JPH07250379A - 符号分割多元接続システム - Google Patents

符号分割多元接続システム

Info

Publication number
JPH07250379A
JPH07250379A JP4014094A JP4014094A JPH07250379A JP H07250379 A JPH07250379 A JP H07250379A JP 4014094 A JP4014094 A JP 4014094A JP 4014094 A JP4014094 A JP 4014094A JP H07250379 A JPH07250379 A JP H07250379A
Authority
JP
Japan
Prior art keywords
signal
station
interference
unit
symbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4014094A
Other languages
English (en)
Other versions
JP3202125B2 (ja
Inventor
Atsushi Fukazawa
敦司 深澤
Kenji Horiguchi
健治 堀口
Takuo Sato
拓郎 佐藤
Daiki Sugimoto
大樹 杉本
由美 ▲滝▼澤
Yumi Takizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4014094A priority Critical patent/JP3202125B2/ja
Priority to KR1019950002361A priority patent/KR100323190B1/ko
Priority to US08/401,451 priority patent/US5533012A/en
Priority to EP19950103483 priority patent/EP0671821A3/en
Publication of JPH07250379A publication Critical patent/JPH07250379A/ja
Application granted granted Critical
Publication of JP3202125B2 publication Critical patent/JP3202125B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • H04B1/71072Successive interference cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

