JP2002212636A - Method for producing grain oriented silicon steel sheet having high magnetic flux density - Google Patents

Method for producing grain oriented silicon steel sheet having high magnetic flux density

Info

Publication number
JP2002212636A
JP2002212636A JP2001005595A JP2001005595A JP2002212636A JP 2002212636 A JP2002212636 A JP 2002212636A JP 2001005595 A JP2001005595 A JP 2001005595A JP 2001005595 A JP2001005595 A JP 2001005595A JP 2002212636 A JP2002212636 A JP 2002212636A
Authority
JP
Japan
Prior art keywords
steel sheet
magnetic flux
flux density
annealing
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001005595A
Other languages
Japanese (ja)
Other versions
JP3943837B2 (en
Inventor
Shuichi Nakamura
修一 中村
Yoshiyuki Ushigami
義行 牛神
Norihiro Yamamoto
紀宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001005595A priority Critical patent/JP3943837B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to EP01118756A priority patent/EP1179603B1/en
Priority to EP09159921.7A priority patent/EP2107130B1/en
Priority to US09/924,353 priority patent/US6613160B2/en
Priority to DE60144270T priority patent/DE60144270D1/en
Priority to KR10-2001-0047756A priority patent/KR100442101B1/en
Priority to CN01137980A priority patent/CN1128239C/en
Publication of JP2002212636A publication Critical patent/JP2002212636A/en
Application granted granted Critical
Publication of JP3943837B2 publication Critical patent/JP3943837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a grain oriented silicon steel sheet which has high magnetic flux density by a low temperature slab heating process. SOLUTION: A steel having a composition containing, by mass, 0.8 to 4.8% Si, <=0.08% C, 0.01 to 0.065% acid soluble Al and <=0.012% N, and the balance Fe with inevitable impurities is heated at <=1,280 deg.C, and is thereafter hot-rolled. Next, cold rolling is performed into a final sheet thickness. After decarburizing annealing, the steel sheet is coated with a separation agent for annealing essentially consisting of magnesia, and is subjected to finish annealing into a grain oriented silicon steel sheet. In the production method, provided that the draft in the cold rolling is defied as R%, the ratio of I 111}/I 411} in the texture after the decarburizing annealing is controlled to (101n (100-R)/100)+44)/7 or lower. After that, nitriding treatment is performed to produce the grain oriented silicon steel sheet having high magnetic flux density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、結晶粒がミラー指
数で{110}<001>方位に集積した、いわゆる、
方向性電磁鋼板の製造方法に関するものである。この鋼
板は、軟磁性材料として変圧器等の電気機器の鉄芯とし
て用いられる。
BACKGROUND OF THE INVENTION The present invention relates to a so-called "110"<001> orientation of crystal grains,
The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet. This steel sheet is used as an iron core of electric equipment such as a transformer as a soft magnetic material.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、{110}<001
>方位(いわゆるゴス方位)に集積した結晶粒により構
成されたSiを4.8%以下含有した鋼板である。この
鋼板に対しては、磁気特性として、励磁特性と鉄損得性
が要求される。励磁特性を表す指標としては、磁場の強
さ800A/mにおける磁束密度:B8 が通常使用され
る。
2. Description of the Related Art Grain-oriented electrical steel sheets are {110} <001.
> A steel sheet containing 4.8% or less of Si constituted by crystal grains accumulated in an orientation (so-called Goss orientation). This steel sheet is required to have magnetic properties such as excitation properties and iron loss obtainability. As an index indicating the excitation characteristic, a magnetic flux density: B 8 at a magnetic field strength of 800 A / m is usually used.

【0003】また、鉄損特性を表す指標としては、周波
数50Hzで1.7Tまで磁化した時の鋼板1kg当り
の鉄損:W17/50が用いられる。磁束密度:B8 は鉄損
特性の最大の支配因子であり、磁束密度:B8 値が高い
ほど鉄損特性も良好になる。磁束密度:B8 を高めるた
めには結晶方位を高度に揃えることが重要である。この
結晶方位の制御は、二次再結晶とよばれるカタストロフ
ィックな粒成長現象を利用して達成される。
As an index indicating iron loss characteristics, iron loss per kg of steel sheet: W 17/50 when magnetized to 1.7 T at a frequency of 50 Hz is used. The magnetic flux density: B 8 is the largest controlling factor of the iron loss characteristics, and the higher the magnetic flux density: B 8 value, the better the iron loss characteristics. Flux density: in order to increase the B 8 is important to align advanced crystal orientation. The control of the crystal orientation is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.

【0004】この二次再結晶を制御するためには、二次
再結晶前の一次再結晶組織の調整と、インヒビタ−とよ
ばれる微細析出物の調整を行うことが必要である。この
インヒビタ−は、一次再結晶組織のなかで一般の粒の成
長を抑制し、特定の{110}<001>方位粒のみを
優先成長させる機能を持つ。析出物として代表的なもの
として、M.F.Littmann(特公昭30−36
51号公報)及びJ.E.May&D.Turnbul
l(Trans.Met.Soc.AIME212(1
958年)p769)等はMnSを、田口ら(特公昭4
0−15644号公報)はAlNを、今中ら(特公昭5
1−13469号公報)はMnSeを提示している。
In order to control the secondary recrystallization, it is necessary to adjust the primary recrystallization structure before the secondary recrystallization and to adjust a fine precipitate called an inhibitor. This inhibitor has a function of suppressing the growth of general grains in the primary recrystallized structure and preferentially growing only specific {110} <001> orientation grains. As typical examples of the precipitate, M.I. F. Littmann (Special Publication 30-36)
No. 51) and J.-A. E. FIG. May & D. Turnbul
1 (Trans. Met. Soc. AIM 212 (1
958) p769) et al. Used MnS and Taguchi et al.
No. 0-15644) discloses AlN and Imana et al.
Publication No. 1-13469) presents MnSe.

【0005】これらの析出物に対しては、熱間圧延前の
スラブ加熱時に完全固溶させ、その後に、熱間圧延およ
びその後の焼鈍工程で微細析出させる方法がとられてい
る。これらの析出物を完全固溶させるためには、135
0℃ないし1400℃以上の高温で加熱する必要がある
が、これは、普通鋼のスラブ加熱温度に比べて約200
℃高く、次の問題点がある。
[0005] A method has been adopted in which these precipitates are completely dissolved in slab heating before hot rolling and then finely precipitated in hot rolling and a subsequent annealing step. In order to completely dissolve these precipitates, 135
It is necessary to heat at a high temperature of 0 ° C. to 1400 ° C. or more, which is about 200 times higher than the slab heating temperature of ordinary steel.
° C high and has the following problems.

【0006】(1)専用の加熱炉が必要である。 (2)加熱炉のエネルギ−原単位が高い。 (3)溶融スケール量が多く、いわゆるノロ出し等の操
業管理が必要である。そこで、低温スラブ加熱による研
究開発が進められ、低温スラブ加熱による製造方法とし
て、小松ら(特公昭62−45285号公報)は、窒化
処理により形成した(Al、Si)Nをインヒビターと
して用いる方法を開示した。この窒化処理の方法とし
て、小林等は、脱炭焼鈍後にストリップ状で窒化する方
法を開示(特開平2−77525号公報)し、牛神等
が、その窒化物の挙動を報告している(Materials Sci
ence Forum, 204-206 (1996),pp593-598)。
(1) A dedicated heating furnace is required. (2) The energy intensity of the heating furnace is high. (3) The amount of the molten scale is large, and operation management such as so-called sticking out is required. Therefore, research and development by low-temperature slab heating have been advanced. As a manufacturing method by low-temperature slab heating, Komatsu et al. (Japanese Patent Publication No. 62-45285) use a method in which (Al, Si) N formed by nitriding treatment is used as an inhibitor. Disclosed. Kobayashi et al. Disclose a method of nitriding in strip form after decarburizing annealing (JP-A-2-77525), and Ushigami et al. Report the behavior of the nitrides. Materials Sci
ence Forum, 204-206 (1996), pp593-598).

【0007】低温スラブ加熱による方向性電磁鋼板の製
造方法においては、脱炭焼鈍時にインヒビタ−が形成さ
れていないので、脱炭焼鈍における一次再結晶組織の調
整が二次再結晶を制御するうえで重要となる。従来の高
温スラブ加熱による方向性電磁鋼板の製造方法の研究に
おいては、二次再結晶前の一次再結晶組織調整に関する
知見はほとんどなく、本発明者らは、例えば、特公平8
−32929号公報、特開平9−256051号公報等
でその重要性を開示した。
In the method for producing a grain-oriented electrical steel sheet by low-temperature slab heating, since no inhibitor is formed during decarburization annealing, adjustment of the primary recrystallization structure in decarburization annealing is not sufficient for controlling secondary recrystallization. It becomes important. In research on a conventional method for manufacturing a grain-oriented electrical steel sheet by heating at a high temperature slab, there is almost no knowledge about the adjustment of the primary recrystallization structure before the secondary recrystallization.
The importance is disclosed in JP-A-32929 and JP-A-9-260551.

【0008】特公平8−32929号公報においては、
一次再結晶粒組織の粒径分布の変動係数が0.6より大
きくなり粒組織が不均一になると、二次再結晶が不安定
になることを開示した。その後、さらに、特開平9−2
56051号公報において、二次再結晶の制御因子であ
る一次再結晶組織とインヒビターに関する研究を行なっ
た結果、一次再結晶粒組織の粒組織として、脱炭焼鈍後
の集合組織において、ゴス方位粒の成長を促進すると考
えられる{111}方位および{411}方位の粒の比
率;I{111}/I{411}を3以下に調整すると、
製品の磁束密度が向上することを開示した。
[0008] In Japanese Patent Publication No. 8-32929,
It has been disclosed that when the variation coefficient of the particle size distribution of the primary recrystallized grain structure becomes larger than 0.6 and the grain structure becomes non-uniform, the secondary recrystallization becomes unstable. Thereafter, Japanese Patent Application Laid-Open No. 9-2
In Japanese Patent No. 56051, as a result of a study on a primary recrystallized structure and an inhibitor, which are control factors of secondary recrystallization, as a primary recrystallized grain structure, the texture after decarburizing annealing shows that the goss-oriented grains have When I {111} / I {411} is adjusted to 3 or less, the ratio of grains having {111} orientation and {411} orientation, which is considered to promote growth,
It is disclosed that the magnetic flux density of the product is improved.

