JPH07209460A - 沸騰水型原子炉用燃料集合体およびその炉心 - Google Patents

沸騰水型原子炉用燃料集合体およびその炉心

Info

Publication number
JPH07209460A
JPH07209460A JP6004354A JP435494A JPH07209460A JP H07209460 A JPH07209460 A JP H07209460A JP 6004354 A JP6004354 A JP 6004354A JP 435494 A JP435494 A JP 435494A JP H07209460 A JPH07209460 A JP H07209460A
Authority
JP
Japan
Prior art keywords
fuel
group
type
rods
burnable poison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6004354A
Other languages
English (en)
Other versions
JP3792735B2 (ja
Inventor
Atsuji Hirukawa
厚治 蛭川
Takeshi Nakajima
毅 中嶋
Kazutaka Hida
和毅 肥田
Hisao Suzuki
壽生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00435494A priority Critical patent/JP3792735B2/ja
Publication of JPH07209460A publication Critical patent/JPH07209460A/ja
Application granted granted Critical
Publication of JP3792735B2 publication Critical patent/JP3792735B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】 【目的】熱的特性を満足し、燃料経済性の向上と、製造
コストを低減する。 【構成】長尺燃料棒1〜7,G1〜2と、短尺燃料棒P
とが9×9行配列して燃料集合体を構成する。長尺燃料
棒1〜7,G1〜2の上下端部はブランケット領域であ
り、長尺燃料棒のうち、G1はブランケット領域を除い
た部分に可燃性毒物が含まれた第1群の可燃性毒物含有
燃料棒で、G2は下方約 1/3部に可燃性毒物が含まれた
第2群の可燃性毒物含有燃料棒である。X−Y方向の
(2,2)と(2,8)の短尺燃料棒Pを取り囲んで第
1群の燃料棒G1が2本と第2群の燃料棒G2が1本L
字形に配置し、(2,8)と(8,2)の短尺燃料棒P
を取り囲んで第1群の燃料棒G1が3本L字形に配置し
ている。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は沸騰水型原子炉用燃料集
合体およびその炉心に関する。
【0002】
【従来の技術】沸騰水型原子炉(以下BWRと呼ぶ)の
炉心、つまり初装荷炉心は、濃縮度の異なる複数種類の
燃料集合体を装荷して、初装荷炉心の取り出し燃焼度の
向上を図るものが実用化されている。しかして、運転サ
イクルを更新する毎に反応度の低下した燃料集合体を新
しい燃料集合体と交換して運転を継続することにより、
平衡サイクルへの移行を速やかに行うことができる。
【0003】上記平衡サイクルとは下記のことを意味す
る。すなわち、初装荷炉心による運転を第1サイクルと
呼ぶが、燃料集合体を前述のように部分的に交換しなが
ら第2、第3…と運転サイクルを繰り返し、前記第1サ
イクルから相当の長期間を経て炉心全体の燃料成分が隣
接するサイクル間でほとんど一定となったサイクルを平
衡サイクルという。
【0004】なお、この平衡サイクルに到達すると隣接
するサイクルの熱的特性(最大線出力密度、最小限界出
力比(MCPR)、径方向出力ピーキング等)、サイク
ル終了後の取り替え燃料集合体の数、炉心の燃料集合体
装荷配置、サイクル運転中の制御棒パターン計画等がほ
ぼ等しく安定している。
【0005】前述したような炉心を有する原子炉では、
第1サイクルの運転終了毎に原子炉を停止させ、最も反
応度の低下した燃料集合体を新しいものと交換し、次の
運転サイクルに入る。これを繰り返しながら原子炉の運
転を継続するわけであるが、サイクル毎の熱的特性が悪
かったり、あるいは目標とする燃焼度が達成されなかっ
たりすれば、燃料集合体の健全性、原子炉炉心および燃
料集合体の経済性上問題である。
【0006】燃料集合体の健全性、原子炉炉心および燃
料集合体の経済性の点からみて、第1サイクルから平衡
サイクルに移行する過程の中間サイクル、換言すれば移
行サイクルにおける熱的特性およびサイクル取得燃焼度
が、平衡サイクルのそれらと同程度であるか、またはそ
れらに向かって速やかに収束するものであることが望ま
しい。
【0007】このような移行サイクル中の熱的特性およ
び取得燃焼度のサイクル毎の変動が少なく、燃焼経済性
の優れた沸騰水型原子炉の先行技術が例えば特公平 3-4
5358号公報に開示されている。
【0008】この中で、平衡炉心においてNサイクル分
だけ炉内に滞在する燃料集合体を装荷する場合、初装荷
炉心において平均濃縮度の異なるN種類の燃料集合体を
装荷し、それら各燃料集合体の平均濃縮度を、平衡炉心
内に滞在するNバッチ燃料集合体それぞれの平衡サイク
ル初期における可燃性毒物を含めない時の中性子無限増
倍率とほぼ等しい中性子無限増倍率を与えるように設定
することを提案している。
【0009】尚、前記各燃料集合体の平均濃縮度は前記
設定によって得られる値より±0.2wt%の上下の変化幅
をも許容している。
【0010】ところで、濃縮度が複数種類の燃料集合体
を用いた初装荷炉心の取り出し燃焼度は、炉心平均濃縮
度を増加させる方法、炉心平均濃縮度は一定でも次に炉
心内の濃縮度の分散パラメータを増加させる方法によっ
ても増加できることが研究によって分かってきた。
【0011】
【数1】 タイプの燃料集合体の本数 eタイプの燃料集合体の濃縮度 e :炉心平均濃縮度 (注)ここでは、濃縮度多種類の初装荷炉心において、
高濃縮度燃料からタイプ1,タイプ2,タイプ3…と呼
ぶことにする。
【0012】
【発明が解決しようとする課題】最近の初装荷炉心は取
り出し燃焼度を向上させて、燃料経済性の向上を図って
いる。そのため、初装荷炉心の平均濃縮度は従来の2.
3%濃縮度から2.6%濃縮度程度まで増大してきてお
り、第1サイクル末期においても、炉心に余剰反応はよ
り高くなる傾向にある。
【0013】一般に、炉心の余剰反応度が大きいと、制
御棒による余剰反応度抑制量が大きくなって、径方向出
力ピーキングが高くなり易い。また、径方向のピーキン
グの大きい燃料集合体の軸方向出力分布は、自身の冷却
材チャンネル内の軸方向ボイド初期分布の影響で、下方
ピークの傾向が強くなる。
【0014】その結果、第2サイクル初期において、初
装荷燃料の高濃縮度燃料集合体であるタイプ1燃料集合
体の下部に最大線出力密度が発生し易く、運転制御値を
満たしにくいという課題がある。
【0015】また、最近が13ケ月運転の条件下でより取
り出し燃焼度を挙げて燃焼経済性を向上する観点から、
取り替え燃料集合体の濃縮度が、 3.2〜 3.6wt%に増加
し、平衡サイクルにおける燃料集合体のバッチ数が従来
約3バッチであったのが4バッチを越えるまでになって
きている。
【0016】その結果、第1サイクルから平衡サイクル
までの炉心の熱的特性、特に径方向出力ピーキングを熱
的な制限(最大線出力密度、MCPR)を守って容易に
運転するために、前記特許公報に記載された先行技術を
土台にすると、初装荷燃料集合体の種類は4種類の濃縮
度を用意するか、または3種類の濃縮度タイプの燃料を
用意する。
【0017】そして、従来の初装荷炉心よりも最低濃縮
度の燃料集合体を炉心の中央領域に広く分散配置して、
その初装荷炉心における体数割合を増加し、最高濃縮度
燃料の体数割合を少なくする。
【0018】これによって、高い濃縮度燃料集合体の第
1サイクル中期から末期にかけての径方向出力ピーキン
グを抑制することが必要になってくる。これは、炉心平
均濃縮度を上げて初装荷炉心の取り出し燃焼度を増加さ
せる目的と逆行することになる。
【0019】ところで、初装荷炉心では多数の燃料集合
体に例えば濃縮度が3種類ある場合、タイプ1およびタ
イプ2燃料集合体に可燃性毒物含有燃料棒を組み込む
が、タイプ1およびタイプ2燃料集合体の数がほぼ2/3
を占めるので、サイクル初期の余剰反応度の確保の点か
ら、可燃性毒物含有燃料棒の本数は同じ濃縮度の取り替
え燃料集合体を取り替え炉心に装荷する場合に比して少
ない。
【0020】その結果、可燃性毒物含有燃料棒同士の間
の熱中性子束を低下させる干渉効果が少なく、速く燃え
るので、サイクル末期近傍で可燃性毒物を燃え尽きさせ
る設計に必要な可燃性毒物、一般に沸騰水型原子炉で使
用されるガドニリアの濃度は高くする必要がある。
【0021】また、第1サイクルは取り替え炉心と異な
り、原子炉の試運転中の運転期間を含むので第2サイク
ル以降よりも運転期間が長いという特長を有している。
【0022】可燃性毒物のガドリニア入り燃料は一般的
に二酸化ウラン(UO2 )粉末にガドリニア(Gd2
3 )粉末を混合し、円柱状にペレットに圧粉成形したの
ち、焼結してガドリニア含有燃料ペレットとして形成さ
れる。
【0023】このガドリニア含有燃料ペレットの熱伝導
度は通常のUO2 燃料ペレットより低いので、燃料ペレ
ット温度が高いこと、およびそれによる燃料ペレット中
の核分裂生成ガスの放出率が高いこと等が知られてい
る。
【0024】これらの理由により燃料ペレット中のガド
リニア濃度が増えると、それに応じて燃料ペレットのU
