl 2 3
を使用し、一次焼鈍板に乾式で静電塗布した。しかる後
に、800℃〜最高到達温度の平均昇温速度を種々変え
て二次再結晶焼鈍を行った。ここでは最高到達温度は1
200℃である。さらに表6の各条件で磁区制御を行
い、さらにリン酸系の高張力絶縁被膜(二次被膜)を加
熱塗布した(ただし、レーザー法ではその後にレーザー
照射した)後、板取りし、歪取焼鈍850℃×4時間
(N2 90%−H2 10%、Dry)を行い、磁気測定
試験を行った。表6にその結果を示す。なお、溝の最大
深さ、ピッチおよび圧延方向との角度はいずれも最終製
品での測定である。
 Example 1 Steel having a chemical composition as shown in Table 3 was melted in a converter, and Table 4
(Continued from Table 3-1), Table 5 (continued from Table 3-2), Table
6 (continued from Table 3-3).
Part of the hot-rolled sheet was annealed, but the conditions were 1120 ° C x 3
0 seconds. The aging between passes during cold rolling is B
Other conditions were the same, but the condition was 250 ° C. In addition, this
This is followed by the primary recrystallization anneal, which is particularly important for the present invention.
Nitriding is performed with the same gas inside the furnace with a partition in the same furnace.
The composition makes the atmosphere dry, and NH3Flow a certain amount of gas
I went there. Amount of nitriding after such primary annealing (primary annealing
Table 4 shows the amount of nitrogen in the steel after blunting. In addition to this steel plate
Powder was applied, but MgO powder (various additives
(Added) is dissolved in water and applied as a slurry
Then, it was dried at 350 ° C. Where% is the weight of MgO
Is the weight ratio when is 100%. Also, E-1
~ E-10 is an annealing separator with Al without using MgO. 2O3
Was used to electrostatically coat the primary annealed plate by a dry method. After a while
Variously change the average temperature rise rate from 800 ℃ to the highest temperature
Secondary recrystallization annealing was performed. The highest temperature reached here is 1
It is 200 ° C. Furthermore, magnetic domain control is performed under each condition in Table 6.
In addition, a phosphoric acid-based high-strength insulating coating (secondary coating) is added.
Heat applied (however, laser method is followed by laser
After irradiating), the plate is removed and strain relief annealing is performed at 850 ° C. for 4 hours.
(N290% -H210%, Dry) and magnetic measurement
The test was conducted. Table 6 shows the results. The maximum of the groove
Depth, pitch and angle with rolling direction are all final products
It is the measurement in the product.

【0040】磁気測定は60×300mmの単板をSS
T試験法で測定し、B8 (800A/mの磁束密度、単
位はテスラ)およびW17/50 (50Hzで1.7テスラ
のときの鉄損、単位はワット/kg)、W13/50 (50
Hzで1.3テスラのときの鉄損、単位はワット/k
g)を測定した。表6に示すように、本発明の範囲に入
っているものは磁束密度が高く、また鉄損が十分低く、
本発明の目的範囲に入っていることがわかる。
For magnetic measurement, a 60 × 300 mm single plate was SS
Measured by T test method, B 8 (800 A / m magnetic flux density, unit is Tesla) and W 17/50 (iron loss at 50 Tesla at 1.7 Tesla, unit is watt / kg), W 13/50 (50
Iron loss at 1.3 Tesla at Hz, unit: watt / k
g) was measured. As shown in Table 6, those falling within the range of the present invention have high magnetic flux density and sufficiently low iron loss,
It can be seen that this is within the scope of the present invention.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【表6】 [Table 6]