(57)【要約】 【目的】 符号分割多元接続システムの加入者容量を、
上り、下り両回線において、周波数帯域を広げずに増加
する。 【構成】 基地局から携帯局への下りチャネルの送信側
に設けられた拡散変調部113は、送信信号と1シンボ
ル分の拡散符号を2分割することにより得られた2系統
の符号と乗算した後、各乗算出力と互いに直行した2つ
の搬送波をそれぞれ乗算し、各乗算出力を合成して送信
する。下りチャネルの受信側に設けられた拡散復調部2
14は、受信信号と上記2系統の搬送波を乗算した後、
各乗算出力と上記2系統の拡散符号を乗算して、復調信
号を得る。上りチャネルの受信側に設けられた干渉除去
部115は、各局の各シンボルごとに、その値を推定
し、この推定値に基づいて、他局への干渉量を計算し、
この計算値に基づいて、各局の受信信号から他局からの
干渉成分を除去する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、例えば、パーソナル通
信システム(PCS)等の移動通信システムのように、
基地局と複数の携帯局を符号分割多元接続方式で接続す
る通信システム、すなわち、符号分割多元接続システム
(以下、「CDMAシステム」という。)に関する。
【0002】
【従来の技術】CDMAシステムで用いられる変復調装
置としては、例えば、次の文献1に記載されるものがあ
る。 文献1:BERNARD SKLAR著、”DIGIT
ALCOMMUNICATIONS Fundamen
tals andApplications” pp.
571−573、1988年、Prentice Ha
ll発行。
【0003】この文献1に記載された変調装置は、送信
データに拡散符号を乗じることにより、スペクトラムを
拡散するようになっている。このスペクトラム拡散信号
は、無線機によって無線周波数帯域の信号に変換された
後、アンテナから送信される。各携帯局は、周波数につ
いては、同じものを用い、拡散符号については、異なる
ものを用いる。
【0004】一方、復調装置は、アンテナからの受信信
号をベースバンド帯域の信号に変換し、これに送信局と
同期した拡散符号を乗じた後、1シンボル分を加算して
復調信号を取り出すようになっている。復調信号には目
的とする信号の他に、他局からの干渉信号が含まれてい
るが、この干渉信号は目的信号より小さいので問題はな
い。
【0005】
【発明が解決しようとする課題】しかしながら、上述し
た従来のCDMAシステムにおいては、携帯局の数が多
くなると、次のような問題があった。
【0006】すなわち、基地局から携帯局にデータを伝
送するための下りチャネル(フォワード・チャネル)に
おいては、誤りの少ない伝送方式を構築するためには、
1シンボル分の拡散符号の長さを長くする必要がある。
このため、このチャネルにおいては、携帯局数が多くな
ると、使用する周波数帯域が広がるという問題が生じ
る。
【0007】また、携帯局から基地局にデータを伝送す
るための上りチャネル(リバース・チャネル)において
は、各携帯局が拡散符号として擬似ランダム符号のよう
な非直交符号を非同期で用いた場合、ある局の送信信号
が他の局の送信信号に干渉波として加算される。このた
め、このチャネルにおいては、携帯局数が多くなると、
干渉量が多くなり、受信データに誤りが多く発生すると
いう問題があった。
【0008】
【課題を解決するための手段】本発明は、下りチャネル
の送信側に、1つの拡散符号を2分割することにより得
られた2系統の部分拡散符号と送信データとを乗算する
ことにより、2系統の被拡散信号を生成する被拡散信号
生成手段と、この被拡散信号生成手段により生成された
2系統の被拡散信号と互いに直交した2系統の搬送波と
をそれぞれ乗算することにより、2系統の無線周波数帯
域の送信信号を生成する無線周波数帯域信号生成手段
と、この無線周波数帯域信号生成手段により生成された
2系統の無線周波数帯域信号を合成して送信する信号送
信手段とを具備した拡散変調装置を設け、下りチャネル
の受信側に、受信信号と2系統の搬送波とを乗算するこ
とにより、2系統のベースバンド帯域の信号を生成する
ベースバンド帯域信号生成手段と、このベースバンド帯
域信号生成手段により生成された2系統のベースバンド
帯域信号と前記2系統の部分拡散符号をそれぞれ乗算す
ることにより、2系統の部分相関値信号を生成する部分
相関値信号生成手段と、この部分相関値信号生成手段に
より生成された2系統の部分相関値信号を加算すること
により、前記送信データを復調するデータ復調手段とを
具備した拡散復調装置を設け、前記移動局から基地局に
データを送信するための上りチャネルの受信側に、各移
動局のシンボル推定値が得られるたびに、このシンボル
推定値から各移動局の送信信号を推定し、この推定信号
を他の移動局が使う受信信号から除去するという処理を
繰り返すことにより、各移動局の受信信号から他の移動
局の干渉信号を除去するように構成された干渉除去装置
を設けたことを特徴とする。
【0009】
【作用】
(1) まず、携帯局数が多くなっても、下りチャネル
の使用周波数帯域の拡大を防止するための作用を説明す
る。
【0010】今、下りチャネルにおいては、全送受信局
は完全に同期しているものとする。また、送信データ
は、拡散符号によって直接拡散変調されるものとする。
【0011】拡散符号として、送信データの1シンボル
(プラス1又はマイナス1のシンボル)当たりの長さが
一定である符号を用いる場合、一般的傾向として、この
拡散符号が非直交の符号であると、ユーザ数が多いほど
誤り率が増加する。これに対し、直交の符号であると、
ユーザ数がこの符号の数より多くなるほど誤り率が増加
する。従って、ユーザ数と送信データ1シンボル当たり
に使用する拡散符号の長さとの間には密接な関係があ
る。
【0012】本発明は、1シンボル分の拡散符号sk
(t)を2つに分割したものを用い、その2系統の部分
拡散符号ck1(t)、ck2(t)で送信データを拡
散し、この拡散により得られた2系統の被拡散信号と互
いに直交した2系統の搬送波をそれぞれ乗算して無線周
波数帯域(以下、「RF帯域」という。)の送信信号を
生成することにより、周波数帯域が同じでも、2倍の伝
送量を確保できるようにしたものである。
【0013】本発明におけるRF帯域の送信信号sk
(t)は、次式のように表される。
【0014】 sk(t)=ak(t)ck1(t)ψ1(t) +ak(t)ck2(t)ψ2(t) 式(1) ここで、ak(t)は、時刻tにおいて、k局が送信し
た送信データ(情報データ)であり、プラス1あるいは
マイナス1で表される。この送信データak(t)は、
シンボル長時間Taの間は変化しない。ck1(t)、
ck2(t)は、時刻tにおいて、k局が用いている2
系統の部分拡散符号であり、k局の1シンボル長に対し
てN/2(N/2=2Ta・Tc:但し、Tcは部分拡
散符号のチップ時間長)倍の速度をもつ。ψ1(t)、
ψ2(t)は互いに直交した搬送波である。
【0015】スペクトル拡散通信において、互いに直交
した2つの搬送波で伝送されたRF帯域の受信信号R
(t)は、送信局がM局あるとき次式(2)のように表
される。
【0016】
【数1】 1シンボル区間において、k局の信号を検出する場合
は、RF帯域の受信信号R(t)と搬送波ψ1(t)、
ψ2(t)を乗算することにより、この受信信号R
(t)から、各搬送波ψ1(t),ψ2(t)に乗せた
ベースバンドの成分E1(t)、E2(t)を抽出す
る。なお、E1(t)、E2(t)は、それぞれ、式
(1)におけるak(t)ck1(t)、ak(t)c
k2(t)に対応する。
【0017】そして、送信局k局において使用し、且
つ、送信局k局と同期した拡散符号ck1(t)、ck
2(t)との相関値bk1、bk2をそれぞれ計算し、
それらの和bkを計算する(逆拡散)。
【0018】相関演算により得られた和bk、すなわ
ち、2つの直交した搬送波ψ1(t),ψ2(t)に乗
せた送信データ成分の出力の和は次式(3)のように表
される。
【0019】
【数2】 式(3)において、E1(t)、E2(t)は、上記の
ごとく、それぞれ、式(1)におけるak(t)ck1
(t)、ak(t)ck1(t)に対応するものであ
る。したがって、相関値の和bkは、拡散符号ck
(t)を用いて1シンボルのN倍の速度で拡散して送信
したものを復調した場合の相関値と同じであり、受信デ
ータ推定値となる。
【0020】(2) 次に、上りチャネルのデータ誤り
の増加防止作用を説明する。
【0021】スペクトル拡散通信におけるベースバンド
での送信局jの送信信号は、一般的に次式(1)で表す
ことができる。 sj(t)=aj(t)・cj(t) 式(4) ここで、aj(t)は、時刻tにおいて、j局が送信し
た送信データ(シンボル情報のデータ)であり、プラス
1あるいはマイナス1で表される。また、シンボルデー
タaj(t)はシンボル長時間Taの間は変化しない。
cj(t)はj局が用いている拡散符号である。
【0022】また、ベースバンドでの受信信号R(t)
は、各送信局1〜Mの送信信号の和と見ることができ、
次式(5)で表すことができる。
【0023】 R(t)=a1(t)・c1(t)+a2(t)・c2(t)+…+aM (t)・cM(t) 式(5) 相関検波によってj局の信号を検出するには、ベースバ
ンドの受信信号R(t)とj局の拡散コードcj(t)
との相関演算を1シンボルの区間(t=1〜N、ただし
Nはチップ数)で行うことにより検出することができ
る。1つのシンボルの相関検波出力(シンボル相関値)
bjは、次式(6)で表すことができる。
【0024】
【数3】 式(6)において、右辺の第1項の加算範囲はt=1〜
Nであり、右辺の第2項の加算範囲は、t=1〜N及び
i=1〜M(但し、i≠j)であり、右辺の第1項は送
信データであり、右辺の第2項は干渉信号となる。
【0025】拡散符号cj,ciが互いに直交している
場合、相関検波出力bjは送信データajと等しくな
る。これに対し、拡散符号cj,ciが非直交の符号で
ある場合、拡散符号cj,ci間の相関に対応した干渉
信号が存在することになり、復調データのビット誤り率
は大きくなる。
【0026】また、各局が非同期である場合は、式
(6)の右辺の第2項を直接計算することは困難であ
る。
【0027】従って、本発明では、ある局iのシンボル
推定値が得られる毎に、i局の送信信号、すなわち、式
(6)の右辺第2項の信号ai(t)・ci(t)を推
定作成し、これを他の局が使う受信信号R(t)から除
去する。このような操作を繰り返すことにより、各局の
送信信号を推定し、結果として式(6)の右辺第2項の
干渉量を低減するものである。
【0028】
【実施例】以下、図面を参照しながら、この発明の実施
例の詳細に説明する。
【0029】1.第1の実施例 まず、この発明の第1の実施例を説明する。1−1.CDMAシステムの全体構成 図1は、この発明の第1の実施例の全体的な構成を示す
ブロック図である。図示のシステムは、基地局側の送受
信装置100と、移動局側の送受信装置200とからな
る。なお、図には、交換局の交換機300も示す。
【0030】基地局の送受信装置100は、送信処理部
101と、受信処理部102と、多重部103と、多重
分配部104と、無線部105と、アンテナ106を有
する。 ここで、送信処理部101は、各局ごとに設け
られている。多重部103は、これら複数の送信処理部
101の送信出力を多重して無線部105に供給する。
同様に、受信処理部102も、各局ごとに設けられてい
る。多重分配部104は、無線部105の受信出力を各
局の受信処理部102に分配する。
【0031】各送信処理部101は、音声符号化部11
1と、チャネル符号化部112と、拡散変調部113を
有する。各受信処理部102は、拡散復調部114と、
干渉除去部115と、チャネル復号化部116と、音声
復号化部117を有する。
【0032】移動局の送受信装置200は、送話部20
1と、受話部202と、送信処理部203と、受信処理
部204と、無線部205と、アンテナ206を有す
る。
【0033】送信処理部203は、音声符号化部211
と、チャネル符号化部212と、拡散変調部213を有
する。受信処理部203は、拡散復調部214と、チャ
ネル復号化部215と、音声復号化部216を有する。
【0034】音声符号化部111,211と、音声復号
化部117,216は、音声信号の圧縮、伸長を行い、
効率よく音声信号を伝送する機能を有する。チャネル符
号化部112,212と、チャネル復号化部116,2
15は、圧縮された音声等のデータを間違いなく無線伝
送するために、エラー訂正符号の付加、及び訂正、分離
等を行う機能を有する。
【0035】拡散変調部113,213と、拡散復調部
114,214は、ディジタル化された音声データ等の
符号拡散、及び符号拡散からの分離等を行う機能を有す
る。干渉除去部115は、携帯局から基地局への上りチ
ャネルの受信信号に含まれる携帯局相互間の干渉波の打
ち消しを行い、他の局の干渉波による受信データの誤り
を低減する機能を有する。
【0036】このような構成において、この実施例は、
下りチャネルの送信側に設けられた拡散変調部113の
構成と、受信側に設けられた拡散復調部214の構成
と、上りチャネルの受信側に設けられた干渉除去部11
5の構成と、下りチャネルと上りチャネルの送信側に設
けられる音声符号化部111,211の構成と、下りチ
ャネルと上りチャネルの受信側に設けられる音声復号化
部117,216の構成に特徴を有する。以下、これら
の構成及び動作を説明する。
【0037】1−2.拡散変調部113の構成及び動作 図2は、拡散変調部113の構成を示すブロック図であ
る。
【0038】図示の拡散変調部113は、拡散符号発生
部121と、拡散演算部122−1、122−2と、搬
送波発生部123と、乗積変調部124−1、124−
2と、波形合成部125を有する。拡散演算部122−
1,122−2は同じ構成を有する。同様に、乗積変調
部124−1,124−2も同じ構成を有する。
【0039】送信データak(t)は、拡散演算部12
2−1、122−2に入力され、また、この拡散演算部
122−1、122−2には、拡散符号発生部121の
出力が入力される。
【0040】拡散符号発生部121は、送信局で使用す
る拡散符号ck(t)を発生し、それを2つの部分に分
割して、一方の部分拡散符号ck1(t)を拡散演算部
122−1に供給し、他方の部分拡散符号ck2(t)
を拡散演算部122−2に供給する。
【0041】なお、拡散符号としては、ウォルシュ・ア
ダマール(Walsh Hadamard)符号のよう
な直交符号を用いることができる。
【0042】拡散演算部122−1は、送信データak
(t)を部分拡散符号ck1(t)との乗算によって拡
散し、これによって得られる被拡散信号dk1(t)を
乗積変調部124−1へ入力する。同様に、拡散演算部
122−2も、送信データak(t)を部分拡散符号c
k2(t)との乗算によって拡散し、これによって得ら
れる被拡散信号dk2(t)を乗積変調部124−2へ
入力する。
【0043】被拡散信号dk1(t)、dk2(t)は
それぞれ式(7),(8)により示される。 dk1(t)=ak(t)・ck1(t) 式(7) dk2(t)=ak(t)・ck2(t) 式(8) 搬送波発生部123は、互いに直交した2つの搬送波c
os(2πfct)、sin(2πfct)を生成し、
それぞれ乗積変調部124−1、乗積変調部124−2
へ入力する。
【0044】乗積変調部124−1は、拡散演算部12
2−1から出力される被拡散信号dk1(t)と搬送波
発生部13から出力される搬送波cos(2πfct)
とを乗算し、これによって得られるRF帯域の信号を波
形合成部15へ入力する。同様に、乗積変調部124−
2は、拡散演算部122−2から出力される被拡散信号
dk2(t)と搬送波発生部13から出力される搬送波
sin(2πfct)とを乗算し、これによって得られ
るRF帯域の信号を波形合成部125へ入力する。
【0045】波形合成部125は、乗積変調部124−
1の出力と乗積変調部124−2の出力とを波形合成し
てRF帯域の送信信号sk(t)を生成し、多重部10
3に供給する。この送信信号sk(t)は、他局の送信
信号と多重された後、無線部105に供給され、アンテ
ナ106から放射される。
【0046】RF帯域の送信信号sk(t)は次式
(9)のように表される。 sk(t)=dk1(t)cos(2πfct) +dk2(t)sin(2πfct) 式(9)1−3.拡散復調部214の構成及び動作 図2は、拡散復調部214の構成を示すブロック図であ
る。
【0047】図示の拡散復調部214は、搬送波発生部
221と、乗積復調部222−1,222−2と、ロー
パスフィルタ部223−1,223−2と、拡散符号発
生部224と、相関演算部225−1,225−2と、
加算部226により構成される。乗積復調部222−
1、222−2は同じ構成を有し、ローパスフィルタ部
223−1、223−2は同じ構成を有し、相関演算部
225−1,225−2は同じ構成を有する。
【0048】ここで、全送信局は完全に同期し、且つ、
全受信局とも完全に同期しているものとする。
【0049】無線部205から乗積復調部222−1,
222−2に、式(2)で表されるRF帯域の受信信号
R(t)が入力される。
【0050】搬送波発生部221は、送信局と同期し、
且つ、互いに直交した2つの搬送波cos(2πfc
t)、sin(2πfct)を発生し、それぞれ乗積復
調部222−1、222−2に入力する。
【0051】乗積復調部222−1は、無線部205か
ら出力される受信信号R(t)と搬送波発生部221か
ら出力される搬送波cos(2πfct)とを乗算し、
その乗積信号U1(t)をローパスフィルタ部223−
1へ入力する。同様に、乗積復調部24−2は、無線部
205から出力される受信信号R(t)と搬送波発生部
221から出力される搬送波sin(2πfct)とを
乗算し、その乗積信号U2(t)を、ローパスフィルタ
部223−2へ入力する。
【0052】 乗積信号U1(t)、U2(t)は次式(10),(11)のように表される 。 U1(t)=R(t)cos(2πfct) 式(10) U2(t)=R(t)sin(2πfct) 式(11) ローパスフィルタ部223−1は、乗積復調部23−1
から出力される受信信号U1(t)に含まれている搬送
波のcos(2πfct)成分を乗せたベースバンド信
号E1(t)を抽出し、相関演算部225−1へ入力す
る。同様に、ローパスフィルタ部225−2は、乗積復
調部223−2から出力される受信信号U2(t)に含
まれている搬送波のsin(2πfct)成分に乗せた
ベースバンド信号E2(t)を抽出し、相関演算部22
5−2へ入力する。
【0053】拡散符号発生部224は、送信局k局で使
用し、且つ、送信局k局と同期した拡散符号ck(t)
を発生し、これを2つの部分拡散符合ck1(t),c
k2(t)に分割し、一方の部分拡散符号ck1(t)
を相関演算部225−1へ、他方の部分拡散符号ck2
(t)を相関演算部225−2へそれぞれ入力する。
【0054】相関演算部225−1は、ローパスフィル
タ部223−1から出力されるベースバンド信号E1
(t)と拡散符号発生部224から出力される拡散符号
ck1(t)との相関演算を行い、これによって得られ
る相関値bk1(t)を加算部226へ入力する。同様
に、相関演算部225−2では、ローパスフィルタ部2
234−2から出力されるベースバンド信号E2(t)
と拡散符号発生部224から出力される拡散符号ck2
(t)との相関演算を行い、これによって得られる相関
値bk2(t)を加算部226へ入力する。
【0055】相関値bk1(t),bk2(t)はそれ
ぞれ式(12),(13)のように表される。
【数4】 加算部226は、相関演算部225−1、225−2か
ら出力される相関値bk1、bk2を加算し、この加算
値bkを受信データ推定値としてチャネル復号化部21
5に供給する。
【0056】式(12),(13)の拡散符合ck
(t)として、ウォルシュ・アダマール行列を用いた符
号のような直交符号を用いた場合、相互相関値は0であ
り、無視できる。したがって、加算値bkは式(14)
のようになり、これは受信推定データとなる。
【0057】
【数5】 1−4.干渉除去部115の構成及び動作 図4は、干渉除去部115の構成を示すブロック図であ
る。
【0058】図示の干渉除去部115は、受信シフトレ
ジスタ部131と、拡散符号発生部132と、相関計算
部133と、補正計算部134と、干渉量計算部135
と、除去量計算部136と、制御部137を有する。
【0059】また、受信シフトレジスタ部131は、想
定される最大接続局数に対応した個数の受信シフトレジ
スタからなる。図には、M個の移動局が接続されている
場合を示す。131−1,131−2,…,13−Mは
それぞれ第1送信局、第2送信局、…、第M送信局に対
応する。各受信シフトレジスタ13−1〜13−Mの容
量はそれぞれKシンボル長分(この実施例ではK=9)
である。
【0060】ここで、図5のフローチャートを参照しな
がら、図4の干渉除去部115の動作を説明する。
【0061】この干渉除去部115には、ベースバンド
帯域の受信信号R(t)が供給される。この場合の干渉
除去部115と拡散復調部114の関係を具体例を使っ
て説明する。
【0062】今、拡散復調部114が図3に示す拡散復
調部214と同じような構成を有するものとする。この
場合、干渉除去部115は、各相(I相(cos2πf
ct),Q相(sin2πfct))ごとに設けられ
る。そして、各相の干渉除去部115には、対応する相
のローパスフィルタ部223−1,223−2から出力
されるベースバンド帯域の受信信号R(t)が供給され
る。
【0063】このように、ローパスフィルタ部223−
1,223−2から干渉除去部115に供給されるベー
スバンド帯域の受信信号R(t)は、図示しないサンプ
リング回路によりチップ周期毎にサンプリングされ、全
ての受信シフトレジスタ131−1〜131−Mに入力
される(図5のステップSTP1)。
【0064】ある局の受信データがシンボルの区切りに
達したとき、すなわち、1つのシンボルの受信が完了し
たとき(図5のステップSTP2)、その局を指定局i
として指定する(図5のステップSTP3)。局iの指
定は、シンボルの区切りに達した局を順次循環的に指定
するようにして行われる。また、この指定は、ある局の
最新の1つのシンボルに着目した場合、それが受信シフ
トレジスト13−iの最終部に達するまで、9回(レジ
スタ長)行われる。
【0065】i局が指定されると、その9シンボル分の
推定データ系列Gi(t)が受信シフトレジスタ131
−iから相関計算部133に供給される。
【0066】相関計算部133は、第i番目の受信シフ
トレジスタ131−iから供給される各シンボルに関す
る推定データ系列Gi(t)と、拡散コード発生部13
2から出力される第i局の拡散符号ci(t)との相関
を、内積計算によって1シンボル分づつ計算する(図5
のステップSTP4)。
【0067】1つのシンボルの相関値をfi(k)とす
ると、これは、次式(15)のように表される。
【数6】 ここで、加算範囲はt=1〜Nであり、kはシンボル番
号(0〜8)であり、Nはチップ数(この実施例ではN
=10)である。この結果、各シンボルai(k)の相
関値であるfi(k)が補正計算部134に供給され
る。
【0068】補正計算部134は、以下に示す演算を用
いて、各シンボル相関値fi(k)をシンボル推定値g
i(k)に変換する(図5のステップSTP5)。
【0069】補正計算としては、各シンボル相関値fi
(k)を制限する次式(16)の計算と、ルートを用い
る次式(17)の計算と、定数倍したあと制限する次式
(18)の計算等、いくつか考えられる。
【0070】
【数7】 ここで、| |は絶対値を、sign( )は符号であ
り、±1を表す。αは、定数である。これらの補正は、
受信シフトレジスタ13−iの容量に対応した回数の反
復計算において、より良い推定値を与える。ここで、何
も補正を加えないことも可能である。
【0071】補正計算部134で計算された各シンボル
推定値gi(k)は、一時的に記憶されるとともに、干
渉量計算部135に入力される。この各シンボル推定値
gi(k)は、指定局iにとってはシンボルデータの推
定値であるとともに、他の局にとっては干渉量の推定値
である。
【0072】干渉量計算部17では、今回計算された第
i局の各シンボル推定値gi(k)と、前回計算された
第i局の各シンボル推定値gi(k)との差分hi
(k)を、1シンボル分ずつ計算する(図4のステップ
STP6)。
【0073】ついで、各シンボルのこのシンボル推定差
分値hi(k)と拡散符号発生部15から出力される第
i局の拡散符号ci(t)との各積を計算し(図4のス
テップSTP7)、その計算結果を除去量計算部136
に供給する。
【0074】今、この積を干渉修正データ系列Hi
(t)と名付け、式で示すと、次式(19)のようにな
る。 Hi(t)=hi(k)・ci(t) 式(19) 除去量計算部136の動作(図4のステップSTP8)
を図6を参照して説明する。なお、図6は第1局と第j
局についてのみ、推定データ系列を示している。
【0075】図5において、Hi(0)〜Hi(8)は
指定局iのシンボル対応で表示した干渉修正データ系
列、Hi00〜Hi99は記憶段対応(チップ対応)で
表示した干渉修正データ系列、G1(0)〜G1(9)
及びGj(0)〜Gj(9)は受信シフトレジスタ部1
31に記憶されていたシンボル対応で表示した推定デー
タ系列、Gj00〜Gj99は記憶段対応(チップ対
応)で表示した推定データ系列を示している。なお、推
定データ系列Gj00〜Gj99は、最初の10チップ
データと最後の10チップデータの部分を示している。
【0076】除去量計算部18は、指定局iに関する干
渉修正データ系列Hi00〜Hi99を、干渉修正量と
して、受信シフトレジスタ部131の中の受信シフトレ
ジスタ131−iを除く受信シフトレジスタの推定デー
タ系列Gj00〜Gj99(j=1〜M:但し、j≠
i)から時間軸対応で除去し、受信シフトレジスタの値
を書き換える(図4のステップSTP8)。
【0077】これを式で表すと、次式(20)のように
なる。 Gj(t)←Gj(t)−Hi(t) 式(20) ここで、tは時間軸を表し、t=00〜99である。
【0078】書き換えられたデータ系列は、今回推定し
た干渉量が除去された後の値となる。換言するに、各局
のシンボル区間はまちまちなので、図6の第1局では、
データ系列G1(0)とG1(1)の一部がデータ系列
Hi(0)で修正され、データ系列G1(0)の一部と
G1(1)の一部がデータ系列Hi(1)で修正され
る。
【0079】以下、同様にして、最後のデータ系列G1
(8)の一部とG1(9)がデータ系列Hi(8)で修
正される。他の任意の局jも同様に、指定局iの9個の
シンボルに関する干渉データ系列Hi(0)〜Hi
(8)によって、他の局におけるシンボルの位置に関係
なく、時間対応で修正される。
【0080】この一連の動作は、受信シフトレジスタ部
131に入力される受信信号がシンボルの区切りに達す
る度に繰り返される。すなわち、第1局のシンボルの区
切りでは、第1局の送信信号が再生され、第2局から第
m局の受信シフトレジスタから除去される。第2局のシ
ンボルの区切りでは、第2局の送信信号が再生され、第
1局及び第3局から第m局の受信シフトレジスタから除
去される。以下、同様に、局を順次循環的に指定して上
述したような処理が繰り返される。
【0081】結果として、任意の局の任意のチップデー
タは、その受信シフトレジスタの入力端に入力され、最
終段部に至るまでに、(M−1)・K回の反復的干渉修
正除去作用を他の局から受け、各局の送信シンボルが推
定される。
【0082】受信シフトレジスタ131−iの最終段部