235 濃縮度を下げている。この結果、燃料集合体の平均
濃縮度が増加する抑制因子になっている。
【0025】また、天然のガドリニウムは主にG
155 ,Gd156 ,Gd157 ,Gd158 ,Gd160 で構
成され、中でもGd155 ,Gd157 の熱中性子吸収断面
積が大きく、中性子毒物効果に主に寄与している。
【0026】ところがGd156 の熱中性子吸収断面積は
小さいので、可燃性毒物の寿命末期(ほぼ毒物効果が無
くなった時)でも、Gd155 から核変換したものと最初
から存在したGd156 の両方が残り、これがわずかであ
るが中性子を吸収して熱中性子吸収断面積の大きいGd
157 に変換し毒物作用をする残留による反応度損失を生
じるという影響がある。したがって、ガドリニアの添加
濃度はできるだけ低減したほうがよいことになる。
【0027】3タイプまたは4タイプ濃縮度燃料炉心の
場合、コントロールセルにはそれぞれ高濃縮側から数え
て3番目また4番目の燃料集合体を配置するのが普通で
ある。これは、コントロールセルに配置される燃料集合
体は、運転中に炉心の余剰反応度を抑制するために炉心
にサイクル期間中長期に亘って挿入される制御棒によっ
て燃焼度の進行が遅れ、かつ燃料集合体横断面の燃焼度
も制御棒側の進行が遅れることになる効果を考えてのこ
とである。
【0028】初装荷炉心の平均濃縮度が 2.2wt%以上の
場合、サイクル末期にコントロールセルの制御棒を引き
抜いた時にこれらの効果により制御棒に隣接する燃料集
合体にMLHGR(最大線出力密度)が生じないように
燃料集合体の平均濃縮度を設定すると 1.2〜 1.4wt%の
濃縮度以下であることが要請される。
【0029】その結果、低濃縮度燃料がコントロールセ
ルの数と径方向出力分布抑制用の数だけ必要となり、炉
心の平均濃縮度が低下する。
【0030】ところで、炉心平均濃縮度を高めること
と、同一の炉心平均濃縮度なら前述の濃縮度分散のパラ
メータを大きくした方が取り出し燃焼度向上の点からは
よいとすると、濃縮度の選定に当たっては最大濃縮度の
燃料集合体の濃縮度はより高く、その体数はより多く、
また最低濃縮度の燃料の濃縮度はより低く、燃料集合体
の体数は炉心平均濃縮度を低下させないように少なく、
できるならば第1サイクル後取り出される燃料集合体と
ほぼ同じ体数とし、燃料濃縮度の種類を少なくすること
が要点である。
【0031】その様な観点からは、4バッチを越えるよ
うな平衡サイクル取り替え燃料集合体と同じ濃縮度の最
高濃縮度燃料集合体を初装荷炉心に使用する場合、濃縮
度3タイプの方が取り出し燃焼度は向上するが、最高濃
縮度燃料集合体の径方向ピーキングはより増加するの
で、その対策が必要になる。
【0032】本発明は上記課題を解決するためになされ
たものであり、平衡炉心において4バッチ程度またはそ
れ以上の取り替え燃料集合体となる 3.4wt%以上の濃縮
度の燃料を初装荷炉心の最高濃縮度燃料集合体として使
用する場合の、第1、第2サイクルの熱的特性を満足
し、燃料経済性向上及び初装荷燃料集合体の製造コスト
の低減を同時に計ることができる沸騰水型原子炉用燃料
集合体およびその炉心を提供することにある。
【0033】特に、初装荷炉心に使用する最高濃縮度の
燃料集合体が、平衡サイクル運用時には4バッチ以上に
対応する場合においても、濃縮度を3タイプにして初装
荷炉心の構成を単純化して、燃料集合体製造コスト低減
のメリットと、燃料経済性、最小限界出力比(MCP
R)および最大線出力密度を満たし、かつ良好な炉心性
能を満たすことができる沸騰水型原子炉用燃料集合体お
よびその炉心を提供することにある。
【0034】
【課題を解決するための手段】本発明(1)は長尺燃料
棒と、この長尺燃料棒よりも有効部分が短い短尺燃料棒
とを格子状に束ねて構成される燃料集合体において、可
燃性毒物を含有する燃料棒として、前記長尺燃料棒のう
ちの複数本からなりその上端または下端あるいは上下端
のブランケット領域を除く軸方向中央部の大部分の領域
に可燃性毒物が含有されている第1群の可燃性毒物含有
燃料棒と、前記短尺燃料棒が存在する軸方向下部領域に
相当する部位の少なくとも一部分だけに可燃性毒物が含
有されている第2a群の前記長尺の可燃性毒物含有燃料
棒とを具備し、且つ前記第1群または第2a群の可燃性
毒物含有燃料棒が1箇所の前記短尺燃料棒当たり3本L
字形に前記短尺燃料棒を囲むように隣接して配置された
短尺燃料棒配置箇所を少なくとも1箇所有することを特
徴とする。
【0035】また、本発明(2)は長尺燃料棒と、この
長尺燃料棒よりも有効部分が短い短尺燃料棒とを格子状
に束ねて構成される燃料集合体において、可燃性毒物を
含有する燃料棒として、前記長尺燃料棒のうちの複数本
からなりその上端または下端または上下端のブランケッ
ト領域を除く軸方向中央部の大部分の領域に可燃性毒物
が含有されている第1群の可燃性毒物含有燃料棒と、前
記短尺燃料棒が存在する軸方向下部領域に相当する部位
の少なくとも一部分だけに可燃性毒物が含有されている
第2a群の前記短尺の可燃性毒物含有燃料棒とを具備
し、且つ第1群または第2b群の可燃性毒物含有燃料棒
が1箇所の前記短尺燃料棒当たり3本L字形に前記第2
b群の可燃性毒物含有の短尺燃料棒を含んで接して配置
された短尺燃料棒配置箇所を1箇所以上有することを特
徴とする。
【0036】さらに、本発明(3)は長尺燃料棒と、こ
の長尺燃料棒よりも有効部分が短い短尺燃料棒とを格子
状に束ねて構成される燃料集合体において、可燃性毒物
を含有する燃料棒として、前記長尺燃料棒のうちの複数
本からなりその上端または下端または上下端のブランケ
ット領域を除く軸方向中央部の大部分の領域に可燃性毒
物が含有されている第1群の可燃性毒物含有燃料棒と、
前記短尺燃料棒が存在する軸方向下部領域に相当する部
位の少なくとも一部分だけに可燃性毒物が含有されてい
る第2a群の前記長尺の可燃性毒物含有燃料棒及び前記
短尺燃料棒が存在する軸方向下部領域に相当する部位の
少なくとも一部分だけに可燃性毒物が含有されている第
2b群の前記短尺の可燃性毒物含有燃料棒とを具備し、
且つ第1群または第2a群の可燃性毒物含有燃料棒が1
箇所の前記短尺燃料棒当たり3本L字形に前記短尺燃料
棒を囲むように隣接して配置された短尺燃料棒配置箇所
を少なくとも1箇所有し同時に、前記第1群または第2
b群の可燃性毒物含有燃料棒が1箇所の前記短尺燃料棒
当たり3本L字形に前記第2b群の可燃性毒物含有の短
尺燃料棒を含んで接して配された短尺燃料棒配置箇所を
少なくとも1箇所有することを特徴とする。
【0037】また、本発明(4)は長尺燃料棒と、この
長尺燃料棒よりも有効部分が短い短尺燃料棒とを格子状
に束ねて構成される燃料集合体において、可燃性毒物を
含有する燃料棒として、前記長尺燃料棒のうちの複数本
からなりその上端または下端または上下端のブランケッ
ト領域を除く軸方向中央部の大部分の領域に可燃性毒物
が含有されている第1群の可燃性毒物含有燃料棒と、前
記短尺燃料棒が存在する軸方向下部領域に相当する部位
の少なくとも一部分だけに可燃性毒物が含有されている
第2群の前記長尺または短尺の可燃性毒物含有燃料棒と
を具備し、且つ第1群または第2群の可燃性毒物含有燃
料棒が燃料集合体燃料棒列の外周から2層目に2本以上
直線的に隣接して配置し、その中に短尺燃料棒を有する
かまたはそれに短尺燃料棒が隣接しているような配置箇
所を少なくとも1箇所有することを特徴とする。
【0038】さらに、前記第1群の長尺可燃性毒物含有
燃料棒の本数が少ないタイプ1A燃料集合体と前記第1
群の長尺可燃性毒物含有燃料棒の本数が前記タイプ1A
燃料集合体より多いタイプ1B燃料集合体を用い、前記
タイプ1A燃料集合体の前記第2a群または第2b群の
長尺または短尺の可燃性毒物含有燃料棒の本数が、前記
タイプ1B燃料集合体のそれよりも多いことを特徴とす
る。
【0039】本発明に係る沸騰水型原子炉用炉心は下記
構成を有することを特徴とする。◎平衡炉心において4
バッチ程度またはそれ以上の取り替え燃料集合体となる
3.4wt%以上の濃縮度の燃料集合体を初装荷燃料集合体
の最高濃縮度燃料として使用する場合の、濃縮度3種類
の初装荷炉心において、高濃縮度の燃料集合体を可燃性
毒物の量でさらに2種類に分け、その可燃性毒物含有燃
料棒の本数差が1本以上であることによる。
【0040】また、異なる平均濃縮度の燃料集合体を複
数種類使用する沸騰水型原子炉の初装荷炉心において、
燃料集合体を平均濃縮度の高い方から各々タイプ1、タ
イプ2、タイプ3燃料集合体とすると、タイプ3燃料集
合体は可燃性毒物含有燃料棒を含まず、タイプ1、タイ
プ2燃料集合体は可燃性毒物含有燃料棒を含み、可燃性
毒物含有燃料棒本数はタイプ1燃料集合体の方がタイプ
2燃料集合体より多く、かつタイプ1燃料集合体は可燃
性毒物含有燃料棒が1本以上差のある2種類を有する。
【0041】前記タイプ1燃料集合体のうち可燃性毒物
含有燃料棒の多いタイプ1B燃料集合体を炉心の中央領
域に主に配置し、前記タイプ1燃料のうち可燃性毒物含
有燃料棒の少ないタイプ1A燃料を炉心の最外周を含む
周辺領域または最外周を含まない周辺領域に主に配置す
る。
【0042】タイプ2燃料集合体は、炉心中央領域に主
に配置し、タイプ3燃料はコントロールセル及び炉心中
央領域に主に配置する。炉心最外周にはタイプ1A、タ
イプ2、タイプ3燃料のいずれを配置してもよい。さら
にタイプ1A,2,3のうち任意の2種類の混合配置で
もよい。前記タイプ1A及び1B燃料集合体は、上記
(1)から(4)に記載したいずれかの可燃性毒物含有
燃料棒を有している。
【0043】
【作用】本発明では、可燃性毒物含有燃料棒の隣接配置
を短尺燃料棒を囲むか、または含むようにし、前記第1
群ないし第2a,第2b群の可燃性毒物含有燃料棒をL
字形、または短尺燃料棒をはさむか、または含むように
し前記第1群ないし第2a、第2b群の可燃性毒物含有
燃料棒を直線形に隣接して配置しているので、短尺燃料
棒の有効部分とその上側の部分で大きく可燃性毒物の燃
える速度を変化させることができる。
【0044】つまり短尺燃料有効部分に位置する隣接し
た可燃性毒物含有燃料棒の領域は、上側の領域よりも減
速材の量が少なく熱中性子の供給量が少なく、且つ水平
断面でL字形に3本または直線的に2〜3本の可燃性毒
物含有燃料棒領域が隣接しているので、熱中性子束吸収
作用が干渉し合い、その結果、可燃性毒物の効果が小さ
くなり、長い期間に亘って毒物効果が持続する。
【0045】これに対し、短尺燃料棒の有効部より上側
では減速材の量が多いことによって多くの熱中性子が供
給され、可燃性毒物の燃え方が速くなる。特に短尺燃料
から上方の領域において、可燃性毒物含有燃料棒領域が
横断面内で離散的配置を組み合わせると、熱中性子束吸
収作用の干渉がなくなるので可燃性毒物の燃焼を速くで
きる。
【0046】ところで、沸騰水型原子炉では冷却材は炉
心入口ではサブクール状態で燃料集合体の冷却材チャン
ネルに流入し、燃料棒からの熱を除去する過程でサブク
ール沸騰から飽和沸騰に変わって、2相流となる。そし
て、燃料集合体軸方向に上方になるに従い、ボイド率が
増加し、その結果、減速材の密度は上方の方が低く、中
性子のエネルギースペクトルも上方程固くなる。
【0047】このような場合、燃料棒中ウラン235 等の
核分裂性物質も核分裂断面積が小さくなり燃焼が遅れる
が、同時に可燃性毒物であるGdの熱中性子吸収断面積
も小さくなり燃焼が遅くなる。
【0048】したがって、燃料集合体の上部の燃え方が
下部よりも遅くなり、サイクル末期にも上部で可燃性毒
物の燃え残りが反応度ロスを招き、その結果、中性子経
済を悪くしている。
【0049】しかし、本発明のように可燃性毒物含有燃
料棒の隣接配置を短尺燃料棒を囲むようにするか、また
は含むように、前記第1群ないし第2a,第2b群の可
燃性毒物含有燃料棒をL字形、または短尺燃料棒をはさ
むか、または含むように前記第1群ないし第2a,第2
b群の可燃性毒物含有燃料棒を直線形に隣接して配置す
ることによって、短尺燃料棒の有効部から上部ではその
下部と同一のガドリニア濃度でもより速くガドリニアが
燃焼し、サイクル中期から燃料上部の反応度が増加し、
軸方向出力分布の平坦化に役立つ。
【0050】また、短尺燃料棒を囲むかまたは含んでL
字形に3本の可燃性毒物含有燃料棒で隣接配置するか、
または短尺燃料棒をはさんでまたは含んで直線的に3本
の可燃性毒物含有燃料棒で隣接配置し、中央の1本の可
燃性毒物含有燃料棒を短尺燃料棒の有効部分の領域の少
なくとも1部にのみ可燃性毒物を含有する構成の場合
は、さらに当該可燃性毒物含有領域のみ3本の可燃性毒
物含有燃料棒が隣接して、互いに強く干渉しあい、可燃
性毒物の燃焼速度が遅くなる。
【0051】これに対し、短尺燃料棒の燃料有効部より
上方では対角方向に2本のみまたは1本おいて可燃性毒
物燃料棒が配置され、隣接干渉効果が弱く、さらに隣は
短尺燃料棒の上方空間で減速材が十分供給されているの
で、熱中性子の供給が多く、その二つの効果で下部より
も可燃性毒物の燃える速度がさらに大きくできる。その
結果、可燃性毒物の燃焼速度に上下で大きな差をつける
ことができ、サイクルの末期までに燃料集合体中上部の
可燃性毒物を燃焼し尽くし易く出来る。
【0052】そのため、燃料集合体下部は燃料集合体全
体の反応度がピークを迎える(つまり径方向出力ピーキ
ングが大きくなる)サイクル末期でも、従来技術で必要
になる約9wt%よりも低いガドリニア濃度で、若干の可
燃性毒物を残して、燃料集合体の軸方向出力分布が下方
にピークになり易いのを、燃料集合体上方の反応度を高
め、下部反応度を抑制して平坦化できる。
【0053】例えば初装荷濃縮度3タイプ炉心におい
て、最高濃縮度燃料集合体が例えば3.75wt%濃縮度の取
り替え燃料と同じとすると、例えば濃縮度の3.75(タイ
プ1),2.5(タイプ2),1.25(タイプ3)wt%のよ
うな濃縮度分布となる。
【0054】これに対して、本発明によれば核燃料タイ
プの濃縮度は同じであるが、高濃縮度の3.75wt%(タイ
プ1)の燃料集合体に対しては可燃性毒物として添加す
るガドリニア入り燃料棒の本数が少ないもの(タイプ1
A)と多いもの(タイプ1B)の2種類用意し、そのガ
ドリニア入り燃料棒の本数差が1本以上とする。
【0055】さらに燃料集合体の軸方向のガドリニア含
有燃料棒の配置をタイプ1A燃料集合体において、第1
群の長尺可燃性毒物含有燃料棒2本と第2群の可燃性毒
物燃料棒1本を、前記短尺燃料棒の配置箇所で、L字形
に前記短尺燃料棒を囲むようにまたは含むように隣接し
て配置された短尺燃料棒配置箇所を2箇所以上有するよ
うに配置する。
【0056】これによりガドリニア含有燃料棒本数が少
ない分燃料集合体の反応度ピークが高くなり易く且つ、
燃料下部での出力ピーキングが発生し易い、高濃縮度燃
料の低ガドリニア燃料(タイプ1A)を第1サイクルの
末期及び第2サイクル初期において、最大線出力密度の
運転基準を満たすことができる。
【0057】しかも、高い濃縮度の初装荷燃料のガドリ
ニア設計の異なる種類の間では、濃縮度所要量の設計は
共通化させることによって、初装荷燃料に必要な濃縮ウ
ラン粉末の濃縮度の種類を増加させずに対応できる。
【0058】この結果、本発明の濃縮度3タイプ炉心で
は初装荷炉心の低濃縮度燃料(タイプ1)の体数を従来
技術より減少することができ、その結果炉心平均濃縮度
をより高めることによって初装荷炉心の取り出し燃焼度
を増大できる。
【0059】
【実施例】図面を参照しながら本発明に係る沸騰水型原
子炉用燃料集合体およびその炉心の実施例を説明する。
【0060】図1は本発明に係る沸騰水型原子炉用炉心
の 1/4 90゜回転対称の初装荷炉心の燃料配置例を示し
ている。本実施例に係る炉心では燃料集合体の平均濃縮
度が異なる3種類の燃料集合体(高濃縮度燃料のタイプ
1A,1B燃料集合体、中濃縮度燃料のタイプ2燃料集
合体、低濃縮度燃料のタイプ3燃料集合体)を用いてい
る。その燃料集合体の平均濃縮度と体数を下表に示す。
【0061】
【表1】
【0062】
【表2】
【0063】本発明に係る炉心では、例えば取り替え燃
料の平均濃縮度を3.75wt%とした場合、初装荷炉心の濃
縮度のタイプを3.75(タイプ1A,タイプ1B), 2.5
(タイプ2),1.25(タイプ3)wt%のような3種類に
する。
【0064】3.75wt%(タイプ1A,タイプ1B)の燃
料に対しては可燃性毒物として添加するガドリニア入り
燃料棒の本数が少ないもの(タイプ1A)と多いもの
(タイプ1B)の2種類用意し、そのガドリニア入り燃
料棒の本数差を1本以上とする。また、高い濃縮度の初
装荷燃料のガドリニア設計の異なる燃料集合体の間で
は、濃縮度所要量の設計は共通化させると、さらに燃料
製造上都合がよい。
【0065】図2の本実施例では炉心最外周にタイプ3
燃料集合体3p(ここでは炉心の中央に配置されるタイ
プ3燃料と同一設計の場合でも第1サイクルから第2サ
イクルへの燃料交換、移動が分かりやすいように炉心最
外周のタイプ3燃料に3pの符号を付した。)を配置す
る。
【0066】また、炉心中央領域には、制御棒周囲4体
をすべてタイプ3燃料集合体で構成されたコントロール
セルC(出力運転中、反応度制御および出力分布制御を
行うための専用の制御棒セルで、制御棒周囲の燃料集合
体は低反応度の燃料集合体を配置する。)を配置する。
【0067】最外周から第2層目、第3層目には最高濃
縮度のタイプ1A燃料集合体のみを配置するか、または
大半をタイプ1A燃料集合体とする。
【0068】さらに炉心内側の領域ではタイプ1A、タ
イプ1B燃料集合体を原則としてタイプ2またはタイプ
3燃料集合体に面するように分散配置する。例えば、コ
ントロールセルCに面した制御棒セルは原則としてタイ
プ2またはタイプ3燃料集合体と、タイプ1A燃料集合
体を交互にほぼチェカーボード状に配置する。
【0069】コントロールセルCに面しない制御棒セル
は原則としてタイプ2またはタイプ3燃料集合体と、タ
イプ1B燃料集合体を交互にほぼチェカーボード状に配
置するか、または原則としてタイプ2とタイプ3燃料集
合体の燃料集合体を3体とタイプ1B燃料集合体1体を
配置する。
【0070】このタイプ3燃料集合体の数は第1回取り
替え燃料集合体の体数より多くする。特にこの例では、
図を省略するが第2サイクルの炉心燃料配置は、最外周
のタイプ3燃料集合体は第2サイクルも最外周に配置さ
れ、第1サイクルの最外周より内側に配置されたタイプ
3燃料集合体のみが第1回取り替え燃料集合体と交換さ
れる。
【0071】図2は上記初装荷炉心に配置されるタイプ
1A,タイプ1B,タイプ2及びタイプ3の燃料集合体
について軸方向濃縮分布、可燃性毒物の軸方向分布を模
式的に図示した分布図である。
【0072】図3は図2における各燃料集合体の構造の
一例を示したものである。すなわち燃料集合体1は長尺
燃料棒2、短尺燃料棒3及び太径ウォータロッド6をス
ペーサ8で9行9列の正方格子状に束ねて上部タイプレ
ート4および下部タイプレート4および下部タイプレー
ト5に固定して燃料棒束とし、この燃料棒束をチャンネ
ルボックス7で包囲して構成されている。なお、図3
(A)は燃料集合体を示し、図3(B)は(A)のB−
B断面図、図3(C)は(A)のC−C断面図である。
【0073】図4(A)は図3における長尺燃料棒2を
示し、同(B)は短尺燃料棒3の構成を示している。す
なわち、これらの燃料棒2、3は共に複数個の燃料ペレ
ット10が被覆管11内に装填され、被覆管11の両端は上部
端栓および12下部端栓13で封止され、被覆管11上部のプ
レナム14内にスプリング15を設けて燃料ペレット10を押
圧している。なお、短尺燃料棒3は上部および下部にプ
レナム14が設けられている。
【0074】短尺燃料棒3は、燃料集合体上部の冷却材
流路を拡大して損圧を低減するとともに、炉停止余裕を
向上させている。また、短尺燃料棒3の位置は沸騰遷移
を起こし易い位置を選んで選定されており、限界出力の
向上に寄与している。
【0075】これらの初装荷炉心用燃料集合体は図2に
示したように燃料有効長“L”の上下端にブランケット
領域(天然ウラン、劣化ウランまたは再処理回収ウラン
を使用した燃料有効領域)を有し、その長さはそれぞれ
L/24〜L/12である。ここでは上部がL/12、下部がL/24の
長さである。
【0076】タイプ1A,1B,タイプ2燃料集合体濃
縮領域“Le ”が濃縮度の軸方向分布を有し、タイプ3
燃料集合体の濃縮領域“Le ”の濃縮度は軸方向に一様
である。タイプ1A,タイプ1B燃料集合体およびタイ
プ2燃料集合体は燃料有効長“L”の下端から約 L/3〜
L/2の位置に濃縮度の区分境界a(図中aを丸で囲んで
ある)を有し、境界aの上下で上部の濃縮度の方が下部
よりも約 0.1〜 0.2wt%程度高い。
【0077】なお、ここでタイプ1(1A,1B)燃料
集合体とタイプ2燃料集合体の境界aを軸方向にずらし
てもよい。ずらす場合はタイプ2燃料集合体の境界aを
タイプ1(1A,1B)燃料集合体のそれよりもL/12以
上上方に設定する。
【0078】また、タイプ1A,タイプ1B,タイプ2
燃料集合体は可燃性毒物燃料棒を有し、その本数はタイ
プ2,タイプ1A,タイプ1Bの順に多くなる。可燃性
毒物としてはここは燃料ペレットにガドリニアを添加す
る形態を考える。
【0079】可燃性毒物の軸方向分布設計は、燃料有効
長“L”の内の濃縮領域“Le ”に可燃性毒物が添加さ
れており、その領域“Le ”内で一様か分布を有する設
計が考えられる。
【0080】分布を有する例としては図2に示すよう
に、その領域内で可燃性毒物添加燃料棒のガドリニア濃
度は一様または濃縮度区分の境界aと同じ位置で可燃性
毒物の量に差があり、燃料集合体全体のガドリニア軸方
向設計として、図2の如く境界aの上側でガドリニア量
が小さく下側で大きくなっている。
【0081】さらにタイプ1(1A,1Bの両方)燃料
集合体およびタイプ2の燃料集合体のいずれかまたは両
方ともが、境界aより上方の濃縮領域“Le ”の上端か
ら約L/12〜L/6 の長さの可燃性毒物量の少ない低可燃性
毒物領域“LLG”を有する。
【0082】なお、短尺燃料棒(図2中では“PLR”
と記入)については、燃料有効部の上下端にブランケッ
ト部を設けず、単純設計のため、ここでは濃縮度の軸方
向分布は設けない一様濃縮度設計としている。
【0083】タイプ1(1A,1B)、タイプ2燃料集
合体については、燃料集合体の有効部“L”の内、短尺
燃料棒の有効部から上方の領域“Lv ”の燃料装荷量が
それより下方の領域よりも小さいことを考慮すると、燃
料棒下部の燃料ウランの量が多い分、軸方向下部に出力
ピーキングが発生しやすいのでより平坦化の対策が必要
である。例えばaの境界は約L/3 の位置の方が軸方向出
力が平坦化しやすい。また、境界aの上下の濃縮度差を
より上に大きくすることも効果がある。
【0084】可燃性毒物量を少なくする手段は、タイプ
1燃料集合体についてはガドリニアの濃度を可燃性毒物
領域“LLG”のすぐ下の領域より小さくする。例えばガ
ドリニア濃度を 1.5〜5 wt%の低い濃度とする。また
は、ガドリニア添加燃料棒を1本減少するか、あるいは
その両方とする等の手段がある。この例ではガドリニア
の濃度を低下させている。
【0085】また、タイプ1(1A,1B)燃料集合体
は低可燃性毒物領域“LLG”に対応した部位の濃縮度を
濃縮領域の中で最低の濃縮度とするか、または境界aの
下側の濃縮度と同程度の濃縮度としてもよい。
【0086】タイプ2燃料集合体についてもタイプ1燃
料集合体と同様に低可燃性毒物領域“LLG”のガドリニ
ア添加燃料棒を1〜3本減少するか、ガドリニア濃度を
1.5〜5 wt%の低い濃度とするか、またはその二つを組
み合わせることが考えられる。また、低可燃性毒物領域
“LLG”に対応して部位の濃縮度はその下方の濃縮度と
同じとする。
【0087】図5、図6、図7及び図8は本発明に係る
燃料集合体について、タイプ1(1A,1B)燃料集合
体、タイプ2燃料集合体、タイプ3燃料集合体の横断面
および軸方向の燃料棒濃縮度を縦断面で示している。
【0088】各図とも(a)は燃料集合体の水平断面
で、それぞれ燃料棒タイプの配置を示し、(b)に各燃
料棒タイプの軸方向濃縮度およびガドリニア分布を縦断
面で示している。上下端はブランケット領域を示す。ガ
ドリニア含有燃料棒のタイプにはGを付してある。
【0089】ここでの濃縮度はA,B,C,D,………
G,H,I,Kと濃縮度の高いほうから順に記号で示
す。可燃性毒物としてガドリニアを使用する場合の濃度
を、ガドリニア含有燃料棒の当該部分に数値で示す。図
5はタイプ1A,図6はタイプ1B,図7はタイプ2、
図8はタイプ3の燃料集合体である。図8のようにタイ
プ3燃料集合体はより簡単化した濃縮度分布とする。
【0090】タイプ1(1A,1B)燃料集合体は図5
及び図6に示すように、長尺燃料棒1〜7,G1〜2
と、この長尺燃料棒1〜7,G1〜2よりも有効部分が
短い短尺燃料棒Pとを格子状に束ねて構成される燃料集
合体において、可燃性毒物を含有する燃料棒G1,G2
として、前記長尺燃料棒のうちの複数本からなる。
【0091】そして、その上端または下端または上下端
のブランケット領域を除く軸方向中央部の大部分の領域
に可燃性毒物が含有されている第1群の可燃性毒物含有
燃料棒G1と、前記短尺燃料棒Pが存在する軸方向下部
領域に相当する部位の少なくとも一部分だけに可燃性毒
物が含まれている第2a群の前記長尺の可燃性毒物含有
燃料棒G2とを有している。
【0092】ここではタイプ1A燃料集合体図5に示す
ように、第1群の可燃性毒物含有燃料棒G1が2本と第
2a群の可燃性毒物燃料棒G2が1本の計3本前記短尺
燃料棒Pの1配置箇所に対してL型に短尺燃料棒を囲む
ように隣接して配置された短尺燃料棒Pの配置箇所を2
箇所有し、また第1群の前記可燃性毒物含有の長尺燃料
棒G1の3本が前記短尺燃料棒Pの配置箇所に対してL
字形に短尺燃料棒Pを囲むように隣接して配置された短
尺燃料棒配置箇所を2箇所有している。
【0093】つまり、ロッド(燃料棒)の座標をX−Y
軸にとれば、(2,2),(2,8),(8,2),
(8,8)の位置の短尺燃料棒PはG1またはG2の可
燃性毒物含有の燃料棒3本によってL字形に取り囲まれ
ている。
【0094】これに対し図6に示すように、第1群の長
尺の可燃性毒物含有燃料棒本数の多いタイプ1B燃料集
合体では、第1群の可燃性毒物含有燃料棒G1が2本と
第2a群の可燃性毒物燃料棒G2が1本計3本が前記短
尺燃料棒Pに対してL字形に短尺燃料棒Pを囲むように
隣接して配置された短尺燃料棒Pの配置箇所を1箇所有
し、第1群の前記可燃性毒物含有の長尺燃料棒G13本
が、1本の短尺燃料棒Pに対してL字形に短尺燃料棒P
を囲むように隣接して配置された短尺燃料棒Pの配置箇
所を3箇所所有している。
【0095】さらに、この図6で示すように制御棒挿入
位置を原点とした燃料棒座標(X,Y)表示で(7,
6),(6,7)の位置の燃料棒には第1群の長尺可燃
性毒物含有燃料棒G1が配置されている。
【0096】つぎに、本発明の第1の実施例の作用を図
9〜図13を用いて従来の濃縮度3タイプ炉心における高
濃縮度燃料の特性との比較で説明する。
【0097】図9は濃縮度3タイプ炉心の第1サイクル
においてタイプ1(1A,1B)集合体、タイプ2集合
体、タイプ3集合体の無限増倍率が変化する様子を示し
たものである。
【0098】第1サイクル長さが起動試験等により相当
長さ(2000〜3000MWd/st)取り替え炉心よりも長くなる
(第1サイクル長さ約 11000MWd/st)ので、このタイプ
1、タイプ2燃料集合体のガドリニア濃縮は取り替え燃
料集合体よりも濃度の高いものとする。
【0099】図9の無限増倍率のタイプ1、タイプ2燃
料集合体の曲線は 7.5wt%のガドリニア添加濃度の場合
の計算である。その結果、タイプ1燃料の集合体の無限
増倍率の最大値は取り替え燃料集合体より小さく、ピー
ク位置も6000MWd/st程度後に生ずる。
【0100】また、図10、図11に本発明の高濃縮度初装
荷燃料集合体の可燃性毒物含有燃料棒の配置による無限
増倍率の制御を簡単に示す。それぞれ実線(曲線a)と
破線(曲線b)が本発明のような可燃性毒物配置の場合
であり、一点鎖線(曲線a’)と点線(曲線b’)が可
燃性毒物含有燃料棒が離散的に配置された場合の特性で
ある。
【0101】本発明に係る高濃縮度燃料タイプ1A、タ
イプ1Bは従来の高濃縮度燃料の設計と異なり、燃料集
合体横断面で外周から2層目の隅部に位置する((2.
2)位置およびその対象位置の)短尺燃料棒を囲むよう
に3本の可燃性毒物含有燃料棒がL字形に隣接して配置
されている。
【0102】ガドリニア濃度が同じ 7.5wt%でも曲線
a,bに示すように、従来の可燃性毒物含有燃料棒の離
散的配置燃料の方が初期無限増倍率が低く、且つガドリ
ニアが燃え尽きる時点が速く且つその時点の無限増倍率
も高くなる。
【0103】これに対して、本発明に係る高濃縮度燃料
集合体は、可燃性毒物含有燃料棒が隣接配置しているた
め、干渉作用により毒物効果が小さくなり、燃焼初期の
無限増倍率も高く、且つ燃え方が遅いので無限増倍率の
ピークも遅くなる。その結果、ピーク値を低く制御でき
る。
【0104】これは本発明によれば、炉心の余剰反応度
の観点からは、図12中、本発明は実線に示すように、従
来例を点線で示した場合に比較して第1サイクル初期の
余剰反応度を高くし、サイクル中期における余剰反応度
の増加を抑制し、その結果、サイクル運転中に使用する
制御棒の本数の変化を減少できる。
【0105】また、第1サイクル末期の高い濃縮度燃料
集合体の軸方向燃焼度分布と軸方向出力分布について図
13中本発明を実線で示すように、特にタイプ1A燃料集
合体では、第2a群の可燃性毒物燃料棒を2箇所で、可
燃性毒物含有燃料棒をL字形に配置した3本の隣接配置
の中心に位置する構成としているので、タイプ1A燃料
集合体では上部が可燃性毒物含有燃料棒が離散的に配置
され、比較的速く可燃性毒物が燃え、下部では干渉効果
により遅く燃える。
【0106】その結果、短尺燃料棒を含む燃料では下方
ピークの軸方向分布になり易い第1サイクル末期におい
て、第1群および第2a群の隣接L字形配置の可燃性毒
物含有長尺燃料棒により下部のピーキングが押さえら
れ、且つ、上部の可燃性毒物の燃焼が速いことと、可燃
性毒物燃料棒が少ないことにより無限増倍率が高く、軸
方向出力分布を平坦化する。
【0107】従来の離散的な可燃性毒物配置では、燃料
集合体全体の出力ピーキング(径方向出力ピーキング)
がサイクル初期から中期にかけてより小さくなるので、
軸方向ボイド分布による上部の出力は低いことと相まっ
て、上部の可燃性毒物の燃焼が遅く、第1サイクル末期
にまで残留して燃料上部の無限増倍率抑制が効きすぎる
ことと、燃料下部では可燃性毒物がほぼ燃えきって、無
限増倍率の最大値を示すので両方の効果により下方ピー
クの出力分布が強調される。
【0108】これに対し、本発明に係るタイプ1B燃料
集合体では、第1群の可燃性毒物燃料棒をL字形に3本
隣接配置する構成を3箇所としているので、タイプ1B
燃料集合体では上部、下部とも干渉効果により遅く燃焼
する。
【0109】タイプ1B燃料集合体の短尺燃料棒を囲む
隣接配置の第1群の可燃性毒物含有燃料棒の配置の場
合、短尺燃料棒有効部上端を境界とした上下の可燃性毒
物の燃え方の差は減速材の量の差であり、タイプ1A燃
料集合体の場合の燃え方の差より小さい。
【0110】しかし、タイプ1B燃料集合体は炉心中央
領域で配置され、径方向出力ピーキングが大きくなり易
い傾向にある。その点、隣接可燃性毒物燃料棒により、
燃料集合体軸方向の大部分に亘って、反応度が抑制され
るので、径方向出力ピーキングの低減に役立つ。特に従
来から使用されている程度の(ここでは 7.7wt%)ガド
リニアによって第1サイクルの末期近傍まで抑制される
効果がある。
【0111】この長期反応度抑制効果は、図6に示した
タイプ1B燃料集合体の例では特に、(7,7)の位置
に配置した前記第2a群の可燃性毒物含有燃料棒G2を
第1群の可燃性毒物燃料棒G1を4本隣接して十字形の
中心部に配置しているので、下部において特に大きくな
っている。(7,7)配置の燃料棒G2の上部は可燃性
毒物を含有していないので、隣接している4本の燃料棒
G1は離散的に配置された4本の可燃性毒物燃料棒とほ
ぼ同じ燃え方をする。
【0112】従来の可燃性毒物含有燃料棒配置では、燃
料集合体の下部において遅く可燃性毒物を燃やし、燃料
集合体の上部では比較的速く可燃性毒物を燃やすために
は、可燃性毒物を上下で従来の 7.5wt%以上の9〜10wt
%濃度を用いて、例えば図20、図21に示すような可燃性
毒物含有燃料棒の上下軸方向により複雑な設計が必要に
なり、また、従来技術ではガドリニア濃度をより高濃度
にした結果、濃縮度をDからEに一段更に下げざるを得
なくなる。
【0113】これに対して本発明ではより単純な可燃性
毒物燃料棒で製造でき、また、タイプ1A燃料集合体は
タイプ1B燃料集合体よりも第1群の可燃性毒物含有燃
料棒が少ないので、燃料の反応度も高く、この燃料集合
体を第1サイクルの炉心最外周から2層目、3層目に配
置することによって、第1サイクルの径方向出力ピーキ
ングを平坦化できる。
【0114】本発明の第1の実施例によれば、第1サイ
クルにおいて、濃縮度に最も低い且つ可燃性毒物を含有
しないタイプ3燃料集合体は、炉心最外周および炉心中
央領域のコントロールセルの位置に配置されることと、
タイプ3燃料集合体の体数を最外周配置の数と第1回取
り替え燃料集合体の数の合計以上とすることにより、第
1回の燃料交換は炉心中央タイプ3燃料集合体のみとな
る。この結果、濃縮度4タイプ炉心とすることなく簡単
な濃縮度3タイプ炉心を構成できる。
【0115】BWR取り替え炉心では、径方向出力分布
を平坦にするには、無限増倍率の異なる燃料集合体を、
分散して配置してサイクル燃料期間中、任意の最小配置
の4体の平均無限増倍率がほぼ同じように配置すること
が重要なことがわかっている。更にインポータンスの高
い炉心中央空外側に向かって徐々に平均の無限増倍率を
増加させると炉心の径方向の出力分布が平坦化できるこ
とがわかっている。
【0116】本発明の濃縮度多種類初装荷炉心におい
て、第1サイクル初期に最大の反応度を有するタイプ2
燃料集合体はそれより反応度の低いタイプ3燃料集合
体、タイプ1燃料集合体に囲まれるので、タイプ2燃料
集合体の径方向出力ピーキング抑制の働きをしてくれ
る。
【0117】更に、初装荷炉心において高濃縮度燃料の
タイプ1燃料集合体を可燃性毒物含有燃料棒の少ないタ
イプ1A燃料集合体と多いタイプ1B燃料集合体に分
け、タイプ1B燃料集合体を炉心の中央領域内部に、タ
イプ1A燃料集合体を炉心の外周から2層目、3層目お
よびコントロールセルに面した位置に配置する。
【0118】これにより、径方向出力ピーキングを平坦
化し、更に、径方向ピーキングが大きくなり易い傾向に
あるタイプ1A燃料集合体の軸方向設計において、下部
に可燃性毒物含有部分を有する燃料棒をタイプ1B燃料
集合体より多く設けることにより、タイプ1A燃料集合
体の第1サイクル中期から第2サイクル初期にかけての
燃料棒下部の線出力密度の増加を抑制する。
【0119】この軸方向出力分布の制御を短尺燃料棒を
有する燃料集合体において、短尺燃料棒隣接の効果を利
用して、短尺燃料棒有効部より上部では可燃性毒物を下
部より速く燃えるように工夫することにより、図20に示
すような従来の隣接配置を使わない設計より、単純な可
燃性毒物含有燃料棒の設計ができる。
【0120】ちなみに従来例では、 7.5wt%以上より高
濃度のガドリニアを使用するので、(4,4)、(6,
6)位置の燃料棒はガドリニアが燃え尽きた時点におけ
る燃料棒の出力がウォーターロッドの効果により高いの
で、濃縮度を下げる必要がある。
【0121】また、それを避けて従来例と同じガドリニ
ア濃度とすると、図12に示したように第1サイクルにお
ける余剰反応度曲線の変化が大きいので、サイクル運転
中に使用する制御棒の本数が増加し、これはコントロー
ルセルをより多く用意する必要がある。
【0122】さらに、径方向出力ピーキングを大きくす
る傾向にあり、図10および図11で示したように、ガドリ
ニアが燃え尽きた時点の反応度も本発明より大きいので
線出力密度を厳しくする傾向と重なり、一段と厳しくな
る。本発明は、これを単純な可燃性毒物燃料設計により
解決している。
【0123】すなわち、各燃料タイプの軸方向の濃縮度
分布、ガドリニア分布設計とすることによって、取り出
し燃焼度が向上し、且つコントロールセル炉心において
制御棒に隣接しないタイプ2、タイプ1燃料集合体の軸
方向出力分布が燃料棒の軸方向反応度分布によって安定
に制御でき、最大線出力密度、MCPR等の炉心の熱的
制限を満足できる。
【0124】特に、燃料有効部の下部から L/3〜L/2 の
位置に濃縮度およびガドリニア量の分布境界aを設け、
境界より下部の反応度を抑制することによりBWRの特
徴であるボイド発生による下方ピーク出力分布を抑制
し、平坦化できる。
【0125】この境界がタイプ1燃料集合体とタイプ2
燃料集合体で同じであると、境界のすぐ上部出力ピーク
を生じるので、反応度は低く下方出力ピーク特性の弱い
タイプ2燃料集合体の前記境界aをL/12以上上方にずら
すことにより、それを緩和することができる。
【0126】また、濃縮領域の上端に低可燃性毒物領域
を設け、サイクル末期における可燃性毒物の燃え残りを
減じることにより燃料経済性が向上する。このときタイ
プ1燃料集合体については炉内装荷サイクル数が多いの
で、濃縮度も低減すると、移行サイクルにおける炉停止
余裕の改善に寄与する。
【0127】つぎに図14および図15により本発明に係る
燃料集合体の第2の実施例を説明する。図5および図6
に示した燃料集合体の第1の実施例では短尺燃料棒の有
効部分にのみ可燃性毒物を含有する燃料棒は長尺燃料棒
であったが、本実施例では短尺燃料棒を使っている点が
異なる。つまり前記第2b群の可燃性毒物含有燃料棒P
Gを用いる例である。
【0128】これにより、隣接可燃性毒物含有燃料棒の
隣接配置を確保しつつ、この燃料棒(図 14 、(2,
2)(8,8)燃料棒)に隣接する最外周の燃料棒の局
所出力ピーキングを軸方向出力ピークになり易い下部に
おいて抑制することができる。また、最高濃縮度の燃料
棒本数をこの置き換えによって増加することができ、燃
料集合体の平均濃縮度のより増加が図れる。
【0129】つぎに、図16により本発明に係る炉心の第
2の実施例における 1/4 90°回転対称の初装荷炉心の
燃料配置例を説明する。本第2の実施例では燃料集合体
の平均濃縮度が異なる3種類の燃料集合体(高濃縮度燃
料のタイプ1A、1B燃料集合体、中濃縮度燃料のタイ
プ2燃料集合体、低濃縮度燃料のタイプ3燃料集合体)
を用いている。その燃料集合体平均濃縮度と体数を次表
に示す。
【0130】
【表3】
【0131】
【表4】
【0132】第2の実施例では、例えば取り替え燃料集
合体の平均濃縮度を3.75wt%とした場合、初装荷炉心の
濃縮度のタイプを3.75(タイプ1A,タイプ1B),
2.5(タイプ2),1.25(タイプ3)wt%のような3種
類にする。
【0133】また、3.75wt%(タイプ1A,タイプ1
B)の燃料集合体に対しては可燃性毒物として添加する
ガドリニア入り燃料棒の本数が少ないもの(タイプ1
A)と多いもの(タイプ1B)の2種類用意し、そのガ
ドリニア入り燃料棒の本数差を1本以上とする。しかも
高い濃縮度の初装荷燃料集合体のガドリニア設計の異な
る燃料集合体の間では、濃縮度所要量の設計は共通化さ
せる。
【0134】本実施例では炉心最外周に高反応度のタイ
プ1A燃料集合体を配置し、炉心中央領域に制御棒周囲
の4体の燃料集合体をすべてタイプ3燃料集合体で構成
されたコントロールセルC(出力運転中、反応度制御お
よび出力分布制御を行うための専用の制御棒セルで制御
棒周囲の燃料集合体は低反応度の燃料集合体を配置す
る。)を配置する。最外周から第2層目には最高濃縮度
のタイプ1A燃料集合体のみを配置するか、または大半
をタイプ1A燃料集合体とする。
【0135】他の残りの位置ではタイプ1燃料集合体は
原則としてタイプ2またはタイプ3燃料集合体に面する
ように分散配置する。例えば、コントロールセルCに面
した制御棒セルは原則としてタイプ2またはタイプ3燃
料集合体と、タイプ1Aまたはタイプ1B燃料集合体を
交互にほぼチェカーボード状に配置する。
【0136】コントロールセルCに面しない制御棒セル
は原則としてタイプ2またはタイプ3燃料集合体と、タ
イプ1B燃料集合体を交互にほぼチェカーボード状に配
置するか、タイプ2とタイプ3燃料集合体の燃料集合体
3体とタイプ1B燃料集合体1体を配置する。
【0137】本実施例で使用する燃料集合体の軸方向設
計としては前述した図2と同様に可能であり、本実施例
では最外周に高反応度のタイプ1A燃料集合体を配置し
ているので、径方向出力分布がより一層平坦化され、M
CPRや最大線出力密度の特性が炉心の第1の実施例よ
りも向上できる。
【0138】また、最外周配置のタイプ1A燃料集合体
は炉心中央領域の燃料に比較して約50%程度の出力で
あり、第1サイクルにおける燃焼が進まないので、第2
サイクルに持ち越される反応度が大きい。その結果、第
2サイクルへの燃料交換体数を低減できる。また、初装
荷炉心の平均濃縮度も増加するので初装荷炉心の取り出
し燃焼度増加に寄与する。
【0139】なお、これまでの実施例では最外周の燃料
集合体はタイプ1燃料集合体かタイプ3燃料集合体を配
置したが、本発明の変形例としてタイプ2燃料集合体を
配置してもよいし、タイプ1とタイプ2燃料集合対を混
合させても、タイプ1とタイプ3燃料集合体の混合配
置、タイプ2燃料集合体とタイプ3燃料集合体の混合配
置としてもよく、その特性は中間的な効果を得る。
【0140】本発明の第1、第2の実施例の炉心を第2
サイクルに移行するときはタイプ3燃料集合体の燃焼の
進んだものから優先的に取り出して、コントロールセル
Cにはタイプ2燃料集合体の比較的燃焼の進んだ燃料集
合体を配置する。
【0141】この時、コントロールセルの数は第1サイ
クルより減らす。例えば本発明では第1サイクルに37個
のコントロールセルを用いているが第2サイクルには21
〜29個のコントロールセルに減じるか、または、炉心最
外周には燃焼の進んだ反応度の低いタイプ3、タイプ2
燃料集合体を配置する。
【0142】第2サイクルのためにタイプ2燃料集合体
は コントロールセル用 84〜 116本 最外周用 92体の内タイプ3燃料
集合体が足りない分 炉心中央径方向出力平坦化用 残り体数 が必要である。
【0143】本発明によれば、第1回取り替え燃料集合
体はほぼ 100体前後であり、タイプ2燃料集合体は第2
サイクルにおいて炉心中央領域のコントロールセルでは
ないところに配置しても上記要望に満足できる。
【0144】したがって、容易に第2サイクルに移行し
て径方向出力分布の平坦化が実現でき、第2サイクルの
コントロールセル炉心、低中性子漏洩炉心が構成でき
る。第2サイクル以降、低中性子漏洩炉心を組むことに
より、更に初装荷炉心の取り出し燃焼度が向上する。
【0145】つぎに。図17から図19により本発明の燃料
集合体の第3の実施例を説明する。これまでの実施例の
燃料集合体では前記第1群の可燃性毒物含有燃料棒およ
び、第2a,b群の可燃性毒物含有燃料棒を短尺燃料棒
を含んでまたは囲むように3本L字形に隣接配置する例
を示し、これらの隣接配置は燃料集合体の外側から2層
目の隅部に位置する短尺燃料棒位置を使いL字形の3本
隣接配置を利用したものであった。
【0146】本実施例では図3に示す9×9燃料集合体
の例における(2,2),(5,2)およびその対称位
置にある短尺燃料棒隣接の2層目燃料棒を使った可燃性
毒物含有燃料棒の隣接配置の利用である。この例では基
本的に2本の可燃性毒物含有燃料棒G1,PGの隣接配
置とその2本の燃料棒G1,PGの両隣が短尺燃料棒P
1になっている点が特徴である。
【0147】例えば、図17の(3,2),(4,2)
の第1群の可燃性毒物含有燃料棒G1は、短尺燃料棒P
1の有効部分領域では減速材が少なく、両方の燃料棒が
面する部分で遮蔽効果がある。しかし、短尺燃料棒有効
部より上方の部分では(3,2),(4,2)の各燃料
棒は隣接の短尺燃料棒P1上方の減速材領域からより多
くの熱中性子が供給されるので、可燃性毒物が速く燃焼
する。
【0148】したがって、この場合も可燃性毒物含有燃
料棒の配置による下部での遮蔽効果と上部における短尺
燃料棒の上方空隙効果を第1の実施例同様に得て、燃焼
初期の無限増倍率の増加、燃焼過程における下部よりも
上部の方が速く燃焼することによる軸方向出力分布の長
期に亘る平坦化が得られる。
【0149】図18に示したように図17と同様に配置した
短尺燃料棒の一部に可燃性毒物を含有した第2a群の可
燃性毒物含有燃料棒PGを組み合わせることにより第1
の燃料集合体の実施例と同様の効果が得られる。
【0150】図19は図17における(2,6)の可燃性毒
物燃料棒G1を(3,7)に、また(8,4)を(7,
3)に配置換えしたことにある。また、第1の実施例の
可燃性毒物含有燃料棒3本をL字形に隣接配置した例と
第2の実施例の隣接配置を混合して使用してもよい。
【0151】図17から図19に示す可燃性毒物含有燃料棒
G1,G2の本数が多い例は、取り替え燃料集合体の場
合に適するので取り替え炉心の炉心全体の余剰反応度と
バランスが取れる濃度は4〜6wt%のガドリニア濃度と
なる。
【0152】これまでの実施例では初装荷炉心の燃料集
合体の最大濃縮度を3.75wt%の例で説明してきたが、よ
り高い濃縮度を使用した場合にも適用できる。また、燃
料集合体の断面構造も濃縮度分布を具体的に例示した9
×9燃料棒格子に限定されるものではない。
【0153】さらに、濃縮度3タイプ炉心の例で示した
が、濃縮度4タイプ炉心においてコントロールセルを最
低濃縮度燃料とせず、より高い濃縮度 1.3wt%以上の濃
縮度の燃料集合体をコントロールセルの燃料集合体とす
る場合にも応用できる。
【0154】
【発明の効果】本発明によれば濃縮度多種類の初装荷炉
心において、より高濃縮度の採用の場合でも、高濃縮度
燃料を第1サイクルの末期および第2サイクル初期にお
いて、最大線出力密度の運転基準を満たすことができ
る。
【0155】その過程で高濃縮度燃料のガドリニア含有
燃料棒の軸方向設計を簡単化し、かつ従来例が必要とす
るよりも低濃度のガドリニアで、残留ガドリニア反応度
ロスを低減しつつ実現できる。その結果、最高濃縮度燃
料集合体の体数を減少することなく、対応が可能となり
初装荷炉心の取り出し燃焼度向上が実現できる。
【0156】また、取り替え燃料炉心においても、部分
長の短尺燃料棒の利用により簡単なガドリニア含有燃料
棒の軸方向設計により、軸方向出力分布制御ができる。
【図面の簡単な説明】
【図1】本発明に係る沸騰水型原子炉用炉心の第1の実
施例における初装荷炉心を示す燃料配置図。
【図2】図1における初装荷炉心に配置する各燃料集合
体の軸方向濃縮度、可燃性毒物の分布を説明するための
分布図。
【図3】(A)は図1の初装荷炉心に配置する燃料集合
体の一例を示す縦断面図、(B)は(A)におけるB−
B矢視断面図、(C)は(A)のC−C矢視断面図。
【図4】(A)は図3における標準の長尺燃料棒を一部
断面で示す立面図、(B)は同じく短尺燃料棒を一部断
面で示す立面図。
【図5】(a)は本発明に係るタイプ1A燃料集合体の
第1の例を示す横断面図、(b)は(a)における燃料
棒の濃縮度状態を示す縦断面図。
【図6】(a)は本発明に係るタイプ1B燃料集合体の
第2の例を示す横断面図、(b)は(a)における燃料
棒の濃縮度状態を示す縦断面図。
【図7】(a)は本発明に係るタイプ2燃料集合体を示
す横断面図、(b)は(a)における燃料棒の濃縮度状
態を示す縦断面図。
【図8】(a)は本発明に係るタイプ3燃料集合体を示
す横断面図、(b)は(a)における燃料棒の濃縮度状
態を示す縦断面図。
【図9】本発明の初装荷炉心を構成する各燃料タイプの
無限増倍率の燃焼推移例を示す特性図。
【図10】本発明に係るタイプ1A燃料集合体と従来の
燃料集合体の無限増倍率の燃焼推移を比較して示す特性
図。
【図11】本発明に係るタイプ1B燃料集合体と従来の
燃料集合体の無限増倍率の燃焼推移を比較して示す特性
図。
【図12】本発明と従来例における第1サイクルの余剰
反応度の推移を示す特性図。
【図13】(a)は本発明に係る最高濃縮度の初装荷燃
料集合体と従来例と第1サイクル末期における軸方向燃
焼度分布を示す特性図、(b)は(a)と同じく相対出
力分布を示す特性図。
【図14】(a)は本発明に係るタイプ1A燃料集合体
の第2の例を示す横断面図、(b)は(a)における燃
料棒の濃縮度状態を示す縦断面図。
【図15】(a)は本発明に係るタイプ1B燃料集合体
の第2の例を示す横断面図、(b)は(a)における燃
料棒の濃縮度状態を示す縦断面図。
【図16】本発明における初装荷炉心の第2の実施例を
示す燃料配置図。
【図17】(a)は本発明に係る燃料集合体の第3の実
施例における第1の例を示す横断面図、(b)は(a)
における燃料棒の濃縮度状態を示す縦断面図。
【図18】(a)は図17において、第2の例を示す横断
面図、(b)は(a)における燃料棒の濃縮状態を示す
縦断面図。
【図19】(a)は図17において、第3の例を示す横断
面図、(b)は(a)における燃料棒の濃縮状態を示す
縦断面図。
【図20】(a)は従来の燃焼集合体の第1の例を示す
横断面図、(b)は(a)における燃料棒の濃縮状態を
示す縦断面図。
【図21】(a)は従来の燃焼集合体の第2の例を示す
横断面図、(b)は(a)における燃料棒の濃縮状態を
示す縦断面図。
【符号の説明】
2…長尺燃料棒、2…短尺燃料棒、10…燃料ペレット、
11…被覆管、12…上部端線、13…下部端線、14…ガスプ
レナム、15…スプリング。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21C 5/12 8908−2G G21C 3/30 GDB Y (72)発明者 鈴木 壽生 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 長尺燃料棒と、この長尺燃料棒よりも有
    効部分が短い短尺燃料棒とを格子状に束ねて構成される
    燃料集合体において、可燃性毒物を含有する燃料棒とし
    て、前記長尺燃料棒のうち複数本からなりその上端また
    は下端または上下端のブランケット領域を除く軸方向中
    央部の大部分の領域に可燃性毒物が含有されている第1
    群の可燃性毒物含有燃料棒と、前記短尺燃料棒が存在す
    る軸方向下部領域に相当する部位の少なくとも一部分だ
    けに可燃性毒物が含有されている第2a群の前記長尺ま
    たは短尺の可燃性毒物含有燃料棒とを具備し、且つ前記
    第1群または第2a群の可燃性毒物含有燃料棒が1箇所
    の前記燃料棒当たり3本L字形に前記短尺燃料棒を囲む
    ように隣接して配置された短尺燃料棒配置箇所を少なく
    とも1箇所有することを特徴とする燃料集合体。
  2. 【請求項2】 長尺燃料棒と、この長尺燃料棒よりも有
    効部分が短い短尺燃料棒とを格子状に束ねて構成される
    燃料集合体において、可燃性毒物を含有する燃料とし
    て、前記長尺燃料棒のうちの複数本からなりその上端ま
    たは下端または上下端のブランケット領域を除く軸方向
    中央部の大部分の領域に可燃性毒物が含有されている第
    1群の可燃性毒物含有燃料棒と、前記短尺燃料棒が存在
    する軸方向下部領域に相当する部位の少なくとも一部分
    だけに可燃性毒物が含有されている第2b群の前記長尺
    の可燃性毒物含有燃料棒とを具備し、且つ前記第1群ま
    たは第2b群の可燃性毒物含有の燃料棒が1箇所の前記
    短尺燃料棒当たり3本L字形に前記第2b群の可燃性毒
    物含有の短尺燃料棒を囲むように隣接して配置された短
    尺燃料棒配置箇所を少なくとも1箇所有することを特徴
    とする燃料集合体。
  3. 【請求項3】 長尺燃料棒と、この長尺燃料棒よりも有
    効部分が短い短尺燃料棒とを格子状に束ねて構成される
    燃料集合体において可燃性毒物を含有する燃料棒簿とし
    て、前記長尺燃料棒のうちの複数本からなりその上端ま
    たは下端または上下端のブランケット領域を除く軸方向
    中央部の大部分の領域に可燃性毒物が含有されている第
    1群の可燃性毒物含有燃料棒と、前記短尺燃料棒が存在
    する軸方向下部領域に相当する部位の少なくとも一部分
    だけに可燃性毒物が含有されている第2a群の前記長尺
    の可燃性毒物含有燃料棒とを具備し、且つ前記第1群ま
    たは第2a群の可燃性毒物含有燃料棒が1箇所の前記短
    尺燃料棒当たり3本L字形に前記第2b群の可燃性毒物
    含有の短尺燃料棒を含んで接して配置された短尺燃料棒
    配置箇所を少なくとも1箇所有することを特徴とする燃
    料集合体。
  4. 【請求項4】 長尺燃料棒と、この長尺燃料棒よりも有
    効部分が短い短尺燃料棒とを格子状に束ねて構成される
    燃料集合体において、可燃性毒物を含有する燃料棒とし
    て前期長尺燃料棒のうちの複数本からなり、その上端ま
    たは下端あるいは上下端のブランケット領域を除く軸方
    向中央部の大部分の領域に可燃性毒物が含有されている
    第1群の可燃性毒物含有燃料棒と、前記短尺燃料棒が存
    在する軸方向下部領域に相当する部位の少なくとも一部
    分だけに可燃性毒物が含有されている第2a群の前記長
    尺の可燃性毒物含有燃料棒および前記短尺燃料棒が存在
    する軸方向下部領域に相当する部位の少なくとも一部分
    だけに可燃性毒物が含有されている第2b群の前記短尺
    の可燃性毒物含有燃料棒とを具備し、且つ第1群または
    第2a群の可燃性毒物含有燃料棒が1箇所の前記短尺燃
    料棒当たり3本L字形に前記短尺燃料棒を囲むように隣
    接して配置された短尺燃料棒配置箇所を少なくとも1箇
    所有するとともに前記第1群または第2b群の可燃性毒
    物含有燃料棒が1箇所の前記短尺燃料棒当たり3本L字
    形に前記第2b群の可燃性毒物含有の短尺燃料棒を含ん
    で接して配置された短尺燃料棒配置箇所を少なくとも1
    箇所有することを特徴とする燃料集合体。
  5. 【請求項5】 長尺燃料棒と、この長尺燃料棒よりも有
    効部分が短い短尺燃料棒とを格子状に束ねて構成される
    燃料集合体において、可燃性毒物を含有する燃料棒とし
    て前記長尺燃料棒のうちの複数本からなり、その上端ま
    たは下端または上下端のブランケット領域を除く軸方向
    中央部の大部分の領域に可燃性毒物が含有されている第
    1群の可燃性毒物含有燃料棒と、前記短尺燃料棒が存在
    する軸方向下部領域に相当する部位の少なくとも一部分
    だけに可燃性毒物が含有されている第2群の前記長尺ま
    たは短尺の可燃性毒物含有燃料棒とを具備し、且つ前記
    第1群または第2群の可燃性毒物含有燃料棒が燃料集合
    体燃料棒列の外周から2層目に2本以上直線的に隣接し
    て配置し、その中に短尺燃料棒を有するかまたはそれに
    短尺燃料棒が隣接しているような配置箇所を少なくとも
    1箇所有することを特徴とする燃料集合体。
  6. 【請求項6】 長尺燃料棒と、この長尺燃料棒よりも有
    効部分が短い短尺燃料棒とを格子状に束ねて構成される
    燃料集合体において、可燃性毒物を含有する燃料棒とし
    て前記長尺燃料棒のうちの複数本からなり、その上端ま
    たは下端または上下端のブランケット領域を除く軸方向
    中央部の大部分の領域に可燃性毒物が含有されている第
    1群の可燃性毒物含有燃料棒5本を十字形に配置してい
    るか、または、前記第1群の可燃性毒物含有燃料棒4本
    を前記短尺燃料棒が存在する軸方向下部領域に相当する
    部位の少なくとも一部分だけに可燃性毒物が含有されて
    いる第2群の前記長尺または短尺の可燃性毒物含有燃料
    棒とを具備し、且つ前記第1群の可燃性毒物含有燃料棒
    4本が第2群の可燃性毒物燃料を中心に十字形に隣接し
    て配置ている配置箇所を少なくとも1箇所有することを
    特徴とする燃料集合体。
  7. 【請求項7】第1群の長尺可燃性毒物含有燃料棒の本数
    が少ないタイプA燃料集合体と前記第1群の長尺可燃性
    毒物含有燃料棒の本数が前記タイプA燃料集合体より多
    いタイプB燃料集合体を用い、前記タイプA燃料集合体
    の前記第2a群または第2b群の長尺または短尺の可燃
    性毒物含有燃料棒の本数が、前記タイプB燃料集合体の
    それよりも多いことを特徴とする沸騰水型原子炉用炉
    心。
  8. 【請求項8】 異なる平均濃縮度の燃料集合体を複数種
    類使用する沸騰水型原子炉の初装荷炉心において、前記
    燃料集合体を平均濃縮度の高い方から各々タイプ1,タ
    イプ2,タイプ3…燃料集合体とすると、最低濃縮度の
    燃料集合体は可燃性毒物含有燃料棒を含まず、濃縮度3
    タイプ初装荷炉心ではタイプ1、タイプ2燃料集合体は
    可燃性毒物含有燃料棒を有し、可燃性毒物含有燃料棒本
    数はタイプ1燃料集合体の方がタイプ2燃料集合体より
    多く、且つタイプ1燃料集合体は前記第1群の長尺可燃
    性毒物含有燃料棒本数が1本以上差のある2種類を有
    し、前記タイプ1燃料集合体のうち第1群の長尺可燃性
    毒物含有燃料棒の少ないタイプ1A燃料集合体は、前記
    タイプ燃料集合体1の内第1群の長尺可燃性毒物含有燃
    料棒の多いタイプ1B燃料集合体よりも前記第2群(前
    記第2a群および第2b群を合わせた呼称)の可燃性毒
    物含有燃料棒本数が多く、前記タイプ1B燃料集合体を
    炉心の中央領域に主に配置し、前記タイプ1A燃料集合
    体を炉心の最も外周を含む周辺領域または最外周を含ま
    ない周辺領域に主に配置することを特徴とした沸騰水型
    原子炉用炉心。
JP00435494A 1994-01-20 1994-01-20 沸騰水型原子炉用燃料集合体およびその炉心 Expired - Lifetime JP3792735B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00435494A JP3792735B2 (ja) 1994-01-20 1994-01-20 沸騰水型原子炉用燃料集合体およびその炉心

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00435494A JP3792735B2 (ja) 1994-01-20 1994-01-20 沸騰水型原子炉用燃料集合体およびその炉心

Publications (2)

Publication Number Publication Date
JPH07209460A true JPH07209460A (ja) 1995-08-11
JP3792735B2 JP3792735B2 (ja) 2006-07-05

Family

ID=11582077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00435494A Expired - Lifetime JP3792735B2 (ja) 1994-01-20 1994-01-20 沸騰水型原子炉用燃料集合体およびその炉心

Country Status (1)

Country Link
JP (1) JP3792735B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1927994A2 (en) * 2006-11-29 2008-06-04 Global Nuclear Fuel-Americas, LLC Systems and methods of predicting a critical effective k for a nuclear reactor
JP2009036729A (ja) * 2007-08-03 2009-02-19 Global Nuclear Fuel-Japan Co Ltd 原子炉の炉心
JP2009156630A (ja) * 2007-12-25 2009-07-16 Global Nuclear Fuel-Japan Co Ltd 沸騰水型原子炉の炉心
JP2011064568A (ja) * 2009-09-17 2011-03-31 Global Nuclear Fuel-Japan Co Ltd 沸騰水型原子炉の炉心
JP2011169858A (ja) * 2010-02-22 2011-09-01 Global Nuclear Fuel-Japan Co Ltd 沸騰水型原子炉の初装荷炉心

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1927994A2 (en) * 2006-11-29 2008-06-04 Global Nuclear Fuel-Americas, LLC Systems and methods of predicting a critical effective k for a nuclear reactor
JP2008139308A (ja) * 2006-11-29 2008-06-19 Global Nuclear Fuel Americas Llc 原子炉に関して臨界実効増倍率kを予測するシステムと方法
EP1927994A3 (en) * 2006-11-29 2010-06-23 Global Nuclear Fuel-Americas, LLC Systems and methods of predicting a critical effective k for a nuclear reactor
JP2009036729A (ja) * 2007-08-03 2009-02-19 Global Nuclear Fuel-Japan Co Ltd 原子炉の炉心
JP2009156630A (ja) * 2007-12-25 2009-07-16 Global Nuclear Fuel-Japan Co Ltd 沸騰水型原子炉の炉心
JP2011064568A (ja) * 2009-09-17 2011-03-31 Global Nuclear Fuel-Japan Co Ltd 沸騰水型原子炉の炉心
JP2011169858A (ja) * 2010-02-22 2011-09-01 Global Nuclear Fuel-Japan Co Ltd 沸騰水型原子炉の初装荷炉心

Also Published As

Publication number Publication date
JP3792735B2 (ja) 2006-07-05

Similar Documents

Publication Publication Date Title
JP3037717B2 (ja) 原子炉の燃料集合体
JP3531011B2 (ja) 燃料集合体及び原子炉
JPS60242392A (ja) 燃料集合体
JPH07209460A (ja) 沸騰水型原子炉用燃料集合体およびその炉心
JP3563727B2 (ja) 原子炉の炉心
JP3340818B2 (ja) 原子炉の炉心
JP3765838B2 (ja) 原子炉の炉心及び燃料集合体
JP3175996B2 (ja) 沸騰水型原子炉の初装荷炉心
JP4351798B2 (ja) 燃料集合体および原子炉
JPH022977A (ja) 沸騰水型原子炉用燃料集合体
JP2563287B2 (ja) 原子炉用燃料集合体
JP2966877B2 (ja) 燃料集合体
JP4046870B2 (ja) Mox燃料集合体
JPH102982A (ja) 原子炉の炉心とその運転方法
JP3237922B2 (ja) 燃料集合体および沸騰水型原子炉用炉心
JPH10221474A (ja) 燃料集合体
JPS63127190A (ja) 原子炉燃料集合体
JP2002090487A (ja) 原子炉の炉心及びその運転方法
JP3894784B2 (ja) 沸騰水型原子炉の燃料装荷方法
JP4368056B2 (ja) 沸騰水型原子炉用燃料集合体
JPH10206582A (ja) 燃料集合体
JP2953789B2 (ja) 核燃料集合体
JPH0792510B2 (ja) 燃料集合体
JP3435874B2 (ja) 燃料集合体及び原子炉炉心
JP2004144762A (ja) 原子炉の炉心

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040326

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

EXPY Cancellation because of completion of term