【0045】実施例2 表7に示すような化学成分の鋼を転炉で溶製し、表7、
表8(表7のつづき−1)、表9(表7のつづき−2)
に示すような条件で製造した。熱延板焼鈍を一部行った
が、その条件は1120℃×30秒間であり、また焼鈍
後は水冷した。また冷間圧延時のパス間エージングを
F′以外は行ったが、その条件は250℃である。さら
にこの鋼板にパウダーを塗布したが、MgOパウダー
(各種添加剤を加えている)は水に溶解させス、ラリー
状にして塗布後、350℃で乾燥させた。ここで、%は
MgOの重量を100%としたときの重量比率である。
また、G′−1、G′−2はMgOを使わずに焼鈍分離
剤にAl2 3 を使用し、一次焼鈍板に乾式で静電塗布
した。しかる後に、800℃〜最高到達温度の平均昇温
速度を種々変えて二次再結晶焼鈍を行った。ここでは最
高到達温度は1200℃である。さらに表9の各条件で
磁区制御を行い、さらにリン酸系の高張力絶縁被膜(二
次被膜)を加熱塗布した(ただし、レーザー法ではその
後にレーザー照射した)後、板取りし、歪取焼鈍850
℃×4時間(N2 90%−H2 10%、Dry)を行
い、磁気測定試験を行った。表10(表7のつづき−
3)にその結果を示す。なお、溝の最大深さ、ピッチお
よび圧延方向との角度はいずれも最終製品での測定であ
る。
Example 2 Steel having the chemical composition shown in Table 7 was melted in a converter and
Table 8 (continued-1 in Table 7), Table 9 (continued-2 in Table 7)
It was manufactured under the conditions shown in. The hot-rolled sheet was partially annealed under the conditions of 1120 ° C. for 30 seconds, and after the annealing, it was water-cooled. In addition, aging between passes during cold rolling was performed except for F ', but the condition is 250 ° C. Further, powder was applied to this steel sheet, but MgO powder (to which various additives were added) was dissolved in water to form a slurry, which was applied and then dried at 350 ° C. Here,% is the weight ratio when the weight of MgO is 100%.
Further, G'-1 and G'-2 were dry-electrostatically applied to the primary annealing plate by using Al 2 O 3 as an annealing separator without using MgO. After that, secondary recrystallization annealing was performed while changing the average heating rate from 800 ° C. to the highest reached temperature variously. The highest temperature reached here is 1200 ° C. Furthermore, magnetic domains were controlled under the conditions shown in Table 9, and a phosphoric acid-based high-strength insulating coating (secondary coating) was applied by heating (however, laser irradiation was performed after the laser method), followed by plate removal and strain relief. Annealing 850
C. × 4 hours (N 2 90% -H 2 10%, Dry) was performed, and a magnetic measurement test was performed. Table 10 (Continued from Table 7-
The results are shown in 3). The maximum groove depth, pitch, and angle with the rolling direction are all measurements on the final product.

【0046】磁気測定は60×300mmの単板をSS
T試験法で測定し、B8 (800A/mの磁束密度、単
位はテスラ)およびW17/50 (50Hzで1.7テスラ
のときの鉄損、単位はワット/kg)、W13/50 (50
Hzで1.3テスラのときの鉄損、単位はワット/k
g)を測定した。表10に示すように、本発明の範囲に
入っているものは磁束密度が高く、また鉄損が十分低
く、本発明の目的範囲に入っていることがわかる。
For magnetic measurement, a 60 × 300 mm single plate is SS
Measured by T test method, B 8 (800 A / m magnetic flux density, unit is Tesla) and W 17/50 (iron loss at 50 Tesla at 1.7 Tesla, unit is watt / kg), W 13/50 (50
Iron loss at 1.3 Tesla at Hz, unit: watt / k
g) was measured. As shown in Table 10, those falling within the range of the present invention have a high magnetic flux density and a sufficiently low iron loss, which is within the target range of the present invention.

【0047】[0047]

【表7】 [Table 7]

【0048】[0048]

【表8】 [Table 8]

【0049】[0049]

【表9】 [Table 9]

【0050】[0050]

【表10】 [Table 10]

【0051】[0051]

【発明の効果】極めて低鉄損の方向性珪素鋼板を得るこ
とができる。
EFFECTS OF THE INVENTION A grain-oriented silicon steel sheet having an extremely low iron loss can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次被膜と鉄損の関係を示す図である。FIG. 1 is a diagram showing a relationship between a primary coating and iron loss.

【図2】0.06%P−3%Si鋼に対するSn添加の
効果を示す図である。
FIG. 2 is a diagram showing the effect of Sn addition on 0.06% P-3% Si steel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本間 穂高 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hodaka Hodaka No. 1-1 Toibata-cho, Tobata-ku, Kitakyushu, Kitakyushu, Fukuoka Inside Nippon Steel Corporation Yawata Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Si:1〜7%、P:0.03〜0.1
5%を含み、かつフォルステライトを主成分とする絶縁
性の一次被膜の平均の厚みが0.3μm以下であること
を特徴とする高磁束密度極低鉄損方向性珪素鋼板。
1. Si: 1 to 7%, P: 0.03 to 0.1
A high magnetic flux density ultra-low iron loss grain oriented silicon steel sheet characterized in that the insulating primary coating containing 5% as a main component has an average thickness of 0.3 μm or less.
【請求項2】 Si:1〜7%、P:0.03〜0.1
5%、Sn:0.02〜0.20%を含み、かつフォル
ステライトを主成分とする絶縁性の一次被膜の平均の厚
みが0.3μm以下であることを特徴とする高磁束密度
極低鉄損方向性珪素鋼板。
2. Si: 1 to 7%, P: 0.03 to 0.1
5%, Sn: 0.02 to 0.20%, and the average thickness of the insulative primary coating mainly composed of forsterite is 0.3 μm or less. Iron loss direction silicon steel sheet.
【請求項3】 Si:1〜7%、P:0.045%超
0.20%以下を含む鋼を溶製し、熱間圧延、冷間圧
延、一次再結晶焼鈍および二次再結晶焼鈍を基本工程と
する方向性珪素鋼板の製造において、二次再結晶焼鈍時
に生成されるフォルステライトを主成分とする絶縁性の
一次被膜の平均の厚みを0.3μm以下とすることを特
徴とする高磁束密度極低鉄損方向性珪素鋼板の製造法。
3. A steel containing Si: 1 to 7%, P: more than 0.045% and 0.20% or less is melted, hot rolled, cold rolled, primary recrystallization annealing and secondary recrystallization annealing. In the production of a grain-oriented silicon steel sheet having a basic step of, the average thickness of the insulative primary coating mainly composed of forsterite produced during secondary recrystallization annealing is set to 0.3 μm or less. High magnetic flux density Ultra low iron loss Directional silicon steel sheet manufacturing method.
【請求項4】 一次再結晶焼鈍から二次再結晶焼鈍の間
に鋼板表面にマグネシアの中にMgO100重量部に対
し、Li、K、Na、Ba、Ca、Mg、Zn、Fe、
Zr、Sn、Sr、Alの硫化物の1種または2種以上
を0.5〜20重量部および/または、これらの元素の
炭酸塩、硝酸塩、塩化物の中から選ばれる1種または2
種以上を0.5〜20重量部添加した焼鈍分離剤を塗布
することを特徴とする請求項3記載の高磁束密度極低鉄
損方向性珪素鋼板の製造法。
4. Li, K, Na, Ba, Ca, Mg, Zn, Fe, relative to 100 parts by weight of MgO in magnesia on the surface of the steel sheet between the primary recrystallization annealing and the secondary recrystallization annealing.
0.5 to 20 parts by weight of one or more sulfides of Zr, Sn, Sr and Al and / or one or two selected from carbonates, nitrates and chlorides of these elements.
The method for producing a high magnetic flux density ultra-low core loss grain oriented silicon steel sheet according to claim 3, characterized in that an annealing separator containing 0.5 to 20 parts by weight of one or more species is applied.
【請求項5】 一次再結晶焼鈍から二次再結晶焼鈍の間
にAl、Zr、Ti、Caの酸化物の1種または2種以
上を焼鈍分離剤として塗布することを特徴とする請求項
3記載の高磁束密度極低鉄損方向性珪素鋼板の製造法。
5. The one or more kinds of oxides of Al, Zr, Ti, and Ca are applied as an annealing separator between the primary recrystallization annealing and the secondary recrystallization annealing. A method for producing the described high magnetic flux density ultra-low iron loss grain-oriented silicon steel sheet.
【請求項6】 鋼板に板の長手方向から45〜90度の
角度に、間隔をあけて溝または照射痕を付与することを
特徴とする請求項3〜5のいずれか1項に記載の高磁束
密度極低鉄損方向性珪素鋼板の製造法。
6. The height according to claim 3, wherein the steel plate is provided with grooves or irradiation marks at intervals of 45 to 90 degrees from the longitudinal direction of the plate. Magnetic flux density Ultra low iron loss Directional silicon steel manufacturing method.
【請求項7】 鋼成分としてSi:1〜7%、P:0.
045%超0.20%以下、Sn:0.02〜0.20
%を含有させることを特徴とする請求項3〜6のいずれ
か1項に記載の高磁束密度極低鉄損方向性珪素鋼板の製
造法。
7. As a steel component, Si: 1 to 7%, P: 0.
More than 045% and 0.20% or less, Sn: 0.02 to 0.20
% Is contained, The method for producing a high magnetic flux density ultra-low iron loss grain-oriented silicon steel sheet according to any one of claims 3 to 6.
JP4339310A 1992-12-18 1992-12-18 High magnetic flux density extra-low iron loss grain-oriented silicon steel sheet and its production Withdrawn JPH06184763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4339310A JPH06184763A (en) 1992-12-18 1992-12-18 High magnetic flux density extra-low iron loss grain-oriented silicon steel sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4339310A JPH06184763A (en) 1992-12-18 1992-12-18 High magnetic flux density extra-low iron loss grain-oriented silicon steel sheet and its production

Publications (1)

Publication Number Publication Date
JPH06184763A true JPH06184763A (en) 1994-07-05

Family

ID=18326247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4339310A Withdrawn JPH06184763A (en) 1992-12-18 1992-12-18 High magnetic flux density extra-low iron loss grain-oriented silicon steel sheet and its production

Country Status (1)

Country Link
JP (1) JPH06184763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057201A (en) * 2010-09-07 2012-03-22 Sumitomo Metal Ind Ltd Electromagnetic steel sheet with insulation coating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057201A (en) * 2010-09-07 2012-03-22 Sumitomo Metal Ind Ltd Electromagnetic steel sheet with insulation coating film

Similar Documents

Publication Publication Date Title
EP3018221B1 (en) Method of production of grain-oriented electrical steel sheet with high magnetic flux density
KR101062127B1 (en) Method for manufacturing directional electromagnetic steel sheet with high magnetic flux density
JP5332134B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
CN110100023B (en) Oriented electrical steel sheet and method for manufacturing the same
EP0589418A1 (en) Process for producing oriented electrical steel sheet having minimized primary film, excellent magnetic properties and good workability
JP5068579B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
CN113166892A (en) Oriented electrical steel sheet and method for manufacturing the same
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
JPH06100937A (en) Production of silicon steel sheet having no glass film and extremely excellent in core loss
JP2003193134A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
US5308411A (en) Ultrahigh silicon, grain-oriented electrical steel sheet and process for producing the same
WO2008078915A1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JPH06184763A (en) High magnetic flux density extra-low iron loss grain-oriented silicon steel sheet and its production
JPH07258802A (en) Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production
JPH06220541A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic core loss and its production
EP0452122A2 (en) Method of producing grain oriented silicon steel sheets having less iron loss
JPH06158167A (en) High magnetic flux density grain-oriented silicon steel sheet and its production
JPH06220540A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic property after domain control
JPH06172939A (en) High magnetic flux density/low core loss grain-oriented silicon steel sheet and its production
JPH06100997A (en) Silicon steel sheet free from glass film and excellent in magnetic property and its production
JPH06136552A (en) Grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JP7221480B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JPH11199939A (en) Production of grin oriented magnetic steel sheet having high magnetic flux density and excellent film characteristic
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307