JPH07216496A - Production of oxide grain dispersed cast bloom for refractory use and rolled shape steel for refractory use, using this cast bloom as stock - Google Patents

Production of oxide grain dispersed cast bloom for refractory use and rolled shape steel for refractory use, using this cast bloom as stock

Info

Publication number
JPH07216496A
JPH07216496A JP1170594A JP1170594A JPH07216496A JP H07216496 A JPH07216496 A JP H07216496A JP 1170594 A JP1170594 A JP 1170594A JP 1170594 A JP1170594 A JP 1170594A JP H07216496 A JPH07216496 A JP H07216496A
Authority
JP
Japan
Prior art keywords
less
rolling
weight
molten steel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1170594A
Other languages
Japanese (ja)
Other versions
JP3241198B2 (en
Inventor
Koichi Yamamoto
広一 山本
Taku Yoshida
卓 吉田
Koji Takeshima
康志 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP01170594A priority Critical patent/JP3241198B2/en
Publication of JPH07216496A publication Critical patent/JPH07216496A/en
Application granted granted Critical
Publication of JP3241198B2 publication Critical patent/JP3241198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To attain superior refractoriness and toughness by subjecting a cast bloom, in which Al-Mg-Ti compound oxides are dispersed, to heating/cooling type controlled rolling. CONSTITUTION:A molten steel, having a composition containing, by weight ratio, 0.04-0.20% C, 0.05-0.50% Si, 0.4-1.8% Mn, 0.4-1.0% Mo, 0.05-0.20% V, 0.004-0.015% N, and 0.005-0.025% Ti, is preliminarily deoxidized, by which the amount of dissolved oxygen is regulated to 0.003-O.015%. Then, an Fe-Al-Mg alloy is added and the amounts of Al and Mg are regulated to 0.005-0.015% and 0.001-0.010%, respectively. The molten steel is cast and cooled down to 900 deg.C at a rate of (0.5 to 20) deg.C/s, by which Al-Mg-Ti oxides of a size of <=3mum are incorporated into the resulating cast bloom by >=20pieces/mm<2>. Subsequently, the cast bloom is heated to 1100-1200'C and rolling is started, and then, water cooling is done until a bloom surface layer temp. of <=700 deg.C is reached and rolling is performed in the course of recuperation between passes. This process is repeated once or more. After the completion of rolling, cooling is done down to 650-400 deg.C at a rate of (1 to 20) deg.C/s, followed by air cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる耐火性、靱性の優れた圧延形鋼用鋳片とそ
れを素材とした制御圧延による圧延形鋼の製造方法に係
わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slab for rolled steel having excellent fire resistance and toughness which is used as a structural member of a building, and a method for producing rolled steel by controlled rolling using the slab. Is.

【0002】[0002]

【従来の技術】建築物の超高層化、建築設計技術の高度
化などから耐火設計の見直しが建設省総合プロジェクト
により行われ、昭和62年3月に「新耐火設計法」が制
定された。この規定により、旧法令による火災時に鋼材
の温度を350℃以下にするように耐火被覆するとした
制限が解除され、鋼材の高温強度と建築物の実荷重との
かねあいにより、それに適合する耐火被覆方法を決定で
きるようになった。即ち600℃での設計高温強度を確
保できる場合はそれに見合い耐火被覆を削減できるよう
になった。
2. Description of the Related Art The fire resistant design was reviewed by a Ministry of Construction comprehensive project due to the super-rise of buildings and the sophistication of building design technology, and the "New Fire Resistant Design Law" was enacted in March 1987. Under this regulation, the restriction of fireproof coating to keep the temperature of steel materials to 350 ° C or less at the time of fire under the old law was lifted, and due to the balance between high-temperature strength of steel materials and actual load of buildings, a fireproof coating method suitable for it You can now decide. That is, when the designed high temperature strength at 600 ° C. can be secured, the fireproof coating can be reduced accordingly.

【0003】このような動向に対応し、先に特開平2−
77523号公報の耐火性の優れた建築用低降伏比鋼お
よび鋼材並びにその製造方法が提案されている。この先
願発明の要旨は600℃での降伏点が常温時の70%以
上となるようにMo,Nbを添加し高温強度を向上させ
たものである。鋼材の設計高温強度を600℃に設定し
たのは、合金元素による鋼材費の上昇とそれによる耐火
被覆施工費との兼ね合いから最も経済的であるという知
見に基づいたものである。
In response to such a trend, Japanese Patent Laid-Open No. 2-
Japanese Patent No. 77523 discloses a low yield ratio steel for construction having excellent fire resistance, a steel material, and a manufacturing method thereof. The gist of the invention of this prior application is to improve the high temperature strength by adding Mo and Nb so that the yield point at 600 ° C. is 70% or more of that at room temperature. The reason why the design high temperature strength of the steel material is set to 600 ° C. is based on the finding that it is the most economical in view of the balance between the increase of the steel material cost due to the alloying element and the fire protection coating construction cost due to it.

【0004】また、従来は鋼のAl脱酸は溶製過程の初
期段階でAl添加され、溶鋼の脱酸と生成したAl2
3 を浮上分離し高清浄化することを目的にしていた、即
ち、如何に溶鋼の酸素濃度を下げ、鋼中の粗大な一次脱
酸酸化物個数を減らすかに主題がおかれていた。本発明
は従来の発想とは異なり、製鋼過程における脱酸材の選
択、その添加順序及び凝固過程の冷却制御により酸化物
の組成とサイズ、分散密度を制御し、生成させた酸化物
を異相析出の優先析出サイトとし活用する点にある。即
ち、粒内フェライト変態核として機能する微細な複合酸
化物を鋳片に含ませ、圧延工程に負荷をかけないで組織
の微細化を可能にすることである。加えて採用したTM
CPの特徴は厚鋼板での強圧下圧延に代わる形鋼におけ
る軽圧下の熱間圧延においても効率的に組織の細粒化が
可能となるように圧延パス間で水冷し、圧延と水冷を繰
り返す方法にある。
Further, in the past, Al deoxidation of steel was performed by adding Al in the initial stage of the melting process to deoxidize molten steel and form Al 2 O.
The purpose was to float and separate 3 to make it highly clean, that is, how to lower the oxygen concentration of the molten steel and reduce the number of coarse primary deoxidized oxides in the steel. Unlike the conventional idea, the present invention controls the composition and size of oxides and the dispersion density by selecting the deoxidizing material in the steel making process, the addition order of the deoxidizing material, and the cooling control of the solidification process, and the produced oxide is heterophase precipitated. It is to be used as the preferential precipitation site of. That is, a fine composite oxide that functions as an intragranular ferrite transformation nucleus is included in a slab to enable the refinement of the structure without imposing a load on the rolling process. Additionally adopted TM
The characteristic of CP is that water cooling between rolling passes is repeated and rolling and water cooling are repeated in order to enable efficient grain refinement even in hot rolling under light reduction in shaped steel instead of heavy reduction rolling on thick steel plates. On the way.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は前述の先
願技術によって製造された鋼材を各種の形鋼、特に複雑
な形上から厳しい圧延造形上の制約を有するH形鋼の素
材に適用することを試みた結果、ウェブ、フランジ、フ
ィレットの各部位での圧延仕上げ温度、圧下率、冷却速
度に差から、部位により組織、特にベイナイト割合が著
しく異なり、常温・高温強度、延性、靱性がバラツキ、
溶接構造用圧延鋼材(JIS G3106)等の規準に
満たない部位が生じた。
The inventors of the present invention have made the steel materials manufactured by the above-mentioned prior art into various shaped steels, particularly, H-shaped steels having complicated restrictions from severe shaping. As a result of attempting to apply it, the structure, especially the bainite ratio is remarkably different depending on the parts due to the difference in rolling finish temperature, reduction ratio and cooling rate at each part of web, flange and fillet, and room temperature / high temperature strength, ductility, toughness Variation,
Some parts such as rolled steel for welded structure (JIS G3106) did not meet the criteria.