に存在する指定局iの最先行シンボルの推定データ系列
Gi(8)は、(M−1)・K回の反復的干渉修正除去
作用を受けることによって、そのシンボルのベースバン
ドの送信信号を近似するものとなる。
【0083】このような構成においては、受信シフトレ
ジスタ131−iから出力される推定データ系列Gi
(t)は、拡散された状態の送信データとみることがで
きる。これに対し、相関計算部133から出力されるシ
ンボル相関値fi(k)や補正計算部134から出力さ
れるシンボル推定値gi(k)は、推定データ系列Gi
(t)を拡散復調したものとみることができる。
【0084】干渉除去部115からその出力の取り出す
場合、推定データ系列Gi(t)を取り出すようにして
もよいし、シンボル相関値fi(k)やシンボル推定値
gi(k)を取り出すようにしてもよい。
【0085】但し、いずれを取り出すかにより、その出
力端子に接続される回路が変わる。以下、これを、拡散
復調部114が、例えば、図3に示す拡散復調部214
と同じような構成を有するものとして説明する。
【0086】拡散復調部114がこのような構成を有す
るとした場合、干渉除去部115の出力として、推定デ
ータ系列Gi(t)を取り出す場合は、この出力は対応
する相の相関演算部225−1,225−2に供給され
る。これは、この推定データ系列Gi(t)は、上記の
如く、拡散された状態にあるからである。
【0087】これに対し、干渉除去部115の出力とし
て、シンボル相関値fi(k)やシンボル推定値gi
(k)を取り出す場合は、この出力は、相関演算部22
5−1,225−2ではなく、加算部226に供給され
る。これは、シンボル相関値fi(k)やシンボル推定
値gi(k)は、すでに拡散復調された状態にあるた
め、再度相関演算する必要がないからである。したがっ
て、この場合は、相関演算部225−1,225−2や
拡散符号発生部224が不要となる。
【0088】図7は、拡散符号として擬似ランダム符号
(PN符号)を用いた場合の、送信局間の干渉による誤
りを評価した計算機シュミレーション結果を示す特性図
である。
【0089】図において、横軸は送信局数を示し、縦軸
は復調後のビット誤り率を示す。また、△印は干渉除去
部115を使用した場合の誤り率を示し、×印は従来技
術(拡散符号との相関のみによる復調)による誤り率を
示す。
【0090】図6に示すように、干渉除去部115を用
いた場合は、従来技術より誤り率が小さくなるため、よ
り多くの送信局数をとることができる。
【0091】なお、このシュミレーションにおいては、
拡散符号:42次のPN符号(周期は2の42乗−
1)、拡散度:64度、送信データ:9次のPN符号
(周期は511)、制限値n:1、雑音:他局からの干
渉のみとした。
【0092】以上の説明では、受信シフトレジスタ13
1−1〜131−Mに同一の受信信号を入力するものと
して説明したが、各局毎に中間周波のそれぞれの拡散符
号を用いてベースバンドの受信信号に復調し、それぞれ
のベースバンド信号を入力するようにしてもよい。
【0093】1−5.音声符号化部111,211と音
声復号化部117,216の構成 図8は、音声符号化部111,211の構成を示すブロ
ック図であり、図9は、音声復号化部117,216の
構成を示すブロック図である。
【0094】ここで、まず、図8,図9の構成を説明す
る前に、この実施例の音声符号化部111,211と音
声復号化部117,216の概要を説明する。一般に、
音声符号化・復号化装置としては、適応型差分パルス符
号変調方式(以下、「ADPCM方式」という)の装置
を用いることができる。
【0095】従来のADPCM方式では、入力信号と予
測信号の差である予測残差信号をスケールファクタで正
規化し、この正規化出力を量子化することにより、量子
化の際のオーバーフローやアンダーフローの発生を防止
している。
【0096】このような構成においては、スケールファ
クタが予測残差信号のパワーを適切に反映していれば、
量子化誤差を少なくすることができるので、復号側の再
生信号の品質を向上させることができる。
【0097】ところで、伝送誤りに対する耐性を考慮し
たスケールファクタの決定方法としては、次の文献2に
記載されたものがある。 文献2:“A robust adaptive qu
antizer”,IEEE Transaction
s onCommunications,COM−2
3,1975年、11月、P,1362−1365,
D.J.Goodman andR.M.Wilkin
son この文献2に記載された方法は、次のようなものとなっ
ている。すなわち、今、現在(時刻(n))の予測残差
信号D(n)に対するスケールファクタをu(n)、そ
の量子化結果をI(n)とする。
【0098】この場合、次(未来)のサンプル(時刻
(n+1))の予測残差信号D(n+1)に対する量子
化の幅(スケールファクタ)u(n+1)は次式(2
1),(22)によって決定される。 y(n+1)=(1−δ)*y(n)+δ*W(I(n)) 式(21) u(n+1)=exp(y(n+1)) 式(22) ここで、y(n)(=log(u(n)))は対数スケ
ールファクタであり、δはリーク係数であり、Wは更新
関数である。リーク係数δは1より小さい正の定数であ
る。更新関数Wは信号の性質によって理論的または実験
的に決められた値である。この更新関数Wは、ADPC
M符号I(n)の式または表の形で与えられ、送受で共
通にもつ既知の情報である。
【0099】上記の方法では、現在のADPCM符号I
(n)を更新関数Wによって対数スケールファクタyの
更新情報に変換し、この変換出力を1次の巡回形ローパ
スフィルタでろ波することにより、次の対数スケールフ
ァクタyを得るようになっている。
【0100】ここで、リーク係数δが定数であるため、
このフィルタの特性は不変である。すなわち、上記の方
法は固定予測により過去の信号から現在のスケールファ
クタuを対数領域でyとして得ていると解釈することが
できる。
【0101】また、y(n)の係数(1−δ)により適
応化の過程において過去の影響が有限となるため、伝送
符号誤りがあっても符号器と復号器の内部状態は両者が
一致するように収束する。
【0102】上記のような手順によりスケールファクタ
を算出する方法を用いれば、ある程度までの伝送誤りに
対して耐性を有し、高品質な音声を伝送することができ
るADPCM符号化・復号化装置を実現することができ
る。
【0103】例えば、64kbit/sの速度を持つμ
則PCMによる音声情報を半分の速度32kbit/s
で伝送するような符号化・復号化装置を実現した場合、
ビット誤り率0.01%程度までは、MOS 3.5程
度の主観評価値を維持することができる。
【0104】しかしながら、このような方法でスケール
ファクタを算出するADPCM符号化・復号化装置を、
伝送誤りが比較的高い率で生ずる系で用いると、受信側
の再生信号に針状の波形歪が生じる。
【0105】この針状の雑音は、SN比がわずかなに変
化した場合でも、主観評価に大きな影響を与え、知覚さ
れ易いことが報告されており、通話品質を劣化させる。
そのため、例えば、無線環境下のような伝送誤り率の高
い系に、従来のADPCM符号化・復号化装置をそのま
ま適用することは困難である。
【0106】そこで、この実施例では、伝送路の符号誤
り率の劣化に対し強い耐性を持ち、かつ、符号誤り率の
良好な環境下では、良好な音声品質を得ることができる
ADPCM符号化・復号化装置を提供することを目的と
する。
【0107】この目的を達成するために、この実施例で
は、リーク係数を現在のスケールファクタの大きさに基
づいて制御するようにしたものである。
【0108】このような構成によれば、次のような動作
が得られる。まず、ADPCM符号化装置への入力信号
のパワーが比較的大きい場合を考える。この場合、予測
残差信号は大きな値をとり、スケールファクタも大きな
値を示す。これにより、ローパスフィルタの係数は、通
過帯域が狭くなるように制御される。その結果、スケー
ルファクタの変動は緩やかなものとなり、入力信号パワ
ーの早い変動を反映しにくくなる。
【0109】早い変動が抑制されたスケールファクタを
用いることにより、伝送路に符号誤りがあったときでも
大きな誤差が抑制され、通話品質を劣化させる針状の波
形歪を低減させることができる。
【0110】次に、ADPCM符号化装置への入力信号
のパワーが比較的小さい場合を考える。この場合、予測
残差信号は小さな値をとり、スケールファクタも小さな
値を示す。このとき、スケールファクタの変動を抑制す
ると、量子化誤差による雑音(オーバーロード雑音)が
多く生じる。したがって、スケールファクタの値に対応
して、ローパスフィルタは通過帯域が広くなるよう係数
が制御される。これにより、スケールファクタは鋭敏に
変動し、量子化による雑音を減少させる。
【0111】ここで、スケールファクタが小さい値をと
るときは伝送路の誤りによる雑音は、通話品質の劣化に
はほとんど寄与しない。
【0112】以上の動作をまとめれば、この実施例で
は、スケールファクタが大きいとき、スケールファクタ
の変動を抑制することにより、伝送路の符号誤りにより
再生信号に生ずる針状の波形歪を低減させ、また、スケ
ールファクタが小さいとき、スケールファクタの変動を
鋭敏にすることにより、オーバーロード雑音を低減させ
ている。
【0113】以上が、この実施例の音声符号化部11
1,211と音声復号化部117,216の概要であ
る。次に、図8と図9を参照しながら、音声符号化部1
11,211と音声復号化部117,216の構成を説
明する。
【0114】まず、図8を参照しながら、音声符号化部
111,211の構成を説明する。図において、401
は、送信用の音声信号Sが供給される入力端子である。
この音声信号Sは、例えば、周波数8kHzでサンプリ
ンされた後、16ビットで一様に量子化された離散的な
デジタル信号である。
【0115】このデジタル信号Sは、差分器402に供
給され、逐次後述する適応予測器407から供給される
予測信号Seとの差を算出される。この算出出力は、予
測残差信号Dとして適応量子化器403に供給される。
【0116】適応量子化器403に供給された予測残差
信号Dは、スケールファクタuによって除算されること
により、正規化される。なお、スケールファクタuは、
後述する量子化スケール適応部408から出力される対
数スケールファクタyからu=2^(y)として求めら
れる。
【0117】正規化された予測残差信号Dは、さらに、
予め決められたテーブルに従って15レベルに量子化さ
れた後、4ビットのADPCM符号Iに変換される。こ
のADPCM符号Iは、出力端子404から図1に示す
チャネル符号化部112,212に供給される。これと
同時に、このADPCM符号は、次の時刻の予測信号S
eと対数スケールファクタyを作るために、適応逆量子
化器405と量子化スケール適応部408に供給され
る。
【0118】適応逆量子化器405に供給されたADP
CM符号Iは、予め決められたテーブルに従って逆量子
化された後、スケールファクタuと乗算される。このス
ケールファクタuも、量子化スケール適応部408から
出力される対数スケールファクタyからu=2^(y)
として求められる。
【0119】逆量子化出力とスケールファクタuとの乗
算出力は、再生予測残差信号Dqとして加算器406に
供給され、適応予測器407から供給される予測信号S
eと加算される。この加算信号は、再生信号Sqとし
て、適応予測器407に供給され、次のデジタル信号S
の振幅値の予測に使用される。
【0120】この適応予測器407は適応ディジタルフ
ィルタで構成されている。このフィルタの係数は再生信
号Sqの相関に従って逐次制御される。このようなフィ
ルタを構成する方法やその係数を制御する方法として
は、様々なものがある。
【0121】この実施例では、フィルタの構成方法とし
て、例えば、適応零点10次、適応極4次、固定極16
次のトランスバーサル形で構成する方法を採用し、係数
の制御方法として、簡易グラジェント法により更新する
方法を採用している。また、この適応ディジタルフィル
タの極を常に監視し、安定領域(z平面上単位円内)を
逸脱したと判定された場合は係数を更新しないようにな
っている。
【0122】量子化スケール適応部408に供給された
ADPCM符号Iは、更新関数変換器411により、予
め定められたテーブルに従って更新関数Wに変換され
る。この更新関数Wは、対数スケールファクタ算出器4
12に供給される。これにより、対数スケールファクタ
yが得られる。
【0123】対数スケールファクタ算出器412は、1
次の巡回形のローパスフィルタで構成されている。この
場合、次のサンプル時刻(n+1)に対する対数スケー
ルファクタy(n+1)は、次の式(23)に従って算
出される。 y(n+1)=[1−δ(n)]*y(n) +δ(n)*W(I(n)) 式(23) ここで、δ(n)(0<δ<1)は係数適応器413に
より逐次制御されるリーク係数である。
【0124】係数適応器413は、対数スケールファク
タyの大きさに基づいて、係数δ(n)をこれが対数ス
ケールファクタyの単調減少関数となるように制御す
る。この場合の関数の一例を示すと、次式(24)のよ
うになる。
【数8】 ここで、a,bは予め決められた正の定数、ymin、
ymaxは、対数スケールファクタyの最小値、最大値
である。なお、この実施例では、aを4、bを6として
いる。
【0125】上式による方法では、yが最小値ymin
から最大値ymaxに増加するにつれて、リーク係数δ
は2^−6から2^−10へと減少する。このように、
リーク係数δを制御することにより、1次の巡回形ロー
パスフィルタの通過帯域は対数スケールファクタyに対
応して制御される。
【0126】以上が音声符号化器111,211の構成
である。次に、図9を参照しながら、音声復号化部11
7,216の構成を説明する。
【0127】図9において、431は、チャネル復号化