【0009】ここで、I{111}およびI{411}
は、それぞれ、{111}および{411}面が鋼板板
面に平行である粒の割合であり、X線回折測定により板
厚1/10層において測定された回折強度値を表してい
る。この脱炭焼鈍後の一次再結晶組織に対しては、脱炭
焼鈍工程の加熱速度、均熱温度、均熱時間等の脱炭焼鈍
の焼鈍サイクルが影響するのはもちろんのこと、熱延板
焼鈍の有無、冷間圧延の圧下率(冷延圧下率)等の脱炭
焼鈍前の製造工程も影響を与える。
Here, I {111} and I {411}
Are the proportions of grains in which the {111} and {411} planes are parallel to the steel plate surface, respectively, and represent the diffraction intensity values measured at a plate thickness of 1/10 by X-ray diffraction measurement. The primary recrystallized structure after this decarburizing annealing is affected not only by the annealing cycle of decarburizing annealing such as heating rate, soaking temperature and soaking time in the decarburizing annealing step, Manufacturing processes before decarburization annealing, such as the presence or absence of annealing and the reduction ratio of cold rolling (cold rolling reduction ratio), also have an effect.

【0010】冷延圧下率が及ぼす影響について具体的に
言えば、一次再結晶組織中の{111}、{411}結
晶方位をもつ結晶粒を発達させるためには、冷延圧下率
を80%以上とすることが必要であり、このことは、高
い磁束密度得るための指標であるI{111}/I{4
11}を3以下とするために、非常に重要なことであ
る。
[0010] Specifically, the effect of the cold rolling reduction is to increase the cold rolling reduction to 80% in order to develop crystal grains having {111} and {411} crystal orientations in the primary recrystallization structure. It is necessary to make the above, which is an index for obtaining a high magnetic flux density, I {111} / I {4
It is very important to make 11} 3 or less.

【0011】冷延圧下率を高めていくと、基本的に製品
の磁束密度は向上していくが、ある一定の冷延圧下率を
超えてしまうと、I{111}/I{411}を3以下
に制御しているにもかかわらず、二次再結晶が不安定に
なり、製品の磁束密度が低下してしまうことが分かっ
た。
When the cold rolling reduction is increased, the magnetic flux density of the product basically increases. However, when the cold rolling reduction exceeds a certain level, I {111} / I {411} is exceeded. It was found that the secondary recrystallization became unstable and the magnetic flux density of the product was reduced despite the control at 3 or less.

【0012】[0012]

【発明が解決しようとする課題】本発明は、脱炭焼鈍条
件を適切に制御することによって、上記の二次再結晶不
安定性を回避し、工業的に安定して磁束密度の高い優れ
た磁気特性をもつ方向性電磁鋼板を製造する方法を開示
するものである。
SUMMARY OF THE INVENTION The present invention avoids the above-mentioned secondary recrystallization instability by appropriately controlling the conditions of decarburization annealing, and is industrially stable and provides an excellent magnetic material having a high magnetic flux density. It discloses a method of manufacturing a grain-oriented electrical steel sheet having characteristics.

【0013】[0013]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下のとおりである. (1)質量%で、Si:0.8〜4.8%、C:0.0
85%以下、酸可溶性Al:0.01〜0.065%、
N:0.012%以下を含み、残部Feおよび不可避的
不純物からなる鋼を1280℃以下の温度で加熱した後
に熱間圧延し、次いで、冷間圧延を施し最終板厚とし、
脱炭焼鈍後、マグネシアを主成分とする焼鈍分離剤を塗
布し、仕上げ焼鈍を施す方向性電磁鋼板の製造方法にお
いて、冷延圧下率をR%としたときに、脱炭焼鈍後の集
合組織におけるI{111}/I{411}の比率を
(10ln{(100−R)/100}+44)/7以
下に調整し、その後、窒化処理を行なうことを特徴とす
る方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) In mass%, Si: 0.8 to 4.8%, C: 0.0
85% or less, acid-soluble Al: 0.01 to 0.065%,
N: steel containing 0.012% or less, the balance consisting of Fe and inevitable impurities is heated at a temperature of 1280 ° C. or less, then hot-rolled, and then cold-rolled to a final thickness,
After the decarburizing annealing, in the method for producing a grain-oriented electrical steel sheet in which an annealing separator containing magnesia as a main component is applied and subjected to finish annealing, when the cold rolling reduction ratio is R%, the texture after the decarburizing annealing Of {111} / I {411} at (10 In {(100−R) / 100} +44) / 7 or less, and then performing a nitriding treatment. Method.

【0014】(2)前記脱炭焼鈍工程の昇温過程におい
て、鋼板温度が600℃以下の領域から750〜900
℃の範囲内の所定の温度までの加熱速度H℃/秒を、1
[( R-68)/14]<Hとすることを特徴とする前記(1)
記載の磁束密度の高い方向性電磁鋼板の製造方法。 (3)前記脱炭焼鈍工程の昇温過程における、加熱速度
H℃/秒を、10[(R- 32)/32]<H<140とすること
を特徴とする前記(1)または(2)記載の磁束密度の
高い方向性電磁鋼板の製造方法。
(2) In the temperature raising step of the decarburizing annealing step, the temperature of the steel sheet is reduced from 750 to 900
The heating rate up to a predetermined temperature in the range of
0 (( R-68) / 14] <H
A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density as described above. (3) The method according to (1) or (2) above, wherein the heating rate H ° C./sec in the temperature raising process in the decarburizing annealing step is 10 [(R− 32) / 32] <H <140. A) A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density as described in the above.

【0015】(4)前記熱間圧延で得た熱延板に900
〜1200℃の温度域で30秒〜30分間の焼鈍を施す
ことを特徴とする前記(1)ないし(3)のいずれかに
記載の磁束密度の高い方向性電磁鋼板の製造方法。 (5)前記脱炭焼鈍工程において、770℃〜900℃
の温度域で雰囲気ガスの酸化度(PH2O/PH2):0.
15超1.1以下の範囲内で、鋼板の酸素量が2.3g
/m2 以下となるような時間、焼鈍することを特徴とす
る前記(1)ないし(4)のいずれかに記載の磁束密度
の高い方向性電磁鋼板の製造方法。
(4) 900 hot rolled sheets obtained by the hot rolling
The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of the above (1) to (3), wherein annealing is performed in a temperature range of up to 1200 ° C. for 30 seconds to 30 minutes. (5) In the decarburizing annealing step, 770 ° C to 900 ° C
Degree of oxidation of atmospheric gas (P H2O / P H2 ):
The oxygen content of the steel sheet is 2.3 g within a range of more than 15 and 1.1 or less.
The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of the above (1) to (4), wherein the annealing is performed for a time period of not more than / m 2 .

【0016】(6)鋼板の酸可溶性Alの量:[Al]
に応じて窒素量[N]が[N]/[Al]≧0.67を
満足する量となるように窒化処理を施すことを特徴とす
る前記(1)ないし(5)のいずれかに記載の磁束密度
の高い方向性電磁鋼板の製造方法。 (7)前記鋼に、質量%で、さらに、Snを0.02〜
0.15%添加することを特徴とする前記(1)ないし
(6)記載のいずれかに記載の磁束密度の高い方向性電
磁鋼板の製造方法。
(6) Amount of acid-soluble Al in steel sheet: [Al]
(1) to (5), wherein the nitriding treatment is performed so that the amount of nitrogen [N] satisfies [N] / [Al] ≧ 0.67 according to. For manufacturing grain-oriented electrical steel sheets with high magnetic flux density. (7) In the steel, Sn is added in an amount of 0.02 to
The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of the above (1) to (6), wherein 0.15% is added.

【0017】(8)前記鋼に、質量%で、さらに、Cr
を0.03〜0.2%添加することを特徴とする前記
(1)ないし(7)記載のいずれかに記載の磁束密度の
高い方向性電磁鋼板の製造方法。本発明者らは、冷延圧
下率を高めていくと基本的に製品の磁束密度は向上して
いくが、ある一定の冷延圧下率を超えると、一次再結晶
組織のI{111}/I{411}を3以下となるよう
に制御しているにもかかわらず、二次再結晶が不安定に
なり、製品の磁束密度が低下してしまう状況を調査し、
その解消方法について検討した。
(8) In the steel, by mass%,
(3) The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of the above (1) to (7), wherein 0.03 to 0.2% is added. The inventors of the present invention basically increased the magnetic flux density of the product as the rolling reduction was increased, but when the rolling reduction exceeded a certain level, the primary recrystallization structure I {111} / Despite controlling I {411} to be 3 or less, the secondary recrystallization became unstable, and the situation where the magnetic flux density of the product was reduced was investigated.
We examined the solution.

【0018】その結果、高磁束密度が得られるために必
要な一次再結晶組織の指標であるI{111}/I{4
11}のしきい値が、冷延圧下率に対して変化すること
が明らかとなった。具体的には、I{111}/I{4
11}のしきい値が冷延圧下率の増加に伴い減少するこ
とが分かった。このことから、I{111}/I{41
1}の値を小さくするために有効な制御方法について、
さらに調査した結果、脱炭焼鈍工程における加熱速度を
調整することによって製品の磁束密度をさらに高くする
ことができ、脱炭焼鈍加熱速度を上昇させることによっ
て、高B8 となる冷延圧下率の範囲が高圧下率側に広が
ることを見出した。
As a result, I {111} / I {4 which is an index of the primary recrystallized structure necessary for obtaining a high magnetic flux density.
It became clear that the threshold value of 11 ° changes with respect to the cold rolling reduction. Specifically, I {111} / I {4
It was found that the threshold value of 11 ° decreased with an increase in the cold rolling reduction. From this, I {111} / I {41
Regarding the effective control method to reduce the value of 1},
Further investigation result, it is possible to further increase the magnetic flux density of the product by adjusting the heating rate in the decarburization annealing step, by raising the decarburization annealing heating rate, cold rolled reduction ratio to be high B 8 It has been found that the range extends to the high pressure reduction side.

【0019】以下、実験結果をもとに説明する。図1
は、冷延圧下率Rから得られる真歪み:ln{100/
(100−R)}に対して脱炭焼鈍後の一次再結晶組織
の集合組織:I{111}/I{411}(表面層;板
厚の1/10層)をプロットし、それと対応した二次再
結晶焼鈍後の製品の磁束密度:B8 との関係を示した図
である。ここで用いた試料は、質量%でSi:3.2
%、C:0.05%、酸可溶性Al:0.026%、
N:0.008%、Mn:0.1%、S:0.007%
含有するスラブを1150℃の温度で加熱した後、1.
5mm、2.3mm、4.4mmの各厚に熱間圧延し、
その後、1120℃で焼鈍した後、0.22mm厚まで
冷間圧延し、次いで、加熱速度15℃/秒で770〜9
50℃の温度で脱炭焼鈍した後、一部はそのまま、一部
はアンモニア含有雰囲気で焼鈍して鋼板中の窒素を0.
020〜0.03%とし、次いで、MgOを主成分とす
る焼鈍分離剤を塗布し、仕上げ焼鈍を行ったものであ
る。
The following is a description based on the experimental results. Figure 1
Is the true strain obtained from the cold rolling reduction R: ln {100 /
For (100-R)}, the texture of the primary recrystallized structure after decarburization annealing: I {111} / I {411} (surface layer; 1/10 layer thickness) was plotted and corresponded. FIG. 6 is a diagram showing a relationship between magnetic flux density of a product after secondary recrystallization annealing: B 8 . The sample used here was Si: 3.2% by mass.
%, C: 0.05%, acid-soluble Al: 0.026%,
N: 0.008%, Mn: 0.1%, S: 0.007%
After heating the containing slab at a temperature of 1150 ° C.,
Hot-rolled to a thickness of 5 mm, 2.3 mm, 4.4 mm,
Thereafter, after annealing at 1120 ° C., cold rolling was performed to a thickness of 0.22 mm, and then 770 to 9 at a heating rate of 15 ° C./sec.
After decarburizing annealing at a temperature of 50 ° C., a part of the steel sheet is annealed, and a part of the steel sheet is annealed in an ammonia-containing atmosphere to reduce nitrogen in the steel sheet to 0.1%.
In this case, an annealing separator containing MgO as a main component was applied, and finish annealing was performed.

【0020】また、図中にプロットした各点は、二次再
結晶が安定して行われたものであり、特開平2−182
866号公報にあるように、一次再結晶の粒組織の変動
係数が0.6よりも大きくなったことに起因したB8
低下が起こったものは除いてある。図1から明らかなよ
うに、脱炭焼鈍後のI{111}/I{411}の値と
磁束密度B8 には密接な関係があり、冷延圧下率に対し
て1.88T以上の高磁束密度が得られるしきい値が変
化していることがわかる。
The points plotted in the figure indicate that the secondary recrystallization was performed stably.
As in 866 discloses, that the variation coefficient of the grain structure of primary recrystallization occurs a reduction in resulting from the B 8 that is greater than 0.6 are excluded. As apparent from FIG. 1, the value and the magnetic flux density B 8 of decarburization annealing after the I {111} / I {411 } is closely related, more high 1.88T with respect to cold rolling reduction rate It can be seen that the threshold for obtaining the magnetic flux density has changed.

【0021】さらに、B8 1.88T以上が得られるI
{111}/I{411}の領域の境界が、真歪みln
{100/(100−R)}に対してほぼ線形の関係に
あり、その領域は(10ln{(100−R)/10
0}+44)/7以下であることがわかる。上記の結果
に対する理由は必ずしも明らかではないが、本発明者ら
は次のように考えている。一次再結晶集合組織において
は、{110}<001>二次再結晶粒の成長を促進す
る{111}方位粒と{411}方位粒は、80%以上
の高い冷延圧下率でその増加に伴い発達するが、それと
同時に、[110]<001>方位粒を含む{110}方
位粒は単調に減少していく。
[0021] In addition, I more than B 8 1.88T can be obtained
The boundary of the {111} / I {411} region is the true distortion ln
{100 / (100−R)} is almost linear, and its region is (10ln {(100−R) / 10
0 + 44) / 7 or less. Although the reason for the above result is not always clear, the present inventors think as follows. In the primary recrystallization texture, the {111} -oriented grains and the {411} -oriented grains that promote the growth of the {110} <001> secondary recrystallized grains increase at a high cold rolling reduction of 80% or more. At the same time, the {110} orientation grains including the [110] <001> orientation grains monotonously decrease.

【0022】本発明におけるような(Al、Si)N等
の窒化物のように熱的に安定な(強い)インヒビタ−を
用いた場合には、粒界移動の粒界性格依存性が高くなる
ために、ゴス方位粒の数よりも、ゴス方位とΣ9対応方
位関係にあるマトリックス粒(具体的には{111}<
112>、{411}<148>)の数および結晶方位
分散がより重要になり、二次再結晶粒となる一次再結晶
組織中の[110]<001>方位粒の成長を促進する
{111}方位粒と{411}方位粒の十分な発達が必
要となる、特に、結晶方位分散が少ない{411}方位
粒の発達が必要になると考えている。
When a thermally stable (strong) inhibitor such as a nitride such as (Al, Si) N in the present invention is used, the dependence of grain boundary movement on the grain boundary character increases. Therefore, rather than the number of Goss orientation grains, matrix grains having a {9} corresponding orientation relationship with the Goss orientation (specifically, {111} <
112>, {411} <148>) and the crystal orientation dispersion become more important, and promote the growth of [110] <001> orientation grains in the primary recrystallized structure, which becomes secondary recrystallized grains. It is considered that sufficient development of {orientation grains and {411} orientation grains is required, and in particular, development of {411} orientation grains having small crystal orientation dispersion is required.

【0023】以上の結果をもとに、I{111}/I
{411}の値を脱炭焼鈍加熱速度と冷延圧下率とによ
って調整し、さらなる高B8 条件の探索を行った。図2
は、冷延圧下率および脱炭焼鈍加熱速度を軸にとったグ
ラフ上に、良好な製品の磁束密度:B8 が得られる領域
を示した図である。この図は、以下の操業により得るこ
とができた製品のB8 の結果より作成した。
Based on the above result, I {111} / I
The value of {411} was adjusted by the decarburization annealing heating rate and cold rolling reduction rate, we searched for additional high B 8 conditions. FIG.
Is on graph plotting the cold rolling reduction ratio and decarburization annealing heating rate on the axis, the magnetic flux density of a good product: is a diagram showing a region B 8 is obtained. This figure was created from the result of the product of B 8 that it is possible to have obtained the following operation.

【0024】質量%でSi:3.3%、C:0.05
%、酸可溶性Al:0.027%、N:0.007%、
Cr:0.1%、Sn:0.05%、Mn:0.1%、
S:0.008%含有するスラブを1150℃の温度で
加熱した後、熱間圧延によって、2.0mm、2.3m
m、3.2mmの各厚にし、この熱間圧延板を1120
℃で焼鈍し、その後、0.22mm厚に冷間圧延し、こ
の冷延板を20〜600℃/秒の加熱速度で800℃に
加熱した後、800〜890℃で120秒間、雰囲気酸
化度0.44で脱炭焼鈍し、一次再結晶集合組織を図1
で示す高B8 が得られる領域に調整し、その後、750
℃で30秒間アンモニア含有雰囲気中で焼鈍し、マグネ
シアを主成分とする焼鈍分離剤を塗布し、1200℃で
20時間仕上げ焼鈍を施した。
Si: 3.3% by mass%, C: 0.05
%, Acid-soluble Al: 0.027%, N: 0.007%,
Cr: 0.1%, Sn: 0.05%, Mn: 0.1%,
S: A slab containing 0.008% was heated at a temperature of 1150 ° C., and then hot-rolled to 2.0 mm and 2.3 m.
m, each having a thickness of 3.2 mm.
And then cold-rolled to a thickness of 0.22 mm. This cold-rolled sheet was heated to 800 ° C. at a heating rate of 20 to 600 ° C./sec. Fig. 1 shows the primary recrystallization texture after decarburizing annealing at 0.44.
Is adjusted to an area where a high B 8 is obtained, and then 750
Annealing was performed in an ammonia-containing atmosphere at 30 ° C. for 30 seconds, an annealing separator containing magnesia as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours.

【0025】図2において、脱炭焼鈍加熱速度を増加さ
せた場合、高B8 となる冷延圧下率の範囲が高圧下率側
に広がることが分かるとともに、高B8 領域と低B8
域を分ける境界が、脱炭焼鈍加熱速度Hの対数と冷延圧
下率との間の線形な関係で表されることがわかる。この
高B8 領域は、1.92T以上とする場合では、冷延圧
下率R%に対して脱炭焼鈍加熱速度H℃/秒を、10
[(R-68)/14]<Hとすればよく、さらに、脱炭焼鈍加熱
速度を10[(R-32)/32]<H<140と制限した領域に
おいては、B8を1.94T以上とすることができる。
FIG. 2 shows that when the decarburizing annealing heating rate is increased, the range of the cold rolling reduction rate at which high B 8 is obtained is widened toward the high pressure reduction rate, and the high B 8 region and the low B 8 region are increased. It can be seen that the boundary for dividing is expressed by a linear relationship between the logarithm of the decarburizing annealing heating rate H and the cold rolling reduction. When the high B 8 region is 1.92 T or more, the decarburizing annealing heating rate H ° C./sec is set to 10% for the cold rolling reduction R%.
[(R-68) / 14] <H, and in a region where the decarburizing annealing heating rate is limited to 10 [(R-32) / 32] <H <140, B 8 is set to 1. It can be 94 T or more.

【0026】これまで、方向性電磁鋼板の脱炭焼鈍を急
速加熱で行うことは、例えば、特開平1−290716
号公報、特開平6−212262号公報等に開示されて
いる。しかしながら、これら開示の方法は、高温スラブ
加熱による方向性電磁鋼板の製造方法に適用したもので
あり、その効果も、二次再結晶粒径が小さくなり鉄損特
性が向上するというものである。
Hitherto, rapid heating of decarburizing annealing of grain-oriented electrical steel sheets has been disclosed, for example, in Japanese Patent Application Laid-Open No. 1-290716.
And JP-A-6-212262. However, these disclosed methods are applied to a method for manufacturing a grain-oriented electrical steel sheet by high-temperature slab heating, and the effect is that the secondary recrystallized grain size is reduced and the iron loss characteristics are improved.

【0027】本発明の製品に及ぼす効果は、これらの結
果と異なり磁束密度(B8 )の向上に大きな影響を及ぼ
すものである。この磁束密度向上の機構に関しては、本
発明者らは次のように考えている。二次再結晶粒の粒成
長は駆動力となるマトリックス粒の粒界エネルギー密度
と粒成長を抑制するインヒビターのバランスによって決
まる。一般に、脱炭焼鈍の加熱速度を速めると、一次再
結晶組織のなかでゴス方位近傍の粒(二次再結晶粒の
核)が増加することがこれまで知られており、それが、
二次再結晶組織が微細化する原因と考えられている。
The effect of the present invention on the product is different from these results and has a great effect on the improvement of the magnetic flux density (B 8 ). The present inventors consider the following mechanism for improving the magnetic flux density as follows. The grain growth of the secondary recrystallized grains is determined by the balance between the grain boundary energy density of the matrix grains serving as a driving force and the inhibitor for suppressing grain growth. In general, it has been known that, when the heating rate of the decarburizing annealing is increased, grains near the Goss orientation (nuclei of secondary recrystallized grains) increase in the primary recrystallized structure.
It is considered that the secondary recrystallization structure becomes finer.

【0028】ところが、本発明において窒化処理により
形成された(Al、Si)N等の窒化物のように熱的に
安定な(強い)インヒビタ−を用いた場合には、粒界移
動の粒界性格依存性が高くなるために、ゴス方位粒の数
よりもゴス方位とΣ9対応方位関係にあるマトリックス
粒の数および分布がより重要になる。一次再結晶集合組
織をこの観点で調べた結果、図2の結果に対応して、磁
束密度(B8 )が最大になる加熱速度100℃/秒で、
マトリックスのゴス方位に対するΣ9対応方位密度が最
大になり、その方位分散が小さく(方位分布は尖鋭に)
なることが確認された。
However, in the present invention, when a thermally stable (strong) inhibitor such as a nitride such as (Al, Si) N formed by nitriding is used, the grain boundary of the grain boundary shifts. Since the character dependence is increased, the number and distribution of matrix grains having a Σ9 correspondence orientation relationship with the Goss orientation become more important than the number of Goss orientation grains. As a result of examining the primary recrystallized texture from this viewpoint, the heating rate at which the magnetic flux density (B 8 ) was maximized was 100 ° C./sec, corresponding to the result of FIG.
The Σ9 correspondence azimuth density with respect to the Goss azimuth of the matrix becomes maximum, and the azimuth dispersion is small (the azimuth distribution is sharp).
It was confirmed that it became.

【0029】したがって、脱炭焼鈍の加熱速度による一
次再結晶集合組織、特に、ゴス方位とΣ9対応方位関係
にある方位粒の調整と、強い(Al、Si)Nインヒビ
タ−の相乗効果により、はじめて尖鋭なゴス方位のみを
発達させることが可能になり、高い磁束密度を持つ製品
が安定して製造できたものと推定される。
Therefore, the primary recrystallized texture by the heating rate of the decarburization annealing, particularly the adjustment of the orientation grains having a Σ9 correspondence orientation with the Goss orientation, and the synergistic effect of the strong (Al, Si) N inhibitor, are not achieved until the first time. It is presumed that only a sharp Goss direction can be developed, and a product having a high magnetic flux density can be stably manufactured.

【0030】[0030]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。本発明鋼の成分としては、質量%で、S
i:0.8〜4.8%、C:0.085%以下、酸可溶
性Al:0.01〜0.065%、N:0.012%以
下が必要である。
Next, an embodiment of the present invention will be described. As a component of the steel of the present invention, S
i: 0.8 to 4.8%, C: 0.085% or less, acid-soluble Al: 0.01 to 0.065%, N: 0.012% or less.

【0031】Siは添加量を多くすると電気抵抗が高く
なり、鉄損特性が改善される。しかし、4.8%を超え
ると圧延時に割れやすくなってしまう。また、0.8%
より少ないと、仕上げ焼鈍時にγ変態が生じ結晶方位が
損なわれてしまう。Cは一次再結晶組織を制御するうえ
で有効な元素であるが、磁気特性に悪影響を及ぼすの
で、仕上げ焼鈍前に脱炭する必要がある。Cが0.08
5%より多いと、脱炭焼鈍時間が長くなり、生産性が損
なわれてしまう。
When Si is added in a large amount, the electric resistance increases and the iron loss characteristics are improved. However, if it exceeds 4.8%, cracks are likely to occur during rolling. 0.8%
If the amount is smaller than that, γ transformation occurs at the time of finish annealing, and the crystal orientation is impaired. C is an element effective in controlling the primary recrystallization structure, but has an adverse effect on the magnetic properties, and therefore needs to be decarbonized before the finish annealing. C is 0.08
If it is more than 5%, the decarburization annealing time will be long, and the productivity will be impaired.

【0032】酸可溶性Alは、本発明においてNと結合
して(Al、Si)Nとして、インヒビターとしての機
能を果すために必須の元素である。二次再結晶が安定す
る0.01〜0.065%を限定範囲とする。Nは0.
012%を超えると、冷延時にブリスターとよばれる鋼
板中の空孔を生じる。
In the present invention, acid-soluble Al is an essential element for bonding with N and serving as (Al, Si) N as an inhibitor. The limited range is 0.01 to 0.065% at which the secondary recrystallization is stable. N is 0.
If it exceeds 012%, pores in the steel sheet called blisters are generated during cold rolling.

【0033】その他、Sは磁気特性に悪影響を及ぼすの
で、0.015%以下とすることが望ましい。Snは脱
炭焼鈍後の集合組織を改善し、二次再結晶を安定化する
ため、0.02〜0.15%添加することが望ましい。
Crは脱炭焼鈍の酸化層を改善し、グラス被膜形成に有
効な元素であり、0.03〜0.2%添加することが望
ましい。その他、微量のCu、Sb、Mo、Bi、Ti
等を鋼中に含有することは、本発明の主旨を損なうもの
ではない。
In addition, since S has an adverse effect on the magnetic properties, it is desirable that the content be 0.015% or less. Sn is preferably added in an amount of 0.02 to 0.15% in order to improve the texture after decarburization annealing and stabilize the secondary recrystallization.
Cr is an element that improves the oxide layer in decarburization annealing and is effective for forming a glass film, and is desirably added in an amount of 0.03 to 0.2%. In addition, trace amounts of Cu, Sb, Mo, Bi, Ti
Inclusion in steel does not impair the gist of the present invention.

【0034】上記の組成を有する珪素鋼スラブは、転炉
または電気炉等により鋼を溶製し、必要に応じて、溶鋼
を真空脱ガス処理し、次いで、連続鋳造もしくは造塊後
分塊圧延することによって得られる。その後、熱間圧延
に先だってスラブ加熱がなされる。本発明においては、
スラブ加熱温度は1280℃以下として、先述の高温ス
ラブ加熱の諸問題を回避する。
The silicon steel slab having the above composition is produced by melting a steel in a converter or an electric furnace, etc., subjecting the molten steel to a vacuum degassing treatment as required, and then performing continuous casting or ingot-forming and ingot-rolling. It is obtained by doing. Thereafter, slab heating is performed prior to hot rolling. In the present invention,
The slab heating temperature is set to 1280 ° C. or less to avoid the above-described various problems of high-temperature slab heating.

【0035】上記熱間圧延で得た熱延板に対しては、通
常、磁気特性を高めるために、900〜1200℃で3
0秒〜30分間の短時間焼鈍を施す。その後、一回もし
くは焼鈍を挟んだ二回以上の冷間圧延により最終板厚と
する。冷間圧延としては、特公昭40−15644号公
報に開示されるように、最終冷延圧下率を80%以上と
することが、{111}、{411}等の一次再結晶方
位を発達させるうえで必要である。
The hot-rolled sheet obtained by the above-mentioned hot rolling is usually treated at 900 to 1200 ° C. for 3 hours in order to improve the magnetic properties.
A short annealing time of 0 seconds to 30 minutes is applied. Then, the final thickness is obtained by cold rolling once or twice or more with annealing. In the cold rolling, as disclosed in Japanese Patent Publication No. 40-15644, setting the final cold rolling reduction to 80% or more develops primary recrystallization orientations such as {111} and {411}. It is necessary above.

【0036】特に、本発明のポイントである{411}
の方位の発達が顕著になるように最終冷延圧下率を85
%以上とすることが望ましい。また、さらに、冷延圧下
率が95%より大きくなってしまうと、冷延工程での負
荷が大きくなり、実操業の観点から95%以下が現実的
である。冷間圧延後の鋼板には、鋼中に含まれるCを除
去するために、湿潤雰囲気中で脱炭焼鈍が施される。そ
の際、冷延圧下率R%に対して、脱炭焼鈍後の一次再結
晶集合組織のI{111}/I{411}の値を(10
ln{(100−R)/100}+44)/7以下に調
整することが重要であり、この調整により、磁気特性B
8 が1.88T以上の製品を製造することができる。
In particular, the point of the present invention, {411}
The final cold rolling reduction is 85 so that the development of
% Is desirable. Further, if the rolling reduction of the cold rolling is greater than 95%, the load in the cold rolling process is increased, and from the viewpoint of actual operation, 95% or less is realistic. The steel sheet after the cold rolling is subjected to decarburizing annealing in a humid atmosphere in order to remove C contained in the steel. At this time, the value of I {111} / I {411} of the primary recrystallization texture after decarburizing annealing was set to (10%) with respect to the cold rolling reduction R%.
It is important to adjust the value to be less than ln {(100-R) / 100} +44) / 7.
8 can manufacture products of 1.88T or more.

【0037】この脱炭焼鈍後の一次再結晶組織の制御
は、脱炭焼鈍工程の焼鈍サイクル(加熱速度、均熱温
度、均熱時間等)を調整することにより制御することが
できる。特にI{111}/I{411}の値を(10
ln{(100−R)/100}+44)/7以下に調
整するために、脱炭焼鈍工程で脱炭焼鈍加熱速度H℃/
秒を10[(R-68)/14]<Hとした加熱速度で加熱するこ
とによって、さらに高いB8を得ることが可能となる。
The primary recrystallization structure after the decarburizing annealing can be controlled by adjusting the annealing cycle (heating rate, soaking temperature, soaking time, etc.) in the decarburizing annealing step. In particular, the value of I {111} / I {411} is (10
In order to adjust ln {(100-R) / 100} +44) / 7 or less, the decarburizing annealing heating rate H ° C /
By heating at a heating rate of 10 [(R-68) / 14] <H, a higher B 8 can be obtained.

【0038】また、この加熱速度で加熱する必要がある
温度域は、少なくとも600℃から750〜900℃ま
での温度域である。図3および図4に、上記の結論を導
いた実験結果を示す。冷延板を40℃/秒の加熱速度で
室温から600℃〜1000℃の温度域の所定の温度ま
で加熱した後、窒素ガスで室温まで冷却した。その後、
20℃/秒の加熱速度で850℃まで加熱し、雰囲気ガ
スの酸化度0.33で120秒焼鈍した。その後、窒化
処理により窒素量を0.021%とした後、MgOを主
成分とする焼鈍分離剤を塗布して仕上げ焼鈍を行った。
The temperature range in which heating is required at this heating rate is a temperature range of at least 600 ° C. to 750 to 900 ° C. FIGS. 3 and 4 show the experimental results that led to the above conclusions. The cold rolled sheet was heated from room temperature to a predetermined temperature in a temperature range of 600 ° C. to 1000 ° C. at a heating rate of 40 ° C./sec, and then cooled to room temperature with nitrogen gas. afterwards,
Heating was performed to 850 ° C. at a heating rate of 20 ° C./sec, and annealing was performed for 120 seconds at an atmosphere gas oxidation degree of 0.33. Then, after the amount of nitrogen was reduced to 0.021% by nitriding treatment, an annealing separator containing MgO as a main component was applied and finish annealing was performed.

【0039】図3に示すように、40℃/秒の加熱速度
での到達温度が750℃以上、900℃以下の範囲で磁
束密度が向上していることが分かる。750℃未満で効
果が発揮されないのは、750℃未満では一次再結晶が
十分に進行していないからである。一次再結晶集合組織
を変えるためには、再結晶を十分に進行させる必要があ
る。また、900℃超の温度まで加熱すると、磁束密度
が低下するが、これは、試料の一部に変態組織が生じ、
その後の脱炭焼鈍完了時点での組織が混粒組織になるた
めであると考えられる。
As shown in FIG. 3, it can be seen that the magnetic flux density is improved when the temperature reached at a heating rate of 40 ° C./sec is 750 ° C. or more and 900 ° C. or less. The reason why the effect is not exhibited below 750 ° C. is that the primary recrystallization does not sufficiently proceed below 750 ° C. In order to change the primary recrystallization texture, recrystallization needs to proceed sufficiently. When heated to a temperature higher than 900 ° C., the magnetic flux density decreases. This is because a transformed structure occurs in a part of the sample,
This is considered to be because the structure at the time of completion of the subsequent decarburization annealing becomes a mixed grain structure.

【0040】次いで、上記冷延板を加熱速度20℃/秒
で、300℃から750℃の温度域の所定の温度まで加
熱し、その温度から加熱速度40℃/秒で850℃まで
加熱した後、窒素ガスで室温まで冷却した。その後、2
0℃/秒の加熱速度で850℃まで加熱し、雰囲気ガス
の酸化度0.33で120秒焼鈍した。その後、窒化処
理により窒素量を0.021%とした後、MgOを主成
分とする焼鈍分離剤を塗布して仕上げ焼鈍を行った。
Next, the cold-rolled sheet is heated at a heating rate of 20 ° C./second to a predetermined temperature in a temperature range of 300 ° C. to 750 ° C., and then heated to 850 ° C. at a heating rate of 40 ° C./second. And cooled to room temperature with nitrogen gas. Then 2
The sample was heated to 850 ° C. at a heating rate of 0 ° C./second, and annealed at an oxidation degree of the atmosphere gas of 0.33 for 120 seconds. Then, after the amount of nitrogen was reduced to 0.021% by nitriding treatment, an annealing separator containing MgO as a main component was applied and finish annealing was performed.

【0041】図4に示すように、加熱速度40℃/秒の
加熱開始温度が600℃超では、磁束密度向上効果がな
いことが分かる。これらの結果から、加熱速度40℃/
秒以上で加熱する必要がある温度域は、少なくとも、6
00℃から750〜900℃までの温度域であることが
分かる。したがって、脱炭焼鈍工程の昇温過程におい
て、鋼板温度が600℃以下の温度域から40℃/秒以
上で加熱することが必要となる。また、上記のような脱
炭焼鈍工程の昇温過程での加熱については、冷延工程か
ら脱炭焼鈍工程の間に加熱焼鈍を行っても、本発明の趣
旨を損なうものではない。
As shown in FIG. 4, when the heating start temperature at a heating rate of 40 ° C./sec is higher than 600 ° C., there is no effect of improving the magnetic flux density. From these results, a heating rate of 40 ° C. /
The temperature range that needs to be heated in seconds or more is at least 6
It can be seen that the temperature range is from 00 ° C to 750 ° C to 900 ° C. Therefore, in the temperature raising process of the decarburizing annealing process, it is necessary to heat the steel sheet at a temperature of 40 ° C./sec or more from a temperature range of 600 ° C. or less. Regarding the heating in the temperature raising process of the decarburizing annealing step as described above, even if the heating annealing is performed between the cold rolling step and the decarburizing annealing step, the purpose of the present invention is not spoiled.

【0042】また、上記の加熱速度の調整の効果を安定
して発揮させるためには、後述の実施例4に示している
ように、加熱した後に、770〜900℃の温度域で、
雰囲気ガスの酸化度(PH2O/PH2)を0.15超1.
1以下として、鋼板の酸素量を2.3g/m2 以下とす
ることが有効である。雰囲気ガスの酸化度が0.15未
満だと鋼板表面に形成されるグラス被膜の密着性が劣化
し、1.1を超えるとグラス被膜に欠陥が生じる。特
に、昇温段階での加熱速度を40℃/s以上に高めた場
合には、均熱時の酸化が促進されるので、酸素量を一定
の範囲内に管理するために、雰囲気酸化度を低めにする
か、または、均熱時間を短くする必要がある。
Further, in order to stably exert the effect of the adjustment of the heating rate, as shown in Example 4 described later, after heating, in a temperature range of 770 to 900 ° C.
The oxidation degree of the atmosphere gas (P H2O / P H2 ) exceeds 0.15.
It is effective to set the oxygen content of the steel sheet to 2.3 g / m 2 or less by setting it to 1 or less. If the degree of oxidation of the atmosphere gas is less than 0.15, the adhesion of the glass film formed on the surface of the steel sheet deteriorates, and if it exceeds 1.1, defects occur in the glass film. In particular, when the heating rate in the temperature raising step is increased to 40 ° C./s or more, oxidation at the time of soaking is promoted. Therefore, in order to control the oxygen amount within a certain range, the atmosphere oxidation degree is reduced. It is necessary to lower it or shorten the soaking time.

【0043】急速加熱の方法は特に限定するものではな
く、40〜100℃/秒程度の加熱速度に対しては、従
来の通常輻射熱を利用したラジアントチューブや発熱体
による脱炭焼鈍設備を改造した設備、また、100℃/
秒以上の加熱速度に対しては、新たなレーザー、プラズ
マ等の高エネルギー熱源を利用する方法、誘導加熱、通
電加熱装置等を適用することができる。
The method of rapid heating is not particularly limited. For a heating rate of about 40 to 100 ° C./sec, a conventional radiant tube using ordinary radiant heat or a decarburizing annealing facility using a heating element was modified. Equipment, 100 ℃ /
For a heating speed of seconds or more, a method using a new high-energy heat source such as a laser or plasma, induction heating, an electric heating device, or the like can be applied.

【0044】また、従来の通常輻射熱を利用したラジア
ントチューブや発熱体による脱炭焼鈍設備に新たなレー
ザー、プラズマ等の高エネルギー熱源を利用する方法、
誘導加熱、通電加熱装置等を適用する方法等を組み合わ
せることも有効である。均熱温度に関しては、例えば、
特開平2−182866号公報に開示されるような一次
再結晶粒組織の調整を勘案して設定する。通常は、77
0〜900℃の範囲で行う。また、均熱の前段で脱炭し
た後に、粒調整のために均熱の後段の温度を高めること
や、後段の雰囲気ガスの酸化度を下げて均熱時間をのば
すことも有効である。
Also, a method of using a new high-energy heat source such as a laser or a plasma in a conventional decarburizing annealing facility using a radiant tube or a heating element using radiant heat,
It is also effective to combine a method using an induction heating, an electric heating device or the like. Regarding the soaking temperature, for example,
The setting is made in consideration of the adjustment of the primary recrystallized grain structure as disclosed in JP-A-2-182866. Usually 77
It is performed in the range of 0 to 900 ° C. It is also effective to increase the temperature of the subsequent stage of the soaking for the purpose of grain adjustment after the decarburization in the preceding stage of the soaking, or to extend the soaking time by lowering the degree of oxidation of the atmosphere gas in the subsequent stage.

【0045】窒化処理としては、アンモニア等の窒化能
のあるガスを含有する雰囲気中で焼鈍する方法、MnN
等の窒化能のある粉末を焼鈍分離剤中に添加して仕上げ
焼鈍中に行う方法等がある。脱炭焼鈍の加熱速度を高め
た場合に二次再結晶を安定的に行わせるためは、(A
l、Si)Nの組成比率を調整する必要があり、窒化処
理後の窒素量としては、鋼中のAl量に対してN/Al
(質量比)を0.67以上とする必要がある。
As the nitriding treatment, a method of annealing in an atmosphere containing a gas having a nitriding ability such as ammonia, MnN
Or the like, which is added during the final annealing by adding a powder having a nitriding ability to the annealing separator. In order to stably perform the secondary recrystallization when the heating rate of the decarburization annealing is increased, (A
l, Si) It is necessary to adjust the composition ratio of N, and the nitrogen amount after the nitriding treatment is N / Al with respect to the Al amount in the steel.
(Mass ratio) must be 0.67 or more.

【0046】その後、マグネシアを主成分とする焼鈍分
離剤を塗布した後に、仕上げ焼鈍を行い、{110}<
001>方位粒を二次再結晶により優先成長させる。
Thereafter, after applying an annealing separating agent mainly composed of magnesia, finish annealing is performed, and {110} <
001> Orientation grains are preferentially grown by secondary recrystallization.

【0047】[0047]

【実施例】実施例1 質量%でSi:3.2%、C:0.05%、酸可溶性A
l:0.026%、N:0.008%、Mn:0.1
%、S:0.007%含有するスラブを1150℃の温
度で加熱した後、2.3mm厚に熱間圧延した。その
後、1120℃で焼鈍した後、0.27mm厚まで冷間
圧延し、次いで、脱炭焼鈍の加熱速度を5〜40℃/秒
とし、820℃の温度で脱炭焼鈍した後、アンモニア含
有雰囲気で焼鈍して鋼板中の窒素を0.02〜0.03
%とした。次いで、MgOを主成分とする焼鈍分離剤を
塗布し仕上げ焼鈍を行った。
EXAMPLES Example 1 Si: 3.2%, C: 0.05%, acid-soluble A by mass%
l: 0.026%, N: 0.008%, Mn: 0.1
%, S: The slab containing 0.007% was heated at a temperature of 1150 ° C., and then hot-rolled to a thickness of 2.3 mm. Then, after annealing at 1120 ° C., cold-rolling to a thickness of 0.27 mm, then decarburizing annealing at a heating rate of 5 to 40 ° C./sec. Nitrogen in the steel plate by 0.02 to 0.03
%. Next, an annealing separator containing MgO as a main component was applied and finish annealing was performed.

【0048】製品の特性値を表1に示す。一次再結晶集
合組織に関してI{111}/I{411}の値が冷延
圧下率R%に対して(10ln{(100−R)/10
0}+44)/7以下となっている場合、B8 が1.8
8T以上の高い磁束密度が得られていることが分かる。
Table 1 shows the characteristic values of the products. Regarding the primary recrystallized texture, the value of I {111} / I {411} is (10 ln} (100−R) / 10 with respect to the cold rolling reduction R%.
0} +44) / 7, B 8 is 1.8
It can be seen that a high magnetic flux density of 8 T or more is obtained.

【0049】[0049]

【表1】 [Table 1]

【0050】実施例2 質量%でSi:3.3%、C:0.05%、酸可溶性A
l:0.027%、N:0.007%、Cr:0.1
%、Sn:0.05%、Mn:0.1%、S:0.00
8%含有するスラブを1150℃の温度で加熱した後、
熱間圧延によって、2.0mm、2.8mm厚にし、こ
の熱間圧延板を1120℃で焼鈍し、その後、0.22
mm厚に冷間圧延した。
Example 2 Si: 3.3% by mass, C: 0.05%, acid-soluble A by mass%
l: 0.027%, N: 0.007%, Cr: 0.1
%, Sn: 0.05%, Mn: 0.1%, S: 0.00
After heating the slab containing 8% at a temperature of 1150 ° C,
By hot rolling to a thickness of 2.0 mm, 2.8 mm, the hot rolled sheet was annealed at 1120 ° C.
It was cold rolled to a thickness of mm.

【0051】この冷延板を5〜600℃/秒の加熱速度
で800℃に加熱した後、800〜890℃で120秒
間、雰囲気酸化度0.44で脱炭焼鈍した。このときの
鋼板の酸素量は1.9〜2.1g/m2 であった。その
後、750℃で30秒間アンモニア含有雰囲気中で焼鈍
し、アンモニア含有量を変えることにより鋼板中の窒素
量を0.023〜0.029%とした。その後、マグネ
シアを主成分とする焼鈍分離剤を塗布し、1200℃で
20時間仕上げ焼鈍を施した。
After the cold rolled sheet was heated to 800 ° C. at a heating rate of 5 to 600 ° C./sec, it was decarburized and annealed at 800 to 890 ° C. for 120 seconds at an atmospheric oxidation degree of 0.44. At this time, the oxygen content of the steel sheet was 1.9 to 2.1 g / m 2 . Thereafter, the steel sheet was annealed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere, and the amount of nitrogen in the steel sheet was adjusted to 0.023 to 0.029% by changing the ammonia content. Thereafter, an annealing separator containing magnesia as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours.

【0052】これらの試料に張力コーテイング処理を施
した。得られた製品の特性を表2に示す。表2より、一
次再結晶集合組織:I{111}/I{411}の値が
冷延圧下率R%に対して(10ln{(100−R)/
100}+44)/7以下となっている場合(△印)、
8 が1.88T以上となっており、加熱速度H℃/秒
が冷延圧下率R%に対して10[(R-68)/14]<H以上の
場合(○印)、さらに好ましくは、10[(R-32)/32]
H<140の範囲の場合(◎印)、磁束密度(B8 )が
高くなることが分かる。
These samples were subjected to a tension coating treatment. Table 2 shows the properties of the obtained product. From Table 2, the value of the primary recrystallized texture: I {111} / I {411} is (10In {(100−R) /
100} +44) / 7 or less (△ mark),
B 8 is 1.88 T or more, and the heating rate H ° C./sec is 10 [(R-68) / 14] <H or more with respect to the cold rolling reduction R% (R mark), more preferably. Is 10 [(R-32) / 32] <
In the case of H <140 (marked with ◎), it can be seen that the magnetic flux density (B 8 ) increases.

【0053】[0053]

【表2】 [Table 2]

【0054】実施例3 質量%で、Si:3.1%、Mn:0.1%、C:0.
05%、S:0.008%、酸可溶性Al:0.029
%、N:0.008%、Sn:0.1%を含む板厚2.
3mmの珪素鋼熱延板を最終板厚0.25mmに冷延し
た。この冷延板を酸化度0.33の窒素と水素の混合ガ
ス中において、加熱速度(1)20℃/秒、(2)10
0℃/秒で840℃まで加熱し、840℃で150秒焼
鈍し一次再結晶させた。その後、750℃で30秒間ア
ンモニア含有雰囲気中で焼鈍し、アンモニア含有量を変
えることにより鋼板中の窒素量を0.022〜0.02
6%とした。
Example 3 Si: 3.1%, Mn: 0.1%, C: 0.1% by mass.
05%, S: 0.008%, acid-soluble Al: 0.029
%, N: 0.008%, Sn: 0.1%
A 3 mm hot rolled silicon steel sheet was cold rolled to a final thickness of 0.25 mm. This cold-rolled sheet was heated in a mixed gas of nitrogen and hydrogen having a degree of oxidation of 0.33 at a heating rate of (1) 20 ° C./sec.
It was heated to 840 ° C. at 0 ° C./sec, and annealed at 840 ° C. for 150 seconds for primary recrystallization. Thereafter, the steel sheet is annealed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere, and the nitrogen content in the steel sheet is changed from 0.022 to 0.02 by changing the ammonia content.
6%.

【0055】これらの鋼板にマグネシアを主成分とする
焼鈍分離剤を塗布し仕上げ焼鈍を施した。仕上げ焼鈍
は、1200℃までは、N2 :25%+H2 :75%の
雰囲気ガス中で15℃/hrの加熱速度で行い、120
0℃でH2 :100%に切りかえ20時間焼鈍を行っ
た。これらの試料に張力コーテイング処理を施した。得
られた製品の磁気特性を表3に示す。実施例1、2と比
較すると、冷延前の焼鈍を行っていないので全体の磁束
密度は低いが、本発明の磁束密度向上効果が得られたこ
とを確認できる。
An annealing separator containing magnesia as a main component was applied to these steel sheets and finish annealing was performed. Finish annealing is performed at a heating rate of 15 ° C./hr in an atmosphere gas of N 2 : 25% + H 2 : 75% up to 1200 ° C.
At 0 ° C., the atmosphere was switched to H 2 : 100% and annealed for 20 hours. These samples were subjected to a tension coating treatment. Table 3 shows the magnetic properties of the obtained products. Compared with Examples 1 and 2, although annealing before cold rolling was not performed, the overall magnetic flux density was low, but it could be confirmed that the effect of improving the magnetic flux density of the present invention was obtained.

【0056】[0056]

【表3】 [Table 3]

【0057】実施例4 質量%で、Si:3.1%、C:0.05%、酸可溶性
Al:0.027%、N:0.008%、Mn:0.1
%、S:0.007%を含有する珪素鋼スラブを110
0℃に加熱し、2.0mm厚とした。この熱間圧延板を
1100℃で焼鈍し、冷間圧延し、最終板厚0.2mm
とした。その後、加熱速度100℃/秒で850℃まで
加熱した後に、室温まで冷却した。
Example 4 In terms of mass%, Si: 3.1%, C: 0.05%, acid-soluble Al: 0.027%, N: 0.008%, Mn: 0.1
%, S: 110% silicon steel slab containing 0.007%
Heated to 0 ° C. to a thickness of 2.0 mm. This hot-rolled sheet is annealed at 1100 ° C., cold-rolled, and has a final sheet thickness of 0.2 mm.
And Then, after heating to 850 ° C. at a heating rate of 100 ° C./sec, it was cooled to room temperature.

【0058】その後、加熱速度30℃/秒で加熱し、8
30℃で、酸化度0.12〜0.72の雰囲気ガスで9
0秒間焼鈍しその後、アンモニア含有雰囲気中で750
℃で30秒焼鈍し、鋼板中の窒素量を0.02〜0.0
3%とした。次いで、MgOを主成分とする焼鈍分離剤
を塗布し、1200℃で20時間仕上げ焼鈍を施した。
Thereafter, heating was performed at a heating rate of 30 ° C./sec.
At 30 ° C., an atmosphere gas having an oxidation degree of 0.12 to 0.72
Anneal for 0 seconds and then 750 in an ammonia-containing atmosphere.
C. for 30 seconds to reduce the amount of nitrogen in the steel sheet to 0.02 to 0.0
3%. Next, an annealing separator containing MgO as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours.

【0059】製品の特性を表4に示す。表4より、本発
明で規定した雰囲気の酸化度0.15超1.1以下の範
囲、および、脱炭焼鈍後の酸素量2.3g/m2 以下の
範囲を外れた場合には、製品のグラス被膜特性が劣化し
ていることがわかる。
Table 4 shows the characteristics of the product. According to Table 4, when the degree of oxidation in the atmosphere defined by the present invention is out of the range of more than 0.15 to 1.1 or less and the amount of oxygen after decarburizing annealing is 2.3 g / m 2 or less, the product is obtained. It can be seen that the glass coating characteristics of the sample were deteriorated.

【0060】[0060]

【表4】 [Table 4]

【0061】実施例5 質量%でSi:3.2%、C:0.05%、酸可溶性A
l:0.024%、N:0.007%、Cr:0.1
%、Sn:0.05%、Mn:0.1%、S:0.00
8%を含有する珪素鋼スラブを1150℃加熱し、板厚
2.3mmに熱間圧延した。この熱間圧延板を1120
℃で焼鈍し、その後、0.22mm厚に冷間圧延した。
この冷延板を100℃/秒で800℃に加熱した後、8
20℃で90〜600秒間、雰囲気酸化度0.52で脱
炭焼鈍し、I{111}/I{411}の値を2.7以
下にし、一次再結晶集合組織を請求項1で規定する不等
式が成り立つように調整した。
Example 5 Si: 3.2% by mass, C: 0.05%, acid-soluble A
l: 0.024%, N: 0.007%, Cr: 0.1
%, Sn: 0.05%, Mn: 0.1%, S: 0.00
A silicon steel slab containing 8% was heated at 1150 ° C. and hot-rolled to a thickness of 2.3 mm. This hot rolled plate is
And then cold rolled to a thickness of 0.22 mm.
After heating this cold rolled sheet to 800 ° C. at 100 ° C./sec,
Decarburizing annealing at 20 ° C. for 90 to 600 seconds at an atmospheric oxidation degree of 0.52 to reduce the value of I {111} / I {411} to 2.7 or less, and define the primary recrystallization texture in claim 1. Adjusted so that the inequality holds.

【0062】その後、750℃で30秒間アンモニア含
有雰囲気中で焼鈍し、鋼板中の窒素量を0.023〜
0.029%とした。MgOを主成分とする焼鈍分離剤
を塗布し、1200℃で20時間仕上げ焼鈍を施した。
製品の特性値を表5に示す。鋼板の酸素量が2.41g
/m2 と多くなった場合には、磁気特性が劣化している
ことが分かる。
Thereafter, the steel sheet was annealed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere to reduce the amount of nitrogen in the steel sheet to 0.023 to
0.029%. An annealing separator containing MgO as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours.
Table 5 shows the characteristic values of the products. The oxygen content of the steel plate is 2.41 g
/ M 2 , it can be seen that the magnetic properties have deteriorated.

【0063】[0063]

【表5】 [Table 5]

【0064】実施例6 質量%でSi:3.2%、C:0.05%、酸可溶性A
l:0.024%、N:0.007%、Cr:0.1
%、Sn:0.05%、Mn:0.1%、S:0.00
8%含有する珪素鋼スラブを1150℃加熱し、板厚
2.3mmに熱間圧延した。この熱間圧延板を1120
℃で焼鈍し、その後、0.22mm厚に冷間圧延した。
この冷延板を100℃/秒で800℃に加熱した後、8
20℃で110秒間、雰囲気酸化度0.44で脱炭焼鈍
した。集合組織:I{111}/I{411}の値は
1.7、鋼板酸素量は1.9g/m2 であった。
Example 6 Si: 3.2% by mass, C: 0.05%, acid-soluble A
l: 0.024%, N: 0.007%, Cr: 0.1
%, Sn: 0.05%, Mn: 0.1%, S: 0.00
A silicon steel slab containing 8% was heated at 1150 ° C. and hot-rolled to a thickness of 2.3 mm. This hot rolled plate is
And then cold rolled to a thickness of 0.22 mm.
After heating this cold rolled sheet to 800 ° C. at 100 ° C./sec,
Decarburization annealing was performed at 20 ° C. for 110 seconds at an atmospheric oxidation degree of 0.44. Texture: The value of I {111} / I {411} was 1.7, and the oxygen content of the steel sheet was 1.9 g / m 2 .

【0065】その後、750℃で30秒間アンモニア含
有雰囲気中で焼鈍し、アンモニア含有量を変えることに
より鋼板中の窒素量を0.012〜0.026%とし
た。その後、マグネシアを主成分とする焼鈍分離剤を塗
布し、1200℃で20時間仕上げ焼鈍を施した。製品
の特性値を表6に示す。窒化処理後の窒素量が0.01
7%以上([N]/[Al]≧0.67)で磁束密度が
高くなることが分かる。
Then, the steel sheet was annealed at 750 ° C. for 30 seconds in an ammonia-containing atmosphere, and the amount of nitrogen in the steel sheet was adjusted to 0.012 to 0.026% by changing the ammonia content. Thereafter, an annealing separator containing magnesia as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours. Table 6 shows the characteristic values of the products. Nitrogen content after nitriding is 0.01
It can be seen that the magnetic flux density becomes higher at 7% or more ([N] / [Al] ≧ 0.67).

【0066】[0066]

【表6】 [Table 6]

【0067】[0067]

【発明の効果】本発明によれば、従来の高温スラブ加熱
に起因する諸問題の無い低温スラブ加熱による方向性電
磁鋼板の製造方法を基に、一次再結晶組織、冷延条件に
対する脱炭焼鈍条件、表面酸化層及び窒化量を規定する
ことにより、磁束密度の高い優れた磁気特性をもつ方向
性電磁鋼板を工業的に安定して製造することができる。
According to the present invention, based on a method for producing a grain-oriented electrical steel sheet by low-temperature slab heating which does not cause any problems caused by conventional high-temperature slab heating, decarburization annealing for primary recrystallization structure and cold rolling conditions is performed. By defining the conditions, the surface oxide layer, and the amount of nitriding, a grain-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties can be industrially manufactured stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】製品の磁束密度(B8 )に及ぼす冷延圧下率と
一次再結晶集合組織:I{111}/I{411}の影
響を示す図である。
FIG. 1 is a diagram showing the influence of the cold rolling reduction and the primary recrystallization texture: I {111} / I {411} on the magnetic flux density (B 8 ) of a product.

【図2】磁束密度に及ぼす冷延圧下率と脱炭焼鈍の加熱
速度との影響を示す図である。
FIG. 2 is a graph showing the influence of the cold rolling reduction and the heating rate of decarburization annealing on the magnetic flux density.

【図3】磁束密度に及ぼす脱炭焼鈍の急速加熱完了温度
の影響を示す図である。
FIG. 3 is a diagram showing the effect of the rapid heating completion temperature of decarburization annealing on magnetic flux density.

【図4】磁束密度に及ぼす脱炭焼鈍の急速加熱開始温度
の影響を示す図である。
FIG. 4 is a diagram showing the effect of the rapid heating start temperature of decarburization annealing on the magnetic flux density.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 紀宏 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 Fターム(参考) 4K033 AA02 BA01 CA02 CA07 DA02 FA13 FA14 HA06 JA04 JA05 LA01 MA00 5E041 AA02 AA19 HB11 NN06 NN18 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Norihiro Yamamoto 1-1-Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka F-term in Nippon Steel Corporation Yawata Works (reference) 4K033 AA02 BA01 CA02 CA07 DA02 FA13 FA14 HA06 JA04 JA05 LA01 MA00 5E041 AA02 AA19 HB11 NN06 NN18

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、Si:0.8〜4.8%、
C:0.085%以下、酸可溶性Al:0.01〜0.
065%、N:0.012%以下を含み、残部Feおよ
び不可避的不純物からなる鋼を1280℃以下の温度で
加熱した後に熱間圧延し、次いで、冷間圧延を施し最終
板厚とし、脱炭焼鈍後、マグネシアを主成分とする焼鈍
分離剤を塗布し、仕上げ焼鈍を施す方向性電磁鋼板の製
造方法において、冷延圧下率をR%としたときに、脱炭
焼鈍後の集合組織におけるI{111}/I{411}
の比率を(10ln{(100−R)/100}+4
4)/7以下に調整し、その後、窒化処理を行なうこと
を特徴とする方向性電磁鋼板の製造方法。
1. A mass% of Si: 0.8 to 4.8%,
C: 0.085% or less, acid-soluble Al: 0.01-0.
065%, N: 0.012% or less, the balance consisting of Fe and unavoidable impurities is heated at a temperature of 1280 ° C. or less, then hot-rolled, then cold-rolled to a final thickness, In the method for producing a grain-oriented electrical steel sheet in which an annealing separator containing magnesia as a main component is applied after charcoal annealing and subjected to finish annealing, when the cold rolling reduction is set to R%, the texture after decarburizing annealing is reduced. I {111} / I {411}
Of (10ln {(100-R) / 100} +4
4) A method for producing a grain-oriented electrical steel sheet, which is adjusted to / 7 or less, and thereafter, a nitriding treatment is performed.
【請求項2】 前記脱炭焼鈍工程の昇温過程において、
鋼板温度が600℃以下の領域から750〜900℃の
範囲内の所定の温度までの加熱速度H℃/秒を、10
[(R-68)/14]<Hとすることを特徴とする請求項1記載
の磁束密度の高い方向性電磁鋼板の製造方法。
2. In the decarburizing annealing step, the temperature is raised during the decarburizing annealing step.
The heating rate H ° C./sec from the region where the steel plate temperature is 600 ° C. or lower to a predetermined temperature within the range of 750 to 900 ° C. is 10
2. The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to claim 1, wherein [(R-68) / 14] <H.
【請求項3】 前記脱炭焼鈍工程の昇温過程における加
熱速度H℃/秒を、10[(R-32)/32]<H<140とす
ることを特徴とする請求項1または2記載の磁束密度の
高い方向性電磁鋼板の製造方法。
3. The heating rate H ° C./sec in the temperature raising step of the decarburizing annealing step is set to 10 [(R−32) / 32] <H <140. For manufacturing grain-oriented electrical steel sheets with high magnetic flux density.
【請求項4】 前記熱間圧延で得た熱延板に900〜1
200℃の温度域で30秒〜30分間の焼鈍を施すこと
を特徴とする請求項1ないし3のいずれか1項に記載の
磁束密度の高い方向性電磁鋼板の製造方法。
4. The hot rolled sheet obtained by the hot rolling is 900 to 1
The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of claims 1 to 3, wherein annealing is performed in a temperature range of 200 ° C for 30 seconds to 30 minutes.
【請求項5】 前記脱炭焼鈍工程において、770℃〜
900℃の温度域にて、雰囲気ガスの酸化度(PH2O
H2):0.15超1.1以下の範囲内で、鋼板の酸素
量が2.3g/m2 以下となるような時間、焼鈍するこ
とを特徴とする請求項1ないし4のいずれか1項に記載
の磁束密度の高い方向性電磁鋼板の製造方法。
5. In the decarburizing annealing step, 770 ° C.
At a temperature range of 900 ° C, the degree of oxidation of the atmospheric gas (P H2O /
The steel sheet is annealed for a period of time such that the oxygen content of the steel sheet is 2.3 g / m 2 or less within a range of P H2 ): more than 0.15 and 1.1 or less. 2. The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to claim 1.
【請求項6】 鋼板の酸可溶性Alの量:[Al]に応
じて窒素量:[N]が[N]/[Al]≧0.67を満
足する量となるように窒化処理を施すことを特徴とする
請求項1ないし5のいずれか1項に記載の磁束密度の高
い方向性電磁鋼板の製造方法。
6. A nitriding treatment is carried out so that the amount of nitrogen: [N] becomes an amount satisfying [N] / [Al] ≧ 0.67 according to the amount of acid-soluble Al in the steel sheet: [Al]. The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of claims 1 to 5, characterized in that:
【請求項7】 前記鋼に、質量%で、さらに、Snを
0.02〜0.15%添加することを特徴とする請求項
1ないし6記載のいずれか1項に記載の磁束密度の高い
方向性電磁鋼板の製造方法。
7. The high magnetic flux density according to claim 1, wherein 0.02 to 0.15% of Sn is further added to the steel by mass%. Manufacturing method of grain-oriented electrical steel sheet.
【請求項8】 前記鋼に、質量%で、さらに、Crを
0.03〜0.2%添加することを特徴とする請求項1
ないし7記載のいずれか1項に記載の磁束密度の高い方
向性電磁鋼板の製造方法。
8. The steel according to claim 1, wherein Cr is added in an amount of 0.03 to 0.2% by mass%.
8. The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of items 7 to 7.
JP2001005595A 2000-08-08 2001-01-12 Method for producing grain-oriented electrical steel sheet Expired - Lifetime JP3943837B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001005595A JP3943837B2 (en) 2001-01-12 2001-01-12 Method for producing grain-oriented electrical steel sheet
EP09159921.7A EP2107130B1 (en) 2000-08-08 2001-08-07 Method to produce grain-oriented electrical steel sheet having high magnetic flux density
US09/924,353 US6613160B2 (en) 2000-08-08 2001-08-07 Method to produce grain-oriented electrical steel sheet having high magnetic flux density
DE60144270T DE60144270D1 (en) 2000-08-08 2001-08-07 Method for producing a grain-oriented magnetic sheet with high magnetic flux density
EP01118756A EP1179603B1 (en) 2000-08-08 2001-08-07 Method to produce grain-oriented electrical steel sheet having high magnetic flux density
KR10-2001-0047756A KR100442101B1 (en) 2000-08-08 2001-08-08 The method for producing an electromagnetic steel sheet having high magnetic flux density
CN01137980A CN1128239C (en) 2000-08-08 2001-08-08 Manufacture of electric steel plates with high magnetic flux density orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001005595A JP3943837B2 (en) 2001-01-12 2001-01-12 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2002212636A true JP2002212636A (en) 2002-07-31
JP3943837B2 JP3943837B2 (en) 2007-07-11

Family

ID=18873627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001005595A Expired - Lifetime JP3943837B2 (en) 2000-08-08 2001-01-12 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3943837B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001978A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008001977A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet
JP2008001982A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008001983A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Method for producing grain-oriented magnetic steel sheet with high magnetic flux density
WO2010116936A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
JP2011179087A (en) * 2010-03-02 2011-09-15 Nippon Steel Corp Method for nitriding steel sheet in production of grain-oriented magnetic steel sheet
WO2013089297A1 (en) * 2011-12-16 2013-06-20 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
JP2013189712A (en) * 2006-05-24 2013-09-26 Nippon Steel & Sumitomo Metal Corp Method for producing grain-oriented flat rolled magnetic steel sheet and strip with high magnetic flux density
JP2019178379A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001978A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008001977A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet
JP2008001982A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008001983A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Method for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2013189712A (en) * 2006-05-24 2013-09-26 Nippon Steel & Sumitomo Metal Corp Method for producing grain-oriented flat rolled magnetic steel sheet and strip with high magnetic flux density
WO2010116936A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
US8202374B2 (en) 2009-04-06 2012-06-19 Nippon Steel Corporation Method of treating steel for grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
JP2011179087A (en) * 2010-03-02 2011-09-15 Nippon Steel Corp Method for nitriding steel sheet in production of grain-oriented magnetic steel sheet
WO2013089297A1 (en) * 2011-12-16 2013-06-20 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
US9663839B2 (en) 2011-12-16 2017-05-30 Posco Method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
JP2019178379A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP7159595B2 (en) 2018-03-30 2022-10-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3943837B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP5729414B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
EP2025767B1 (en) Process for producing grain-oriented electrical steel sheet with high magnetic flux density
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JP5320690B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP5300210B2 (en) Method for producing grain-oriented electrical steel sheet
JP5332134B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP3481567B2 (en) Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more
JP4714637B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP3943837B2 (en) Method for producing grain-oriented electrical steel sheet
JP4456317B2 (en) Method for producing grain-oriented electrical steel sheet
JP5068579B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4427226B2 (en) Method for producing grain-oriented electrical steel sheet
JP2002060843A (en) Method for producing mirror finished grain oriented silicon steel sheet having high magnetic flux density
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
JP3485532B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4119614B2 (en) Method for producing grain-oriented electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2002069532A (en) Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
WO2023129259A1 (en) Improved method for the production of high permeability grain oriented electrical steel containing chromium
JP4075088B2 (en) Method for producing grain-oriented electrical steel sheet
JP3299884B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH09296219A (en) Production of grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R151 Written notification of patent or utility model registration

Ref document number: 3943837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term