【0006】本発明は、上記の課題を解決するためには
製鋼過程の成分調整と添加手順の工夫により粒内フェラ
イトと異相析出の優先析出核として機能するAl−Mg
−Ti系複合酸化物を晶出分散させた鋳片を製造する必
要がある。その他に、H形鋼のフランジとウェブの結合
部のフィレット部はCCスラブの中心偏析部と一致し、
この部位に存在するMnSは低温圧延条件下では著しく
延伸し、板厚方向の絞り値を低下させ、溶接時にラメラ
テイアを生じる場合がある。このように従来の技術では
目的の信頼性の高い高靱性の耐火用圧延形鋼をオンライ
ン圧延加工で製造し安価に提供することは困難である。
In order to solve the above problems, the present invention functions as a preferential precipitation nucleus for intragranular ferrite and heterophase precipitation by adjusting the composition of the steelmaking process and devising the addition procedure.
It is necessary to manufacture a slab in which the Ti-based composite oxide is crystallized and dispersed. In addition, the fillet part of the joint between the flange of H-section steel and the web matches the center segregation part of the CC slab,
MnS present in this portion may be significantly stretched under the low temperature rolling condition, which may reduce the drawing value in the plate thickness direction and cause lamella tear during welding. As described above, it is difficult for the conventional technique to manufacture the desired highly reliable and high toughness fire-resistant rolled shaped steel by the on-line rolling process and provide it at a low cost.

【0007】[0007]

【課題を解決するための手段】本発明は、組織を細粒化
することを目的とし、製鋼過程において適正な脱酸処
理を行い、溶鋼の高清浄化、溶存酸素濃度の規制、Fe
−Al(5〜20%)−Mg(5〜20%)合金を最後
に添加する添加順序とAlとMg添加量の特定を行い、
鋳片に粒内フェライト生成核として機能する微細な複合
酸化物を多数分散させた鋳片と、これを素材とし圧延
し、熱間圧延パス間で水冷することにより、鋼板の表
層部と内部に温度差を与え、軽圧下条件下においても、
より高温の内部への圧下浸透を高め、粒内フェライト生
成核となる加工転位を導入し、粒内フェライト生成核を
さらに増加させる。加えて、圧延後のγ/α変態温度域
を冷却制御することにより、その核生成させたフェライ
トの粒成長を抑制する方法によればミクロ組織の細粒化
ができ、高能率で製造コストの安価な耐火用圧延形鋼の
製造が可能であると言う知見に基づき前記課題を解決し
たもので、その要旨とするところは、 重量%でC:0.04〜0.20%,Si:0.05
〜0.50%,Mn:0.4〜1.8%,Mo:0.4
〜1.0%,V:0.05〜0.20%,N:0.00
4〜0.015%,Ti:0.005〜0.025%を
含み、残部がFeおよび不可避不純物からなる溶鋼を、
予備脱酸処理によって、溶存酸素を重量%で0.003
〜0.015%に調整後さらに、Fe−Al−Mg合金
を添加し重量%でAl:0.005〜0.015%,M
g:0.001〜0.010%に成分調整した溶鋼を鋳
込み、900℃まで冷却速度0.5〜20℃/sで冷却
し、鋳片内に大きさ3μm以下のAl−Mg−Ti系複
合酸化物を20個/mm2 以上含有することを特徴とする
耐火用酸化物分散鋳片、 重量%でC:0.04〜0.20%,Si:0.05
〜0.50%,Mn:0.4〜1.8%,Mo:0.4
〜1.0%,V:0.05〜0.20%,N:0.00
4〜0.015%,Ti:0.005〜0.025%を
含み、加えてCr:1.0%以下、Cu:1.0%以
下、Ni:2%以下、Nb:0.05%以下、B:0.
003以下、のいずれかの1種または2種以上を含有し
残部がFeおよび不可避不純物からなる溶鋼を、予備脱
酸処理によって、溶存酸素を重量%で0.003〜0.
015%に調整後さらに、Fe−Al−Mg合金を添加
し重量%でAl:0.005〜0.015%,Mg:
0.001〜0.010%に成分調整した溶鋼を鋳込
み、900℃まで冷却速度0.5〜20℃/sで冷却
し、鋳片内に大きさ3μm以下のAl−Mg−Ti系複
合酸化物を20個/mm2 以上含有することを特徴とする
耐火用酸化物分散鋳片、 重量%でC:0.04〜0.20%,Si:0.05
〜0.50%,Mn:0.4〜1.8%,Mo:0.4
〜1.0%,V:0.05〜0.20%,N:0.00
4〜0.015%,Ti:0.005〜0.025%を
含み、残部がFeおよび不可避不純物からなる溶鋼を、
予備脱酸処理によって、溶存酸素を重量%で0.003
〜0.015%に調整後さらに、Fe−Al−Mg合金
を添加し重量%でAl:0.005〜0.015%,M
g:0.001〜0.010%に成分調整した溶鋼を鋳
込み、900℃まで冷却速度0.5〜20℃/sで冷却
し、鋳片内に大きさ3μm以下のAl−Mg−Ti系複
合酸化物を20個/mm2 以上含有する鋳片を1100〜
1300℃の温度域に再加熱後に圧延を開始し、圧延工
程で鋼片表層部の温度を700℃以下に水冷し、パス間
の復熱過程で圧延する工程を一回以上繰り返し圧延し、
圧延終了後に1〜20℃/sの冷却速度で650〜40
0℃まで冷却し放冷することを特徴とする耐火用圧延形
鋼の製造方法、 重量%でC:0.04〜0.20%,Si:0.05
〜0.50%,Mn:0.4〜1.8%,Mo:0.4
〜1.0%,V:0.05〜0.20%,N:0.00
4〜0.015%,Ti:0.005〜0.025%を
含み、加えてCr:1.0%以下、Cu:1.0%以
下、Ni:2.0%以下、Nb:0.05%以下、B:
0.003以下、のいずれかの1種または2種以上を含
有し残部がFeおよび不可避不純物からなる溶鋼を、予
備脱酸処理によって、溶存酸素を重量%で0.003〜
0.015%に調整後さらに、Fe−Al−Mg合金を
添加し重量%でAl:0.005〜0.015%,M
g:0.001〜0.010%に成分調整した溶鋼を鋳
込み、900℃まで冷却速度0.5〜20℃/sで冷却
し、鋳片内に大きさ3μm以下のAl−Mg−Ti系複
合酸化物を20個/mm2 以上含有する鋳片を1100〜
1300℃の温度域に再加熱後に圧延を開始し、圧延工
程で鋼片表層部の温度を700℃以下に水冷し、パス間
の復熱過程で圧延する工程を一回以上繰り返し圧延し、
圧延終了後に1〜20℃/sの冷却速度で650〜40
0℃まで冷却し放冷することを特徴とする耐火用圧延形
鋼の製造方法にある。
DISCLOSURE OF THE INVENTION The present invention is intended to make a structure finer, and to perform a proper deoxidizing treatment in a steelmaking process to highly clean molten steel, regulate dissolved oxygen concentration, and Fe.
-Al (5 to 20%)-Mg (5 to 20%) alloy is added last and the addition order and Al and Mg addition amounts are specified.
A slab in which a large number of fine composite oxides that function as intragranular ferrite-forming nuclei are dispersed in a slab and rolled using this as a material, and water-cooled between hot rolling passes Giving a temperature difference, even under conditions of light pressure,
It enhances the infiltration into the interior at higher temperature, introduces work dislocations that become intragranular ferrite formation nuclei, and further increases the intragranular ferrite formation nuclei. In addition, by controlling the cooling of the γ / α transformation temperature range after rolling, the method of suppressing the grain growth of the nucleated ferrite can make the microstructure finer, resulting in high efficiency and high manufacturing cost. The above problems have been solved based on the finding that it is possible to manufacture an inexpensive fire-resistant rolled steel, and the gist thereof is: C: 0.04 to 0.20% by weight%, Si: 0 .05
~ 0.50%, Mn: 0.4-1.8%, Mo: 0.4
~ 1.0%, V: 0.05-0.20%, N: 0.00
Molten steel containing 4 to 0.015%, Ti: 0.005 to 0.025%, and the balance Fe and unavoidable impurities,
Pre-deoxidation treatment allows dissolved oxygen to be 0.003% by weight.
Fe-Al-Mg alloy is further added after adjusting to 0.015%, and Al: 0.005-0.015% by weight%, M
g: Molten steel having a composition adjusted to 0.001 to 0.010% is cast, cooled to 900 ° C. at a cooling rate of 0.5 to 20 ° C./s, and an Al-Mg-Ti system having a size of 3 μm or less in a cast piece. Refractory oxide-dispersed cast slab characterized by containing 20 or more complex oxides / mm 2 , C: 0.04 to 0.20% by weight, Si: 0.05
~ 0.50%, Mn: 0.4-1.8%, Mo: 0.4
~ 1.0%, V: 0.05-0.20%, N: 0.00
4 to 0.015%, Ti: 0.005 to 0.025%, and Cr: 1.0% or less, Cu: 1.0% or less, Ni: 2% or less, Nb: 0.05% Hereinafter, B: 0.
A molten steel containing one or two or more of the following, and the balance consisting of Fe and unavoidable impurities, is subjected to preliminary deoxidation treatment to obtain a dissolved oxygen content of 0.003 to 0.
After adjusting to 015%, a Fe-Al-Mg alloy is further added, and Al: 0.005 to 0.015% by weight% and Mg:
Molten steel with a composition adjusted to 0.001 to 0.010% is cast, cooled to 900 ° C at a cooling rate of 0.5 to 20 ° C / s, and Al-Mg-Ti-based composite oxide having a size of 3 µm or less is cast in a slab. 20% / mm 2 or more of refractory oxide dispersed cast slab, C: 0.04 to 0.20% by weight, Si: 0.05
~ 0.50%, Mn: 0.4-1.8%, Mo: 0.4
~ 1.0%, V: 0.05-0.20%, N: 0.00
Molten steel containing 4 to 0.015%, Ti: 0.005 to 0.025%, and the balance Fe and unavoidable impurities,
Pre-deoxidation treatment allows dissolved oxygen to be 0.003% by weight.
Fe-Al-Mg alloy is further added after adjusting to 0.015%, and Al: 0.005-0.015% by weight%, M
g: Molten steel having a composition adjusted to 0.001 to 0.010% is cast, cooled to 900 ° C. at a cooling rate of 0.5 to 20 ° C./s, and an Al-Mg-Ti system having a size of 3 μm or less in a cast piece. 1100 to slabs containing 20 or more complex oxides / mm 2
Rolling is started after reheating to a temperature range of 1300 ° C., the temperature of the billet surface layer part is water-cooled to 700 ° C. or less in the rolling step, and the step of rolling in the reheat process between passes is repeated once or more,
650-40 at a cooling rate of 1-20 ° C / s after rolling
A method for manufacturing a fire-resistant rolled shaped steel characterized by cooling to 0 ° C. and allowing to cool, C: 0.04 to 0.20% by weight, Si: 0.05
~ 0.50%, Mn: 0.4-1.8%, Mo: 0.4
~ 1.0%, V: 0.05-0.20%, N: 0.00
4 to 0.015%, Ti: 0.005 to 0.025%, and Cr: 1.0% or less, Cu: 1.0% or less, Ni: 2.0% or less, Nb: 0. 05% or less, B:
A molten steel containing one or more of 0.003 or less and the balance consisting of Fe and unavoidable impurities is subjected to a preliminary deoxidation treatment so as to have a dissolved oxygen content of 0.003 to 0.003% by weight.
After adjusting to 0.015%, Fe-Al-Mg alloy is further added, and Al: 0.005 to 0.015% by weight%, M
g: Molten steel having a composition adjusted to 0.001 to 0.010% is cast, cooled to 900 ° C. at a cooling rate of 0.5 to 20 ° C./s, and an Al-Mg-Ti system having a size of 3 μm or less in a cast piece. 1100 to slabs containing 20 or more complex oxides / mm 2
Rolling is started after reheating to a temperature range of 1300 ° C., the temperature of the billet surface layer part is water-cooled to 700 ° C. or less in the rolling step, and the step of rolling in the reheat process between passes is repeated once or more,
650-40 at a cooling rate of 1-20 ° C / s after rolling
It is a method for producing a fire-resistant rolled shaped steel characterized by cooling to 0 ° C. and allowing to cool.

【0008】[0008]

【作用】以下、本発明について詳細に説明する。鋼材の
高温強度は鉄の融点のほぼ1/2の温度の700℃以下
では常温での強化機構とほぼ同様であり、フェライト
結晶粒径の微細化、合金元素による固溶体強化、硬
化相による分散強化、微細析出物による析出強化等に
よって支配される。一般に高温強度の上昇にはMo,C
rの添加による析出強化と転位の消失抑制による高温で
の軟化抵抗を高めることにより達成されている。しかし
Mo,Crの添加は著しく焼き入れ性を上げ、母材のフ
ェライト+パーライト組織をベイナイト組織に変化させ
る。ベイナイト組織を生成し易い成分系鋼を圧延形鋼に
適応した場合は、その特異な形状からウェブ、フラン
ジ、フィレットの各部位で、圧延仕上げ温度、圧下率、
冷却速度に差を生じるため、各部位によりベイナイト組
織割合が大きく変化する。その結果として常温・高温強
度、延性、靱性がバラツキ、規準に満たない部位が生じ
る。加えて、これらの元素の添加により溶接部を著しく
硬化させ、靱性を低下させる。
The present invention will be described in detail below. The high-temperature strength of steel materials is almost the same as the strengthening mechanism at room temperature at 700 ° C or lower, which is about half the melting point of iron, and the grain size of ferrite is refined, solid solution strengthening by alloying elements, dispersion strengthening by hardening phase , And precipitation strengthening by fine precipitates. Generally, Mo and C are used to increase high temperature strength.
This is achieved by increasing the softening resistance at high temperatures by strengthening the precipitation by adding r and suppressing the dislocation disappearance. However, the addition of Mo and Cr markedly enhances the hardenability and changes the ferrite + pearlite structure of the base material into a bainite structure. When a component steel that easily forms a bainite structure is applied to a rolled steel, the rolling finish temperature, the reduction ratio, the web, the flange, and the fillet at each site due to its unique shape.
Because of the difference in cooling rate, the bainite structure ratio changes greatly depending on each part. As a result, the room temperature / high temperature strength, ductility, and toughness vary, and some parts do not meet the standard. In addition, the addition of these elements significantly hardens the weld and reduces toughness.

【0009】本発明の特徴は、製鋼工程において、脱酸
の制御、鋳込み後の冷却速度を規制し、鋳片に粒内フェ
ライト生成核として機能する多数の微細な複合酸化物を
分散させた鋳片を得ることと、それを素材とし熱間圧延
工程において、熱間圧延パス間で水冷し、この復熱時に
圧延することを繰り返すことにより粒内フェライト生成
核を増加させ、圧延時のオーステナイト粒内からの粒内
フェライト変態を促進し、H形鋼の各部位のベイナイト
とフェライトの組織割合の変化を少なくし、母材の機械
特性の向上と均一化を達成したことと、V炭窒化物の析
出強度により高温強度を上昇させたところにある。加え
て圧延後に加速冷却を行い、そのフェライトの成長を抑
制し、ミクロ組織の微細化を行い、母材の高強度化と高
靱性化を達成するものである。
A feature of the present invention is that in the steelmaking process, the deoxidation is controlled, the cooling rate after casting is regulated, and a cast product in which a large number of fine composite oxides functioning as intragranular ferrite formation nuclei are dispersed By increasing the number of intragranular ferrite formation nuclei by repeatedly obtaining pieces and water-cooling between them in the hot rolling process using the material as a raw material, and rolling during this recuperation, austenite grains during rolling Intragranular ferrite transformation from the inside is promoted, changes in the proportion of bainite and ferrite in each part of the H-section steel are reduced, and the improvement and homogenization of the mechanical properties of the base material are achieved. The high temperature strength is increased by the precipitation strength of. In addition, accelerated cooling is performed after rolling to suppress the growth of the ferrite and to refine the microstructure to achieve high strength and high toughness of the base material.

【0010】次に本発明形鋼の成分範囲と制御条件の限
定理由について述べる。まず、Cは鋼の強度を向上させ
る有効な成分として添加するもので、0.04%未満で
は構造用鋼として必要な強度が得られない。また、0.
20%を超える過剰の添加は、母材靱性、耐溶接割れ
性、溶接熱影響部靱性などを著しく低下させるので、下
限を0.04%、上限を0.20%とした。
Next, the reasons for limiting the composition range and control conditions of the shaped steel of the present invention will be described. First, C is added as an effective component for improving the strength of steel, and if it is less than 0.04%, the strength required for structural steel cannot be obtained. Also, 0.
Excessive addition of more than 20% remarkably lowers the base material toughness, weld crack resistance, weld heat affected zone toughness, etc., so the lower limit was made 0.04% and the upper limit was made 0.20%.

【0011】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.50%を超えるとHAZ
組織内に硬化組織の高炭素マルテンサイトを生成し、溶
接継手部靱性を著しく低下させる。また、0.05%未
満では必要な溶鋼の予備脱酸ができないためSi含有量
を0.05〜0.50%の範囲に限定した。Mnは母材
の強度、靱性の確保には0.4%以上の添加が必要であ
るが、溶接部の靱性、割れ性などの許容できる範囲で上
限を1.8%とした。
Next, Si is necessary for securing the strength of the base metal and pre-deoxidizing molten steel, but if it exceeds 0.50%, HAZ
It produces high carbon martensite with a hardened structure in the structure and significantly reduces the toughness of the welded joint. Further, if less than 0.05%, the necessary preliminary deoxidation of molten steel cannot be performed, so the Si content is limited to the range of 0.05 to 0.50%. Although Mn needs to be added in an amount of 0.4% or more to secure the strength and toughness of the base metal, the upper limit is set to 1.8% within the allowable range of the toughness and crackability of the welded portion.

【0012】Moは母材強度および高温強度の確保に有
効な元素である。0.4%未満ではVNの析出強化との
複合作用によっても十分な高温強度が確保できず、1.
0%超では焼き入れ性が上昇しすぎ母材靱性、HAZ靱
性が劣化するため0.4〜1.0%に制限した。VはV
Nとして粒内フェライト組織の生成とその細粒化、高温
強度の確保のために極めて重要であり、0.05%未満
ではVNの析出量が不十分であり、0.2%超では析出
量が過剰になり母材靱性、溶接部靱性が低下するため
0.05〜0.2%に制限した。
Mo is an element effective for securing the strength of the base material and the high temperature strength. If it is less than 0.4%, sufficient high-temperature strength cannot be ensured even by the combined action of precipitation strengthening of VN.
If it exceeds 0%, the hardenability is excessively increased, and the toughness of the base material and HAZ toughness are deteriorated, so the content is limited to 0.4 to 1.0%. V is V
As N, it is extremely important for the formation of an intragranular ferrite structure, its refinement, and securing of high temperature strength. If it is less than 0.05%, the precipitation amount of VN is insufficient, and if it exceeds 0.2%, the precipitation amount is large. Becomes excessive and the toughness of the base metal and the toughness of the welded part deteriorate, so the content was limited to 0.05 to 0.2%.

【0013】NはTiNやVNの析出には極めて重要な
要素であり、0.004%未満ではVNの析出量が不足
し、フェライト組織の十分な生成量が得られず、また6
00℃での高温強度も確保できないため0.004%以
上とした。含有量が0.015%を超えると母材靱性を
低下させ、連続鋳造時の鋳片の表面割れを生じさせるた
め0.015%以下に制限した。
N is an extremely important factor for precipitation of TiN and VN. If it is less than 0.004%, the precipitation amount of VN is insufficient, and a sufficient ferrite structure generation amount cannot be obtained.
Since the high temperature strength at 00 ° C cannot be ensured, the content is set to 0.004% or more. If the content exceeds 0.015%, the toughness of the base material is lowered and the surface cracks of the slab are caused during continuous casting, so the content is limited to 0.015% or less.

【0014】Tiは鋳片にAl−Mg−Ti系複合酸化
物を生成し、さらに、圧延時にその粒子の外殻にTiN
を析出し、粒内フェライトの生成を促進させる効果と微
細なTiNを析出させオーステナイトの細粒化効果によ
り母材及び溶接部の靱性を向上させる。従って、0.0
05%未満では複合酸化物中のTi含有量が不足し、粒
内フェライト生成核としての作用が低下するためTi量
の下限値を0.005%以上とした。しかし0.025
%を超えると過剰なTiはTiCを生成し、析出硬化を
生じ溶接熱影響部の靱性を著しく低下させるためこれ未
満に限定した。
Ti forms an Al-Mg-Ti type composite oxide in the cast slab, and TiN is added to the outer shell of the particles during rolling.
To promote the generation of intragranular ferrite and to precipitate fine TiN to improve the toughness of the base material and the welded portion due to the austenite grain refining effect. Therefore, 0.0
If it is less than 05%, the Ti content in the composite oxide becomes insufficient, and the action as intragranular ferrite-forming nuclei decreases, so the lower limit of the Ti content was made 0.005% or more. But 0.025
%, Excess Ti forms TiC, which causes precipitation hardening and remarkably lowers the toughness of the weld heat affected zone.

【0015】成分を調整した溶鋼を予備脱酸処理を行い
溶存酸素を重量%で0.003〜0.015%に制御す
るのは、溶鋼の高清浄化と同時に鋳片内に微細な複合酸
化物を生成させるために行うものである。予備脱酸後の
[O] 濃度が0.003%未満では粒内フェライト変態
を促進する粒内フェライト生成核の複合酸化物が減少
し、細粒化できず靱性を向上できない。一方、0.01
5%を超える場合は、他の条件を満たしていても、酸化
物が3μm以上の大きさに粗大化し脆性破壊の起点とな
り、靱性を低下させるために予備脱酸後の [O] 濃度を
重量%で0.003〜0.015%に限定した。
The molten steel having the adjusted components is subjected to a preliminary deoxidation treatment to control the dissolved oxygen to 0.003 to 0.015% by weight so that the molten steel can be highly cleaned and at the same time fine composite oxides in the slab can be obtained. Is to generate. After pre-deoxidation
If the [O] concentration is less than 0.003%, the amount of the composite oxide of intragranular ferrite-forming nuclei that promotes intragranular ferrite transformation is reduced, and the grain size cannot be reduced to improve toughness. On the other hand, 0.01
If it exceeds 5%, even if the other conditions are satisfied, the oxide coarsens to a size of 3 μm or more and becomes a starting point of brittle fracture, and to reduce toughness, the [O] concentration after pre-deoxidation is weighted. % To 0.003 to 0.015%.

【0016】予備脱酸処理は真空脱ガス、Al,Si,
Mg脱酸により行った。その理由は真空脱ガス処理は直
接溶鋼中の酸素をガスおよびCOガスとして除去し、A
l,Si,Mgなどの強脱酸により生成する酸化物系介
在物は浮上、除去しやすいため溶鋼の清浄化に有効なた
めである。次に上述の溶鋼にFe−Al−Mg合金を添
加し重量%でAl:0.005〜0.015%,Mg:
0.001〜0.010%に成分調整した溶鋼を鋳込
み、900℃まで冷却速度0.5〜20℃/sで冷却す
るのは、鋳片内に大きさ3μm以下のAl−Mg−Ti
系複合酸化物を20個/mm2 以上鋳片に含有させる目的
で行うものであり順次その必要理由を以下に詳述する。
The preliminary deoxidizing treatment is performed by vacuum degassing, Al, Si,
It was performed by Mg deoxidation. The reason is that the vacuum degassing process directly removes oxygen in molten steel as gas and CO gas,
This is because oxide-based inclusions such as l, Si, and Mg produced by strong deoxidation are easy to float and remove, and are effective for cleaning molten steel. Next, an Fe-Al-Mg alloy was added to the above-mentioned molten steel, and Al: 0.005 to 0.015% by weight% and Mg:
Casting the molten steel whose composition is adjusted to 0.001 to 0.010% and cooling it to 900 ° C. at a cooling rate of 0.5 to 20 ° C./s is due to Al-Mg-Ti having a size of 3 μm or less in the cast piece.
Detailing the system composite oxide below 20 and performs the purpose to be contained in / mm 2 or more slab successively the necessary reasons.

【0017】Fe−Al−Mg合金はAl:1−20
%,Mg:1−20%残部がNiから成る合金である。
AlかMg金属の単体で添加した場合には、何れも強力
な酸化物形成元素であり、安定なAl2 3 やMgOを
生成し目的の活性な複合酸化物(スピネル結晶構造の陽
イオン空孔型、 [Mg,Ti] O・Al2 3 )を生成
できない。加えてこれらは低融点、低密度であり溶鋼へ
の添加歩留りが低く、均質に添加ができない。これを改
善するためにFe−Al−Mg合金とし融点と密度を高
め、同時にAl,Mgの濃度を低くし、酸化物生成時の
反応を抑え、安定な添加を可能にした。
The Fe-Al-Mg alloy is Al: 1-20.
%, Mg: 1-20% The balance is an alloy consisting of Ni.
When Al or Mg metal alone is added, both are strong oxide-forming elements and produce stable Al 2 O 3 and MgO, which are active complex oxides of interest (cation empty space of spinel crystal structure). Pore type, [Mg, Ti] O.Al 2 O 3 ) cannot be generated. In addition, they have a low melting point and a low density, and the addition yield to molten steel is low, so that they cannot be added uniformly. In order to improve this, a Fe-Al-Mg alloy was used to increase the melting point and density, and at the same time, lower the concentrations of Al and Mg, suppressing the reaction during oxide formation and enabling stable addition.

【0018】Alを0.005〜0.015%に限定す
るのは、Alは強力な脱酸元素であり、0.015%超
の含有は粒内フェライト変態を促進する複合酸化物が生
成されず、靱性の低下がもたらされることと、過剰の固
溶AlはNと化合しAlNを生成し、VNの析出量を低
減させるため0.015%以下に制限した。また、0.
005%未満では目的のAlを含有する複合酸化物が生
成できないために0.005%以上とした。
Al is limited to 0.005 to 0.015% because Al is a strong deoxidizing element, and the content of more than 0.015% forms a complex oxide which promotes intragranular ferrite transformation. However, in order to reduce the toughness, and excessive solid solution Al combines with N to form AlN, which is limited to 0.015% or less in order to reduce the precipitation amount of VN. Also, 0.
If it is less than 005%, the target composite oxide containing Al cannot be formed, so the content was made 0.005% or more.