部116,215からADPCM符号Iが供給される入
力端子である。この入力端子431に供給されたADP
CM符号Iは、上述した音声符号化部111,121に
おいて、再生信号Seを得るための構成と同じ構成で復
号される。
【0128】すなわち、入力端子431に供給されたA
DPCM符号Iは、適応逆量子化器432と量子化スケ
ール適応部436に供給される。適応逆量子化器432
に供給されたADPCM符号Iは、予め決められたテー
ブルに従って逆量子化された後、スケールファクタuと
乗算される。このスケールファクタuは、量子化スケー
ル適応部436から出力される対数スケールファクタ信
号yからu=2^(y)として求められる。
【0129】逆量子化出力とスケールファクタuとの乗
算出力は、再生予測残差信号Dqとして加算器433に
供給され、適応予測器435から供給される予測信号S
eと加算される。この加算信号は、再生信号Sqとし
て、出力端子435に供給されるとともに、適応予測器
435に供給され、次の予測信号Seの生成に使用され
る。
【0130】この適応予測器435は、上述した適応予
測器407と同様に、適応ディジタルフィルタで構成さ
れ、そのフィルタの係数は再生信号Sqの相関に従って
逐次制御される。
【0131】量子化スケール適応部436に供給された
ADPCM符号Iは、更新関数変換器441により、予
め定められたテーブルに従って更新関数Wに変換され
る。この更新関数Wは、対数スケールファクタ算出器4
42に供給され、対数スケールファクタyの算出に供さ
れる。
【0132】対数スケールファクタ算出器442は、音
声符号化部111,211側の対数スケールファクタ算
出器412と同様に、1次の巡回形のローパスフィルタ
で構成されている。
【0133】係数適応器443は、音声符号化部11
1,211側の係数適応器413と同様に、対数スケー
ルファクタyの大きさに基づいて、リーク係数δ(n)
をこれが対数スケールファクタyの単調減少関数となる
ように制御する。
【0134】図10は、この実施例による再生信号波形
501と、そのときの送受信間の対数スケールファクタ
yの誤差502と、リーク係数δを固定した従来の方法
による再生信号波形503と、そのときの送受信間の対
数スケールファクタyの誤差504と、使用したビット
誤りのパターン505を示している。
【0135】伝送路のビット誤り率は0.3%程度であ
る。従来の方法では、リーク係数δを2^−6に固定し
た。従来の再生信号波形503では、針状の波形歪が生
じているが、この実施例の再生信号波形では、対数スケ
ールファクタyの誤差が抑制され、針状の波形歪が抑制
されていることが確認される。
【0136】これにより、伝送路の符号誤り率の劣化に
対し強い耐性を持ち、かつ、符号誤り率の良好な環境下
では、良好な音声品質を得ることができるADPCM符
号化・復号化装置を提供することができる。
【0137】なお、以上の説明では、ローパスフィルタ
として、1次の巡回形フィルタを用いる場合を説明した
が、非巡回形のフィルタや高次の巡回形フィルタ、さら
には、両者を組み合わせたフィルタを用いるようにして
もよい。
【0138】2.第2の実施例 次に、この発明の第2の実施例を説明する。この実施例
は、干渉除去部114の構成を先の実施例とは異なる構
成にしたものである。
【0139】すなわち、先の実施例では、1つのメモリ
(シフトレジスタ部131)をM(局数)×K(シンボ
ル数)回アクセスすることにより、干渉除去処理をM×
K回実行する場合を説明した。これに対し、この実施例
は、干渉除去処理を実行する部分をM×K個縦属接続す
ることにより、干渉除去処理をM×K回実行するように
したものである。
【0140】2−1.干渉除去部114の構成及び動作 図11は、この実施例の干渉除去部114の構成を示す
ブロック図である。図において、141は、すべての局
1〜Mのあるシンボルの干渉除去処理を行うシシンボル
単位干渉除去部である。このシンボル単位干渉除去部1
41は1局当りのシンボル数K個だけ設けられている。
このK個のシンボル単位干渉除去部141−1,141
−2,…,141−Kは縦属接続されている。
【0141】シンボル単位干渉除去部141−1,14
1−2,…,141−Kは、それぞれ各局のシンボルの
干渉除去処理を行うM個の局単位干渉除去部142を有
する。このM個の局単位干渉除去部142は縦属接続さ
れている。
【0142】例えば、第1段目のシンボル単位干渉除去
部141−1は、M個の局単位干渉除去部142−
(1,1),142−(2,1),…,142−(M,
1)を有する。これらM個の局単位干渉除去部142−
(1,1),142−(2,1),…,142−(M,
1)は縦属接続されている。
【0143】143は、各局の干渉除去結果を修正する
局単位干渉修正部である。この局単位干渉修正部143
は、2段目以降のシンボル単位干渉除去部141におい
て、各局単位干渉除去部142ごとに設けられている。
例えば、2段目のシンボル単位干渉除去部141−2に
おいては、各局単位干渉除去部142−(1,2),1
42−(2,2),…,142(M,2)ごとに、局単
位干渉修正部143(1,2),143(2,2),
…,143(M,2)が設けられている。
【0144】図9は、局単位干渉除去部142の構成を
示すブロック図である。図示の如く、局単位干渉除去部
142は、チャネル信号推定部151と、加算部152
とからなる。
【0145】チャネル信号推定部151は、シンボル推
定部161と干渉量計算部162とからなる。シンボル
推定部161は、拡散符号発生部171と、乗算部17
2と、累積加算部173と、正規化部174とからな
る。干渉量計算部162は、拡散符号発生部181と、
乗算部182とからなる。
【0146】なお、V−(1,1)〜V−(M,K)
は、各局、各段のシンボル推定値、S−(1,1)〜S
−(M,K)は、各局、各段の干渉量推定データ系列、
dI−(1,1)〜dI−(M,K)、dO−(1,
1)〜dO−(M,K)はそれぞれ局単位干渉除去部1
42への入力と出力、R(t)は干渉除去部115への
入力ベースバンド帯域信号、e−1〜e−Kは各段の干
渉除去誤差及び次段への入力、t−1〜t−Mは各局の
干渉除去後のシンボルデータ出力である。
【0147】上記構成において、動作を説明する。
【0148】ベースバンド帯域の受信信号R(t)、つ
まり、dI−(1,1)は初段のシンボル単位干渉除去
部141−1の1局目の局単位干渉除去部142−
(1,1)に供給される。この局単位干渉除去部142
−(1,1)に供給された入力データdI−(1,1)
は、そのチャネル信号推定部151−(1,1)のシン
ボル推定部161−(1,1)に供給される。
【0149】入力データdI−(1,1)がシンボルの
区切りに達したとき、すなわち1つのシンボルの入力が
完了したとき、シンボル推定部161−(1,1)で、
入力データdI−(1,1)とこの1局目の拡散符号と
の相関を計算してシンボルを推定する。
【0150】この実施例での相関は、積和と正規化によ
って求められる。入力されるところのNチップに拡散さ
れた各シンボルの各チップは、拡散符号発生部171−
(1,1)から発生され、拡散に用いられたN個の拡散
符号とそれぞれ乗算部172−(1,1)で積をとられ
る。各チップの乗算出力は、累積加算部173−(1,
1)で、N個分累積加算される。この累積加算部173
−(1,1)はシンボルごとにクリアされる。
【0151】入力シンボルのa番目のチップは、そのシ
ンボルに対応する拡散符号のa番目の拡散符号と積をと
られる。全Nチップ分の積の和を正規化回路174−
(1,1)において拡散数Nで正規化し、シンボル推定
値V−(1,1)を求める。このシンボル推定値V−
(1,1)は、干渉量計算部162−(1,1)に入力
される。このシンボル推定値V−(1,1)は、局1に
とっては、シンボルデータの推定値であるとともに、他
の局にとっては干渉量の推定値である。
【0152】干渉量計算部162−(1,1)は、拡散
符号発生部181−(1,1)から出力されるところの
先にシンボル推定部161−(1,1)で相関をとるの
に用いられたものと同一の拡散符号で、シンボル推定値
V−(1,1)を乗算回路182−(1,1)で再度拡
散する。この再拡散された干渉量推定データ系列S−
(1,1)は加算部152−(1,1)に入力されると
ともに、この局の1段目の値として、次段の局単位干渉
修正部143(1,2)に供給される。
【0153】加算部152−(1,1)は、チャネル信
号推定部151−(1,1)へ入力されたデータ系列か
ら干渉量推定データ系列S−(1、1)を減算すること
により、干渉を除去する。
【0154】この実施例では、dI−(1,1)とS−
(1,1)との差分をとる。先のa番目の拡散符号で再
拡散されたデータは、先の入力シンボルのa番目のチッ
プとの差分がとられる。この結果が局単位干渉除去部1
42−(1、1)の出力dO−(1,1)であり、これ
は、次局の局単位干渉除去部142−(2,1)への入
力データdI−(2,1)となる。この入力は1段、1
局目で推定した干渉量が除去された後の値となる。
【0155】次の1段、2局目のシンボル推定部161
−(2,1)でも、1局目と同様に、入力データdI−
(2,1)がシンボルの区切りに達したとき、すなわち
1つのシンボルの入力が完了したとき、入力データdI
−(2,1)と、この2局目の拡散符号との相関を計算
してシンボルを推定する。それ以降も1局目と同様に再
拡散、干渉除去を行い、局単位干渉除去部142−
(2,1)の出力dO−(2,1)を、次の3局目の局
単位干渉除去部142−(3,1)へ送る。
【0156】これらの動作をM局分繰り返すことで、全
局分の干渉が、つまり、全局分の干渉量推定データ系列
S−(1,1),S−(2,1),…,S−(M,1)
が干渉除去部141−1の入力ベースバンド信号R
(t)から除去されることになる。これにより、1段、
M局目の局単位干渉除去部142−(M,1)の出力d
O−(M,1)、つまり、シンボル単位干渉除去部14
1−1の出力である干渉除去誤差e−1は、1段目にお
けるシンボルの推定誤差と言える。
【0157】次の2段目のシンボル単位干渉除去部14
1−2においても、1段目のシンボル単位干渉除去部1
41−2と同様の動作がなされる。この場合、各局mの
干渉量推定データ系列S−(m,2)は、対応する局単
位干渉修正部143−(m,2)に供給され、前段から
送られてくる干渉量推定データ系列S−(m,1)の修
正に供される。
【0158】例えば、1局目の干渉量推定データ系列S
−(1,2)は、局単位干渉修正部143−(1,2)
に供給され、前段から送られてくる干渉量推定データ系
列S−(1,1)の修正に供される。同様に、2局目の
干渉量推定データ系列S−(2,2)は、局単位干渉修
正部143−(2,2)に供給され、前段から送られて
くる干渉量推定データ系列S−(2,1)の修正に供さ
れる。
【0159】なお、この修正処理としては、種々の処理
が考えられるが、この実施例では、例えば、単に、加算
処理が用いられる。
【0160】以上の処理が各段ごとに順次実行されるこ
とにより、k段、i局目のV−(i,k)、S−(i,
k)およびe−kは次式(25),(26),(27)
で表せる。
【0161】
【数9】 K段終了したあとの干渉除去出力t−iは次の式(2
8)で表せる。
【0162】
【数10】 ここで、次式(29)に示すuiを考える。
【0163】
【数11】 これは、干渉除去部115の入力信号R(t)から、自
局以外のすべての局の干渉量推定データ系列を全段にわ
たって除去し、自局の信号のみを残すことを意味する。
つまり、干渉除去誤差e−kを十分小さいものとして無
視したとき、t−iに干渉除去後の復調に用いるデータ
系列を各i局の送信信号により近いものとして得ること
ができる。
【0164】また、t−iを各局の拡散符号で相関を取
った値t’−iは次の式(30)で表せる。
【0165】
【数12】 これは、右辺第1項を除けば、式(30)のt−iの相
関をとったものである。。そこで、その右辺第1項を
(つまり、e−Kを)十分に小さいものと見なして(K
段キャンセルされたあとの推定誤差なので)、t’−i
を干渉除去部115の出力とすることもできる。これら
一連の操作により、誤りの少ない復調が可能となる。
【0166】なお、この場合も、干渉除去部115の出
力としてt−iをとるか、t’−iをとるかにより、干
渉除去部115の出力端子に接続される回路が変わる。
【0167】すなわち、この場合も、拡散復調部114
が図3に示す拡散復調部214と同じような構成を有す
るとすれば、干渉除去部115の出力としてt−iを取
り出す場合は、このt−iは、相関演算部225−1,
225−2ではなく、加算部226に供給される。これ
は、t−iはすでに、拡散復調された状態にあるからで
ある。したがって、この場合は、相関演算部225−
1,225−2や拡散符号発生部224は不要となる。
【0168】これに対し、干渉除去部115の出力とし
てt’−iを取り出す場合は、このt’−iは、相関演
算部225−1,225−2に供給される。これは、
t’−iは拡散された状態にあるからである。
【0169】以上の処理手順をまとめると、次のように
なる。 処理手順 1. 1局目の局単位干渉除去部142(1,1)にデ
ータが入力される。1局目の送信信号が1シンボル分入
力されたところで、式(21)よりシンボル推定値V−
(1,1)を求め、式(22)より再拡散出力S−
(1,1)を求める。 2. 局単位干渉除去部142
(1,1)への入力とS−(1,1)との差分を取るこ
とで1局目が与えている干渉の除去を行う。 3. その結果を次の局の局単位干渉除去部142
(2,1)へ入力する。 4. 各局の局単位干渉除去部142(j,1)にその
局の1シンボル分のデータが入力されるごとに、式(2
1)、(22)によってV−(j,1)とS−(j,
1)を求める。 5. S−(j,1)によってその局が他局に与える干
渉を除去する。 6. 1段目から式(23)によってe−1が求まり、
これを2段目へ入力する。 7. 2段目においても、1段目と同様に式(21)、
(22)でV−(j,k)とS−(j,k)を求め、3
段目への入力e−2が求まる。 8. 3段目以降においても、2段目と同様に式(2
1),(22)でV−(j,k)とS−(j,k)を求
め、次段への入力e−(k+1)が求まる。 9. 干渉除去部115にに入力されたあるシンボル区
間のデータが各段を通過するごとに各局の局単位干渉除
去部142−(j,k)は干渉量推定データ系列S−
(j,k)あるいはシンボル推定値V−(j,k)を出
力する。 式(24)によって、そのシンボルに対応したシンボル
推定値V−(j,k)が求まる。
【0170】各局のシンボル区間はまちまちなので、他
の局におけるシンボルの位置に関係なく、時間対応で各
局独立して、並列に干渉除去が行われる。結果として、
入力された受信データは最終段部に至るまでに、M・K
回の反復干渉修正除去作用を受け、各局の干渉量、送信
シンボルが推定される。そのシンボルのベースバンドの
送信信号を近似するものとなり、その相関値またはシン
ボル推定値を復調データとして出力するようにすれば、
ビット誤り率を減少させることができる。
【0171】また、この実施例においても、先の実施例
において説明したような補正計算を用いて集束性を良く
し、誤り率を下げることができる。各シンボル推定値V
−(i,j)に、以下に示すような値を制限する式(3
1)の演算、ルートを用いる式(32)の演算、定数倍
したあと制限する式(33)の演算など、いくつか考え
られる。
【0172】
【数13】 ここで、| |は絶対値であり、sign( )は符号
であり、±1を表す。nは制限する値であり、αは定数
である。
【0173】これらの補正は、よりよい推定値を与え
る。ここで、何も補正を加えないことも可能である。
【0174】3.第3の実施例 次に、この発明の第3の実施例を説明する。この実施例
は、下りチャネルの受信信号の検波方式に特徴を有する
ものである。 すなわち、第1の実施例では、この下り
チャネルの受信信号の検波方式として、同期検波方式を
用いる場合を説明した。言い換えれば、図3に示す拡散
復調部214の搬送波発生部221が図2に示す拡散変
調部113の搬送波発生部123に同期している場合を
説明した。これに対し、この実施例では、受信信号の検
波方式として、非同期検波方式を用いるようにしたもの
である。
【0175】この非同期検波方式を実現するために、こ
の実施例では、拡散変調部113に、伝搬路の移相量を
推定するための制御信号を送信信号に付加して送信する
機能を設けるとともに、拡散復調部214に、上記制御
信号に基づいて、伝搬路の移相量を推定し、推定された
移相量を受信信号から除去する機能を設けるようになっ
ている。
【0176】このような構成によれば、拡散復調部21
4の搬送波発生部221が拡散変調部113の搬送波発
生部123と同期していない場合でも、つまり、位相の
回転があっても、受信信号を検波することができる。
【0177】以下、この実施例の拡散変調部113と拡
散復調部214の構成及び動作を説明する。
【0178】3−1.拡散復調部113の構成及び動作 図13は、この実施例の拡散変調部113の構成を示す
ブロック図である。図13に示す拡散変調部113にお
いて、先の図2に示す拡散変調部113と異なる点は、
まず、上記の如く、伝搬路の移相量を推定するための制
御信号を送信信号に付加する機能が設けられている点が
ある。
【0179】次に、先の実施例では、各局の送信信号を
RF帯域の信号に変換した後に、これらを多重するよう
になっているのに対し、この実施例では、多重した後
に、RF帯域の信号に変換するようになっている点であ
る。
【0180】では、図13に示す拡散変調部113の構
成を具体的に説明する。なお、この実施例においても、
先の実施例と同様に、送信信号は、I相とQ相に分けて
送信される。すなわち、送信信号は、互いに直交する2
つの搬送波cos2πfct,sin2πfctを使っ
て送信される。したがって、以下の説明では、I相に関
係するものには、符号Iを付し、Q相に関係するものに
は、符号Qを付す。
【0181】図示の拡散変調部113は、拡散演算部6
01k−I,601k−Q,603k−I,603k−
Q、605−I,605−Qと、拡散符号発生部602
K,504と、多重部606−I,606−Qと、乗積
変調部607−I,607−Qと、搬送波発生部608
と、波形合成部609を有する。
【0182】ここで、kは局(1,2,…)を表す。ま
た、拡散演算部601k−I,601k−Qは、図2の
拡散演算部122−1,122−2に相当し、拡散符号
発生部602kは、図2の拡散符号発生部121に相当
し、多重部606−I,606−Qは、図2の多重部1
03に相当し、乗積変調部607−I,607−Qは、
図2の乗積変調部124−1,124−2に相当し、搬
送波発生部608は、図2の搬送波発生部123に相当
し、波形合成部609は、図2の波形合成部125に相
当する。
【0183】これに対し、拡散演算部603k−I,6
03k−Q、605−I,605−Qと、拡散符号発生
部604は、送信信号に制御信号を付加することに伴っ
て新たに挿入されたものである。
【0184】上記構成において、動作を説明する。k局
の送信データxkは、k局の拡散演算部601k−I,
601k−Qに供給され、k局の拡散符号発生部602
kから供給される部分拡散符号wkI ,wkQ と拡散演
算される。これにより、送信データxkは、部分拡散符
号wkI ,wkQ によって拡散される。
【0185】各相の拡散出力は、それぞれk局の拡散演
算部603k−I,603k−Qに供給され、拡散符号
発生部604から供給される部分拡散符号aI ,aQ
拡散演算される。これにより、部分拡散符号wkI ,w
Q によって拡散された送信データxkは、さらに、部
分拡散符号aI ,aQ によって拡散される。
【0186】一方、伝搬路の移相量を推定するための制
御信号Z(図では、例えば、値が“1”である信号を代
表として示す)は、拡散演算部605−I,605−Q
に供給され、拡散符号発生部604から供給される部分
拡散符号aI ,aQ と拡散演算される。これにより、制
御信号Zは、部分拡散符号aI ,aQ と拡散される。
【0187】拡散演算部603k−I,603k−Qの
拡散出力と拡散演算部605−I,605−Qの拡散出
力は、それぞれ多重部606−I,606−Qに供給さ
れ、各相I,Qごとに多重される。これにより、すべて
の局の送信データx1,x2,…と制御信号Zが各相
I,Qごとに多重される。
【0188】各相I,Qの多重出力は、それぞれ乗積変
調部607−I,607−Qに供給され、搬送波発生部
608から供給される搬送波cos(2πfct),s
in(2πfct)と乗算される。これにより、RF帯
域の信号が得られる。これら2つの信号は、波形合成部
609により合成される。この合成信号は、無線部10
5に供給され、アンテナ106から放射される。
【0189】これにより、次式(34)で示すように、
すべての局の送信データx1,x2,…に、制御信号Z
(=1)が付加された信号Sが送信される。なお、この
式では、送信信号Sをベースバンド帯域で表している。
【0190】 S=SI +jSQ =aI (1+x1w1I +…) +jaQ (1+x1w1Q +…) (34) 3−2.拡散復調部214の構成及び動作 図14は、拡散復調部214の構成を示すブロック図で
ある。なお、以下の説明では、説明の便宜上、第1局の
拡散復調部214を代表として説明する。
【0191】図示の拡散復調部214は、乗積復調部6
11−I,611−Qと、搬送波発生部612と、ロ−
パスフィルタ部613−I,613−Qと、位相調整部
614と、相関演算部615−I,615−Qと、拡散
符号発生部616と、加算部617を有する。
【0192】ここで、乗積復調部611−I,611−
Qは、図3の乗積復調部222−1,222−2に相当
し、ロ−パスフィルタ部613−I,613−Qは、図
3のロ−パスフィルタ部223−1,223−2に相当
し、拡散演算部615−I,615−Qは、図3の相関
演算部225−1,225−2に相当し、図3の拡散符
号発生部616は、拡散符号発生部224に相当し、加
算部617は、図3の加算部226に相当する。
【0193】これに対し、搬送波発生部612は、図3
の搬送波発生部221とは異なり、送信側の搬送波発生
部608とは必ずしも同期していない。また、位相調整
部614は、非同期検波を実現するために、新たに付加
されたものである。この位相調整部614は、受信信号
に含まれる制御信号Zに基づいて伝搬路の移相量を推定
し、これをを受信信号から除去するようになっている。
【0194】上記構成において、動作を説明する。ま
ず、拡散復調部114の全体的な動作を説明する。
【0195】無線部205から出力される受信信号は、
各相I,Qの乗積復調部611−I,611−Qに供給
され、搬送波発生部612から供給される搬送波cos
(2πfct),sin(2πfct)と乗算される。
これにより、I相、Q相のベースバンド帯域の受信信号
が得られる。
【0196】各相I,Qの受信信号は、ローパスフィル
タ部613−I,613−Qにより不要成分を除去され
た後、位相調整部614に供給される。位相調整部61
4に入力される信号Rは、次式(35)で表される。 R=RI +jRQ ={aI (1+x1w1I +…) +jaQ (1+x1w1Q +…)}βejφ 式(35) ここで、βは、伝搬路の利得であり、φは、同じく移相
量である。
【0197】この信号Rを受けた位相調整部614は、
この信号Rに含まれる制御信号Zに基づいて、この信号
Rに対する伝搬路の移相量φを推定し、この推定した移
相量φを信号Rから除去する。
【0198】推定移相量φを除去された各相I,Qの信
号は、それぞれ相関演算部615−I,615−Qに供
給され、拡散符号発生部616から出力される部分拡散
符号w1I ,w1Q と相関演算される。これにより、第
1局の送信信号が逆拡散される。この逆拡散出力は、加
算部617で加算され、第1局の送信データx1として
チャネル復号化部215に供給される。
【0199】以上が拡散復調部214の全体的な動作で
ある。次に、位相調整部614の動作をさらに詳細に説
明する。
【0200】図15は、位相調整部614の構成を概念
的に示すブロック図である。なお、図15は、I相とQ
相をまとめた状態で示す。図示の如く、位相調整部61
4は、伝搬路の移相量φと利得βを推定する伝搬路推定
部621と、この伝搬路推定部621の推定結果で、入
力信号Rに重付けを行う重付け部622を有する。
【0201】図16は、伝搬路推定部621の構成を概
念的に示すブロック図である。図示の如く、伝搬路推定
部621は、乗算部631と、積分部632と、正規化
部633を有する。乗算部631に入力された信号Rは
I −jaQ と乗算される。この乗算結果は、次式(3
6)のように表される。 R・(aI −jaQ )={aI (1+x1w1I +…) +jaQ (1+x1w1Q +…)} ×βejφ(aI −jaQ ) =βejφ[{aI 2 (1+x1w1I +…) +aQ 2 (1+x1w1Q +…)} +j{aI Q (1+x1w1Q +…) −aI Q (1+x1w1I +…)}] 式(36) この乗算結果は、積分部632で積分された後、正規化
部633で正規化される。この積分処理及び正規化処理
は、次のように表される。
【数14】 ここで、Tbは1シンボル長であり、Nは、伝搬路が一
定と近似することができるできるだけ大きい数である。
【0202】この場合、次式(37),(38)が成立
する。
【数15】 また、拡散利得により、[ ]の中の虚数部は0となる
(クアルカム方式の場合、w1I =w1Q より、[ ]
の中の虚数部は正確に0となる)。これにより、正規化
部633の出力は、βejφとなる。
【0203】このβejφは、重付け部622に供給さ
れ、βe−jφに変換された後、入力信号Rと乗算され
る。これにより、次式(39)に示すように、信号Rか
ら伝搬路の移相量φが除去される。 Rβe−jφ=β2 {aI (1+x1w1I +…) +jaQ (1+x1w1Q +…)} 式(39) 図17は、位相調整部614の具体的構成の一例を示す
ブロック図である。図示の例では、伝搬路推定部621
は、乗算器641,642,643,644と、加算器
645,646により構成され、重付け部622は、乗
算器651,652,653,654と、加算器65
5,656により構成される。
【0204】以上が位相調整部614の動作である。次
に、相関演算部615−I,615−Qの動作を説明す
る。
【0205】位相調整部614で、伝搬路の位相量を除
去された信号Rは、各相I,Qごとに、対応する相関演
算部615−I,615−Qに供給される。図18は、
この相関演算部615−I,615−Qの構成を概念的
に示すブロック図である。なお、この図18も、I相と
Q相を一緒に示す。
【0206】相関演算部615−I,615−Qは、乗
算部661と、実数部抽出部662と、積分部663
と、正規化部664を有する。乗算部661では、入力
信号Rβe−jφとaI w1I −jaQ w1Q との乗算
がなされる。
【0207】この乗算出力は、実数部抽出部662に供
給され、実数部Re[ ]を抽出される。この実数部
は、次式(40)で表される。
【0208】 Re[Rβe−jφ(aI w1I −jaQ w1Q )] =β2 {aI 2 w1I (1+x1w1I +…) +aQ 2 w1Q (1+x1w1Q Q +…)} 式(40) この抽出出力は、積分部663で積分された後、正規化
部664で正規化される。この積分処理と正規化処理は
次のように表される。
【0209】
【数16】 この場合、次式(41)〜(44)が成立する。
【数17】 ここで、wkI ’,wkQ ’は、第1局以外の部分拡散
符号wkI ,wkQ である。これにより、第1局の送信
データがβ2 x1として得られる。以上が相関演算部6
15−I,615−Qの動作である。
【0210】以上、この発明の実施例をいくつか説明し
たが、この発明は、上述したような実施例に限定される
ものではなく、ほかにも、発明の要旨を逸脱しない範囲
で種々様々変形実施可能なことは勿論である。
【0211】
【発明の効果】以上詳細に説明したように本発明によれ
ば、1シンボルを2系統にし、それぞれ1シンボル分の
拡散コードを2分割したものを用いて拡散した信号を直
交した2つの搬送波で伝送及び並列処理するようにした
ので、同じ周波数帯域を使用する場合であっても、伝送
量を増やすことができる。これにより、送信局数が多く
なっても、使用する周波数帯域の広帯域化を防止するこ
とができる。
【0212】また、本発明によれば、目的とする信号に
用いられる拡散符号と他局で用いている拡散符号の干渉
量を計算することにより、他局からの干渉信号を除去す
るようにしたので、送信局が多くなっても、誤りが少な
い通信を行うことが可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施例の全体的な構成を示すブ
ロック図である。
【図2】第1の実施例における拡散変調部113の構成
を示すブロック図である。
【図3】第1の実施例における拡散復調部214の構成
を示すブロック図である。
【図4】第1の実施例における干渉除去部115の構成
を示すブロック図である。
【図5】図4の動作を説明するためのフローチャートで
ある。
【図6】図4の動作を説明するためのデータ配列図であ
る。
【図7】第1の実施例の干渉除去部115の効果を説明
するための特性図である。
【図8】第1の実施例における音声符号化部111,2
11の構成を示すブロック図である。
【図9】第1の実施例における音声復号化部117,2
16の構成を示すブロック図である。
【図10】第1の実施例における音声符号化部111,
211及び音声復号化部117,216の効果を説明す
るための信号波形図である。
【図11】第2の実施例における干渉除去部115の構
成を示すブロック図である。
【図12】図11に示す局単位干渉除去部142の構成
を示すブロック図である。
【図13】第3の実施例における拡散変調部113の構
成を示すブロック図である。
【図14】第3の実施例における拡散復調部214の構
成を示すブロック図である。
【図15】図14に示す位相調整部614の概念的な構
成を示すブロック図である。
【図16】図15に示す伝搬路推定部621の概念的な
構成を示すブロック図である。
【図17】図14に示す位相調整部614の具体的構成
の一例を示すブロック図である。
【図18】図14に示す相関演算部615−I,615
−Qの概念的な構成を示すブロック図である。
【符号の説明】
100…基地局送受信装置 200…携帯局送受信装置 101,203…送信処理部 102,204…受信処理部 103,506−I,506−Q…多重部 104…多重分配部 105,205…無線部 106,206…アンテナ 201…送話部 202…受話部 111,211…音声符号化部 112,212…チャネル符号化部 113,213…拡散変調部 114,214…拡散復調部 115…干渉除去部 116,215…チャネル復号化部 117,216…音声復号化部 121,132…拡散符号発生部 122…拡散演算部 123,221,508,612…搬送波発生部 124,507−I,507−Q…乗積変調部 125,509…波形合成部 222,611−I,611−Q…乗積復調部 223,613−I,613−Q…ローパスフィルタ部 224,171,181,502k,504,616…
拡散符号発生部 225…相関演算部 152,226,617…加算部 131…シフトレジスタ部 133,…相関演算部 134…補正計算部 135…干渉量計算部 136…除去量計算部 141…シンボル単位干渉除去部 142…局単位干渉除去部 143…局単位干渉修正部 151…チャネル信号推定部 161…シンボル推定部 162…干渉量除去部 172,182…乗算部 173…累積加算部 174…正規化部 401,431…入力端子 402…差分器 403…適応量子化器 404,434…出力端子 405,432…適応逆量子化器 406,433…加算器 407,434…適応予測器 408…量子化スケール適応部 411,441…更新関数変換器 412,442…対数スケールファクタ算出器 413,443…係数適応器 614…位相調整部 641,642,643,644,651,652,6
53,654…乗算器 645,646,655,656…加算器 601k−I,601k−Q,603k−I,603k
−Q,605−I,605−Q…拡散演算部 615−I,615−Q…相関演算部
───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 大樹 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (72)発明者 ▲滝▼澤 由美 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 基地局と複数の移動局を符号分割多元接
    続方式で接続する符号分割多元接続システムにおいて、 前記基地局から前記移動局にデータを伝送するための下
    りチャネルの送信側に、 1つの拡散符号を2分割することにより得られた2系統
    の部分拡散符号と送信データとを乗算することにより、
    2系統の被拡散信号を生成する被拡散信号生成手段と、 この被拡散信号生成手段により生成された2系統の被拡
    散信号と互いに直交した2系統の搬送波とをそれぞれ乗
    算することにより、2系統の無線周波数帯域の送信信号
    を生成する無線周波数帯域信号生成手段と、 この無線周波数帯域信号生成手段により生成された2系
    統の無線周波数帯域信号を合成して送信する信号送信手
    段とを具備した拡散変調装置を設け、 前記下りチャネルの受信側に、 受信信号と前記2系統の搬送波とを乗算することによ
    り、2系統のベースバンド帯域の信号を生成するベース
    バンド帯域信号生成手段と、 このベースバンド帯域信号生成手段により生成された2
    系統のベースバンド帯域信号と前記2系統の部分拡散符
    号とをそれぞれ乗算することにより、2系統の部分相関
    値信号を生成する部分相関値信号生成手段と、 この部分相関値信号生成手段により生成された2系統の
    部分相関値信号を加算することにより、前記送信データ
    を復調するデータ復調手段とを具備した拡散復調装置を
    設け、 前記移動局から前記基地局にデータを送信するための上
    りチャネルの受信側に、 各移動局のシンボル推定値が得られるたびに、このシン
    ボル推定値から各移動局の送信信号を推定し、この推定
    信号を他の移動局が使う受信信号から除去するという処
    理を繰り返すことにより、各移動局の受信信号から他の
    移動局の干渉信号を除去するように構成された干渉除去
    装置を設けたことを特徴とする符号分割多元接続システ
    ム。
  2. 【請求項2】 前記ベースバンド帯域信号生成手段は、
    前記無線周波数帯域信号生成手段で用いられる搬送波と
    同期した搬送波を用いて、前記ベースバンド帯域信号を
    生成するように構成されていることを特徴とする請求項
    1記載の符号分割多元接続システム。
  3. 【請求項3】 前記拡散変調装置は、送信信号の伝搬路
    の移相量を推定するための制御信号を送信信号とともに
    送信するように構成され、 前記拡散復調装置は、受信信号に含まれる前記制御信号
    に基づいて、前記伝搬路の移相量を推定し、これを受信
    信号から除去するように構成されていることを特徴とす
    る請求項1記載の符号分割多元接続システム。
  4. 【請求項4】 前記干渉除去装置は、 各移動局に対応した複数の記憶領域を有し、各記憶領域
    にベースバンド帯域の受信信号が書き込まれるととも
    に、その記憶内容が各移動局の送信信号の推定データ系
    列で書き換えられるメモリ手段と、 指定された移動局の前記推定データ系列とこの指定局の
    拡散符号との相関値を算出し、この相関値に基づいて、
    複数シンボル分のシンボル推定値を生成するシンボル推
    定値生成手段と、 このシンボル推定値生成手段により生成された前回のシ
    ンボル推定値と今回のシンボル推定値との差分を算出
    し、この差分値と前記指定局の拡散符号との積に対応し
    た干渉データ系列を生成する干渉データ生成手段と、 前記メモリ手段に記憶されている推定データ系列のう
    ち、前記指定局を除く各移動局の推定データ系列と前記
    干渉データ系列との差分を計算し、この差分データ系列
    で対応する移動局の推定データ系列を書き換えるデータ
    書換え手段と、 シンボルの区切りを検出し、その局を前記指定局として
    指定する機能と、当該指定局に関する再先行シンボルの
    相関値もしくはシンボル推定値を復調データとして出力
    させる機能とを含み、装置全体の動作を制御する制御手
    段とを具備するように構成されていることを特徴とする
    請求項1記載の符号分割多元接続システム。
  5. 【請求項5】 前記干渉除去装置は、 縦属接続された複数の干渉除去手段と、 この干渉除去手段から各移動局ごとに干渉の除去された
    信号を取り出す信号取出し手段とを具備するように構成
    され、 前記干渉除去手段は、縦属接続された移動局数分の局単
    位干渉除去手段を具備するように構成され、 前記局単位干渉除去手段は、 入力信号と対応する移動局の拡散符号とを相関演算する
    ことにより、この移動局のシンボル推定値を生成するシ
    ンボル推定値生成手段と、 このシンボル推定値生成手段により生成されたシンボル
    推定値と対応する移動局の拡散符号とを拡散演算するこ
    とにより、この移動局の他の移動局に対する干渉量を算
    出する干渉量算出手段と、 この干渉量算出手段により算出された干渉量を前記入力
    信号から除去する干渉量除去手段とを具備するように構
    成され、 前記信号取出し手段は、各移動局ごとに、前記シンボル
    推定値生成手段あるいは前記干渉量算出手段の出力に基
    づいて、干渉の除去された信号を取り出すように構成さ
    れていることを特徴とする請求項1記載の符号分割多元
    接続システム。
  6. 【請求項6】 前記下りチャネルと前記上りチャネルの
    送信側に、 離散的な送信信号の各点ごとに、逐次その値とその予測
    値との差を算出する差算出手段と、 この差算出手段の算出出力をスケールファクタで正規化
    する正規化手段と、 この正規化手段の正規化出力を量子化して符号化する符
    号化手段と、 この符号化手段の符号化出力に基づいて、次の点におけ
    るスケールファクタを生成するスケールファクタ生成手
    段と、 前記スケールファクタが大きい場合は、その変動が抑制
    され、小さい場合は、鋭敏になるように、前記スケール
    ファクタ生成手段のスケールファクタ生成動作を制御す
    る制御手段とを具備したADPCM符号化装置を設け、 前記下りチャネルと上りチャネルの受信側に、 受信信号の各点ごとに、逐次その値を逆量子化する逆量
    子化手段と、 この逆量子化手段の逆量子化出力とスケールファクタと
    を乗算する乗算手段と、 この乗算手段の乗算出力と原信号の予測値とを加算し、
    原信号を再生する加算手段と、 前記受信信号の各点ごとに、この受信信号に基づいて、
    次の点におけるスケールファクタを生成するスケールフ
    ァクタ生成手段と、 前記スケールファクタが大きい場合は、その変動が抑制
    され、小さい場合は、鋭敏になるように、前記スケール
    ファクタ生成手段のスケールファクタ生成動作を制御す
    る制御手段とを具備したADPCM復号化装置を設けた
    ことを特徴とする請求項1記載の符合分割多元接続シス
    テム。
JP4014094A 1994-03-10 1994-03-10 符号分割多元接続システム Expired - Fee Related JP3202125B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4014094A JP3202125B2 (ja) 1994-03-10 1994-03-10 符号分割多元接続システム
KR1019950002361A KR100323190B1 (ko) 1994-03-10 1995-02-09 코드분할 다중접속 시스템
US08/401,451 US5533012A (en) 1994-03-10 1995-03-09 Code-division multiple-access system with improved utilization of upstream and downstream channels
EP19950103483 EP0671821A3 (en) 1994-03-10 1995-03-10 CDMA system using a spreading code divided into quadrature components and interference cancellation by substracting respread data from received signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4014094A JP3202125B2 (ja) 1994-03-10 1994-03-10 符号分割多元接続システム

Publications (2)

Publication Number Publication Date
JPH07250379A true JPH07250379A (ja) 1995-09-26
JP3202125B2 JP3202125B2 (ja) 2001-08-27

Family

ID=12572479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4014094A Expired - Fee Related JP3202125B2 (ja) 1994-03-10 1994-03-10 符号分割多元接続システム

Country Status (4)

Country Link
US (1) US5533012A (ja)
EP (1) EP0671821A3 (ja)
JP (1) JP3202125B2 (ja)
KR (1) KR100323190B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502566A (ja) * 2003-08-13 2007-02-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 伝送システムにおいてデジタルデータストリームを暗号化する方法及び装置

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334219B1 (en) 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
FI944739A (fi) 1994-10-07 1996-04-08 Nokia Telecommunications Oy Häiriönpoistomenetelmä ja vastaanotin
USRE42236E1 (en) 1995-02-06 2011-03-22 Adc Telecommunications, Inc. Multiuse subcarriers in multipoint-to-point communication using orthogonal frequency division multiplexing
US7280564B1 (en) 1995-02-06 2007-10-09 Adc Telecommunications, Inc. Synchronization techniques in multipoint-to-point communication using orthgonal frequency division multiplexing
DE19509867C2 (de) * 1995-03-17 1997-05-15 Siemens Ag Übertragungsverfahren zum gleichzeitigen synchronen oder asynchronen Übertragen von K aus Datensymbolen bestehenden Datenfolgen
US5692006A (en) * 1995-07-31 1997-11-25 Qualcomm Incorporated Adaptive despreader
JP3087886B2 (ja) * 1995-10-24 2000-09-11 株式会社エヌ・ティ・ティ・ドコモ Cdma移動通信の再送制御方法
JPH1022874A (ja) * 1996-07-09 1998-01-23 Hitachi Ltd Cdma通信システムおよび通信方法
JP3323067B2 (ja) * 1996-07-12 2002-09-09 沖電気工業株式会社 Cdma受信装置
JP2959624B2 (ja) * 1996-08-29 1999-10-06 日本電気株式会社 ランダムアクセス制御方式
DE69630784T2 (de) * 1996-09-24 2004-09-30 Hewlett-Packard Co. (N.D.Ges.D.Staates Delaware), Palo Alto Datenverarbeitungsgerät und -verfahren
US6269338B1 (en) * 1996-10-10 2001-07-31 U.S. Philips Corporation Data compression and expansion of an audio signal
JP3796870B2 (ja) * 1997-01-21 2006-07-12 ソニー株式会社 受信装置及び受信方法、並びに携帯電話システムの端末装置
JP3326679B2 (ja) * 1997-01-31 2002-09-24 沖電気工業株式会社 Cdma受信装置
US6925127B1 (en) * 1997-07-22 2005-08-02 Ericsson Inc. Method and apparatus for subtracting multiple rays of multiple interfering received signals
SE523374C2 (sv) * 1997-07-31 2004-04-13 Ericsson Telefon Ab L M Kommunikation med hjälp av spektrumspridningsmetoder över optiska fibrer
US6389000B1 (en) * 1997-09-16 2002-05-14 Qualcomm Incorporated Method and apparatus for transmitting and receiving high speed data in a CDMA communication system using multiple carriers
US7430257B1 (en) * 1998-02-12 2008-09-30 Lot 41 Acquisition Foundation, Llc Multicarrier sub-layer for direct sequence channel and multiple-access coding
US5955992A (en) * 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
JP3981899B2 (ja) * 1998-02-26 2007-09-26 ソニー株式会社 送信方法、送信装置及び受信装置
US6130894A (en) * 1998-03-09 2000-10-10 Broadcom Homenetworking, Inc. Off-line broadband network interface
KR100294701B1 (ko) * 1998-03-25 2001-07-12 서평원 다양한전송속도를갖는씨디엠에이(cdma)시스템에서순차간섭제거방법
US7068617B1 (en) * 1998-06-25 2006-06-27 Texas Instruments Incorporated Low complexity CDMA receiver
FI106896B (fi) * 1998-07-22 2001-04-30 Nokia Networks Oy Tiedonsiirtomenetelmä, radioverkkoalijärjestelmä ja tilaajapäätelaite
DE19833318C2 (de) * 1998-07-24 2001-08-02 Bosch Gmbh Robert Verfahren zur Übertragung von digitalen Nutzdaten
FR2782426B1 (fr) * 1998-08-12 2000-09-15 Alsthom Cge Alcatel Dispositif d'etalement ou de desetalement de spectre, notamment pour la transmission dans un systeme cellulaire de radiocommunications mobiles du type a acces multiple par repartition de codes
US6208684B1 (en) * 1998-09-18 2001-03-27 Dspc Technologies Ltd. Cyclic adaptive receivers for DS-CDMA signals
KR100306283B1 (ko) * 1998-12-23 2001-11-02 윤종용 무선통신시스템에서타사용자간섭을제거하는수신장치및방법
JP3285012B2 (ja) * 1999-07-29 2002-05-27 日本電気株式会社 Cdma基地局送信装置
US7065125B1 (en) * 1999-08-13 2006-06-20 Viasat, Inc. Method and apparatus for multiple access over a communication channel
US20070127553A1 (en) 1999-08-13 2007-06-07 Viasat, Inc. Code Reuse Multiple Access For Satellite Return Link
US6725025B1 (en) * 1999-10-15 2004-04-20 Texas Instruments Incorporated Interference cancellation among wireless units using Gibbs sampling
US6535562B1 (en) * 1999-11-30 2003-03-18 Qualcomm Inc. Method and apparatus for rotating the phase of a complex signal
EP1160976B1 (en) * 1999-12-16 2007-09-05 Seiko Epson Corporation Noncyclic digital filter and radio reception apparatus comprising the filter
JP3686809B2 (ja) * 2000-01-28 2005-08-24 株式会社日立コミュニケーションテクノロジー 通信システム
ATE336829T1 (de) * 2000-10-06 2006-09-15 Ericsson Inc Verfahren und vorrichtung zum subtrahieren von mehreren pfaden empfangener störsignale
US8670390B2 (en) 2000-11-22 2014-03-11 Genghiscomm Holdings, LLC Cooperative beam-forming in wireless networks
CN1150709C (zh) * 2001-02-28 2004-05-19 信息产业部电信传输研究所 Cdma蜂窝系统两级变码片速率扩频和解扩方法
US6959065B2 (en) * 2001-04-20 2005-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Reduction of linear interference canceling scheme
US10355720B2 (en) 2001-04-26 2019-07-16 Genghiscomm Holdings, LLC Distributed software-defined radio
US10931338B2 (en) 2001-04-26 2021-02-23 Genghiscomm Holdings, LLC Coordinated multipoint systems
US9819449B2 (en) 2002-05-14 2017-11-14 Genghiscomm Holdings, LLC Cooperative subspace demultiplexing in content delivery networks
US9893774B2 (en) 2001-04-26 2018-02-13 Genghiscomm Holdings, LLC Cloud radio access network
US10425135B2 (en) 2001-04-26 2019-09-24 Genghiscomm Holdings, LLC Coordinated multipoint systems
JP2002374179A (ja) * 2001-06-12 2002-12-26 Hitachi Kokusai Electric Inc 干渉信号除去装置
US9628231B2 (en) 2002-05-14 2017-04-18 Genghiscomm Holdings, LLC Spreading and precoding in OFDM
US10200227B2 (en) 2002-05-14 2019-02-05 Genghiscomm Holdings, LLC Pre-coding in multi-user MIMO
US10142082B1 (en) 2002-05-14 2018-11-27 Genghiscomm Holdings, LLC Pre-coding in OFDM
US10644916B1 (en) 2002-05-14 2020-05-05 Genghiscomm Holdings, LLC Spreading and precoding in OFDM
US20030220801A1 (en) * 2002-05-22 2003-11-27 Spurrier Thomas E. Audio compression method and apparatus
EP1563625A4 (en) * 2002-11-19 2009-12-16 Bae Systems Information BANDWIDTHEFFICIENT WIRELESS NETWORK MODEM
US7428669B2 (en) * 2003-12-07 2008-09-23 Adaptive Spectrum And Signal Alignment, Inc. Adaptive FEC codeword management
EP1721475A1 (en) * 2004-02-27 2006-11-15 Nokia Corporation Constrained optimization based mimo lmmse-sic receiver for cdma downlink
US8385296B2 (en) * 2004-07-22 2013-02-26 Industry Academic Cooperation Foundation Of Kyunghee University Multi-carrier CDMA transmitting device and method using block-based multi-carrier spreading
US11184037B1 (en) 2004-08-02 2021-11-23 Genghiscomm Holdings, LLC Demodulating and decoding carrier interferometry signals
US11431386B1 (en) 2004-08-02 2022-08-30 Genghiscomm Holdings, LLC Transmit pre-coding
US11552737B1 (en) 2004-08-02 2023-01-10 Genghiscomm Holdings, LLC Cooperative MIMO
US7813420B2 (en) * 2005-06-02 2010-10-12 Adaptive Spectrum And Signal Alignment, Inc. Adaptive GDFE
US7817745B2 (en) * 2005-06-02 2010-10-19 Adaptive Spectrum And Signal Alignment, Inc. Tonal precoding
US20140369480A1 (en) 2013-06-12 2014-12-18 Adaptive Spectrum And Signal Alignment, Inc. Systems, methods, and apparatuses for implementing a dsl system
WO2013122915A1 (en) * 2012-02-14 2013-08-22 Adc Telecommunications, Inc. Timing adjustments for small cell distributed antenna systems
KR101656855B1 (ko) * 2016-02-25 2016-09-12 김성욱 연어류의 수중 양식 장치
US10637705B1 (en) 2017-05-25 2020-04-28 Genghiscomm Holdings, LLC Peak-to-average-power reduction for OFDM multiple access
US10243773B1 (en) 2017-06-30 2019-03-26 Genghiscomm Holdings, LLC Efficient peak-to-average-power reduction for OFDM and MIMO-OFDM
US11917604B2 (en) 2019-01-25 2024-02-27 Tybalt, Llc Orthogonal multiple access and non-orthogonal multiple access
CN113454964A (zh) 2019-01-25 2021-09-28 珍吉斯科姆控股有限责任公司 正交多址和非正交多址
US11343823B2 (en) 2020-08-16 2022-05-24 Tybalt, Llc Orthogonal multiple access and non-orthogonal multiple access
WO2020242898A1 (en) 2019-05-26 2020-12-03 Genghiscomm Holdings, LLC Non-orthogonal multiple access

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134071A (en) * 1971-07-19 1979-01-09 Licentia Patent-Verwaltungs-G.M.B.H. SSMA Data transmission system
US5103459B1 (en) * 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US5218619A (en) * 1990-12-17 1993-06-08 Ericsson Ge Mobile Communications Holding, Inc. CDMA subtractive demodulation
US5224122A (en) * 1992-06-29 1993-06-29 Motorola, Inc. Method and apparatus for canceling spread-spectrum noise
JP3143247B2 (ja) * 1993-01-11 2001-03-07 沖電気工業株式会社 符号分割多元接続復調装置
US5329547A (en) * 1993-03-11 1994-07-12 Motorola, Inc. Method and apparatus for coherent communication in a spread-spectrum communication system
US5345472A (en) * 1993-08-02 1994-09-06 Motorola, Inc. Method and apparatus for receiving and decoding communication signals in a CDMA receiver
JP2732783B2 (ja) * 1993-08-31 1998-03-30 沖電気工業株式会社 符号分割多元接続復調装置
US5414699A (en) * 1993-09-27 1995-05-09 Motorola, Inc. Method and apparatus for receiving and decoding communication signals in a CDMA receiver using partial de-correlation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502566A (ja) * 2003-08-13 2007-02-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 伝送システムにおいてデジタルデータストリームを暗号化する方法及び装置

Also Published As

Publication number Publication date
JP3202125B2 (ja) 2001-08-27
KR950035170A (ko) 1995-12-30
US5533012A (en) 1996-07-02
KR100323190B1 (ko) 2002-06-20
EP0671821A3 (en) 2000-05-10
EP0671821A2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
JP3202125B2 (ja) 符号分割多元接続システム
EP0641100B1 (en) Multiple access interference cancellation for CDMA demodulator
US5615227A (en) Transmitting spread spectrum data with commercial radio
KR100315899B1 (ko) 양자화된코히어런트레이크수신기
JP4769270B2 (ja) カオス系列を利用するスペクトル拡散通信システムおよび方法
JP3115757B2 (ja) Cdmaシステムに使用される装置と方法
JP2998204B2 (ja) 拡散スペクトル雑音をキャンセルする方法および装置
CA3043340C (en) Reliable orthogonal spreading codes in wireless communications
JP4960930B2 (ja) カオススペクトル拡散通信システム受信機
US5629929A (en) Apparatus for rapid interference cancellation and despreading of a CDMA waveform
US8379689B2 (en) Anti-jam communications having selectively variable peak-to-average power ratio including a chaotic constant amplitude zero autocorrelation waveform
CN1128594A (zh) 在码分多址接收机中接收和解码通信信号的方法和设备
JP2988522B1 (ja) Cdma送信機
CN1732634B (zh) 一种用于自相关滤波的系统和方法
US20110019719A1 (en) Adaptive link communications using adaptive chaotic spread waveform
WO2004112271A1 (ja) 通信装置および通信方法
EP0586159B1 (en) Precoding of signature sequences for CMDA systems
JPH10513319A (ja) データ伝送方法、送信装置および受信装置
US6363103B1 (en) Multistage interference cancellation for CDMA applications using M-ary orthogonal moduation
RU2343563C1 (ru) Способ передачи и приема закодированной речи
US7577182B2 (en) Transmitter apparatus, receiver apparatus, transmission method, reception method and program
JP2002533982A (ja) Cdma通信システムにおいてクロック・ジッタによって生じる位相誤差の補償
EP1700383B1 (en) Transmitter operations for interference mitigation
JP3347642B2 (ja) 通信装置及び通信システム
JP3224334B2 (ja) 送信装置

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees