JPH07201764A - プラズマ気相反応方法 - Google Patents

プラズマ気相反応方法

Info

Publication number
JPH07201764A
JPH07201764A JP33662394A JP33662394A JPH07201764A JP H07201764 A JPH07201764 A JP H07201764A JP 33662394 A JP33662394 A JP 33662394A JP 33662394 A JP33662394 A JP 33662394A JP H07201764 A JPH07201764 A JP H07201764A
Authority
JP
Japan
Prior art keywords
reaction
substrate
film
plasma
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33662394A
Other languages
English (en)
Other versions
JP2649331B2 (ja
Inventor
Shunpei Yamazaki
舜平 山崎
Mamoru Tashiro
衛 田代
Minoru Miyazaki
稔 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP6336623A priority Critical patent/JP2649331B2/ja
Publication of JPH07201764A publication Critical patent/JPH07201764A/ja
Application granted granted Critical
Publication of JP2649331B2 publication Critical patent/JP2649331B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

(57)【要約】 【目 的】 プラズマ気相反応によって形成される基板
表面の膜厚を均一にする。 【構 成】 前記反応空間内は、減圧状態にすると共
に、反応性気体が供給される。また、反応空間に設けら
れた複数の電極には、電力が印加されることによって、
基板の処理面に対して平行にリサージュ波形が描かれ
る。当該リサージュ波形は、基板表面のプラズマ処理を
均一にする。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、プラズマ気相反応方法
に関するものである。
【0002】
【従来の技術】従来、反応空間内に設けられた電力を印
加する電極は、一対の平行平板型であり、かつその一方
の電極上を被膜形成面としている。このような方式の被
膜形成面における被膜生成率は、1%ないし3%程度で
ある。また、従来のプラズマ気相反応方法においては、
一対の平行平板型電極の間に、プラズマ放電かグロー放
電を発生させ、基板表面に半導体被膜等が形成される。
かかる一対の電極のみを用いる方式では、被膜の均一性
が±5%以内のばらつきの範囲に抑えられる。しかし、
上記方法では、被膜形成面を電極面積以上に大きくする
ことができない。このため、上記方法は、多量生産にま
ったく不向きであるという欠点を有する。
【0003】他方、被膜形成用基板は、平行平板型電極
の間に設けられ、その電界が被膜形成面に概略平行にな
るように多数の基板を互いに─定の距離(2cmないし
6cm)を離間して垂直に林立せしめて配設する方法が
知られている。その─例は、本出願人の出願にかかる特
許願(プラズマ気相反応装置 昭和57年9月25日出
願 特願昭57ー167280号)である。すなわち、
基板を電位的にいずれの電極からも遊離せしめて、陽光
柱での気相反応を行なういわゆるフローティングプラズ
マ気相反応法を用いるため、多量基板に対して被膜形成
を行なうことができるという特徴を有する。上記方法
は、従来より公知の平行平板型電極の一方の電極上に基
板を配設する方法に比べて、5倍ないし20倍の生産性
をあげることができた。
【0004】しかし、かかるフローティングプラズマ気
相反応法において、得られる膜厚の均一性は、後述する
ように、その一例として図1に示すごときものであっ
た。また、他の従来例として、第40回応物学会予稿
集、(1979─9)、P.316には、基板に対して
水平方向から高周波電界を印加し、さらに付加的に基板
の垂直方向から直流電界を印加していることが記載され
ている。
【0005】
【発明が解決しようとする課題】図1(A)ないし
(E)は従来のプラズマ気相反応方法で得られた基板上
の膜厚の不均一性を説明するための図である。図1
(A)には、基板(5)と電極(23)、(25)との
相対位置関係が示されている。基板(5)には、約50
00Åの厚さに珪素膜が形成されている。基板(5)に
形成された珪素膜は、図1(C)に示すごとく、一対の
電極(23)、(25)の近傍で厚くなる。また、基板
(5)は、図1(B、D、E)に示すごとく、電極(2
3)、(25)の中央部が厚くなったり、あるいは基板
(5)の端部が薄くなってしまう。このため、基板
(5)の上下側端部(コーナ部)に形成される膜厚は、
中央部の上下端部の厚さに比べて20%ないし30%も
薄くなってしまった。
【0006】すなわち、本出願人が提案したフローティ
ングプラズマ気相反応法において、被膜形成面は、電位
的に浮いているため、この基板(5)にチャージアップ
(荷電)した電荷と、プラズマ中のイオンとが反発しあ
う。このため、飛翔中の活性粒子は、被膜形成面をスパ
ッタすることが少なくなる。さらに、これを助長するた
め、プラズマ反応に用いられる高周波電界は、被膜形成
面に添って流れるように層流を構成して供給される。す
なわち、高周波電界は、被膜形成面に概略平行になるよ
うに配設せしめられている。
【0007】本発明は、以上のような課題を解決するた
めのもので、プラズマ反応を発生させるプラズマ気相反
応方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
(第1発明)前記目的を達成するために、本発明のプラ
ズマ気相反応方法は、減圧状態に保持された反応空間
と、当該反応空間に反応性気体を供給する系と、不要反
応生成物およびキャリアガスを真空排除する排気系とを
具備し、反応空間に反応性気体を供給すると共に、反応
空間を所定の圧力に減圧する工程と、反応空間内の複数
の電極に電力を印加して、リサージュ波形を基板の処理
面に対して平行になるように描かせることによって、プ
ラズマを発生させる工程とからなる。
【0009】本発明のプラズマ気相反応方法は、減圧状
態に保持された反応空間と、当該反応空間に反応性気体
を供給する系と、不要反応生成物およびキャリアガスを
真空排除する排気系とを具備し、反応空間に反応性気体
を供給すると共に、反応空間を所定の圧力に減圧する工
程と、反応空間内の複数の電極に電力を印加して、リサ
ージュ波形を基板の処理面に対して平行になるように描
かせつつプラズマ処理を行なう工程とからなる。
【0010】
【作 用】反応空間は、減圧状態に保持されていると
共に、不要反応生成物およびキャリアガスを真空排気す
る。この状態の反応空間内には、反応性気体が導入され
ると共に、当該反応空間を所定の圧力に減圧する。ま
た、上記反応空間に設けられた複数の電極に電力を印加
して、基板の処理面に対して平行になるようにリサージ
ュ波形を描かせることによってプラズマを発生させる。
さらに、プラズマ処理は、上記リサージュ波形を描かせ
つつ行なわれる。前記複数の電極に印加された電界は、
リサージュ波形を描くことにより、基板の被膜形成面に
対する電界の密度が均一化され、基板端部においても電
界密度の小さくなることを防いでいる。
【0011】複数の電気エネルギー供給用の発振器から
発生する電界は、同一または異なる周波数とすることに
よってリサージュ波形を描かせることができる。また、
基板の被膜形成面は、複数の電極から電気的に浮いた
(フローティング)電位としたため、プラズマエネルギ
ーが基板の被膜形成面をスパッタする程度を軽減するこ
とができた。さらに、複数の電極から基板の被膜形成面
に印加する電界密度は、均一化されるだけでなく、一対
の電極による電界のみの場合より大きいため、被膜形成
速度を向上させることができる。
【0012】
【実 施 例】本発明の一実施例は、反応性気体が反応
室内のすべてに分散してしまうことを防ぐプラズマ気相
反応装置であり、上記反応室が基板の外形状を利用して
筒状空間になっている。そして、この筒状空間には、基
板がその裏面を互いに密接して、その表面の被膜形成面
を一定の距離、たとえば2cmないし10cm、代表的
には4cmないし6cm離して平行に配設されている。
また、この基板が林立した筒状空間には、反応性気体を
選択的に導き、この筒状空間においてのみ選択的にプラ
ズマ放電を行なわしめる。この結果として反応性気体の
収集効率は、従来の1%ないし3%より、その10倍な
いし30倍の20%ないし50%にまで高めることがで
きた。さらに、本発明の一実施例は、多数回繰り返して
被膜形成を行なうと、その時反応室上部に付着形成され
たフレ−クが基板の被膜形成面上に落ちて、ビンホ−ル
の発生を誘発してしまうことを防ぐため、基板の被膜形
成面を重力に添って垂直配向せしめたことを特徴として
いる。
【0013】本発明の一実施例は、前記した一定の間隙
を経て被膜形成面を概略平行に配置された基板の上部、
下部および中央部さらに周辺部での膜厚の均一性、また
膜質の均質性を促すため、上方向および下方向より棒状
赤外線ランプを互いに直交して配置し、筒状空間全体の
均熱加熱化を図った。すなわち、棒状赤外線ランプは、
その断面積が10cm2 、また、長さが電極方向に10
cmないし60cmを有し、幅15cmないし100c
mの基板、たとえば20cm×60cmの基板がその温
度分布において、100℃ないし650℃、たとえば2
00℃±5℃以内としたことを特徴としている。
【0014】本発明の一実施例は、連続製造方式を基本
条件とし、反応室内での被膜の特性の向上に加えて、反
応室の内壁に不用の反応生成物が付着することを防ぐ。
本発明の一実施例は、見掛け上の反応室の内壁を筒状空
間の側面とすることにより、被膜作製の度に、すなわち
新たにホルダを反応室内に装着する度に、あたかも新し
い内壁が作られるため、繰り返しの被膜形成によって
も、不要の反応生成物が内壁上に層状に積層されるのを
防ぐことができる。すなわち、本発明の一実施例は、反
応室内に形成されるフレ−クの発生を防止できるという
大きな特徴を有する。
【0015】さらに、本発明の一実施例は、反応性気体
の導入口、排気口において、電極外側を供給フード、排
気フード、および絶縁フ−ド(石英等)で覆い、反応室
壁面との寄生放電を防ぎ、この電極と反応空間との間に
フロ−ティンググリットを設けることにより、この反応
空間内に陽極暗部、陰極暗部が延びないようにした。す
なわち、この反応空間の電界強度がきわめて少ない陽光
柱領域とすることができた。その結果、この反応空間内
に強電界の暗部で加速された強い運動エネルギーを有す
るスピーシス(反応性物質)による被膜形成面のスパッ
タを防ぎ膜質の向上を図ることができた。
【0016】かかるプラズマ気相反応装置は、すでに形
成されている下側(被膜形成面)の半導体層の不純物の
その上に形成されるべき他の半導体層への混合を排除
し、さらに、複数の半導体層の積層界面での混合の厚さ
を200Åないし300Åと従来よりも約1/10ない
し1/5にすると共に、基板内、同一バッチの基板間で
の膜厚のばらつきを±5%以内(たとえば、5000Å
の厚さとすると、そのばらつきが±250Å以内)とし
得たことを特徴としている。
【0017】以下、図2および図3にしたがって本発明
の一実施例であるプラズマ気相反応装置を説明する。図
2は本発明の一実施例で、連続してプラズマ気相反応が
可能な装置を説明するための図である。図3は本発明の
一実施例で、対をなす複数の電極によって発生する電界
を説明するための図である。 具体例1 図2において、プラズマ気相反応装置は、一方の側から
基板(5)を装填するための第1の予備室(1)と、プ
ラズマ気相反応処理を行なう反応室(2)と、プラズマ
気相反応処理の終了した基板(5)を取り出すための第
2の予備室(3)とから構成される。
【0018】第1の予備室(1) と反応室(2)との連
設部、反応室(2)と第2の予備室(3)との連設部に
は、ゲ−ト弁(43)、(44)が設けられている。ゲ
−ト弁(43)、(44)は、基板(4)、(5)、お
よびホルダ(6)、(7)が第1の予備室(1)から反
応室(2)中へ、また、反応室(2)から第2の予備室
(3)への移動に対して開状態となる。また、ゲート弁
(43)、(44)は、プラズマ気相反応中、第1の予
備室(1)において、基板(4)、ホルダ(6)を扉
(11)から装着する時、または第2の予備室(3)に
おいて、基板(5)、ホルダ(6)を扉(12)から取
り出す時、閉状態とする。第1の予備室(1)への基板
(4)の装着、第2の予備室(3)から基板(4)の取
り出しの際には、第1の予備室(1)および第2の予備
室(3)に導入口(20)、(32)より大気圧にする
ための窒素が供給される。
【0019】第1の予備室(1)は、外部より基板
(4)、ホルダ(6)を装着するガイド(9)と、大気
と第1の予備室(1)との間で開閉できる扉(11)
と、基板(4)上の吸着物を加熱真空脱気させるため、
赤外線ランプ(15)、(15′)と、第1の予備室
(1)を排気する真空排気手段(29)とから構成され
る。ゲ−ト弁(43)は、開けられた後、予め真空引き
されている反応室(2)内に、第1の予備室(1)から
基板(5)、ホルダ(6)を移動させる。この移動は、
第1の予備室(1)に設けられたステップモ−タ(8)
によって行なわれる。
【0020】まず、ガイド(9)を含むホルダ(6)
は、約1.5cm上方に持ち上げられ、この後、反応室
(2)内にガイド(9)を伸ばすことよって移動させら
れる。さらに、ホルダ(6)は、反応室(2)の中央部
に至った後、ガイド(9)を止め、約1.5cm下方向
にガイド(9)を下げることにより下ろされる。する
と、その中間の高さの位置にホルダ(7)の上部の円板
状ディスクを受けるフィンシャフト(39)が設けられ
ており、ここにホルダ(7)が保持され、筒状空間(1
00)が形成される。
【0021】この後、ガイド(9)は、このディスクの
下側を通り、元の第1の予備室(1)に縮んで収納され
る。さらに、ゲ−ト弁(43)が閉じられる。この後、
第1の予備室(1)は、窒素を導入口(20)から供給
することにより大気圧となる。この間に、基板(4)
は、ガイド(9)に取り付けられているホルダ(6)に
装着させる。この操作は、順次繰り返される。次に、反
応室(2)内における機構について説明する。反応室
(2)は、反応性気体を供給する系(97)と、真空排
気する系(98)と、後述する電極(23)、(25)
に高周波電力を供給する第1の発振器(21)と、同じ
く第2の発振器(85)とが具備されている。
【0022】反応性気体を供給する系(97)は、ド−
ピング系としてバルブ(51)と、流量計(52)と、
キャリアガスを導入する導入口(33)、同じく反応性
気体を導入する導入口(34)、(35)、(37)と
を介しての図示されていないボンベに接続されている。
導入口(34、35、37)には、珪化物気体、ゲルマ
ニュ−ム化物気体のごとき室温で気体のもの、また、こ
れにP型またはN型用のド−ピング用気体(たとえば、
ジボラン、フォスヒン)等のボンベが接続されている。
また、塩化スズ、塩化アルミニュ−ム、塩化アンチモン
等の室温において液体のものは、バブラから(36)を
介して供給される。これらの気体は、減圧下にて気体と
なるため、流量計(52)により十分制御が可能であ
る。また、蒸着にはこのバブラ(36)の電子恒温漕に
よる温度制御を行なった。
【0023】これらの反応性気体(34、35、37)
は、供給口(27)から供給手段(46)のノズル(2
4)を介して下方向に噴射される。このノズル(24)
の吹き出し口は、1mmないし2mmの穴(42)が多
数あけられ、全体に均ーに吹き出すように形成されてい
る。このノズル(24)は、背面が絶縁物よりなり、寄
生放電が反応室(2)の内壁に発生することを防いでい
る。さらに、ノズル(24)の穴(42)の間には、プ
ラズマ放電用の負電極(23)が設けられている。負電
極(23)は、リ−ド(49)を経て電気エネルギー供
給用の第1の発振器(21)(10KHzないし50M
Hz、たとえば13.56MHzまたは30KHz、1
0Wないし1KW)の一方の端子に至っている。他方の
正の端子(22)は、排気手段(47)のノズル(2
4)上に設けられて網目状または多孔状の正電極(2
5)に接続されている。
【0024】また、第2の発振器(85)(10KHz
ないし50MHz、たとえば13.56MHzまたは3
0KHz 10Wないし1KW)は、図面において前後
方向に第2の電界が発生するように設けられている。ま
た、第1の発振器(21)と第2の発振器(85)から
発生する周波数を同一または周波数を異ならせると、電
界は、リサ−ジュパタ−ンとなり、一方行にのみ加えた
電界パターンと比較して、基板表面の周辺部まで均一な
被膜を作ることができるようになった。
【0025】さらに、一対の電極(23)、(25)
と、筒状空間(100)との間には、網状(穴の直径は
1cmないし3cm)、または多孔状(穴の直径は1c
mないし3cm)の導体をステンレスで設け、このフロ
ーティンググリッド(40)、(41)により、放電で
発生した暗部が陽光柱内に配設された筒状空間(10
0)の基板(5)の表面をスパッタしないようにしてい
る。このフロ−ティンググリッド(40)、(41)に
より、反応室(2)の圧力が0.01torrないし5
torrの範囲で変わっても、その低い圧力(たとえ
ば、0.05torr)のため、暗部が筒状空間(10
0)まで延長し、基板(5)の被膜形成面をスパッタす
ることはない。そして、良好な膜質の被膜を作ることが
できるようになった。
【0026】排気手段(47)は、反応性気体を供給す
るノズル(24)と概略同一形状を有し、ともに透明石
英(絶縁膜)により作られており、全体の穴により均一
に筒状空間(100)からの反応生成物、キャリアガ
ス、不用ガスを層流にして排気口(28)より真空ポン
プ(30)に排気させている。被膜形成の際に、フィン
シァフト(39)は、外部のステップモ−タ(19)と
真空遮断されて回転している。そのため、このフィンシ
ャフト(39)によって保持されている基板(5)およ
びホルダ(7)は、3回転/分ないし10回転/分で回
転し、基板(5)上に形成される被膜を均一にさせてい
る。
【0027】さらに、かくのごとき装置において、所定
のプラズマ気相反応による被膜形成を行った後、真空排
気されている第2の予備室(3)に基板(5)およびホ
ルダ(7)を移動させた。すなわち、基板(5)および
ホルダ(7)は、反応室(2)、第2の予備室(3)内
における気体を真空引きした後、ゲ−ト弁(44)を開
けて移動させる。基板(5)およびホルダ(7)の移動
は、ガイド(10)が右方向より延ばされ、反応室
(2)に至り、約1cm上にホルダ(7)を持ち上げた
後、ガイド(10)を再び縮めて第2の予備室(3)に
持ち出す。この後、第2の予備室(3)は、ゲ−ト弁
(44)が閉められ、窒素を導入口(32)より供給し
て大気圧とした。かくして、図2に示されたごとき反応
室(2)と、第1の予備室(1)、第2の予備室(3)
との間において、プラズマ気相反応は、連続的に処理さ
れる。もちろん、被膜形成された基板(5)およびホル
ダ(7)は、プラズマ気相反応の処理後、第1の予備室
(1)に引出するような構成とすることで、第2の予備
室(3)を省略してもよいことはいうまでもない。
【0028】図3は本発明の一実施例で、図2の反応室
の第2の予備室側から見た縦断面図を示す。図3には、
基板(5)の被膜面と、第1の電界(90)および第2
の電界(91)の方向とが明らかに示されている。図3
において、ヒータ(18)、(18′)には、ハロゲン
ランプ発熱体が用いられている。筒状空間(100)
は、ヒータ(18)、(18′)により100℃ないし
650℃、たとえば250℃に加熱された。反応性気体
は、たとえばシランを分解した。さらに、基板(5)に
は、その被膜形成面に概略平行に第1の電界(90)が
対をなす一組の電極(23)、(25)により供給さ
れ、同時に、第1の電界(90)に対して直交する第2
の電界(91)が対をなす一組の電極(72)、(8
2)により供給され、プラズマ気相反応を行った。それ
ぞれの電極(23)、(25)、(72)、(82)
は、第1の発振器(21)および第2の発振器(85)
に連結されている。
【0029】筒状空間(100)では、反応性気体が導
入口(33)、(34)、(38)から供給手段(4
6)を介して基板(5)に対して平行に供給されると共
に、排気手段(47)により真空排気系(98)の真空
ポンプ(30)で排気される。基板(5)に形成する被
膜としてシランによりアモルファス珪素を作製する場
合、5000Åの厚さにSiH 300cc/分、被膜形成速
度20Å/秒、基板(20cm×60cmを20枚、延
べ面積24000cm2)で圧力0.08torrとし
た。本具体例のプラズマ気相反応によると、従来方法で
は、基板(5)の中央部が5000Åとばらつき、縦方
向の周辺部が3000Å(ばらつき±20%)であった
のに対して、基板(5)のどの部分においても、450
0Å(±5%)ときわめて均一性を向上させることがで
きた。
【0030】図4(A)、(B)、(C)、(D)、
(E)は図3で非単結晶珪素を0.5μmの膜厚に形成
した場合の分布を説明するための図である。筒状空間
(100)には、基板(5)、第1電極(23)、(2
5)、第2電極(72)、(82)が図4に示すように
配置され、筒状空間(100)の(A)−(A′)、
(B)−(B′)、(C)−(C′)、(D)−
(D′)における断面での被膜の厚さ分布を図4
(B)、(C)、(D)、(E)に示す。このすべての
被膜断面図は、図1のそれと比べてきわめて均一性を有
し、実用上十分±10%以内のばらつきになっているこ
とが判明した。
【0031】また、珪素または炭素の不対結合手を水素
によりSiーH 、C−Hにて中和するのではなく、Siー
F、C ーFとハロゲン化物、特に弗化物気体を用いて実
施してもよいことはいうまでもなく、この濃度は40原
子%以下、たとえば2原子%ないし5原子%が好ましか
った。形成させる半導体の種類に関しては、前記したご
とく、単層ではなく4族のSi、Ge、SixC1-x (0<x<
1)、Six Ge1-x (0<x<1)、SixSn1-x(0<x<
1)、またはこれらの導電型を変更して接合を設けた複
数層であっても、また、これら以外に、GaAs、GaAlAs、
BP 、等の他の半導体であってもよいことはいうまでも
ない。
【0032】具体例2 具体例2は、具体例1のプラズマ気相反応装置を用い、
反応性気体として導入口(34)よりシランを供給して
珪素半導体膜を作製したものである。珪素半導体膜を作
製する際の基板(5)の温度は、250℃とした。珪素
半導体の被膜は、成長速度を8Å/秒、高周波(13.
56MHzを使用)電界を500W、シランを300c
c/分、プラズマ気相反応中の圧力を0.1torrと
した時に得ることができた。結果として、従来のプラズ
マ気相反応装置は、一対からなる平行平板型の電極によ
って電界を印加し、被膜形成速度を1Å/秒ないし3Å
/秒として、反応容器に、たとえば60cm×60cm
1枚に膜を形成したのに対し、本具体例のプラズマ気相
反応装置は、同一反応容器において、20cm×60c
mを20枚と8倍の延べ面積と、さらに被膜を10Åない
し25Å/秒で形成され、6倍の成長速度とを得ること
ができた。そのため、生産性は、合計48倍となった。
【0033】さらに、重要なことは、従来のプラズマ気
相反応装置を使用すると、1回ないし2回のプラズマ気
相反応作業により、反応容器の内壁に3μmないし10
μmのシリコンのフレ−クが沈着した。しかし、本具体
例のプラズマ気相反応装置においては、0.5μmの膜
厚の被膜生成を繰り返して行ない、その回数が100回
になっても、反応容器の内壁にうっすらとフレ−クが観
察されるのみであった。かくして、形成された半導体層
は、プラズマ状態の距離が長いため、光伝導度も2×1
-4ないし7×10-3(オームcm)-1、暗伝導度3×
10-9ないし1×10-11 (オームcm)-1を有してい
た。
【0034】これは、プラズマの電界方向が被膜形成面
に対して垂直である従来の方法が、光伝導度として3×
10-5ないし3×10-4(オームcm)-1、暗伝導度5
×10-8ないし1×10-9(オームcm)-1であること
を考えると、半導体膜として光フォトセンシティビティ
(光伝導度/暗伝導度)が106 倍以上の特性の向上が
見られた。本発明の具体例は、不純物を積極的に添加し
ない場合であるが、P型またはN型用の不純物を添加し
ても同様の高い電気伝導度のP型またはN型の半導体膜
を作ることができる。またP 、I 、N 型半導体を積層し
てPI、NI、PIN 、PN接合を作ることも可能である。
【0035】具体例3 この具体例は、具体例1のプラズマ気相反応装置を用い
て導電性金属を作製せんとするものである。以下におい
て、金属アルミニュ−ムをプラズマ気相反応方法で形成
する場合を示す。図2において、バブラ(36)には、
塩化アルミニュ−ムが充填された。塩化アルミニュ−
は、電子恒温漕によって40℃ないし60℃に加熱され
た。さらに、キャリアガスは、導入口(33)から不活
性気体のヘリュ−ムが100cc/分の流量で反応室
(2)に導入された。すなわち、反応室(2)には、ヘ
リュ−ムと塩化アルミニュ−ムとが混入したガスが導入
された。
【0036】さらに、水素は、導入口(33)より60
cc/分ないし100cc/分の流量で導入された。基
板温度は、200℃ないし550℃、たとえば300℃
に選ばれた。高周波電界は、ともに30KHz の周波
数を第1の電極(23)、(25)、および第2の電極
(72)、(82)に100Wないし300W、たとえ
ば200Wで供給された。かくして、20cm×60c
mの大きさの基板(5)は、ホルダ(6)に20枚装着
され、5Å/秒の成長速度で0.5μmないし1μmの
厚さの被膜が形成された。そして、その被膜の厚さは、
均一性も±5%以下に形成させることができた。
【0037】さらに、出発材料としてトリエチルアルミ
ニュ−ム(TEA )は、図2に示すバブラ(36)に充填
された。この場合、さらに、キャリアガスは、導入口
(33)から導入する必要がなかった。バブラ(36)
の温度は、60℃とすることにより、流量計の流量を6
0cc/分とした。さらに、水素は、導入口(33)よ
り500cc/分の流量で導入され、プラズマ気相反応
を行なった。反応圧力を0.1torrないし0.3t
orr、高周波電源の周波数を100KHz、出力を1
KWとすることにより、5インチ・シリコンウエハを5
枚ずつ、合計100枚装着させた。すると、これらの基
板(5)上には、7Å/分の成長速度にて金属アルミニ
ュ−ムが形成された。
【0038】この時、導体が筒状空間(100)の内壁
に形成されても、放電が不安定になることもなく、厚さ
1μmないし2μmの金属アルミニュ−ムを蒸着するこ
とができた。この時、反応室(2)には、外部の導入口
(38)より水素が700cc/分の流量で導入され
た。かくすることにより、反応室(2)の内壁に付着す
るフレ−クの程度は、さらに少なくすることができた。
そのため、プラズマ気相反応装置により30回の被膜形成
で、1μmないし2μmの厚さにしても、反応室(2)
の内壁、およびのぞき窓には、特に曇が見られなかっ
た。
【0039】特に、本具体例には、プラズマ放電用の二
つの電極間をリ−ク電流により互いに連結されてしまう
ことがないため、すなわちノズル(24)とホルダ
(6)とは、電気的に離間し、さらに、このホルダ
(6)と下側ノズル(24)とは、同様に離間してい
る。さらに、その周囲も反応室(2)の内壁に付着が少
ないため、このいずれの電路においてもリ−ク電流の発
生による放電が不安定になることがなかった。本具体例
においては、アルミニュ−ムであったが、たとえばカル
ボニル化合物の鉄、ニッケル、コバルトのカルボニル化
合物を用いて、金属鉄ニッケル、またコバルトを被膜状
に作製することも可能である。
【0040】具体例4 この具体例は、具体例1のプラズマ気相反応装置を用い
て窒化珪素被膜を作製した。すなわち、図1の場合にお
いて、シランを導入口(34)より200cc/分、ア
ンモニアを導入口(35)より800cc/分導入し
た。基板(5)の温度300 ℃、筒状空間(100)の圧
力0.1torr とし、1cm×60cmの基板20枚
または5インチウエハ100枚上には、1000Åない
し5000Åの厚さに被膜が形成された。被膜の均一性
において、ロット内、ロット間において±5%以内を得
ることができた。
【0041】具体例5 この具体例は、酸化珪素を形成させたものである。すな
わち、シラン(SiH )を200cc/分として導入口
(34)より、また、過酸化窒素(NO)を導入口(3
5)より200cc/分導入し、同時に導入口(33)
より窒素を200cc/分導入した。高周波電力は、周
波数を30KHz、出力を500Wとした。第1、第2
電界の周波数を同じとし、移相を90度ずらしてリサ−
ジュ波形とした。基板温度は、100℃ないし400℃
において可能であるが、250℃で形成させたとする
と、被膜の均一性が0.5μm形成した場合±3%と±
5%以内に納めることができた。
【0042】具体例6 この具体例においては、化合物導体、たとえば珪化タン
グステン、珪化モリブデンまたは金属タングステン、ま
たはモリブデンを作製した。すなわち具体例1におい
て、バブラ(36)から塩化モリブデンまたは弗化タン
グステンを導入し、さらにシランを(35)より供給
し、タングステンまたはモリブデンと珪素とを所定の
比、たとえば、1:2にしてプラズマ気相反応を行っ
た。その結果、250℃、300W、13.56MHz
において、0.4μmの厚さに4Å/秒ないし6Å/秒
の成長速度を得ることができた。この化合物金属と耐熱
金属とを反応性気体の量を調節することにより、層状に
多層構造で作ることができる。
【0043】以上の説明より明らかなごとく、本発明の
プラズマ気相反応装置は、半導体、導体または絶縁体の
いずれに対しても形成させることができる。特に、構造
敏感な半導体または導体中に不純物を添加し、P型また
はN型の不純物を添加した半導体層を複数積層させるこ
とができた。なお、本具体例におけるフロ−ティンググ
リッドは、第1電極側に設けたが、第2電極側または双
方に設けることにより膜質の向上を図ることができる。
また、本具体例においては、プラズマ気相反応のみを示
した。しかし、この電気エネルギーに加えて紫外光また
赤外光の光エネルギーを同時に加え、光プラズマ気相反
応法としてもよい。
【0044】
【発明の効果】本発明によれば、所定の圧力に減圧され
た反応空間に反応性気体を供給すると共に、反応空間内
に設けられた複数の電極に印加された電力によって、基
板の処理面に対して平行になるようにリサージュ波形を
描かせるため、被膜形成が均一化できると共に、基板の
被膜形成面に対するスパッタの程度を小さくでき、膜質
を向上させる。また、複数の電極には、電力が印加され
ることによって、基板の被膜形成面に対して平行な電界
をリサージュ波形として描かせるため、被膜形成面のプ
ラズマ処理を均一にすることができる。
【図面の簡単な説明】
【図1】(A)ないし(E)は従来のプラズマ気相反応
方法で得られた基板上の膜厚の不均一性を説明するため
の図である。
【図2】本発明の一実施例で、連続してプラズマ気相反
応が可能な装置を説明するための図である。
【図3】本発明の一実施例で、対をなす複数の電極によ
って発生する電界を説明するための図である。
【図4】(A)、(B)、(C)、(D)、(E)は図
3で非単結晶珪素を0.5μmの膜厚に形成した場合の
分布を説明するための図である。
【符号の説明】
(1)・・・第1の予備室 (2)・・・反応室 (3)・・・第2の予備室 (4)、(5)・・・基板 (6)、(7)・・・ホルダ (8)、(13)・・・ステップモ─タ (9)、 (10) ・・・ガイド (11) 、(12)・・・扉 (15)、(15′)・・・赤外線ランプ (21)・・・第1の発振器 (22)・・・正端子 (23)・・・負電極 (24)・・・ノズル (25)・・・正電極 (27)・・・供給口 (28)・・・排気口 (29)・・・真空排気手段 (30)・・・真空ポンプ (43)、(44)・・・ゲ─ト弁 (85)・・・第2の発振器 (90)、(91)・・・電界の方向を示す (97)・・・反応性気体供給系 (98)・・・真空排気系 (100)・・・筒状空間

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 減圧状態に保持された反応空間と、当該
    反応空間に反応性気体を供給する系と、不要反応生成物
    およびキャリアガスを真空排除する排気系とを具備する
    プラズマ気相反応方法において、 反応空間に反応性気体を供給すると共に、反応空間を所
    定の圧力に減圧する工程と、 反応空間内の複数の電極に電力を印加して、リサージュ
    波形を基板の処理面に対して平行になるように描かせる
    ことによって、プラズマを発生させる工程と、からなる
    ことを特徴とするプラズマ気相反応方法。
  2. 【請求項2】 減圧状態に保持された反応空間と、当該
    反応空間に反応性気体を供給する系と、不要反応生成物
    およびキャリアガスを真空排除する排気系とを具備する
    プラズマ気相反応方法において、 反応空間に反応性気体を供給すると共に、反応空間を所
    定の圧力に減圧する工程と、 反応空間内の複数の電極に電力を印加して、リサージュ
    波形を基板の処理面に対して平行になるように描かせつ
    つプラズマ処理を行なう工程と、からなることを特徴と
    するプラズマ気相反応方法。
JP6336623A 1994-12-26 1994-12-26 プラズマ処理方法 Expired - Lifetime JP2649331B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6336623A JP2649331B2 (ja) 1994-12-26 1994-12-26 プラズマ処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6336623A JP2649331B2 (ja) 1994-12-26 1994-12-26 プラズマ処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17093483A Division JPH0620038B2 (ja) 1983-09-16 1983-09-16 プラズマ気相反応装置

Publications (2)

Publication Number Publication Date
JPH07201764A true JPH07201764A (ja) 1995-08-04
JP2649331B2 JP2649331B2 (ja) 1997-09-03

Family

ID=18301074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6336623A Expired - Lifetime JP2649331B2 (ja) 1994-12-26 1994-12-26 プラズマ処理方法

Country Status (1)

Country Link
JP (1) JP2649331B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103806093A (zh) * 2014-02-17 2014-05-21 清华大学 基于icp的化合物半导体的外延生长装置及方法
CN103938272A (zh) * 2014-04-03 2014-07-23 清华大学 等离子体辅助的外延生长装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688203A (en) * 1970-11-10 1972-08-29 Kev Electronics Corp Scanning system for ion implantation accelerators
US3816748A (en) * 1972-04-28 1974-06-11 Alpha Ind Inc Ion accelerator employing crossed-field selector
JPS57111056A (en) * 1980-12-26 1982-07-10 Nec Home Electronics Ltd Semiconductor device
JPS57111055A (en) * 1980-12-26 1982-07-10 Nec Home Electronics Ltd Manufacture of semiconductor device
JPS5831532A (ja) * 1981-08-18 1983-02-24 Nec Corp プラズマ処理装置
JPS6062113A (ja) * 1983-09-16 1985-04-10 Semiconductor Energy Lab Co Ltd プラズマcvd装置
JPS6244576A (ja) * 1984-09-14 1987-02-26 Anelva Corp 多電極放電反応処理装置
JPH0519435A (ja) * 1991-07-16 1993-01-29 Konica Corp ハロゲン化銀カラー写真感光材料の処理方法
JPH05287286A (ja) * 1992-04-10 1993-11-02 Tadaaki Yamamura 粉 炭
JPH06336622A (ja) * 1993-05-31 1994-12-06 Sumitomo Metal Ind Ltd 横型連続炉における鋼帯スレッディング方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688203A (en) * 1970-11-10 1972-08-29 Kev Electronics Corp Scanning system for ion implantation accelerators
US3816748A (en) * 1972-04-28 1974-06-11 Alpha Ind Inc Ion accelerator employing crossed-field selector
JPS57111056A (en) * 1980-12-26 1982-07-10 Nec Home Electronics Ltd Semiconductor device
JPS57111055A (en) * 1980-12-26 1982-07-10 Nec Home Electronics Ltd Manufacture of semiconductor device
JPS5831532A (ja) * 1981-08-18 1983-02-24 Nec Corp プラズマ処理装置
JPS6062113A (ja) * 1983-09-16 1985-04-10 Semiconductor Energy Lab Co Ltd プラズマcvd装置
JPS6244576A (ja) * 1984-09-14 1987-02-26 Anelva Corp 多電極放電反応処理装置
JPH0519435A (ja) * 1991-07-16 1993-01-29 Konica Corp ハロゲン化銀カラー写真感光材料の処理方法
JPH05287286A (ja) * 1992-04-10 1993-11-02 Tadaaki Yamamura 粉 炭
JPH06336622A (ja) * 1993-05-31 1994-12-06 Sumitomo Metal Ind Ltd 横型連続炉における鋼帯スレッディング方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103806093A (zh) * 2014-02-17 2014-05-21 清华大学 基于icp的化合物半导体的外延生长装置及方法
CN103806093B (zh) * 2014-02-17 2017-01-18 清华大学 基于icp的化合物半导体的外延生长装置及方法
CN103938272A (zh) * 2014-04-03 2014-07-23 清华大学 等离子体辅助的外延生长装置及方法

Also Published As

Publication number Publication date
JP2649331B2 (ja) 1997-09-03

Similar Documents

Publication Publication Date Title
US8053338B2 (en) Plasma CVD apparatus
US7011866B1 (en) Method and apparatus for film deposition
JP3812232B2 (ja) 多結晶シリコン薄膜形成方法及び薄膜形成装置
JP3553410B2 (ja) 薄膜トランジスタのための多段階cvd法
US20030143410A1 (en) Method for reduction of contaminants in amorphous-silicon film
JP2005005280A (ja) 半導体基板を不動態化する方法
US6531654B2 (en) Semiconductor thin-film formation process, and amorphous silicon solar-cell device
US5487786A (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
JP4126517B2 (ja) 気相加工装置
JP3630831B2 (ja) 堆積膜の形成方法
JPH11168090A (ja) 半導体製造方法
JP2648684B2 (ja) プラズマ気相反応装置
JP2649331B2 (ja) プラズマ処理方法
JPH0620038B2 (ja) プラズマ気相反応装置
JP2670561B2 (ja) プラズマ気相反応による被膜形成方法
JP2649330B2 (ja) プラズマ処理方法
JPH05211134A (ja) 薄膜の形成方法及び薄膜形成装置
JP2000096239A (ja) 誘導結合型プラズマcvd方法及びそのための誘導結合型プラズマcvd装置
JPH04323378A (ja) プラズマcvd法による堆積膜形成装置
JP3968649B2 (ja) 薄膜形成方法と装置
JPH0249386B2 (ja) Purazumacvdsochi
JPH07330488A (ja) プラズマcvd装置
JPS62149876A (ja) 酸化膜の形成方法
JPH0732127B2 (ja) プラズマ気相反応装置
JPS62205618A (ja) プラズマcvd装置