【0019】Mgを0.001〜0.010%に限定す
るのは、Mgも強力な脱酸元素であり、0.010%超
の含有は粒内フェライト変態を促進する複合酸化物が生
成されず、粗大なMgOを生成し靱性、延性を低下させ
るために0.010%以下に制限した。また、0.00
1%未満では目的のMgを含有する複合酸化物が生成で
きないために0.001%以上とした。
The Mg content is limited to 0.001 to 0.010% because Mg is also a strong deoxidizing element, and the content of more than 0.010% forms a complex oxide that promotes intragranular ferrite transformation. However, in order to generate coarse MgO and reduce toughness and ductility, the content was limited to 0.010% or less. Also, 0.00
If it is less than 1%, the desired composite oxide containing Mg cannot be formed, so the content was made 0.001% or more.

【0020】不可避不純物として含有するP,Sはその
量について特に限定しないが凝固偏析による溶接割れ、
靱性の低下を生じるので、極力低減すべきであり、望ま
しくはP,S量はそれぞれ0.02%未満である。以上
の成分に加えて、母材強度の上昇、および母材の靱性向
上の目的で、Cr,Cu,Ni,Nb,B、の1種また
は2種以上を含有することができる。
The amounts of P and S contained as inevitable impurities are not particularly limited, but weld cracks due to solidification segregation,
Since the toughness is reduced, it should be reduced as much as possible, and the P and S contents are preferably less than 0.02%, respectively. In addition to the above components, one or more of Cr, Cu, Ni, Nb, and B may be contained for the purpose of increasing the strength of the base material and improving the toughness of the base material.

【0021】Crは焼き入れ性の向上により、母材の強
化に有効である。しかし1.0%を超える過剰の添加
は、靱性および硬化性の観点から有害となるため、上限
を1.0%とした。Cuは母材の強化、耐候性に有効な
元素であるが、応力除去焼鈍による焼き戻し脆性、溶接
割れ性、熱間加工割れを促進するため、上限を1.0%
とした。
[0021] Cr is effective in strengthening the base material by improving the hardenability. However, excessive addition exceeding 1.0% is harmful from the viewpoint of toughness and curability, so the upper limit was made 1.0%. Cu is an element effective for strengthening the base material and weathering resistance, but since it promotes temper embrittlement due to stress relief annealing, weld crackability, and hot work cracking, its upper limit is 1.0%.
And

【0022】Niは、母材の強靱性を高める極めて有効
な元素であるが2.0%を超える添加は合金コストを増
加させ経済的でないので上限を2.0%とした。Nb,
Bは微量添加により圧延組織を微細化できることから低
合金化でき溶接特性を向上できる。しかしながら、これ
らの元素の過剰な添加は溶接部の硬化や、母材の高降伏
点化をもたらすので、各々の含有量の上限をNb:0.
05%,B:0.003%とした。
Ni is an extremely effective element that enhances the toughness of the base material, but the addition of more than 2.0% increases the alloy cost and is not economical, so the upper limit was made 2.0%. Nb,
B can be made into a low alloy because the rolling structure can be refined by adding a trace amount, and welding characteristics can be improved. However, excessive addition of these elements leads to hardening of the welded portion and increase of the yield point of the base metal, so the upper limit of the content of each element is Nb: 0.
05% and B: 0.003%.

【0023】成分調整を終了した溶鋼を鋳込みから90
0℃まで冷却速度0.5〜20℃/sで冷却するのは、
酸化物粒子の個数の増加とその大きさを制御するために
行うものである。すなわち、過冷却により晶出する複合
酸化物の核生成数を増加させると同時に冷却中の粒子成
長を抑制し、大きさ3μm以下にした酸化物を鋳片に2
0個/mm2 以上含有させるために行うものである。この
温度間の冷却速度が0.5℃/s未満の緩冷却では複合
酸化物は凝集粗大化し、20個/mm2 未満となり靱性、
延性を低下させるため冷却速度を0.5℃/s以上とし
た。上限を20℃/sとしたのは、現状の鋳造技術での
冷却速度の限界であるからである。次に、鋳片に複合酸
化物が20個/mm2 以上含む必要がある理由について述
べる。製品の材質特性は製鋼、鋳造工程に支配される先
天的因子の鋳片の凝固組織、成分偏析、本発明の微細複
合酸化物、析出物等と圧延、TMCP、熱処理工程等に
より支配される後天的因子のミクロ組織により決定され
る。当然、この先天的因子である鋳片の性質は後の工程
に継承される。本発明の特徴は、この鋳片の先天的因子
の1つを制御することにあり、鋳片中に粒内フェライト
と異相析出の優先析出サイトとして機能する組成のAl
−Mg−Ti系複合酸化物を生成させ含ませることであ
る。この粒子の分散個数が20個/mm2 未満では複合酸
化物粒子上に析出し粒内フェライト核生成機能を発現す
るTiN,AlNとVNの析出サイト数として不十分で
粒内フェライト生成量が不足し細粒化できないためであ
る。なお、複合酸化物個数はX線マイクロアナライザー
(EPMA)で測定し決定したものである。
The molten steel whose composition has been adjusted is cast 90 times after casting.
Cooling to 0 ° C at a cooling rate of 0.5 to 20 ° C / s is
This is done to increase the number of oxide particles and control their size. That is, the number of nucleated complex oxides crystallized by supercooling is increased and at the same time grain growth during cooling is suppressed, and the oxides having a size of 3 μm or less are added to the slab.
This is carried out in order to contain 0 / mm 2 or more. In slow cooling with a cooling rate of less than 0.5 ° C / s between these temperatures, the complex oxide aggregates and coarsens to less than 20 pieces / mm 2 and toughness,
In order to reduce the ductility, the cooling rate was set to 0.5 ° C / s or more. The upper limit is set to 20 ° C./s because it is the limit of the cooling rate in the current casting technology. Next, the reason why the slab needs to contain 20 or more complex oxides / mm 2 will be described. The material properties of the product are controlled by steelmaking, solidification structure of cast slab which is an innate factor governed by the casting process, component segregation, fine composite oxide of the present invention, precipitation and rolling, TMCP, heat treatment process, etc. It is determined by the microstructure of specific factors. Naturally, the property of the slab, which is an innate factor, is inherited in the subsequent process. The feature of the present invention resides in controlling one of the innate factors of the slab, and the composition of Al which functions as a preferential precipitation site for intragranular ferrite and heterophase precipitation in the slab.
-Mg-Ti-based composite oxide is generated and included. If the number of dispersed particles is less than 20 particles / mm 2 , the number of precipitation sites of TiN, AlN and VN that precipitate on the composite oxide particles and express the intragranular ferrite nucleation function is insufficient, and the amount of intragranular ferrite formed is insufficient. This is because it cannot be made finer. The number of complex oxides is determined by measuring with an X-ray microanalyzer (EPMA).

【0024】上記の処理を経た鋳片は次に1100〜1
300℃の温度域に再加熱する。この温度域に再加熱温
度を限定したのは、熱間加工による形鋼の製造には塑性
変形を容易にするため1100℃以上の加熱が必要であ
り、且つV,Nbなどの元素を十分に固溶させる必要が
あるため再加熱温度の下限を1100℃とした。その上
限は加熱炉の性能、経済性から1300℃とした。
The cast pieces that have undergone the above treatment are then 1100-1.
Reheat to a temperature range of 300 ° C. The reason for limiting the reheating temperature to this temperature range is that in the production of shaped steel by hot working, heating at 1100 ° C. or higher is required to facilitate plastic deformation, and elements such as V and Nb are sufficiently added. Since it is necessary to form a solid solution, the lower limit of the reheating temperature was set to 1100 ° C. The upper limit was set to 1300 ° C. in view of the performance and economical efficiency of the heating furnace.

【0025】熱間圧延のパス間で水冷し、圧延中に1回
以上、鋼片表層部の温度を700℃以下に冷却し、その
復熱過程で熱間圧延を行うとしたのは、圧延パス間の水
冷により、鋼片の表層部と内部とに温度差を付け、軽圧
下条件においても内部への加工を浸透させるためと、低
温圧延を短時間で効率的に行うためである。鋼片表層部
の温度を700℃以下に冷却するのは、圧延に引き続き
加速冷却するため、通常のγ温度域からの冷却では表層
部に、焼きが入り、硬化相を生成し、加工性を損ねる。
この様に限定した温度範囲内に冷却すれば、一旦γ/α
変態温度以下となり、次の圧延するまでに表層部は復熱
昇温し、二相共存温度域での加工となり、焼き入性を著
しく低減でき、加速冷却による表面層の硬化を防止でき
る。
The reason is that the water cooling is performed between the passes of the hot rolling, the temperature of the surface layer of the billet is cooled to 700 ° C. or less once during the rolling, and the hot rolling is performed in the reheating process. This is because a temperature difference is caused between the surface layer portion and the inside of the steel slab by water cooling between the passes so as to infiltrate the internal processing even under a light reduction condition, and to perform low-temperature rolling efficiently in a short time. Cooling the temperature of the steel slab surface layer to 700 ° C. or lower is accelerated cooling subsequent to rolling. Therefore, in the cooling from the normal γ temperature range, the surface layer part is hardened, a hardened phase is generated, and workability is improved. Spoil.
If cooled within such a limited temperature range, once γ / α
When the temperature falls below the transformation temperature, the surface layer part is reheated by the time of the next rolling, and the work is carried out in the two-phase coexisting temperature range, the hardenability can be significantly reduced, and the hardening of the surface layer due to accelerated cooling can be prevented.

【0026】また、圧延終了後、引続き、1〜20℃/
Sの冷却速度で650〜400℃まで冷却し終了すると
したのは、加速冷却によりフェライトの粒成長とベイナ
イト組織を微細化し高強度・高靱性を得るためであり、
650〜400℃で加速冷却を停止するのは、650℃
以上の温度で加速冷却を停止すると、一部はAr1 点以
上となり、一部γ相が残存し、フェライトが粒成長する
ために600℃以下とした。また、400℃未満の冷却
では、ベイナイト相に生成した高炭素マルテンサイト
を、その後の放冷中に分解できず、靱性の低下を招くた
めに、この温度範囲に限定した。
After the rolling is completed, the temperature is continuously 1 to 20 ° C. /
The reason why the cooling is completed at the cooling rate of S to 650 to 400 ° C. is to accelerate the grain growth of ferrite and the bainite structure by accelerated cooling to obtain high strength and high toughness.
650 ° C to stop accelerated cooling at 650 to 400 ° C
When the accelerated cooling was stopped at the above temperature, a part of Ar became 1 point or higher, a part of the γ phase remained, and ferrite was grain-grown, so that the temperature was set to 600 ° C. or lower. Further, if the temperature is lower than 400 ° C., the high carbon martensite formed in the bainite phase cannot be decomposed during the subsequent cooling and the toughness is lowered, so the temperature range is limited to this range.

【0027】以下に実施例によりさらに本発明の効果を
示す。
The effects of the present invention will be further illustrated by the following examples.

【0028】[0028]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を調整後、Fe−Al
−Mg合金を添加し、連続鋳造により250〜300mm
厚鋳片に鋳造した。鋳片の冷却はモールド下方の二次冷
却帯の水量と鋳片の引き抜き速度の選択により制御し
た。該鋳片を加熱し、粗圧延工程の図示は省略するが、
図1に示す、ユニバーサル圧延装置列でH形鋼に圧延し
た。圧延パス間水冷は中間ユニバーサル圧延機4の前後
に水冷装置5aを設け、フランジ内外面のスプレー冷却
とリバース圧延の繰り返しにより行い、圧延後の加速冷
却は仕上げユニバーサル圧延機6で圧延終了後にその後
面に設置した冷却装置5bでフランジ、ウェブをスプレ
ー冷却した。
[Example] A prototype shaped steel was melted in a converter, added with an alloy, and then pre-deoxidized to adjust the oxygen concentration of the molten steel, and then Fe-Al.
-Mg alloy added, continuous casting 250-300mm
It was cast into a thick slab. The cooling of the slab was controlled by selecting the amount of water in the secondary cooling zone below the mold and the drawing speed of the slab. Although the slab is heated and the rough rolling step is not shown,
It was rolled into an H-section steel by the universal rolling apparatus train shown in FIG. Water cooling between rolling passes is performed by providing water cooling devices 5a before and after the intermediate universal rolling mill 4 and repeating spray cooling of the inner and outer surfaces of the flange and reverse rolling. The flange and the web were spray-cooled by the cooling device 5b installed in.

【0029】機械特性は図2に示す、フランジ2の板厚
2 の中心部(1/2t2 )でフランジ幅全長(B)の
1/4,1/2幅(1/4B,1/2B)から、試験片
を採取し求めた。なお、これらの箇所の特性を求めたの
はフランジ1/4F部はH形鋼の平均的な機械特性を示
し、フランジ1/2F部はその特性が最も低下するの
で、これらの2箇所によりH形鋼の機械試験特性を代表
できると判断したためである。
The mechanical characteristics shown in FIG. 2 are 1/4 and 1/2 width (1 / 4B, 1/1) of the total flange width (B) at the central portion (1 / 2t 2 ) of the plate thickness t 2 of the flange 2. From 2B), a test piece was sampled and determined. The characteristics at these points were determined because the flange 1 / 4F section shows the average mechanical characteristics of the H-section steel, and the flange 1 / 2F section has the most deteriorated characteristics. This is because it was judged that it can represent the mechanical test characteristics of shaped steel.

【0030】表1および表2は、試作鋼の化学成分値、
鋳込み後の冷却速度及び鋳片中のAl−Mg−Ti系複
合酸化物個数を示す。
Tables 1 and 2 show the chemical composition values of the trial steels,
The cooling rate after casting and the number of Al-Mg-Ti-based complex oxides in the slab are shown.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】表3および表4は圧延と加熱冷却条件及び
製品の機械試験特性を示す。なお、圧延加熱温度を12
80℃に揃えたのは、一般的に加熱温度の低減は機械特
性を向上させることは周知であり、高温加熱条件は機械
特性の最低値を示すと推定され、この値がそれ以下の加
熱温度での特性を代表できると判断したためである。
Tables 3 and 4 show rolling and heating / cooling conditions and mechanical test characteristics of the products. The rolling heating temperature is 12
It is well known that reducing the heating temperature improves the mechanical properties, and it is estimated that the high temperature heating condition shows the minimum value of the mechanical properties, and this value is set to 80 ° C. This is because it was determined that the characteristics in (1) can be represented.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】表5および表6に示すように、本発明によ
れる形鋼1〜7,A1〜A6は目標の常温の降伏点範囲
がJIS規格の下限値+100N/mm2 以内のSM49
0ではYP=325〜425N/mm2 、SM520では
YP=335〜435N/mm 2 、SM570ではYP=
430〜530N/mm2 に制御され、しかも、降伏比
(YP/TS)も0.8以下の低YR値を満たし、抗張
力(前記JISG3106)及び600℃での降伏強度
と常温の降伏強度の比が2/3以上であり、−10℃で
のシャルピー衝撃値47(J)以上を十分に満たしてい
る。一方、比較鋼の形鋼8は成分とFe−Al−Mg合
金添加及び圧延条件も満たしているが鋳込み後の冷却速
度が下限値以下でありAl−Mg−Ti系複合酸化物個
数が不足し粒内フェライトの生成が不十分となる。その
ために1/2F部の−10℃におけるシャルピー試験の
目標値、vE-10 ≧47Jをクリアーできない。形鋼B
2は加えて圧延中水冷が施されておらず、水冷停止温度
も650℃以上となり、さらに圧延後の冷却速度が下限
値以下となるために、1/2F部のシャルピー値が目標
のvE-10 ≧47Jをクリアーできない。
As shown in Tables 5 and 6, according to the present invention,
Shaped steels 1 to 7 and A1 to A6 are target yield point ranges at room temperature
Is the lower limit of JIS standard +100 N / mm2SM49 within
0 for YP = 325-425N / mm2, In SM520
YP = 335-435N / mm 2, SM570 has YP =
430-530N / mm2Controlled, and the yield ratio
(YP / TS) also satisfies the low YR value of 0.8 or less,
Force (said JISG3106) and yield strength at 600 ° C
And the yield strength at room temperature is 2/3 or more, at -10 ° C
Charpy impact value of 47 (J) or more
It On the other hand, the comparative steel, shaped steel 8, has a composition and Fe-Al-Mg combination.
Cooling speed after casting is satisfied, even though gold addition and rolling conditions are satisfied.
The degree is less than or equal to the lower limit, and Al-Mg-Ti-based complex oxides
Insufficient number of particles results in insufficient formation of intragranular ferrite. That
For the purpose of the Charpy test at -10 ℃ of 1 / 2F part
Target value, vE-TenI cannot clear ≧ 47J. Shaped steel B
In addition to 2, water cooling is not applied during rolling, water cooling stop temperature
Is 650 ° C or higher, and the cooling rate after rolling is the lower limit.
Since it is less than the value, the Charpy value of the 1 / 2F part is the target
VE-TenI cannot clear ≧ 47J.

【0039】形鋼9,B1,B3は通常のAlキルド処
理をしておりAl量が本発明の制限を超え、Mgも添加
されていないので、Al−Mg−Ti系複合酸化物が生
成されず1/2F部の衝撃値が目標を達成できない。加
えて、形鋼B1はMo添加量が不足しているので目標の
600℃における降伏強度を保証できない。
Since the shaped steels 9, B1 and B3 are subjected to the usual Al kill treatment, the amount of Al exceeds the limit of the present invention, and Mg is not added, an Al-Mg-Ti type composite oxide is produced. Therefore, the impact value of the 1 / 2F part cannot reach the target. In addition, since the shaped steel B1 lacks the Mo addition amount, the target yield strength at 600 ° C. cannot be guaranteed.

【0040】形鋼B2は圧延中水冷が施されていないこ
とと圧延後の加速冷却条件が満たされていないためにフ
ェライト相の細粒化ができず降伏点が低下し規格値の下
限以下となる。即ち、本発明の製造法の要件が総て満た
された時に、表5および表6に示される形鋼1〜7,A
1〜A6のように、圧延形鋼の機械試験特性の最も保証
しにくいフランジ板厚1/2、幅1/2部においても十
分な強度、靱性を有し、フランジ板厚1/2、幅1/4
部においても十分な常温・高温強度を持つ、耐火性及び
靱性の優れた圧延形鋼の製造が可能になる。なお、本発
明が対象とする圧延形鋼は上記実施例のH形鋼に限らず
I形鋼、山形鋼、溝形鋼、不等辺不等厚山形鋼等のフラ
ンジを有する形鋼にも適用できることは勿論である。
Since the shaped steel B2 was not water-cooled during rolling and the accelerated cooling conditions after rolling were not satisfied, the ferrite phase could not be fine-grained and the yield point was lowered, which was below the lower limit of the standard value. Become. That is, when all the requirements of the manufacturing method of the present invention are satisfied, the shaped steels 1 to 7 and A shown in Tables 5 and 6 are obtained.
1 to A6, the flange plate thickness 1/2, which is the most difficult to guarantee the mechanical test characteristics of rolled steel, has sufficient strength and toughness even in the width 1/2 part, and the flange plate thickness 1/2 and the width 1/4
It is possible to manufacture rolled steel having excellent fire resistance and toughness, which has sufficient room temperature and high temperature strength even in the part. The rolled shaped steel to which the present invention is applied is not limited to the H-shaped steel of the above-described embodiment, but is also applicable to shaped steel having a flange such as I-shaped steel, chevron steel, grooved steel, and unequal-thickness chevron steel. Of course you can.

【0041】本発明においては、転炉での製造を前提と
しているが、予備脱酸処理がより行い易い電気炉、もし
くはそれらとその他補助的溶融処理炉との組み合わせ工
程を採用して本発明の溶存酸素に調整してもよい。ま
た、本発明の複合酸化物としては、Al,Mg,Tiを
ベースとして含有しその他Si,Mn等の他元素を含有
する酸化物をAl−Mg−Ti系酸化物を呼称している
ことは当然である。なお、本発明のAl,Mgの添加に
は、Fe−Al−Mg合金の他Fe,Al,Mgの1種
もしくは2種を組み合わせた合金を使用してもよい。な
お、パス間の復熱過程はリバース圧延もしくは連続圧延
の当該圧延開始より終了までのパス間で実施するが、こ
の復熱を強制的に急速加熱する手段によってもよい。
Although the present invention is premised on the production in a converter, an electric furnace in which preliminary deoxidation treatment is more easily performed, or a combination process of them and other auxiliary melting treatment furnaces is adopted. It may be adjusted to dissolved oxygen. As the complex oxide of the present invention, an oxide containing Al, Mg, Ti as a base and other elements such as Si and Mn is referred to as an Al-Mg-Ti-based oxide. Of course. In addition to the Fe-Al-Mg alloy, an alloy of one or two of Fe, Al and Mg may be used for addition of Al and Mg of the present invention. The reheating process between the passes is performed between the passes from the start to the end of the reverse rolling or the continuous rolling, but this recuperation may be performed by a means for forcibly and rapidly heating.

【0042】[0042]

【発明の効果】本発明による圧延形鋼は機械試験特性の
最も保証しにくいフランジ板厚1/2、幅1/2部にお
いても十分な強度、靱性を有し、高温特性に優れ、耐火
材の被覆厚さが従来の20〜50%で耐火目的を達成で
きる、優れた耐火性及び靱性を持つ形鋼が圧延ままで製
造可能になり、施工コスト低減、工期の短縮による大幅
なコスト削減が図られ、大型建造物の信頼性向上、安全
性の確保、経済性等の産業上の効果は極めて顕著なもの
がある。
EFFECT OF THE INVENTION The rolled steel according to the present invention has sufficient strength and toughness even at a flange plate thickness of 1/2 and width of 1/2 where it is most difficult to guarantee mechanical test properties, has excellent high temperature properties, and is a refractory material. With the coating thickness of 20 to 50% of the conventional one, it is possible to manufacture shaped steel with excellent fire resistance and toughness, which can achieve the purpose of fire resistance, as it is rolled, and it is possible to reduce construction cost and construction time significantly The industrial effects such as reliability improvement, safety assurance, and economic efficiency of large-scale buildings are extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施する装置配置例の略図である。FIG. 1 is a schematic diagram of an example of device arrangement for carrying out the method of the present invention.

【図2】H形鋼の断面形状および機械試験片の採取位置
を示す図である。
FIG. 2 is a view showing a cross-sectional shape of H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5a…中間圧延機前後面の水冷装置 5b…仕上げ圧延機後面冷却装置 6…仕上げ圧延機 DESCRIPTION OF SYMBOLS 1 ... H-shaped steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5a ... Water-cooling device for front and rear surfaces of intermediate rolling mill 5b ... Finishing mill Rear surface cooling device 6 ... Finishing rolling mill

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.04〜0.20%,S
i:0.05〜0.50%,Mn:0.4〜1.8%,
Mo:0.4〜1.0%,V:0.05〜0.20%,
N:0.004〜0.015%,Ti:0.005〜
0.025を含み、残部がFeおよび不可避不純物から
なる溶鋼を、予備脱酸処理によって、溶存酸素を重量%
で0.003〜0.015%に調整後さらに、Fe−A
l−Mg合金を添加し重量%でAl:0.005〜0.
015%,Mg:0.001〜0.010%に成分調整
した溶鋼を鋳込み、900℃まで冷却速度0.5〜20
℃/sで冷却し、鋳片内に大きさ3μm以下のAl−M
g−Ti系複合酸化物を20個/mm2 以上含有すること
を特徴とする耐火用酸化物分散鋳片。
1. C: 0.04 to 0.20% by weight%, S
i: 0.05 to 0.50%, Mn: 0.4 to 1.8%,
Mo: 0.4 to 1.0%, V: 0.05 to 0.20%,
N: 0.004 to 0.015%, Ti: 0.005 to
A molten steel containing 0.025 and the balance of Fe and unavoidable impurities was subjected to a preliminary deoxidation treatment to dissolve oxygen by weight%.
After adjusting to 0.003 to 0.015% with Fe-A
Addition of 1-Mg alloy, Al: 0.005 to 0.
015%, Mg: 0.001 to 0.010% of the molten steel whose composition is adjusted, and the cooling rate is 0.5 to 20 up to 900 ° C.
Al-M with a size of 3 μm or less
refractory oxide for dispersion cast piece, characterized in that the g-Ti-based composite oxide containing 20 / mm 2 or more.
【請求項2】 重量%でC:0.04〜0.20%,S
i:0.05〜0.50%,Mn:0.4〜1.8%,
Mo:0.4〜1.0%,V:0.05〜0.20%,
N:0.004〜0.015%,Ti:0.005〜
0.025を含み、加えてCr:1.0%以下、Cu:
1.0%以下、Ni:2.0%以下、Nb:0.05%
以下、B:0.003以下、のいずれかの1種または2
種以上を含有し残部がFeおよび不可避不純物からなる
溶鋼を、予備脱酸処理によって、溶存酸素を重量%で
0.003〜0.015%に調整後さらに、Fe−Al
−Mg合金を添加し重量%でAl:0.005〜0.0
15%,Mg:0.001〜0.010%に成分調整し
た溶鋼を鋳込み、900℃まで冷却速度0.5〜20℃
/sで冷却し、鋳片内に大きさ3μm以下のAl−Mg
−Ti系複合酸化物を20個/mm2 以上含有することを
特徴とする耐火用酸化物分散鋳片。
2. C: 0.04 to 0.20% by weight%, S
i: 0.05 to 0.50%, Mn: 0.4 to 1.8%,
Mo: 0.4 to 1.0%, V: 0.05 to 0.20%,
N: 0.004 to 0.015%, Ti: 0.005 to
0.025 in addition to Cr: 1.0% or less, Cu:
1.0% or less, Ni: 2.0% or less, Nb: 0.05%
Hereinafter, one or two of B: 0.003 or less
After adjusting the dissolved oxygen to 0.003 to 0.015% by weight by a preliminary deoxidation treatment, the molten steel containing at least one species and the balance consisting of Fe and unavoidable impurities is further mixed with Fe-Al.
-Mg alloy is added, and Al is 0.005-0.0% by weight.
15%, Mg: 0.001 to 0.010% of molten steel with the composition adjusted to cast, and cooling rate up to 900 ° C 0.5 to 20 ° C
Al / Mg with a size of 3 μm or less
Refractory oxide for dispersion cast piece, characterized in that it contains a -Ti-based composite oxide 20 / mm 2 or more.
【請求項3】 重量%でC:0.04〜0.20%,S
i:0.05〜0.50%,Mn:0.4〜1.8%,
Mo:0.4〜1.0%,V:0.05〜0.20%,
N:0.004〜0.015%,Ti:0.005〜
0.025を含み、残部がFeおよび不可避不純物から
なる溶鋼を、予備脱酸処理によって、溶存酸素を重量%
で0.003〜0.015%に調整後さらに、Fe−A
l−Mg合金を添加し重量%でAl:0.005〜0.
015%,Mg:0.001〜0.010%に成分調整
した溶鋼を鋳込み、900℃まで冷却速度0.5〜20
℃/sで冷却し、鋳片内に大きさ3μm以下のAl−M
g−Ti系複合酸化物を20個/mm2 以上含有する鋳片
を1100〜1300℃の温度域に再加熱後に圧延を開
始し、圧延工程で鋼片表層部の温度を700℃以下に水
冷し、パス間の復熱過程で圧延する工程を1回以上繰り
返し圧延し、圧延終了後に1〜20℃/sの冷却速度で
650〜400℃まで冷却し放冷することを特徴とする
耐火用圧延形鋼の製造方法。
3. C: 0.04 to 0.20% by weight, S
i: 0.05 to 0.50%, Mn: 0.4 to 1.8%,
Mo: 0.4 to 1.0%, V: 0.05 to 0.20%,
N: 0.004 to 0.015%, Ti: 0.005 to
A molten steel containing 0.025 and the balance of Fe and unavoidable impurities was subjected to a preliminary deoxidation treatment to dissolve oxygen by weight%.
After adjusting to 0.003 to 0.015% with Fe-A
Addition of 1-Mg alloy, Al: 0.005 to 0.
015%, Mg: 0.001 to 0.010% of the molten steel whose composition is adjusted, and the cooling rate is 0.5 to 20 up to 900 ° C.
Al-M with a size of 3 μm or less
A slab containing 20 or more g-Ti-based complex oxides / mm 2 is reheated to a temperature range of 1100 to 1300 ° C and then rolling is started, and the temperature of the surface layer of the slab is water-cooled to 700 ° C or less in the rolling process. Then, the step of rolling in the recuperative process between passes is repeatedly rolled once or more, and after the rolling is finished, it is cooled to 650 to 400 ° C at a cooling rate of 1 to 20 ° C / s and left to cool. Rolled shaped steel manufacturing method.
【請求項4】 重量%でC:0.04〜0.20%,S
i:0.05〜0.50%,Mn:0.4〜1.8%,
Mo:0.4〜1.0%,V:0.05〜0.20%,
N:0.004〜0.015%,Ti:0.005〜
0.025を含み、加えてCr:1.0%以下、Cu:
1.0%以下、Ni:2.0%以下、Nb:0.05%
以下、B:0.003以下、のいずれかの1種または2
種以上を含有し残部がFeおよび不可避不純物からなる
溶鋼を、予備脱酸処理によって、溶存酸素を重量%で
0.003〜0.015%に調整後さらに、Fe−Al
−Mg合金を添加し重量%でAl:0.005〜0.0
15%,Mg:0.001〜0.010%に成分調整し
た鋳込み、900℃まで冷却速度0.5〜20℃/sで
冷却し、鋳片内に大きさ3μm以下のAl−Mg−Ti
系複合酸化物を20個/mm2 以上含有する鋳片を110
0〜1300℃の温度域に再加熱後に圧延を開始し、圧
延工程で鋼片表層部の温度を700℃以下に水冷し、パ
ス間の復熱過程で圧延する工程を一回以上繰り返し圧延
し、圧延終了後に1〜20℃/sの冷却速度で650〜
400℃まで冷却し放冷することを特徴とする耐火用圧
延形鋼の製造方法。
4. C: 0.04 to 0.20% by weight%, S
i: 0.05 to 0.50%, Mn: 0.4 to 1.8%,
Mo: 0.4 to 1.0%, V: 0.05 to 0.20%,
N: 0.004 to 0.015%, Ti: 0.005 to
0.025 in addition to Cr: 1.0% or less, Cu:
1.0% or less, Ni: 2.0% or less, Nb: 0.05%
Hereinafter, one or two of B: 0.003 or less
After adjusting the dissolved oxygen to 0.003 to 0.015% by weight by a preliminary deoxidation treatment, the molten steel containing at least one species and the balance consisting of Fe and unavoidable impurities is further mixed with Fe-Al.
-Mg alloy is added, and Al is 0.005-0.0% by weight.
15%, Mg: 0.001 to 0.010% of the component adjusted cast, cooled to 900 ° C at a cooling rate of 0.5 to 20 ° C / s, and Al-Mg-Ti having a size of 3 µm or less in a cast piece.
110 cast slab containing system composite oxide 20 / mm 2 or more
Rolling is started after reheating to a temperature range of 0 to 1300 ° C, the temperature of the surface layer of the slab is water-cooled to 700 ° C or less in the rolling process, and the process of rolling in the reheat process between passes is repeated one or more times. 650 at a cooling rate of 1 to 20 ° C./s after completion of rolling
A method for producing a fire-resistant rolled shaped steel, which comprises cooling to 400 ° C. and cooling.
JP01170594A 1994-02-03 1994-02-03 Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab Expired - Fee Related JP3241198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01170594A JP3241198B2 (en) 1994-02-03 1994-02-03 Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01170594A JP3241198B2 (en) 1994-02-03 1994-02-03 Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab

Publications (2)

Publication Number Publication Date
JPH07216496A true JPH07216496A (en) 1995-08-15
JP3241198B2 JP3241198B2 (en) 2001-12-25

Family

ID=11785466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01170594A Expired - Fee Related JP3241198B2 (en) 1994-02-03 1994-02-03 Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab

Country Status (1)

Country Link
JP (1) JP3241198B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839921A1 (en) * 1996-04-17 1998-05-06 Nippon Steel Corporation Steel having improved toughness in welding heat-affected zone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839921A1 (en) * 1996-04-17 1998-05-06 Nippon Steel Corporation Steel having improved toughness in welding heat-affected zone
EP0839921A4 (en) * 1996-04-17 1999-06-02 Nippon Steel Corp Steel having improved toughness in welding heat-affected zone

Also Published As

Publication number Publication date
JP3241198B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP2579841B2 (en) Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JPH0765097B2 (en) Method for producing H-section steel excellent in fire resistance and weld toughness
JPH05263182A (en) Manufacture of low alloy rolled shape steel excellent in toughness
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP2596853B2 (en) Method for producing intragranular ferrite shaped steel with excellent base metal toughness as welded and excellent weld toughness
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JP3472017B2 (en) Refractory rolled steel and method for producing the same
JP3426425B2 (en) Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same
JP3241198B2 (en) Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab
JP2601961B2 (en) Manufacturing method of rolled section steel with excellent toughness
JPH0790473A (en) Production of oxide-containing slab for fireproofing and rolled shape steel for fireproofing by the same slab
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3285731B2 (en) Rolled section steel for refractory and method for producing the same
JP3107696B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JPH07238318A (en) Production of shape steel excellent in strength, toughness, and weldability and having flange
JPH07238316A (en) Production of shape steel excellent in strength, toughness, and weldability and having flange
JPH09111397A (en) Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock
JPH0776724A (en) Production of shape steel excellent in toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees